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Introduction

The main goal of this book is to describe mathematical modelsa
numerical methods of solving coupled physico-mechanicaloplems with
the use of modern software, mainly ANSYS nite element package.

In accordance to this goal in the rst chapter of this book weansider the
iIssues of mathematical modeling of coupled physico-meckaat problems,
such as the problems of electroelasticity, thermoelastigi poroelasticity
and the problems of interaction of deformable solids with aastic media.
The second chapter brie y describes the classical techniqak nite element
approximations and basic nite elements. The theoretical pa of this book
in the third chapter is supplemented by a set of practical aggnments on
solving coupled physico-mechanical problems in ANSYS of thersion 11.0
and higher.

The methodology of studying coupled physico-mechanical prems
includes the following common stages: the formulation of thelassical
problem statement (the system of di erential equations andhe boundary
and initial conditions); the transition from the classicalproblem statements
to the generalized problem statements; the application of igtrete
approximations by spatial variables; the obtaining of the arresponding
system of discretized equations.

Despite of the common approach applied for simulating all pblems
considered in the rst chapter, each type of these coupled ginlems has its
own peculiarities.

The problems of electroelasticity are characterized by namasdard
boundary conditions for electrodized surfaces, especyaibr the electrodes
powered by the current generators. These conditions are thealogs to the
boundary conditions of the contact type with rigid stamps foran elastic
solid.

In the problems of electroelasticity the feasible problemtatements
include the statements for multilayer bodies with various pysical
properties: piezoelectric bodies, elastic bodies, didigcs.
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An important role for practical applications of piezoelectc devices
belongs to the two sets of natural frequencies, namely, theefuencies
of electric resonances and antiresonances. In order to ndhdm, it is
necessary to solve twice a generalized eigenvalue problemhwslightly
di erent boundary conditions for the electrodes. The necegg of solving
these problems is signi cant for complete analysis of the @ity of
piezotransducers that work in dynamic modes.

The problems of thermoelasticity are characterized by the lbmdary
conditions of the third kind, namely, the condition of the cavective
heat transfer. These boundary conditions give additional otribution
to the symmetric bilinear forms of the generalized problemtatement.
The important classes of the problems of thermoelasticity arthe weakly
coupled problems, especially the problems of thermal stees, in which the
problem for the temperature eld does not depend on the disptement
eld.

An interesting feature of the problems of poroelasticity ishat an
analysis of one class of problems can be performed using treol$
developed for the other class of problems. Indeed, using pthrermoelastic
analogy, the problems of poroelasticity can be solved as thpoblems
of thermoelasticity. ~An important methodological example s the
demonstration of the e ectiveness of the transition to a diransionless
statement of the problem of poroelasticity, which makes it pgsible to align
the orders of the system coe cients and as a result increasbd e ciency
of numerical methods, especially for nonlinear problems.

The problems of the interaction of deformable solids with acstic media
are peculiar because they combine the problem statements fii erent
eld types, de ned in di erent media: a solid structure and a surrounding
acoustic (liquid or gaseous) medium. Here the coupling arssérom the
boundary conditions of the contact between the solid struate and the
acoustic medium. Another feature of the problem is a nonre éag or
impedance boundary condition that determines the dampingrpperties
in the problem. Using the example of such problems, it can be ashn
how the choice of the main unknowns functions a ects the formfahe
resulting system of discretized equations. It turns out thiathe statements
of the acoustic problems on the base of the functions of the teatial of
acoustic velocity are more convenient for conjugation withhie statements
of the problems for the solid structure than the statementsfdhe acoustic
problems on the base of the functions of the excessive pressu
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The resulting boundary-value and initial boundary problemsre rather
complex and therefore require numerical methods that can ectively solve
these problems for the domains of complex shape. Nowadays.e oof
such methods is the nite element method. In connection to ik, in the
second chapter we brie y describe the nite element methodotusing on
its application to the solution of coupled physico-mechacal problems.

We show that the nite element method is a special case of thesgeral
procedure of discretization by the Galerkin method with the lwice of a
special type of the basis from piecewise polynomial functismn canonical
domains. Usually these functions are of low order and have angpact
support. We note that the choice of the bases for the nite elaent
methods determine the numerical e ectiveness of the methothe sparsity
of the matrix, the simplicity of the calculation of the nite element objects,
the possibility of the implementation of the assembling predure, the
ease of taking into account the essential boundary conditis. The fact
that the nite element method is constructed on the base of geralized
problem statements that have energetic and variational meang leads to
the convergence of the approximate solutions by energy nosnand also
to the possibility of the implementation of the methods for sarching
the minimum of the quadratic functionals for the problems wit positive
de nite symmetric operators.

The popularity of the nite element method is to a signi cant degree
caused by its developed technology which is given some attent in this
book. We consider the issues of forming the global nite eleant objects
from the corresponding element objects using the proceduréassembling
and the issues of the taking into account the essential boua conditions.

In the framework of the general approach we describe isoparetric
nite elements. Basic Lagrangian nite elements are consated for 1D,
2D and 3D problems. For 1D problems, the shape functions fonéar
and quadratic nite elements are provided. For 2D problemsinear and
guadratic nite elements are considered for the elements tfe serendipity
type. The ideology used for the construction of 2D problems extented to
3D elements for tetrahedrons and hexahedrons with linear argliadratic
approximations on canonical gures. The basis functions ohite elements
are also provided in the form of prisms and pyramids. The isssi®f the
consistency of the nite element meshes are also discussed.

In the third chapter we provide the practical assignments tat support
the theoretical part of this book. The assignments are devateo solving
the model problems of piezoelectricity, thermoelasticitgand problems of
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the interactions of solids with acoustic media using ANSYS vewi 11.0
and higher. Each assignment is supplied by a description obmstandard
methods and techniques of solving in ANSYS the speci c types abupled
physico-mechanical problems. The programs in the commandogram
language APDL ANSYS are provided with detailed comments. An analigs
of the obtained results is also given. For independent workewprovide a set
of individual assignments for solving the model problems piezoelectricity,
thermoelasticity and problems of interaction of solids wittacoustic media
in ANSYS. It is assumed that the readers have basic knowledge ofrking

with ANSYS [20, 30, 31] and are familiar with its program language APDL.

The book is intended in the rst place as a support for the coues
\Finite element modeling of coupled problems", that is give in the
framework of the Master's degree program 'IT in Biomecharst in the
Institute of Mathematics, Mechanics and Computer Science &outhern
Federal University. The book can be also used by the under-gzate
students and graduate students of various specializationsho study
Applied Mathematics, Numerical Methods or the problems of spéec
coupled physico-mechanical problems as well as by reseaschnd engineers
who wish to deepen their knowledge concerning the methodologl the
mathematical modeling of coupled problems of mathematicahysics and
nite element technologies of their solution.

The authors express their gratitude to the Director of the Instute of
Mathematics, Mechanics and Computer Science M. Karyakin whoifiated
the publication of the series of the monographs in the framerk of the
project of Tempus-1V program, which facilitated the intensication of the
author's work on this book.



Chapter 1

Some models of coupled problems
for mechanics of solids

1.1 Basic notations. Vectors and tensors

This section serves for reference purposes and concerns thé&tions
on vector and tensor values that we will use further. More dela on
vectors and tensors can be found in numerous publicationg€s for example
[38, 18, 19, etc.) Here we provide basic information on this issue.

1.1.1 Introduction to vectors and tensors

Let R" be a Eucledian space. The elements of this space caledtors
will be denoted here by bold and (as a rule) small lettersa 2 R".

Let us select an orthonormal basig; 2 R", i = 1;2;::;;nin R". Then
any vectora 2 R" can be presented as a series expansion in the basis

_ X def
a= a4t = ae
i=1

with the coordinatesay, ay, ..., a,.

Hereinafter we useEinstein summation rule over repeated indiceshere
upper and lower indices are not distinguished.

As R" is a linear space, then the operations of addition and
multiplication by a scalar are already de ned in it. Thus, if , 2 R;
a=ae,b=Dhe2R", then a+ b=(aj+ bj)g 2 R".

The space R, as a Eucledian space has an operation afcalar
multiplication:

a b=(ae) (he)=abe ¢ =ab j = ab:
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Here j is the Kronecker delta ( =1,ifi=j; 3 =0,if i 6 ]), and
we use that for the orthonormal basig; € = ;.

In vector-matrix notations we will write the set of vector coodinates
a in a form of a column vectora = faj;ap;::;;a,g or row vectora =
ba;; ay; :::; anc. Whereas in tensor notations the column vector and the row
vector can be not distinguished, in the matrix algebra we willenote the
multiplication of a matrix K by a column vectora on the right asK a,
and the multiplication of a matrix K by a row vectora on the left will
be denoted asa K. Then if | is a unit matrix, then b | a=b a.
Thus, the scalar multiplication of two vectors can be preseatl in di erent
forms: b a (using tensor notation) orb a (using matrix notation).

If €9, €9, ..., €% is another orthonormal basis irR", then we can introduce
a matrix Q (matrix of direction cosines)

[Qli =g =& € (1.1)
and represent the vectors of one basis by the vectors of anetlbasis

€ = G ejoi e’= & i =qi; (1.2)

and obtain the recalculation formulas for the coe cients of the vector
a= ae = a’e) under the change of the basis
a=gqga;, a= ja; (1.3)
or in the matrix form
a=Q a® a’= A a A=0Q;: (1.4)

whereQ is the transpose matrix.
As it can be easily proved, the transition matrixQ is orthogonal:

Q Q=Q Q =1; Q=(Q) ™"

As a result, the vectora can be thought of as a set of numberfsas; a,,
.5, ang, referred to the basisfes, ey, ..., e, where with the transition to
a di erent basis f€9, €9, ..., €%g the numbers change according to the laws
(1.3), (1.4).

Let us now consider a Cartesian product gh Euclidean spaces R

n def5n no ... n.
Tp_IF R{g R}.

The elements of this space will be callegénsors(Euclidean tensors) of
the rank p and will be denoted, as vectors, in bold letters.
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In T5 we can select a basis consisting of the elements

def el -
Fil eiz{z ei} = eileiz...eip,

p

whereiy 2 f 1;2;:::; ng, e, are the vectors of an orthonormal basis in R

Then any elementX 2 TJ can be presented as an expansion in the basis

X = Xijipip €y €, €
with the componentsX ;,..i,, and it is obvious that dim TB = nP.

The vectors can be considered as the tensors of the rst rank, e.
R" 1, and from the components of the second rank tensir = Xj; ej€;
we can compose a square matriX[j = Xj; of the ordern n.

The Cartesian product of the Euclidean spaces is closely contesl with
the operation oftensor multiplication (external multiplication)

— n. — n.
X = Xiliz;;;ipeileiz...eip 2 Tp, Y = lejz;;;jqejlejz...ejq 2 Tq .

o

Xy & Xisiyizip Yiajocjo iz €1, €1, €], €, €1, 2 Ty g

Accordingly, two vectorsa = aje;, b = bgg 2 R" = T ] can constitute
a second rank tensoab = ajhej e 2 T3, calleddiad. The components of
this tensor constitute a matrixab : [ab ]J; = aly.

For the second rank tensoiX = Xj ee we will use theoperation of
transposition:

X = in €€,

which leads to the transposition of the matrix of the tensor a®cients.

The second rank tensoX 2 T} is calledsymmetric, if X = X .

In a similar way we can speak of symmetry of an arbitrary rankensor by
a certain pair of indices. For example, the third rank tensaerof piezomoduli
e = ey € & €, that will be used further in section 1.3, will be symmetric
by the last two indices: ey = ek. For such tensors the transposition
operation will denote the permutation of the rst and the third indices or a
pair of the rst two indices and the third one: e = exiejexe = g€ ek €.

By analogy with vectors, for tensors of arbitrary rank we canansider
the operations of addition and multiplication by a scalar. Nenely,

8, 2R; X =Xiiui,€,€, € Y = Vi€ 6,6 2 TB:
X+ Y =(X + Yijiyui,) €, €, 6 2 TB:

i1ip:ip
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Although there is a speci ¢ concept of scalar multiplicatiorfor tensors,
we will consider a more important for further application opeation of inner
product (simple productor contraction)

—_ s n. —_ e n.
8 X = Xijipmip€i, €, €, 2 T Y = Y yj,04,6,6,:06,2 Tg !

def
XY = X|1|2 ip 1kYk|p Hp+q zell e|2 elp+q 2 2 Tp+q 2,

where there is a contraction of the last index aX and the rst index of Y
(summation overk in the last formula).

For the tensorsX 2 Tg, Y 2 Tg with p 2,9 2 we can de ne the
operation ofdouble inner product(double contractior)

8 X = Xii,ui €, 6,06, 2 TB; Y = Yjj,ui.8. 6,006, 2 Tg; p;q 2:

def def
XY XY S Xiyipuiy ok Yidiy 5 g 401 €050 2 T3

e|p+q 4 p+q 4’

which, as it can be seen, consists of successive applicatidrihe simple
product (contraction) operation two times.
Thus, for the fourth rank tensor of elastic sti nesscF = CinEkI e e ee 2

T3 and the second rank strain tensor' = ".se e 2 T3 that will be
introduced further in section 1.3 it holds thatcE : " = C’ukl "KEi g 2 T3
Under the transition to an orthonormal basise9, €9, ..., €2 in R"

according to the laws(1.1), (1.2) the components of the tensoK 2 T
change according to the laws that generalige.3)
X = Xil'

. — 0 O 0...,0.
|2:::ipeilei2- e, = X; e .le

ja2:p J1 127" ~lp
— 0 . 0 — .
Xiliziiiip - qulq2j2"'quplejz ip? X|1|2 P ETE R PIPEEE ipjpxj1j2353jp'
(1.5)

A change in the tensor componentX 2 TJ under the transition from
one orthonormal basis to another according to the formulasl() is a
fundamental property that de nes the very concept of the tesor.

Let = (x) 2 T3 be a tensor function of the vector of spacial
coordinatesx 2 R3, that has su cient properties of smoothness fensor
eld). A gradient operator

r=ex——,
@x
Is called nabla operatorand has a rank of a vector (i. e. it is a rst rank
tensor).
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A nabla operator and a tensor eld can be used for various teos
operations. For example, a tensor product of the operatar and the
vector eld a= a(x) 2 T3 gives the second rank tensor

@p
ra= —ee:
@x

Inner product of the nabla operatorr and the tensor eld (x) 2 TS
gives the tensor of the rankp 1 which is called thedivergenceof the
tensor eld

div % - e @ _ @ i,y
@x @x
In particular, the divergence of the vector elda = a(x) is a scalar value
(zero rank tensor)

€, 6

@R gef
roa= — = agk:
@K Ak;k
Finally, we provide the Gauss (Gauss-Ostrogradsky) formalfor the
tensor elds. If is a bounded volume in R®, = @is a closed piecewise

smooth surfacen = n(x) is the vector of an external unit normal to the
point x 2 , then for continuously di erentiable tensor eld 2 Tg of an
arbitrary rank p the Gauss (Gauss-Ostrogradsky) formulbolds:

Z Z

r d = n d

which generalize an analogous formula from mathematical dpsis for
vector elds.

1.1.2 Main notations and values in coupled problems of
elasticity theory

This subsection contains main notations for the eld chara@ristics,
material properties and external in uences, that are introluced and used
further in sections 1.3 { 1.6. The description of each value etins its
dimension in international system of units Sl, where a dimemmless value
is denoted by symbol \1".

Characteristics of mechanical, electric, thermal, Itration and acoustic
elds:

u { displacement vector, m;
" { strain tensor, 1,
{ stress tensor, N/n? = Pa;
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' { electric potential, V;
E { electric eld intensity vector, V/m;
D { electric induction (electric displacement) vector, C/nft;
T { temperature, K;
To { temperature of the natural state, K;
{ temperature increase, K;
S { density of entropy (thermodynamic entropy), measured frm the
natural state, JJ(K m3) = N/(m 2 K) = PalK;
g { heat ux vector (specic heat ux vector, heat ux density v ector),
W/m 2;
{ porosity, 1;
v { ltration velocity (in poroelasticity), acoustic veloci ty (in acoustics),
m/s;
p { pore pressure (in poroelasticity), excess acoustic press (in acoustics),
N/m? = Pa;
{ velocity potential, m?/s.
Material properties.
{ density, kg/m3;
cE (c) { elastic moduli tensor, calculated at constant electric eld, N/m?
= Pa;
e { piezomoduli tensor, C/m?;
S { tensor of dielectric permittivities, calculated at consant strains, F/m;
4 { damping coe cient (the rst damping coe cient with account for
Rayleigh damping), 1/s;
4 { damping coe cient (the second damping coe cient with account for
Rayleigh damping), s;
{ tensor of thermal stress coe cients, J/(K m3) =N/(m ? K) = Pal/K;
¢ { speci ¢ heat at constant strain, J/(kg K) =m?/(s? K);
k { tensor of thermal conductivities, W/(m K);
¢ { uid density, kg/m 3;
b { Biot's tensor, 1;
N { Biot's modulus, m?/N = 1/Pa;
K { tensor of Itration coe cients, m/s;
Co { speed of sound in acoustic medium, m/s.
External in uences and couplings
f { mass force density vector, N/kg = m/s’;
{ bulk density of the electric charges, C/nf;
W { heat source intensity, W/m?;
u { displacement vector on the boundary, m;
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p {stress vector, N/m? = Pa;
V; { electric potential on the electrode  , V;
Q; { total electric charge on the electrode ; , C;
{ surface density of electric charges, C/r
I { circular frequency (angular frequency, radial frequengyrotation
frequency), rad/s = rad Hz;
f = 1=(2 ) { frequency, 1/s = Hz,
{ temperature (temperature increase) on the part of the boutary, K;
q { heat ux on the surface, W/m?;
ht { heat transfer coe cient on the surface, W/(m? K);
b { temperature (temperature increase) of external medium, K;
Z { impedance of the boundary, N s/m.

1.2 General issues

In classical problems of mathematical physics physical @ are usually
considered to be of specic nature. For example, the problemof the
elasticity theory for deformable solids study the mechara¢ elds arising
from mechanical external in uences, such as the displacentevector elds
u = u(x;t), the tensor elds of strains" = "(x;t), stresses = (X;t),
etc. The thermal conductivity problems consider the changesf the
temperature eld = (x;t) under the thermal in uences. The problems
of electrostatics and quasielectrostatics investigate ¢helectric elds, such
as the scalar eld of the electric potential' = ' (x;t), the vector of the
electric eld intensity E = E(x;t), etc., that emerge in dielectrics under
the electric external in uences. The examples of similar pbdems can be
easily extended.

All above cases can be attributed to the speci c type of the ptems
of mathematical physics. Indeed, transient dynamic probhes of the
elasticity theory are described by the systems of equatiorm$ hyperbolic
type (limiting case). Transient equations of thermal condctivity are the
equations of parabolic type, and the equations for dieleats have elliptical
type. Note that for the problems with systems of di erential egiations (for
example, the problems of elasticity theory), all equationssually contain
spatial derivatives of the same order and time derivatived the same order.

The coupled problems, where the elds of di erent nature are geendent
on each other, are more complex from the mathematical viewmbi For
example, in the problems of thermoelasticity the mechanitand thermal
elds are coupled with each other. In the problems of electrésesticity for
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the piezoelectric media the mechanical and electric eldse coupled, in
the problems of thermoelectroelasticity the coupled eldare the thermal,
mechanical and electric ones.

The interaction of the elds of dierent nature is reected in
fundamental laws that form the basis of the theories of coumephysico-
mechanical elds. This coupling has many forms and appears @ssentially
di erent ways for various situations and for various media.As a result,
there are a lot of independent practically important theoes of mechanics
of solids with complex properties, which additionally can caider various
mechanisms of coupling. For example, several theories caam donsidered
in the framework of the theory of thermoelasticity, such asheory of
thermal stresses, theory of thermal conductivity with a nite velocity of
heat propagation, theory of thermal heating under steadytate oscillations,
etc.

The computational results of the problems with coupled physiemecha-
nical elds are quite complex, because of both increasing mber of the
unknown eld parameters and di erent scales changes in timef the main
and associated elds. Nowadays, the most e cient numerical ®thod that
enables to conduct analysis of the problems of the elasticitheory with
complicated properties is the nite element method (FEM).

There is a range of \heavy" commercial nite element (FE) packges
(ANSYS, ABAQUS, COMSOL, MSC MARC, etc.) that allow performing
computations of the coupled problems, as well as several sdized
packages oriented to various classes of the elasticity tlggroblems with
complicated physico-mechanical properties (for exampl&;EPACK for the
thermoelasticity problems, PZFlex, ATILA, ACELAN for piezoelectricity,
etc.)

It is obvious, that in the view of complexity of the coupled poblems
both in the methodology and in the implementation of nite ekment
calculations, there is still a wide eld for research. The congrison of
di erent nite element methods and their implementations in terms of
accuracy, speed and e ciency is also of interest. Specic d&ures of
coupled physico-mechanical problems make relevant both thamatical
studies and development of e ective numerical methods, sgal software
and modules for existing computational packages enabling tautomate
some of the important stages of coupled analysis.

Let us give a classi cation of the coupled problems on the exgle of
two elds of di erent nature, such as the displacement eldu(x;t) and the
temperature eld (more precisely, the temperature increas eld) (x;t).
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The system of coupled di erential equations for the main eldu(x;t) and
for the related eld (x;t) in general case can be described in the form:

Luw(r ;@Qu+ Ly (r;@ =fy;
Lu(r;@u+L (r;@ =f1;

where L, Ly, Ly, L are the dierential operators, which can be
nonlinear and dependent on the functions and .

For classical problem settings this system should be supgdi with the
corresponding boundary and initial conditions. For furthe mathematical
analysis and application of numerical method it is converié to move to
the generalized or weak problem settings usually represedtby variational
or energy relations, that express the principles of the eqltg of works and
the energy balance of the system.

Let us apply semi-discrete approximations to the weak bouady-value
problems setting in the corresponding nite-dimensionalgace that can be
expressed as

u(x;t) N, (xX) U(t); (x;t) N (x) T(t)

with the matrix of the basis functions N (x), the vector of the
basis functionsN (x) and the vectors of the functions (constants) of
approximation U and T (nodal degrees of freedom in the nite element
method)

Auw@ U+A, (@ T=F; (1.6)
Aj(@ U+A (@ T=F; (1.7)

whereA,,60; A 60.

The most important types of coupled problems are as follows:
{if A, 60; A, 60, then we have the problems with full matrix coupling;
{if A, =0; A, =0, and some diagonal blocksA ,, of A ) depend on
the elds of di erent nature (for example, Ay, = Aw(T)), then we have
the problems with block-diagonal matrix coupling;
{iif one of the blocksA, or A  is equal to zero, than we have the problems
with partial coupling.

Then, there are cases when the time derivatives are absent irrta
matrix blocks and present in the others.

The classes of coupled physico-mechanical problems congtise prob-
lems of thermoelasticity, electroelasticity, magnetoesdicity, acoustoelas-
ticity, thermoelectroelasticity, acoustoelectroelastity, etc.
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The solution methods for coupled problems depend on the coing
type. The problems with full matrix coupling can be solved by aoventional
nite element algorithms, for example, the algorithms for asingle vector
of unknownsa = fU;Tg. In the problems with the time derivatives of
di erent order the block algorithms, that use the reductionof quasi-static
degrees of freedom, can be more suitable. For example, in {®blems
of electroelasticity, it can be convenient to reduce the al&ic potential
degrees of freedom.

The problems with block-diagonal matrix coupling are usually
nonlinear, and they can be solved with the use of the Newton-Ragtn
method for nonlinear problems.

In the problems with partial coupling, for example, whem , =0, the
discretized problems are solved in two steps. First, we sel¥he problem
for the related eld T

A (@ T=F:

Second, the obtained value$ are substituted in the equation for the main
eld U:

Aw@ U=F, A,(@ T:

Essentially this problem is an ordinary problem for the maineld, but it
contains additional terms in the vector of the right-hand gle.

Finally, there are coupled problems in which the right-handide vectors
depend on unknown functions, for exampleF, = Fy(U;T), F =
F (U;T). Such situations also arise when solving the problems withlFu
matrix coupling using iterative algorithms. For example, poblem (1.6),
(1.7) with full matrix coupling can be written in the form

Auw(@ U =Fy; (1.8)

A (@ T=F,; (1.9)

with F,=F, A, (@ T,F =F A (@ U, anditis possible to
apply iterative methods to solve this problem.

In more general case, A, = Aw(U;T), A = A (U;T), Fy, =
Fu(U;T), F = F (U;T), then problem (1.8), (1.9 is nonlinear and
its solution requires special iterative methods. Accordingo ANSYS
terminology [1], such problem is called a problem with weak (sequential)
coupling.
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1.3 Modeling of electroelasticity problems

In this section, the main objects for investigation will be aitve
dielectrics that have piezoelectric properties. The piezleetric e ect
consists in the linear relation between electric and mechiaal elds. The
history of this phenomenon is described in many works, sucls &, 10]
and others. Here we will only provide a brief history of the pierlectric
e ect. In the 1880s, Pierre and Jacques Curie found that someystals
were exhibiting unusual properties under tension in certai directions:
the electric charges were generated on the surfaces of thesgstals, and
these charges were proportional to the applied load. This ph@menon has
been called thedirect piezoelectric e ect (from the Greek verb \piezein"
meaning \to press"). Soon after this discovery in 1881 Galal Lippmann,
using thermodynamic relations and his theorem of reversility of physical
phenomena, predicted annverse piezoelectric e ectthat consisted in the
following: the crystals that had piezoelectric propertiesnder the presence
of electric eld should deform according to the linear law. Inthe same
year the existence of the inverse piezoelectric e ect was petimentally
con rmed by Pierre and Jacques Curie who found that the piezasitric
modules (the proportionality factors) of the direct and inerse piezoelectric
e ect were the same.

Pierre Curie has also formulated the principles that relatehe properties
of symmetry and asymmetry in the phenomena to the causes thgénerate
them [11]. According to the principles of Pierre Curie, the phenomenon
has all elements of symmetry of the causes that generate itcagan also
has higher symmetry that its causes. Similarly, an asymmstrof the
phenomenon is predetermined by an asymmetry of its causesa dther
words, the phenomenon can exist only in the system that is treymmetry
subgroup for this phenomenon.

According to these principles, in the system \crystal { extemal
in uences" the crystal changes its symmetry in such way thathe only
remaining elements are those common with the elements of threuence.
Therefore, as the symmetrical tension has the center of symime than for
the crystals with the center of symmetry under symmetrical tesion the
central symmetry should remain. However, as the phenomenohedectric
polarization does not have the central symmetry, than suchsgmmetry
should be predetermined by asymmetry of the system. There&rfrom the
Curie principle we can conclude thabnly those crystals that do not have the
centers of symmetry can have piezoelectric propertie$he connection of
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the piezoelectric e ect phenomenon with the crystal structte was studied
in more details by V. Feucht in 1884. As it follows from the previas
discussion, all these classes of crystals cannot have theteeof symmetry.
As a result, it was theoretically proved that the piezoelectc materials were
necessarily bound to be anisotropic.

Over many years natural crystals were the only available meelectric
materials, and many piezoelectric devices were construdten their base.
Later, approximately since the middle 60s of the twentieth entury,
arti cial piezoceramic materials became to be developed drused. It was
found that the materials on the base of barium titanate (BaTiQ) had
rather strong piezoelectric e ect. The subsequent develomnts showed
that the PZT materials on the base of zirconate, or lead titaate, had
even greater sensitivity and could work at rather high tempatures. As
a result, this led to the emergence of a whole production teoblogy
for new piezoceramic materials and piezoelectric deviceaskd on them.
Modern piezoelectric ceramics is several times more sensito the electric
and mechanical in uences than natural piezocrystals. Vamyg the initial
compounds of piezoceramics, it is possible to create magdsi with various
properties that meet the needs of the consumer. Piezocerasis strong
enough, chemically inert and relatively cheap in productim Besides, it
can be used to manufacture piezoelectric elements of almasly required
shape and sizes.

At present the work of many piezoelectric devices is based tre e ect
of mechanical and electric eld coupling. These devices areade of various
specially designed formulations of piezoceramics. Modepmezoelectric
manufacture has an extremely wide eld of application.

Piezoelectric transducers transform electric external imence (electric
voltage or current) into mechanical movements, usually, irsonic or
ultrasonic vibrations. Piezoelectric transducers that geerate ultrasonic
acoustic vibrations, are used in medical diagnosis and tlagry for spraying
liquids, cleaning surfaces, as, for example, in ultrasouméashing machines,
in welding, in order to improve gas and oil recovery and for nms
other applications. The reversibility of the piezoelectrice ect allows
piezoelectric transducer not only to generate mechanicabvations but also
to receive and register them transforming mechanical sigisanto electrical.
Therefore, piezoelectric transducers are widely used as diste sensors,
liquid level sensors, parameters of environment, etc.

Other types of piezotechical devices are generators, pielazctric
transformers, piezoelectric lters, delay lines, etc. Mdiematical models
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of piezoelectric devices are based on the equations of ceudlptheory of
elasticity or piezoelectricity. The bibliography on piezoectricity is wide
enough and it can be subdivided in several groups, such as therks on
physics aspects, the works devoted to application or teclual issues of
piezoelectric engineering which are the most numerous, andstly, the
works that cover mechanical, mathematical and numerical pblems of the
electroelasticity theory. The classical works that descréin details the
physical and mechanical aspects of piezoelectricity arg [/] and others.
Various problems of the electroelasticity theory as the aaeof mechanics are
presented in L7, 21, 26, 2€], and numerical methods of solving the problems
of electroelasticity are given in17]. Modern approaches to the calculation
of piezoelectric devices are based on the nite element texlogies, the
triangulation and assembly algorithms, and the methods fosolving the
problems of computational mathematics with large sparse mates. The
base for these approaches lies in the weak or variational ®ments for
coupled problems of electroelasticity and their approximens. These
issues will be discussed below.

1.3.1 Classical statements of electroelasticity problems

Let be a bounded domain in R3, occupied by a piezoelectric body:;
= @ is the boundary of the domain ; n = n(x) is the vector of the
external unit normalto (x 2 ).

We will consider that the state of the piezoelectric medium ide ned by
the vector-function of displacementsl = u(x;t) and the scalar function of
electric potential ' ="' (X;t).

The vector-function of displacementau(x;t) determines the tensor of
small strains

"=(ru+ru)=2 (1.10)

and the vector of electric eld intensity depends on the furtcon of electric
potential
E=1r =" (1.11)

We note that the components';; of the strain tensor and the components
E; of the electric eld intensity vector are obtained through he rst
derivatives by spatial coordinates from the eld functionsu;(x;t) and
' (x;1), respectively,

. _leu ew_ 1.
1= 2@y @ T Mt ) (1.12)
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g = ' .
@x .

In linear approximation, for piezoelectric medium there isa linear
relation between the strain tensor' and the electric eld intensity vector
E on one side and the stress tensor and the electric induction vectorD
on the other side. These dependences are called the constitaitrelations
and are given in the form:

(1.13)

=cE:" e E; (1.14)
D=e:"+ 5 E: (1.15)

Here cF is the fourth rank tensor of the elastic moduli calculated at
constant electric eld (E); e is the third rank tensor of piezomoduli; ° is
the second rank tensor of dielectric permittivities, caldated at constant
strains (S).

In a component-wise setting, Egs.1(.14), (1.19 can be written in the

form:

i = Gk & Ex; (1.16)

Di=ex"w+ HEk (1.17)

Let us note that the stress tensor is the symmetric second rank tensor,
I e. i = i
The elastic moduli tensorcE is the semi-symmetric fourth rank tensor
E _ E _ — ~E .
G = Gia = Gk = Cij ; (1.18)
and the piezomoduli tensoee of the third rank is symmetrical only by the

last two indices
€kl = Eik (1.19)

The components CinEkl TS f are the material constants that
characterize the elastic (sti), piezoelectric and dielddc properties
of the body, respectively. In the majority of cases these wms are
constant (for homogeneous bodies) or piecewise constantr (fmecewise
homogeneous bodies). However, for inhomogeneous bodies rtioeules
can be continuous or piecewise continuous functions of

If we reduce Eq. (L.14), using double inner product (double contraction)
by ", scalar multiply Eq. (1.15 by E , and then add up the obtained
relations, then we will get the expression for the density ofhe internal
energy of piezoelectric body

= (i +E D)= icFit+E S E) (1.20)
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From physical requirements of the positive de niteness fahe internal
energy the following conditions of the positive de nitenesfor the elastic
moduli and dielectric permittivity tensors take place:

9 1 > O : 8" - n ; n : CE : n 1ll : II; (1.21)

9 ,>0: 8E; E S E LE E: (1.22)

For a continuum the motion equations must hold, which in linea
approximation and neglect of damping factors have the sameri as in a
conventional elasticity theory:

r + = w; (1.23)

where = (x) is the density of the material,f = f(x;t) is the mass force
density vector, s = @u=@"

As the velocities of elastic and electromagnetic waves di en orders,
and piezoelectric media are the non-conducting dielectsicwe can adopt
the approximation equations of quasi-electrostatics

r D= ; (1.24)

where is the bulk density of electric charges, and usually in died&ics
=0.
In a component-wise setting, Egs.1(23, (1.24) take the form:

ij t fi= U, (1.25)
Dii = (1.26)

Substituting (1.23, (1.24) into the constitutive relations (1.14), (1.19
and formulas (.10, (1.11), we get the resulting system of di erential
equations for linear electroelasticity regarding the funons u and ' :

r (cE:ru+e r' )+ f= wu; (1.27)

r (e:ru Sr')= (1.28)

(Here we have used the fact that, as a result of the symmetry prerties
(1.18, (1.19 of the tensors cE and e, the following equalities hold:
cE:"=cF:ru;e:"=e:ru)
In a component-wise setting, system1(27), (1.29 will be written as
follows:
(Gia Ui + & " %) + Fi= Uins 1=1;23; (1.29)
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(€Ki Uk ﬁ( K)i = (1.30)

As it is seen, for piezoelectric medium we have coupled syst¢in29),
(1.30 of four dierential equations with respect to the four functons
ui = ui(x;t), 1 =1;2;3;" =" (x;t). All these equations are the equations
of the second order in spatial variables. Meanwhile, time deatives (of the
second order) are present in Eqsl1(29, but are absent in the equations
of quasi-electrostatics 1.30. This fact is a signi cant feature of the
electroelasticity equations.

In order to set an initial boundary value electroelasticity problem,
system of equations1.27), (1.28 or (1.29,(1.30 should be supplemented
by boundary and initial conditions.

The boundary conditions can be split in two groups, mechanicand
electric. To formulate mechanical boundary conditions, wassume that
the boundary is divided into two parts  and , where, respectively,
the displacement vectorss and the stress vectorg are set:

u=u,; X2 y; (1.31)

p=n ; p=p; x2 ; (1.32)

where, generally speaking, the external in uencas and p can depend
onx andt.

Therefore, here we con ne ourselves only to the main conditie of the
rst and second kind: condition (1.3]) is the condition of the rst kind or
the condition of the Dirichlet type, and condition (1.32 is the condition
of the second kind or the condition of the Neumann type. Howevethese
conditions can be set on the parts of the boundary, i. e. it isah necessary
that = ,or =

Important cases are the homogeneous boundary conditionstbé rst
and second kind, wheru =0or p =0. Inthe case ofu =0 the part
of the boundary  is said to be rigidly xed, and whenp = 0 the part
of the boundary is said to be free from stresses. In the same way as it
holds for elastic body, in the electroelasticity theory thecondition of the
rigidly xed boundary is the most common type of the boundarycondition
of the rst kind ( 1.31), and on the major part of the boundary = the
vector p is usually equal to zero.

We note that for the uniqueness of the solution it is convenméto require
that the boundary | is not empty, i. e. the solutions of the homogeneous
boundary-value problem in a form of rigid body motion are notllowed:
U= Urigit = Uct+ !¢ X, Uc=const, ! c=const.
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In order to set electric boundary conditions, we will assumehat there

exists another division of the boundary : = [ bp.
The part . can in its turn consist of discontiguous parts y ; | =
OL:;M,i.e. + = [ 45. We wil call these parts the electrode

surfaces. In reality the regions ; are the parts of the boundary of
the piezoelectric body, that are covered with metallized sfaces that are
called electrodes. The metal covering is usually very thin dncan be
mathematically considered to be in nitely thin. However, beause of the
assumption that is adopted in quasi-electrostatics, the@ttric potential
that falls to the electrode ; immediately spreads to the entire part  ,
and therefore ; does not depend o on ; . Consequently, the electrode
should be considered as an equipotential surface.

The presence of the electrodes is an important feature of thegblems
of quasi-electrostatics for dielectrics and more generalrgblems of
electroelasticity.

Besides, two important cases should be distinguished foeetrodes. On
some electrode surfaces; the values of potentials ; can be considered
to be known ( ; = V;), and such electrodes will be further referred to as
the electrodes powered by voltage generators.

On the other electrode surfaces; the potentials ;, that are still
independent fromx, are the unknown values. However, for them the total
electric chargeQ; or current I; = dQ;=dt is considered to be unknown,
where the sign \+" or\ " is determined by the direction of the current
in the external circuit. The parts ; of the second type will be called the
electrodes powered by current generators.

For the electrodes of the rst type, whenV; = 0, we will speak about
short-circuited of grounded electrodes, and for the eleddes of the second
type, whenQ; = 0 we will speak about free electrodes that are not powered
by electric current.

The described above boundary conditions for the electrodeanc be
mathematically formulated in the following way. Let « = [ o;
v=[ 45,123 =f0m+1;:5M0;, o=1[ j,]2Jo="112::;mg,
and the parts ; do not touch each other. (The latter is required in order
not to allow situations with discontinuous boundary conditons for electric

potential.)

On the electrodes v, powered by voltage generators we set the
potentials V;:

= = iMm=Vt);, x2 45 j2Jv: (1.33)
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On the electrodes o, powered by current generators we set the
following boundary conditions:
Y=o = )y x2 g j 2 q; (1.34)
Z
n Dd= Q;; 1= Q; ]2Jg: (1.35)

j

The speci city of boundary conditions (1.34), (1.35 consists not only in
the fact that the function ' (x;t) should take constant values ; (at every
xed time moment t) but also in the setting of a special integral condition
that is actually an additional equation for nding ;.

In the elasticity theory an analogue of conditions X.34), (1.39 is
the contact boundary condition. If a rigid stamp is indentedinto the
deformable body, than the stamp sediment is analogous to thpotential

i » and an integral condition is set for nding the sediment, tlat expresses
the equality of the integral of contact stresses under theatp and the total
force acting on the stamp (if we do not take into account the nmoents and
rotations of the stamp).

Here the distinction from the problems of the elasticity thery consists
in the following fact. For the problems of the elasticity theoy the boundary
conditions (1.34), (1.35 are adopted only for some types of problems,
whereas for the problems of electroelasticity conditions (34), (1.35 are
required to analyze the work of the majority of real-world pmzoelectric
devices.

Finally, on the non-electrode surfacesp the surface density of electric
charges = (x;t)is set

n D= , X2 p: (1.36)

Condition (1.36 claries (1.39. As it is known from electrostatics of
dielectrics, ( n D) is the surface density of electric charges, therefore an
integration of the function ( n D) over the whole part ; gives the total
electric charge on this part.

Thus, the main types of the boundary conditions for electroasticity
are given by formulas (.31 { (1.39.

As it is known, transient problems require initial conditions

u(x;+0) = ug(x); u(x;+0) = vg(x); x2 ; (1.37)

whereus, Vs are respectively the initial displacements and velocities the
body points.
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Thus, the statement of initial boundary-value problem of elgroelas-
ticity includes the system of di erential equations (L.27), (1.28 or (1.29),
(1.30, boundary conditions (.31 { ( 1.3 and initial conditions (1.37).

We note that the described above system of di erential equains of
the dynamic electroelasticity theory (.27, (1.28 or (1.29, (1.30 has
one drawback for practical applications. This system does nddke into
account the e ects of attenuation, damping or viscosity. (Hesinafter we
will use these words as synonyms). By analogy with the clasdigaoblems
of the elasticity theory here we adopt the Rayleigh method adccount for
damping, that is convenient for further application of numacal methods.
We will add the term proportional to the velocity of the body pants into
the motion equation (1.23

r + f= ®w+ 4 u; (1.38)
and constitutive relation (1.14) will be changed in the following way
=cE:("+ ) e E: (1.39)

Here in (1.39, (1.39 4 and 4 are non-negative damping coe cients.

Then the system of di erential equations of the electroelagtity theory
with Rayleigh damping will be determined by Egs. 1.10, (1.11), (1.39),
(1.19, (1.398, (1.24), and therefore in the system {.27), (1.28 instead of
(1.27 we will have

r (cE:(ru+ gru)+e r')+ f= ®m+ 4u (1.40)

The way of Rayleigh account for damping, that is adopted herdjas
many disadvantages. For example, adding of the termy u in (1.38 is not
justi ed thermodynamically, and instead of (1.39 for anisotropic bodies it
would be more logical to adopt the relation

- CE : "

+ef:" e E;

whereeF = 4cF will be only a particular case of this more general relation.
Other even more general forms of constitutive relations cdre built in the
frameworks of the theory of viscoelectroelasticity.

However, despite of all the drawbacks, the Rayleigh method of@unt
for damping is one of the most simple and permit to describe glitatively
the main e ects of the waves attenuation. This method is adoged in the
models and implemented in such well-known nite element cormupational
software, as ANSYS, ABAQUS and others.
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With regard to the stated above, further when we need to accoun
for damping in the electroelasticity problems, we will use # Rayleigh
method of account for damping, i. e. initial boundary-valueproblems of
electroelasticity will be described by Egs. 110, (1.11), (1.39, (1.19,
(1.39, (1.24), boundary conditions (.31) { (1.3 and initial conditions
(1.37).

In the case of static problems all external in uences do notegphend on
time t, initial conditions are absent, and in the motion equation$1.23 or
in (1.39, (1.39 the terms containing time derivatives should be omitted
(as for the problems of staticas = u(x), andu =0, & =0).

We will call the pair of functions u, ', that satisfy the dierential
equations, boundary conditions and initial conditions (fo transient
problems), the classical or ordinary solution.

The establishment of the smoothness properties of the soloi
depending on the smoothness of the external in uences, th@main
its boundary , the parts with various boundary conditions, material
constants f , &, &), externalinuences, ,u ,p ,Vj,Qjorl;, )
and initial conditions (us, Vs) is the problem for a separate mathematical
investigation. It is obvious that the functions u(x;t) and ' (x;t) must
be at least two times di erentiable with respect tox and t, as the second
derivatives are present in the system of di erential equatins (1.29, (1.30.
In the next section we will formulate another concept of the dation of the
electroelasticity problem with weaker smoothness requiremnts than for
the classical solution.

1.3.2 Generalized statements of electroelasticity problems

The transition from the classical problem statement to the geeralized
one is quite standard, and for the electroelasticity probias it consists in
the same steps as for other boundary-value problems with thgssems of
di erential equations of divergent type.

Considering transformations only in spatial coordinates,hiese stages
consist in the following:

1) multiplication of dierential equations by yet arbitrary, but
su ciently smooth projection functions and integration over the domain

2) integration in parts of the integrals with the divergence perator,
reduction in the order of higher derivatives by spatial coalinates and
obtaining (if possible) symmetrical integral forms;
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3) application of the Gauss-Ostrogradskii formulas for tnasition from
the integrals over domain with the divergence operator to thmtegrals over
boundary;

4) transformation of the integrals over domain obtained aér
the application of the Gauss-Ostrogradskii formulas, usgn boundary
conditions;

4.1) on the part of the boundary the restrictions on the projetion
functions are set that correspond to the homogeneous boumga&onditions
(essential boundary conditions) on these parts;

4.2) on other parts of the boundary the boundary conditions wh the
projection along the normal for the ow valuesf ,n D, etc.) are used;

5) removal of inhomogeneity of essential boundary condihe by
selecting the functions that satisfy inhomogeneous essahtboundary
conditions on the part of the boundary;

6) determination of the necessary functional spaces and riaulation of
a weak (generalized) problem statement.

We note that for the equations of the order &h the second stage is
required to be repeatedn times. For example, the problems of the beam
bending are described by di erential equations of the foult order, and the
procedure of integration by parts should be repeated two ties.

The described scheme forms the base for such called semirdigc
numerical algorithms, when in the beginning no conversions time are
made and therefore the projection functions can depend onbn x but
not on t. The weak or generalized statement of the problem in this case
corresponds to the Lagrange variational principle.

An alternative approach consists in the integration over thelomain
and over timet on some interval [QT]. In this case, the projection functions
should depend both onx and t, and for time integration the convolution
operations can be used. Further transformations can lead socompletely
di erent generalized problem statement that correspond tahe Hamilton
variational principle.

In the case of stationary (static) problems only the rst scleme is
possible, as there is no time dependence (apart from the pleims with
memory, such as the problems of viscoelasticity). Let us cmder, for
example, a static or quasi-static problem of electroelastty, when in
(1.23 there is no term with ®, and the motion equation is reduced to
the equilibrium equation. Following the scheme described abe, let us
multiply the equation of statics (1.23 without ® scalarly by some yet
arbitrary but su ciently smooth vector-function v (x) and integrate over
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the domain . Analogously, we will multiply Eq. ( 1.24) by an arbitrary
su ciently smooth function (x) and also integrate it over .
Using the formulas of tensor analysis

v o(r (u;"))=r (v (u;") (rv) @ (u;'); (1.41)

r DW")=r (D) (r ) D(u'), (1.42)
we get
VA z Z
(rv) @ (u;')d = v fd+ r (v (u;")d ; (1.43)
Z Z Z
(r ) D(u;')d = d r (D(u;"))d : (1.44)

The last integrals in (1.43, (1.44) are the integrals with the divergence
operator and can be transformed to the surface integrals ngi the Gauss-
Ostrogradskii formulas

Z Z

ro(v (u')d-= v (n (u;")d; (1.45)

Z Z
r ( D(u;'))d = (n D(u;'))d : (1.46)

Now we should try to account for boundary conditions in the irggrals
over the boundary .

For mechanical boundary conditions, according to1(32 the stress
vectorp = n (u;")isseton = [ ,andon . On | the
variable n  (u;' ) is unknown, and the only possibility to exclude the
dependence om, ' is the requirement thatv equals zero on .

Thus, we must impose a homogeneous boundary condition copesd-
ing to (1.31) on the projections functionv(x):

v=0;, X2 y: (1.47)
The surface integral in (L.495 can be presented in the form
Z Z
v (n (u;'))d = v p d: (1.48)
For electric boundary conditions = [ p; = v[ o v=1[ 3,
j2dv=1f0m+1;:5;Mg;, o= i,] 2Jo= 11,211, mg; and we get

formulas (1.33{( 1.39.
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On the part p the variablen D(u;") is known from (1.36 and is
equalto ().

On y, by analogy to the mechanical boundary condition on,, we
require that the projection function become zero:

=0; X2 4, ]2Jdv: (1.49)

On q it is enough to impose a condition that the function (x) take
the values that do not depend orx:

= Xj; Xj=const; x2 4,; ]2Jg: (1.50)
Therefore, on the parts y , ] 2 Jo, powered by current generators, we
have:
Z Z

(n D(u;"))d = X; n D(u;')d = X;Q; j2Jo:
j i
As a result, when the requirements (.49, (1.50 for the projection
function are satis ed, the surface integral in {.46 will take the form:
VA VA X
(n D(u;'))d = d X;iQj: (1.51)

P 12Jq

Thus, the last integrals in (1.43, (1.44) can be presented as functionals
fromv and , using (1.49, (1.46, (1.49, (1.5]). Taking into account these
transformations and (L.14), (1.19, relations (1.43, (1.44) will be written
in the nal form:

c(v;u) ev;")= LCulv); (1.52)
eu; )+ (" )=C() (1.53)
where

Z Z
c(viu)= (rv) :cE:rud= "(v):cE:"(u)d ; (1.54)

Z Z
ev;")=  "(v):e E()d-= E() e:"(v)d ; (1.55)

Z Z
(;)= r Srd = E() °E()d; (1.56)
Z Z

Cuv)= v fd+ v p d; (1.57)
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Z Z N
Co( )= d + d+ X;Q: (1.58)
: i23q

As it can be noted, if fu;' g is a classical solutions of a static
electroelasticity problem, than for any su ciently smooth functions v,
that satisfy (1.47), and functions , that satisfy (1.49, (1.50), integral
relations (1.52, (1.53 hold. However, the functionsu, ' should satisfy
inhomogeneous conditions1(31), (1.33, (1.34).

It turns out that the projection functions v, should satisfy
homogeneous boundary conditionsL(47), (1.49, and the solutionfu, ' g
satis es analogous but inhomogeneous boundary conditio(.31), (1.33.
It is possible to remove the heterogeneity of these boundappnditions
in the following way. Let us take such functionsu,, ' ,, that satisfy
inhomogeneous conditions1(31), (1.33, and also some conditions of type

(1.39):

Upb=Uu; X2 y; (1.59)
"n= nj; nj=const =V, x2 4, ]2y, (1.60)
'n= nij; nj=const; x2 j; j2Jg; (1.61)

where | ; in (1.61) are, generally speaking, unknown variables that do
not depend onx.
We will seek the solutionfu;"' g in the form:

U= Ug+ Uy ' ='o+" n; (1.62)

where now the functionsup and ' ¢ satisfy the conditions, that are
analogous to the conditions for and

Uup=0; x2 y; (1.63)
'0=0; X2 4 j2dv; (1.64)
"0= o0j; oj=const; x2 j,; j2Jg: (1.65)

Using (1.62, let us present (L.52), (1.53 as relations for nding ug and
0-

o(viug) &V;' o) = Lu(v); (1.66)
euo; )+ (" 9)=L(); (1.67)

where
Lo(v) = Cu(v) c(v;up)+ eV;' n); (1.68)

L.()=0C() e&un ) (" ) (1.69)
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In order to give strict de nitions of a generalized solutionwe only need
to set the necessary functional spaces.

We introduce the scalar product on the set of vector-functits v 2 C,
that satisfy (1.47) 7

(Vi = (rv) :rud : (1.70)

The closure of this set in the norm generated by the scalar proct
(1.70 will be called the H space.

By analogy, we introduce the scalar product on the set of fuhons

2 Cl, that satisfy (1.49, (1.5()Z

G = (r ) r'd : (1.71)

The closure of this set in the norm generated by the scalar prock
(1.77) will be called the H* space.

Finally, we can strictly formulate the concept of a generated solution
of a static electroelasticity problem.

De nition . A generalized or weak solution of a static boundary-value
electroelasticity problem is a pair of functionsfu, ' g; u = ug + up;
"= "o+ ' Ug 2 HL ' 2 HI, that satisfy the system of equations
(1.66, (1.67) for 8v 2 Hi; 8 2 HI. Atthat up, ', are considered to
be specially selected (known) functions for which conditio($.59{( 1.61)
hold.

Let us note the distinction between the boundary conditions

The boundary conditions (.63{( 1.69 (or (1.47, (1.49, (1.50) have
entered the characterization of the spacesiH H!, in which we seek
the generalized solutionug, . Therefore, the boundary conditions that
should be satis ed by the functions of the weak problem statement are
called the essential boundary conditions In analogous inhomogeneous
case as, for example, fot.31), (1.33, (1.34), we will also speak about
essential boundary conditions (which can be removed when s¢ieg special
functions ug and ' o).

The boundary conditions (.32, (1.39, (1.36 take part only in forming
the functionals Cy(u), C- ( ) in (1.57), (1.58, i. e. they are naturally
included in the statement of the problem. For this reason shcboundary
conditions will be called thenatural boundary conditions

We note that conditions (1.34), (1.35, which should be considered in
conjunction, here belong to di erent types of boundary contions. Thus,
the adopted classi cation for such complex forms of boundgarconditions
is fairly arbitrary.
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It is obvious that if a pair of functions fu, ' g is a classical solution
of a static electroelasticity problem then integral relabns (1.66), (1.67)
hold for any su ciently smooth functions v, , that satisfy (1.47), (1.49),
(1.50.

Therefore, if there exists a classical solution, then it is aegeralized
solution.

The reverse statement, generally speaking, may not be saesl, i. e.
the generalized solution can exist, but the classical soilah may not exist.
For the generalized solution as a result of an integration bgarts using
the Gauss-Ostrogradsii formulas, compared with the clasaicsolution, the
smoothness requirements are reduced. Indeed, for exisenfthe integrals
in (1.54{( 1.56 it is enough that the functionsu and' have only the rst
derivatives in generalized sense, square-integrable, wees the classical
solution should be at least twice di erentiable.

An important example, when the classical solution in the wholeainain

does not exist, but there exists a generalized solution, ishe case of a
piecewise-homogeneous medium. Let the body consist of twanhains

rand L ( = 1[ 2) with di erent homogeneous properties. Then
some of the modules in ; and  dier, for example, ¢ & c5 7, where

the superscript (1) or (2) points to the belonging to the subdmain 1 or

2
On the interface of the media 1, for a rigid contact it is necessary that
the continuity conditions are satis ed:

[ul=0; []=0; n []=0; n [D]=0; x2 g (1.72)

Here ] denotes a jump in the value of the vector or tensaa over the

interface 1, [a] = a, a;, wherea, and a; are the limit values ofa on
12 When approaching i, respectively, from the positive or negative sides
of the normal n, external with regard to ;.

Then if n does not change when passing through the interface,,
then because of1.14) and inequality cUEk(ll) 6 cl'jzk(lz), some of the components
of the stress tensol should be discontinuous. Therefore, the corresponding
rst derivatives undergo a jump, and the solutionu does not belong even
to the class C. Thus, there is no classical solution for the whole piecewise-
homogeneous medium. Meanwhile, there exists a generalizetugon, as
u has the st derivatives in a generalized sense.

Naturally, the problems for piecewise-homogeneous media hamany
practical applications, and for the right statement their slutions must
exist. In the case of the boundary-value problem statementhe reason
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for the non-existence of an ordinary solution is that the cksical solution
should be sought separately in the domains; and , with the conjugation
conditions between them. The classical solution) will exist in each of
the domains ;. In the same time, the generalized solution exists in the
whole domain = ;[ 5, and in this sense it is closer to practice.

Another advantage of the generalized problem statement cosis in its
energy form.

The functionsv and can be regarded as variations of the real elds
of displacementsu and electric potential' , respectively. Then, using the
notations adopted in the variational calculus, let us set if§1.52, (1.53 or
in (1.66, (1.6Av= u, =".

Let us note that u = ug, ' = ' o, as u, =0, n = 0. In the
terms of mechanics it means that the variations should be csistent with
the kinematic relationships.

Then the weak problem statement based orl(66), (1.67) or on (1.52),
(1.53 can be interpreted as the Lagrange variational principleroas a
variational principle of virtual work based on the principk of potential
displacements and electric potentials. For example, fromi 632, (1.53, we
have:

c( u;u) e u;t)=Cy( u); (1.73)
e(u; ")+ (5 )= (") (1.74)

The right-hand side ofz(l.73 .
Co(uw= (u) fd+ (u pd (1.75)

iIs the work of the mass (bulk) and surface forces on the virtba
displacements, i. e. the virtual work of external forces.
The right-hand side of (L.74)
Z Z X
C(')= ' d+ ood+ i Q; (1.76)
D i23q
is the electric work of the charges on the virtual electric gentials.

The left-hand side of (.73 -

c( u;u) e u;t)= "(u: (u;')d (1.77)

is the increment of the work of strains induced by the virtuatlisplacement
u, and the left-hand side of (.74 .

eu; ")+ (5 )= E(") D(u;')d (1.78)
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Is the increment of the work of electric eld induced by the vitual electric
potential '

Thus, according to (L.79{( 1.79, relations (1.73, (1.74) determine the
equalities of the virtual mechanical and electric works ofx#ernal forces
and the increments of the works of the virtual strains and etéric eld.

If we subtract (1.74) from (1.73, then we can obtain the variational
principle of stationary virtual electric enthalpy

H(u;")= [Eu(u) () (1.79)
where

Hu' )= Jeuu) e(u') S (' )= (': E D)d (180)

is the electric enthalpy.
We note that the electric enthalpy does not coincide with thenternal
energy
Z

1 1 1
. ! - _ . + _ 1 - _ " : + . .
U(u;') 2c(u,u) 2(, ) > ( E D)d ; (1.81)
and the electric enthalpy is not positive de nite byu and "' .
In connection to this, from variational principle (1.79 it only follows

that the functional
e(U;")=H(u;") Cy(u)+ () (1.82)

is stationary on the real (true) elds of displacements andlectric potential.
There are no minimality properties, but the main formsc(u;u) and
(;" ) are symmetrical and positive de nite.
It is also important to note that the norms
Z Z

kvk\z,v%: [v. v+(rv) :rv]d ; kvkﬁ'a: (rv) :rvd ;

Z
kvki= "(v):cE:"(v)d

are equivalent in H. Here in order to prove the equivalence of the norms
we can use one of the main results of the mathematical theorfeasticity,
the inequality of Korn [13]. For the equivalence of the norms it is also
important to exclude the solid body motions in the selectedpsice, as it
was adopted for H.
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By analogy, in H' the norms
VA Z
K kgp= [2+(r ) r 1d; kK= (r) rd ;

k k= E() S E()d:

are equivalent.

The property of the positive de niteness of the form&(u;u) and (;' )
are important both in theory and in justi cation of the numerical methods
applied.

Thus, the weak problem settings are convenient instrumentsif proving
the mathematical statements and also serve the basis for hiling e ective
numerical methods, based on the approximations of energyagons.

The generalized statements can be also constructed for traerst
problems with Rayleigh account for damping. Here the analogsu
transformations lead to the system

(v;®p) + d(v;up) + c(v;ug) e(v;' o) = Ly(v); (1.83)
euo; )+ (' o)=L () (1.84)
where
Z
(viu) = v ud ; d(viu)= g4 (v;u)+ qc(v;u); (1.85)

Lu(v) = Cu(v)  (v;en) d(viun) c(v;un)+ eVv;' n); (1.86)

L()=0C() e&un ) (' ) (1.87)

This system should be supplemented by initial conditions1(37), that
can be presented in the weak form

(Viuo(x;+0)) = ( ViUsn);  (V;Uo(X;+0)) = ( V;Vsn); (1.88)

where (/;u) = R v ud is an ordinary scalar product in L?; ug, =
Us Up(X;+0); Vgn = Vs Up(Xx;+0).
Here relations (L.83{( 1.87) must hold whent 2 (0; T) for any v 2 H,
2 H!. At that for the solution fu = ug+ u,, ' = 'o+ ',g the
displacementsuy must belong to the space @ and the electric potential
' o must belong to the space Q

Qu=L3%0;T; HY); Q =L30;T; HY); (1.89)
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where for the Banach space X with the nornjj:jjx by L?(0; T; X) we denote
the space (of classes) of the functiortd f (t) from [0; T] in X such that
Z 1
( . jif 0% ) = jif fjeerxn < 1:

The statement of the problem in the form (.83, (1.84) has also the
meaning of the energy principle of virtual work, that is analgous to the
static case considered before. As in the elasticity theoryhe form (v;e)
is the virtual inertial force taken with the opposite sign.

The generalized or weak statement of dynamic electroelastygproblems
in the form (1.83{(1.89 serves the basis for building the semi-discrete
approximations of the Galerkin (Bubnov-Galerkin) methodwhich will be
considered in the next section.

1.3.3 Semi-discrete approximations in electroelasticity pro b-
lems

The main issue that remained open in section 1.2.2 consiststire way
of nding the weak solutions for the problems of electroeléisity. The
general approach called the Bubnov-Galerkin method is baken the idea
of nding solutions for the weak statements in nite-dimensonal spaces.

When we consider transient problems with weak statementsl.83),
(1.84), corresponding to the principle of virtual work, we seek s&-discrete
approximationsupg Ug, ' ho ' oin the form

Uno = Ny(x) U(t); "no=N.(x) (1); (1.90)

where U(t), (t) are the vectors of approximation constants (not
depending on time),N ,(x) is the matrix of the basis functions forup,
and N. (x) is the row-vector of the basis functions fot np.

These approximations are called semi-discrete, because ehethe
discretizations are made only in spatial variables, and tlhe are no time
discretizations in (1.90.

If the basis functionsNg(x) are the same for all three components of
the displacementsung, ] = 1;2;3, and electric potential' o (in the case
of the problem in R), then the matrix N ,(x) and the row-vectorN. (x)
have the form

2 Ni(x) O O @ Np(x) O 0
N,x)=4 0 Ngx) 0 == 0 Nyx) 0 5; (1.91)
0 O Ny(x) @ O 0 Np(x)
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N. (x) = bN1(x); Na(X); 15y Nn(X)C; (1.92)

where n is the number of the basis functions that are required to
approximate one of the components of displacements or eléctpotential.

The basis functions must be linearly independent and have thpgoperty
of completeness in i H. Naturally, they are assumed to be known, and
the vectorsU (t), (t) in (1.90 are to be de ned from the solution of the
electroelasticity problem in the weak form.

We will take the probe functionsv(x) and (x) from the same nite-
dimensional spaces

v=N,(x) U; = N. (x) ; (1.93)

where U, are arbitrary vectors, for example, containing unit in one
position and zero in all others.

Substituting (1.90, (1.93 into the weak problem statement (.83,
(1.84 and taking (1.54{(1.59, (1.89{(1.87) into account, we get the
following system:

U My U+Cu U+Ky U+Ky )= U Fy (1.99)
( Ky U+K- ) = F :(1.95)
Here Z
My = NyN,d ; Cw= aMw+ dKuy;
Z
Kw= By:cF:Byd ; By=r Ny
Z
Ky = B,:e B.d; B =rN.; (1.96)
Z
K- = B. °B.d;
Z Z
Fu=Fu Ny ®pd d Ny und
Z Z
B :cE:(rup+ g4ruyd B,:e r',d;
Z Z
Fu= N, fd+ Ny p d;
Z Z
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z z X
Fr= N d+ N. d+ N-j, Qj:
> j2Jq

We note that every matrix in (1.9 reects specic material
characteristics of the body: M., denotes the mass or the density,
Cw denotes the damping,K ,, denotes the stiness,K, denotes the
piezoelectric e ect,K+ denotes the dielectric permealbility.

Then by virtue of arbitrariness of the vectors U, , from (1.94), (1.99
we get the nal system

M uu U + Cuu U—+ Kuu U + Ku' = Fu, (1.97)
Ky, U+K- = F.: (1.98)

For transient problems system 1.97), (1.99 is a system of ordinary
di erential equations of the second order by time. It shouldbe
supplemented by initial conditions that can be obtained fnm (1.37) or
from (1.89 and (1.90, (1.93. As a result, the initial conditions in a
discrete form will be given in the following way:

U@©)= Ugn; U(0) = Vp; (1.99)

whereU g, V gy are the unknown vectors obtained from initial dataugn(X),
Vsn(X) under their approximations in nite-dimensional spaces.

Numerical solution of the Cauchy problem 1.97%{( 1.99 allows to take
into account the features of system1(.97), (1.99, consisting in a possibility
of the reduction of the vector . Indeed, nding from (1.99 and
substituting it into ( 1.97), we get:

=K.} K, U+K.? F; (1.100)

where
Kuw=Kuw+ Ky Kol Ky (1.102)
Fu=F, K, K.!' F,: (1.103)

As a result we obtain the problem {.101), (1.99 but with respect to
the vector U with symmetric and at least non-negative de nite matrix
Ku. This problem has almost the same properties as the problemr fo
pure elastic medium. The distinction lies in the presence oh¢ inverse
matrix K. . If we use a sparse matrix technology?f] when implementing
numerical algorithms for sparse matrice u, Ky, Ky, K+, then it
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is highly undesirable to form the matrix K. ! in explicit form, because,
generally speaking, the matrix, that is inverse to the spaesone, is dense.
Therefore, in order to implement the matrix-vector productK , Itis
necessary every time to solve systeni.Q9 of linear algebraic equations
with respect to  and substitute the result into (1.97).

1.3.4 Summary of the main features of electroelasticity
problems

In this section, we will summarize what we have considered in éh
previous sections regarding the problems of electroelasty.

The classical statements of the electroelasticity problemaclude the
systems of di erential equations with dynamic motion equatins (without
account for coupling, hyperbolic type) and the equations ofjuasi-
electrostatics (without account for coupling, elliptic type). Therefore,
in total in the equations of linear dynamic theory of electrelasticity the
orders of the higher time derivatives are di erent.

The boundary-value and initial boundary-value problems oflectroe-
lasticity are characterized by nonstandard electric bourady conditions,
especially for the electrodes powered by the current gentms. On sepa-
rate electrode surfaces powered by voltage generators thectric potential
should take the same values for all points of the electrodey@these values
are known. On the electrodes powered by current generatorsetlelectric
potential also should take the same values on every part, btliese values
are unknown, and nding them requires additional integral coditions that
de ne total charges on the electrodes.

The generalized or weak statements of the electroelasticigroblems
obtained as a result of standard transformations, lead to aaviational
principle of stationary electric enthalpy (without the minimality property).
Thus, for the electroelasticity problems, there is no convaonal variational
principle of virtual works with variation of the elds of displacement and
electric potential that leads to a minimum of an energy funabnal.

The functional spaces W that de ne the weak solutions of the
electroelasticity problems are also rather unusual. For ¢hspace W the
functions should take stationary (not depending om), but arbitrary values
on some parts ; , powered by current generators. Only the restrictions of
homogeneity for the essential boundary conditionsi(=0; x 2 ) are set
in a standard way, as, for example, for H Here the essential boundary
conditions may also be inhomogeneous.
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The numerical solution by the Bubnov-Galerkin method for thestatic
problems of electroelasticity gives a coupled system of edon with
respect to the displacements and electric potentials with ammon matrix
that is not positive de nite. The matrix of this system can be tansformed
to a quasi-de nite symmetric matrix (matrices for the probems with a
saddle point) []:

K uu K u'
Ky K=

The reduction of the values of electric potentials permits twbtain
the systems of equations with positive de nite matrices for nding the
displacements, which are similar to the equations of structal analysis (for
pure elastic medium). At the same time the presence of the peelectric
e ect only enhances the properties of positive de nitened®r the sti ness
matrix, i. €. Ky Ky, asKy Ky = Ky K.1 K, is anon-negative
de nite matrix.

We note that hereinafter the inequalitiesA > B and A B for the
matrices mean that the matrix A B is positive or non-negative de nite,
respectively. We will write the condition of the positive de nteness for
the matrix A in the form A > 0, and the condition of the non-negative
de niteness will be written in the form A 0.

For piezoelectric bodies, an important role is given to spet sets of
natural frequencies, namely the frequencies of electricsmmanced; and
the frequencies of electric anti-resonancésg .

Both the frequencies of electric resonancefs; and electric anti-
resonanced 5; are the natural frequencies, and the oscillations on them
can be excited under electric external in uences that chaegaccording to
harmonic law. These external in uences are di erent for the fquencies
frj and faj .

In order to nd the natural frequencies for a piezoelectricglectroelastic)
body, we need to consider the mode of steady-state osciltats U =
O exp(!t ), = T exp('t ) with the circular frequency! (! = f=2 ).
Besides, for nding the natural frequencies we consider hageneous
problems with F, = 0, F- = 0 without damping , i. e. with Cy, = 0.
Then from (1.97), (1.99 we get a generalized eigenvalue problem:

K =

Kw U+ Ky = 1My, U; (1.104)
Ky U+K- = 0; (1.105)

where the sign \~" for the amplitude valuesd, ~ is dropped.
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In (1.109, (1.109 the matricesK , , K- dier for the frequencies of
electric resonances and anti-resonances. The di erence lmetproblems of
nding the natural frequencies of electric resonances andi@resonances
consists in the following. For the problem of nding the freqencies
of electric resonances some electrodeg are considered to be short-
circuited (' =0, x 2 4 ), and for the corresponding problems of nding
the frequencies of electric anti-resgnances these eledts are considered
to be free ( = j» x 2 4, n Dd =0). Thus, in two
corresponding eigenvalue problems we need to consider dest electric
boundary conditions on some (but not all') electrode surfas .

Mathematically this di erence consists in the di erent structures of the
matricesK , andK. . If for a problem of nding the frequencies of electric
anti-resonances we present the matricds, , K+ and the vector in a
block form

C CS
Ky = KG; K§ © Keo= oo B2 0= e q10)
S

K K=?

than for the problem of nding the frequencies of electric nances the
matriceskK , , K+ and the vector will have the form

Ky =KS&: Ko =K$; = ¢ (1.107)

Here in the vector in (1.109 we can separately allocate the degrees
of freedom 4, when nding the frequencies of electric anti-resonancesrfo
which it is considered that the total electric charges on theatresponding
electrodes are equal to zero, and when nding the frequenciet electric
resonances we sets = 0.

Therefore for nding the frequencies of electric resonancasd anti-reso-
nances we should solve the problem4.(09, (1.109 twice with di erent
matricesK , , K+ and the vector in the forms (1.109 and (1.107.

Let us denote by! 5 the natural frequencies for problem.104{( 1.109,
and ! ; will denote the natural frequencies for problemi(104, (1.109,
(1.10%. We note that by virtue of positive de niteness of the matrk
M uw (problem 1.20) and at least non-negative de niteness of thmatrix
K (problem 1.24) all these frequencies are real and can be @osion-
negative.

If we enumerate the frequencies in ascending order, then & possible
to show ] that the following equalities hold

Ly Ve 1 =120 m; (1.108)
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wherem is the order of the matrix M , or K ..
The value that is relevant in practice is the dynamic electroechanical
coupling coe cient (DECC) kg for the j -th frequency that is given by the

formula
| 2 | 2

ks = a’,—z”1 (1.109)
L

Dynamic electromechanical coupling coe cient de nes the eiency
of the energy conversion at thg -th oscillation mode. Naturally, if K
is not equal to zero, then!,; 6 !, and these very frequencies are
electrically active. (Some oscillation modes can be puredgfastic, and for
them ! = ! aj )

Therefore, in order to analyze the work of piezoelectric deds in a
steady-state oscillation mode it is often required to nd tke frequencies ; ,

I 4, solving slightly di erent generalized eigenvalue probtes two times
and nding the frequencies, for which! ; and ! 5 dier. This type of

problems is a distinctive feature of the piezoelectric anais of real-world
piezoelectric devices.

Piezoelectric transducers can represent the bodies compad®f a set of
elastic and piezoelectric subdomains (for example, piekearic emitter in a
case). Besides, for some devices, for example, for coumtieriransducers
on the surface acoustic waves, it is necessary to account fbe contact
of piezoelectric body with the external medium (air). In suchcases
we have compound problems for multilayer medium =]  with,
generally speaking, di erent physico-mechanical propeds. One part of
these domains x = | can be piezoelectric, other part of these domains

k= g can be elastic, and one more party = ﬁ' can be dielectric. For
elastic and dielectric media we can use the same models otetelasticity
with the coupling coe cients e equal to zero and apply either mechanical or
dielectric part of the model. The conjugation conditions (aatinuity of u,
n ,',n D when crossing the interface) will then be naturally contained
in the generalized problem statements. The numerical algtrms intended
for solving the problems for compound bodies with dierent pysico-
mechanical properties will have peculiarities, related tohe presence of
the media with di erent eld functions (u, ' for the piezoelectric media,
u for the elastic media,’ for the dielectric media). It is also worth noting
that external dielectric media (surrounding air) can be ver extensive and
therefore should be modeled by unbounded domains. These uanbded
dielectric media require the conditions for the eld' at in nity. Also,
special numerical solution methods should be used for intei domains.
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Thus, the problems of electroelasticity have a number of sigoant
features caused by both peculiarities of mathematical moldeand practical
needs for calculation of real-world piezoelectric devices

1.4 Modeling of thermoelasticity problems

The problems of thermoelasticity consider the coupling of mbkanical
and thermal elds. Concerning the mechanical part, it has muc
in common with ordinary elasticity theory and electroelastity theory
considered before. However, the equations for thermal eldsgni cantly
di er from the equations of quasi-electrostatics of dielégcs. There is an
extensive literature on theory of thermoelasticity, amongvhich the basic
monographs of W. Nowacki{4, 25] are worth noting.

1.4.1 Classical statements of thermoelasticity problems

Let a thermoelastic body occupy the domain with the boundary
= @. The state of the body is characterized by the displacement
vector u = u(x;t) and the thermal eld change = (x;t). The function
(x;t) describes the temperature increas€&(x;t) from the natural state
To: =T T
The statement of the problems of linear thermoelasticity ifades the
following group of equations.
The eld equations consist of the motion equations for contimum, which
are identical to (1.23

r + f= w; (1.110)
and local conservation law of thermal energy
ToS+r q=W: (1.1112)

Here for mechanical values we adopt the same notations as teas the
electroelasticity theory in section 1.3 ( is the density; is the second
rank stress tensorf is the vector of mass force density), also, the following
notations are introduced for thermal values:S is the density of entropy,
measured from the natural statep is thermal ow vector; W = W (x;t) is
the intensity of heat sources.

The constitutive relations connect the stresses and the entropy S with
the strain tensor" and the temperature eld . For a linear medium the
constitutive relations have the form:

=c:" (1.112)
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S= na4 2t (1.113)
To
where c is the semi-symmetric fourth rank tensor of elastic moduli; is
the symmetric second rank tensor of thermal stresses;is the speci ¢ heat
at constant strains.
Finally, the relations that connect the ow values" and g with the eld

functionsu and have the following form:
"=(ru+ru)=2 (1.114)

q= k r; (1.115)

wherek is the second rank tensor of thermal conductivity coe ciens.
Formula (1.115 expresses the Fourier law for the thermal conductive
medium. The tensork in (1.119 should be symmetric and positive de nite:

kij:kji; 9 «>0: 8a a k a kd a.

Thus, the system of di erential equations of thermoelastity is given
by formulas (1.110{( 1.119. If we present these equations as a system of
equations with respect to the displacements and temperature increase,
then we will obtain:

o r (c:ru )= f; (1.116)
Cr—+Tog :rur (kr )=W, (1.117)
or in a component-wise form:
Uix (G 4 )= fis 1=1;23 (1.118)
Cv 4+ To jjUijt  (Kj )i =W: (1.119)

As it can be seen, the coupling of mechanical and thermal elds
determined by the thermal stress tensor. If =0, then (1.119 is simply
a motion equation in a dynamic elasticity theory, and 1.117 is a thermal
conductivity equation. We note, that the motion equation ina theory of
elasticity is an equation of hyperbolic type, and the thermlaconductivity
equation is an equation of parabolic type. The system of coal equations
keeps the di erent order of the higher time derivatives: 1.116 has the time
derivatives of the second order, andl(117 has the time derivatives of the
rst order.

System (.116, (1.11% or (1.119, (1.119 requires the boundary
conditions that are here subdivided into two groups, namelymechanical
and thermal boundary conditions.
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We will adopt the same mechanical boundary conditions as thes
adopted in section 1.3 for the electroelastic body ( = ([ ):

u=u,; X2 y; (1.120)

p=n ; p=p; x2 ; (1.121)

where the mechanical sense of the values used is the same ag 1),
(1.32.
In order to formulate the thermal boundary conditions, let & assume
that the boundary is divided inthree parts , qand . = [ of o
We will consider that the temperature (x;t) is set on

= ; X2 (1.122)

On 4 we will set the heat ow, or the surface density of the heat souec
intensity q (x;t) :
n q= d; X2 g: (1.123)

Finally, on . we will set the condition of convective heat exchange with
the external environment:

n g= hi(p ) X2 ¢; (1.124)

whereh; is the heat exchange factor or heat transfer coe cient oh; > 0),
b IS the temperature of external environment.

According to (1.1223{( 1.129, we have three types of thermal boundary
conditions. The condition (1.122 is the condition of the rst kind, the
Dirichlet type or the essential boundary condition. The conition (1.123
is the condition of the second kind, the Neumann type or the natal
boundary condition. The condition (L.129 is the condition of the third
kind.

Boundary conditions (1.122{(1.129 are the main conditions both
in thermal conductivity problems and more general thermoasticity
problems. In addition to these conditions, other boundaryanditions can
be set, for example, nonlinear condition of radiative heatansfer on Stefan-
Boltzmann law and so on. However, the most frequently used atbe
conditions (1.1223{( 1.124, which we will consider hereinafter.

Let us note that the conditions of the third kind are speci c nostly to the
problems of thermal conductivity and thermoelasticity. Thae conditions
have the features of both the rst kind boundary conditions &t large h;
from (1.1229 we have b= h; 'n g 0)and the second kind boundary
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conditions (at small hy (1.122 can be approximated by the condition
n g=0).

If for an elastic body the larger part of its boundary is with a
homogeneous boundary of the second kind, i. e. the larger paf the
boundary is free from mechanical stressgs, than for thermal boundary
conditions the homogeneous conditions of the second kind (= O in
(1.123) indicate a thermally insulated boundary. The case of theraily
insulated boundary is a much bigger abstraction than the calition of
a convective heat exchange with external environment, i. e. han the
condition of the third kind.

In the case of transient processes, in addition to the boungeconditions
we need to set the initial conditions. Here, apart from settig the initial
position of the body ug(x) and the initial velocity vg(x), the initial
temperature ¢(x) should be de ned:

U= Us, U= Vg = 5 X2 ; t=40: (1.125)

Thus, the conventional or classical statement of transientrpblems of
thermoelasticity in linear approximation includes the sy'm equations
(1.119, (1.117%, the boundary conditions (.120{(1.129 and initial
conditions (1.125.

For stationary case there are no initial conditionsuy = u(x), = (X);
external in uences do not depend on time, and the system of drential
equations (L.116, (1.117 takes the form:

r (c:ru )= f; (1.126)
r (kr )y=W (1.127)

As it can be seen from 1.129, (1.127, a stationary case corresponds
to a partial coupling of elds: the displacement eldu depends on , but
for the temperature eld we obtain an uncoupled problem of thermal
conductivity (1.127, (1.122{( 1.124.

Another case of thermoelastic problem with partial coupling an be
given with the use of the theory of thermal stresses?4, 25. In this
theory, the coupling for the temperature eld is neglectedn (1.117, and
the term To : r u is omitted, however, for the mechanical elds the
dynamic equation (1.119 is considered. As a result, the eld equations
of the thermal stress theory have the form:

r + f= w; =c:" : (1.128)
c.—+r g=W, g= k r : (1.129)
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The transfer from (1.119, (1.117 to (1.129, (1.129 can be justi ed by
lots of experimental data and by the analysis of the couplingoe cients
with appropriate nondimentionalization of thermoelastidy problem.

Therefore, both the equations of thermal stressed.(29, (1.129 and
the equations of stationary thermoelasticity {.126, (1.127 give the
problems with partial eld coupling.

It is important to note the following issue. For the problems bcoupled
thermoelasticity (1.116, (1.117, (1.120{( 1.129 the presence of the term
To :r u with the rst time derivative with respect to the displacements
lead to the energy dissipation, and additional account foraimping is not
particularly necessary in this problem. Meanwhile, in a paidlly coupled
problem of thermal stresses for mechanical elds there is mamping, and
therefore we can adopt the Rayleigh account for damping silai to the
one in section 1.3.1 for the problem of electroelasticityntleed, instead of
(1.1289 we can use the relations

r + f= ®w+ 4 u; =c:("+ ¢") (1.130)

with the damping coecients 4 0, 4 0. Regarding the advantages
and disadvantages of this approach we can repeat the samewrgnts as
those considered in section 1.3.1.

1.4.2 Generalized statements of thermoelasticity problems

Following the scheme described in section 1.3.2, we will obtathe
generalized or weak statement for the coupled problem of timeoelasticity
(1.119, (1.119, (1.1220{( 1.125.

Let us scalar multiply Eq. (1.110 by a yet arbitrary but su ciently
smooth function v = v(x), and Eq. (1.11) will be multiplied by a
su ciently smooth function = (x). Then let us integrate the obtained
equalities over , using the operations of tensor and vectorralysis (1.417),
(1.42, and the Gauss-Ostrogradskii formulas1(.49, (1.46. (In (1.42),
(1.49 is replaced by , and D is replaced byqg.)

Imposing a homogeneous boundary conditiori @47 on the function v

v=0;, x2 y; (1.131)

and using natural boundary condition (.121), we receive:
Z Z Z Z

v ed+ (rv) : (u; )d= v fd+ v p d: (1.132)
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On the transformations of Eqg. (L.111), taking (1.113 into account, we

get:
Z Z Z Z

To Sd (r ) q(u; )d = wd n q(u; )d : (1.133)

Let us impose the zero condition on the function
=0; x2 (1.134)

Then, using boundary conditions {.123 on 4 and (1.129 on ¢, the

last integral in (1.133 can be transformed in the following way:
Z Z Z Z

n qu; )d = qg d+ hi pd hy d : (1.135)
q c c
The integral identity ( 1.133 with account for (1.135 can written in the

form:
Z Z

To Sd (r ) q(u; )d + hi d =
Z z Z c (1.136)
wd + g d+ hi pd :
q c
Now we can use in 1.139, (1.139 the constitutive relations (1.112),
(1.113 for thermoelastic medium and obtain the main integral relaons

(v;e)+ c(v;u) (v; )= Cu(v); (1.137)
To (U )+ s(; I+ k(; )=C(); (1.138)
where Z
(v;u) = v ud ; (1.139)
Z Z
coviu)= (rv) :cE:rud= "(v): cE:"(u)d ; (1.140)
Z Z
(v; )= (rv) : d = "(v): d ; (1.141)
Z
s(; )= c- d ; (1.142)
Z Z
k(; )= (r ) kr d+ hy d ; (1.143)
Z Z ¢

Cu(v)= v fd+ v p d; (1.144)
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Z Z Z
C()= wWd + q d+ ht pd : (1.145)
q c
Now it remains to remove inhomogeneity in the essential bouady
conditions (1.120, (1.122. In order to do this, we will seek the solution
fu, ginthe form

U= Ug+ Up; = ot ni (1.146)

where u, = up(X;t), n = n(x;t) are specially selected functions that
satisfy the inhomogeneous essential boundary conditions

Up=U; X2 uy; (1.147)
n= , X2 (1.148)
and, therefore, the functionsug = ug(X;t), o = o(X;t) satisfy the

homogeneous essential boundary conditions
up=0; x2 y; (1.149)

0=0; x2 (1.150)

Substituting (1.149 into (1.137%, (1.139, we get the nal system written
with respect to the unknown functionsugp and o:

(vieo) + c(v;ug) (Vi o) = Lu(v); (1.151)
To (Uo; )+ s(; o)+ k(5 o)=L () (1.152)

where
Lu(v) = Cu(v)  (v;en)  c(viun)+ (V5 n); (1.153)
L()=C() To(un; ) s(; ) Kk(; n): (1.154)

Let us add to the system {.137%, (1.139 or to (1.15)), (1.152 the initial
conditions (1.125 in the weak form

(Viu(x;+0)) = (v us);  (v;u(x;+0)) = (v;Vs);

(; +0)=C(; s (1.155)
where

(V;uo(x;+0)) = ( V;usn); (Vi uo(x;+0)) = ( V;Vsn);
: o) = (5 ) (1.156)

whereugn(X) = us(X) un(x;+0), etc.
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The comparison of {.15]), (1.152 with analogous system {.83, (1.8
of the electroelasticity problem shows that forv and ug we can select
the same functional spaces as those selected in section 1v3:2 Hl,
Up2 Qu =L20;T; HY).

For and o let us introduce the spaces analogous tolHQ,, but in a
scalar form.

Namely, on the set of functions 2 C?, that satisfy (1.134, we introduce

the scalar product .

(: d)e= (r ) r d: (1.157)

The closure of this set in the norm generated by the scalar proct
(1.157 will be called the space H, and we dene the space Q =
L2(0; T; HY).

Now we can formulate a strict de nition of a generalized solin for a
transient problem of thermoelasticity.

De nition . A generalized or weak solution of a transient problem of
thermoelasticity is a pair of functionsfu, g;u = ug+u,;, = o+ p,such
that u,, n satisfy boundary conditiong1.14%, (1.149, ug2 Qu, 02 Q ;
Up, o satisfy initial conditions (1.156, and system of di erential equations
(1.159, (1.152 holds8t 2 (0;T), 8v 2 H; 2 HL.

In a stationary case systemX.157), (1.152 takes the form

c(v;ug) (V5 o) = Lu(v); (1.158)

K(; o)=L () (1.159)

and we can give the corresponding de nition of a generalizessblution for
a stationary problem.

De nition . A generalized or weak solution of a stationary problem of
thermoelasticity is a pair of functionsfu, g;u = ug+u,;, = o+ p,such
that u,, , satisfy boundary conditiong(1.147%, (1.149, uo 2 H., 2 H%;
and system of equation$1.159, (1.159 holds8v 2 Hl; 2 H.

Regarding the interrelation of generalized and classicablations and
the importance of the generalized solution, the argumentsslar to those
in section 1.3 are also valid here.
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1.4.3 Semi-discrete approximations in thermoelasticity pro b-
lems

By analogy to section 1.3.3, let us set semi-discrete appnmations
Uho Ug, ho o inthe form

Uno = Ny(x) U(t);  no= N (x) T(t); (1.160)

where U(t), T(t) are the vectors of approximation constants (time
dependent), N ,(x) is the matrix of the basis functions foruy, de ned
in (1.91), N (x) is the row-vector of the basis functions for o, that has
the structure analogous to {.92.

We will present the projection functionsv(x) and (x) from the same
nite-dimensional spaces in the form

v=N,(x) U; =N (x) T: (1.161)

The substitution of (1.160, (1.167 into (1.15), (1.1529 with account
for (1.139{(1.149, (1.153, (1.159 gives

U Mw U+Kw U Ky T) = U Fy (1162
T (ToK, U+C T+K T)= T F: (1.163)

Here the matricesM , and K ,, are those de ned by (.96 previously
in section 1.3.3,

Z Z
Ky = B,: Nd,; C = c-N N d ;
Z Z
K = B k B d+ hi N N d; B =rN; (1.164)
Z A Z
Fu= Fy, N, ®,d B,:c:rupd+ B,: nd;
Z Z
F=F To (rup) : N c-N Ld
Z Z
Z Z ©Z
F = N Wd + Ngd+ N h; pd :

q C

and the vectorF, also was de ned in (L.96 in section 1.3.3.
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Taking into account the arbitrariness of U, T, from (1.1629, (1.163
we obtain the system of equations of transient thermoelastty discretized
by spacial variables:

Mw U+Kw U Ky T = Fy (1.165)
TK, U+C T+K T = F; (1.166)

This system should be supplemented by initial conditions

that follow from initial conditions (1.159 and approximations (1.160,
(1.167.

We note that for the system (.169, (1.166 the matricesM ,, and C
are positive de nite (M, > 0, C > 0), and the matricesK ,, and K
are at least non-negative de nite (see problems 1.20, 1.21123, 1.30{1.32).

For static (stationary) problems system (.165, (1.169 becomes only
vector-coupled

Kw U = Fu+ Ky, T; (1.168)
K T = F: (1.169)

Here we have uncoupled probleml(169 for nding the vector T, and
problem (1.169 is almost the same as for purely elastic medium and di ers
only in the addition of the right-hand side vectorK, T.

Finally, for the problem of thermal stresses with account fodamping
the system of FEM can be also written in a form of a vector-cougdl system

Mw U+ Cuw U+Ky U = Fy+K, T; (1.170)
C T+K T = F; (1.171)

where the damping matrixC, is the same as in 1.96.

1.5 Problems of poroelasticity. Porothermoelastic
analogy

In this section we will consider the issues of modeling the priems
of geomechanics of deformable porous rocks with account ofration.
These problems are described by the systems of coupled equadi of
poroelasticity. The comparison of the equations of poroelasty and
thermoelasticity shows that there is a complete analogy beégn the system



1.5. Problems of poroelasticity. Porothermoelastic analo gy 55

of these equations. Consequently, using the analogy betwdbe problems
of poroelasticity and the problems of thermoelasticity, weean simulate
complex coupled deformation and Itration processes in gewchanical
media in the framework of the problems of thermoelasticity escribed in
the previous section.

We will consider the poroelastic media to be heterogeneous kwiain
elastic matrix and the pores lled by a uid. Let us assume tha the
porosity is small and the distribution of a uid in a matrix is subjected to
the laws of Itration. The stress tensor and the porosity are expressed
in terms of the strain tensor” and the pore pressure functiomp by the
constitutive equations of poroelasticity {]

b(p Ppo) (1.172)

1
0=b:"+ (P po); (1.173)

where c is the fourth rank tensor of elastic stiness,b is the second
rank Biot's tensor, N 1 is the inverse Biot's modulus, which connects the
porosity change with the pressure change at constant straing, o, po are
the initial stresses, porosity and pore pressure, respaily.

The deformation of the poroelastic matrix is described by thenotion
equations (.23

o= C.

r + f= w: (1.174)

To describe the lItration process, we will use the Darcy's lawn a quasi-
static approximation

vV = LS (rp £0); (1.175)
9
wherev is the ltration velocity, K is the second rank tensor of ltration
coecients, ¢ is the uid density, g is the vector of gravitational
acceleration.
In order to obtain the equation for the porosity we use the caimuity

equation in the form

@t )

@t

and the uid state equation

+r (¢v)=0 (1.176)

S (1.177)

whereK; is the uid bulk modulus.
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Substituting (1.179, (1.177, (1.173 in continuity equation (1.179 and
assuming the changes in the compressibility and porosity toe small, we
get

1 K
b:"+ —pr —— 1 p=0; 1.178
R g T (1.178)

where ¢q is the initial uid density, 1 =M =1=N+ =K ;.

For a saturated porous medium the Biot's tensor can be takenni
(b = 1), and then with account for (1.1729 and (1.178 Eq. (1.174 will
give the following system of equations for poroelastic meahiu

e r (c:" pl)y= f; (1.179)
1 K
l:"+ —pr —— r p)=0; 1.180
R TP (1.180)
wherel is the unit tensor and consequently :" =r u="j.

System (.179, (1.180Q represents a coupled system of dierential
equations with di erent order of time derivatives and the valies of material
parameters and physical modules that signi cantly vary in magnitude.
In simulation of the phenomenon of hydraulic disjointing ad failure of
the rocks the lItration modules are adopted to be dependentrothe pore
pressure, and the elastic moduli can depend on the strains, miin makes
system (1.179, (1.180 nonlinear. To formulate the poroelastic problem
statements, Eqgs. 1.179, (1.180 should be supplemented by the boundary
and initial conditions, and this nally leads to coupled transient linear or
nonlinear initial boundary-value problems of geomecharscf poroelastic
media.

In order to solve the problems of poroelasticity, we can usbd analogy
between the equations and boundary conditions for the porastic and the
thermoelastic media.

As it was shown in section 1.4, the dierential equations for
thermoelastic media have the form

@ r (c:ru )= f; (1.181)
To :ru+c—r (kr )=W: (1.182)

The comparison of (.179, (1.180 and (1.187), (1.182 shows that the
equations of coupled poroelasticity after the multiplicabn of (1.180 by Ty
are transformed into the equations of coupled thermoelasity with W =0
under the changes

To ToK
c - — o — k: 1.183
p3$ $ M $ c - $ ( )
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where in the equations of poroelasticity it should be séf, = 1.

Thus, for solving the coupled initial boundary-value probles of
poroelasticity we can solve the corresponding initial bowary-value
problems of thermoelasticity and use the software develapdor solving
the problems of thermoelasticity.

For numerical calculation of the poroelasticity problemstiis necessary
to take into account that in the problems of geomechanics thealues of
the elastic moduli, Itration coe cients and porosity have substantially
various orders and di er from the corresponding values (apafrom the
elastic moduli) of the problems of thermoelasticity. In comection to this
in order to ensure the stability of the solution convergender the numerical
methods it is useful to make a transition to dimensionless pameters and
notations.

Let us choose the characteristic lengtR of the domain as a parameter
for nondimentionalization over spacial coordinates, the haracteristic
time t of the geomechanical process will be the parameter for
nondimentionalization over time and the characteristic pgssurep will be
the parameter for nondimentionalization over pressure anstresses. We
will mark the dimensionless variables by a \tilde" above.

x=Xx=R; w=u=R; r=Rr; t=t=t; (1.184)
e=Cc=p;, ~= =p; p=p=p: (1.185)

Using these notations, equations of poroelasticityl(179, (1.180Q can
be rewritten in the form

@t
~— [ (e:" ) = ~T; 1.186
@ e (1.186)
@ @ _ ~
Tol : =—+~6¢— 1 (K rp)=0; 1.187
where
R _ 2 _Top. . _ Topt .
— @’ r— ﬁf’ e'p— m, K‘ -_— Rz—ngK. (1.188)

We note that the poroelastic equations in dimensionless far are
transformed into the dimensionless equations of thermostity under the
change

p$ 7 1% ~ &% e; KS$ K (1.189)
with the corresponding notations for the dimensionless theral values,
where in the equations of thermoelasticitylp = 1 can be set.
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As the test calculations show, the transition to the dimensidess
equations and values 1.184{( 1.189 enables to increase signi cantly the
stability and accuracy of the numerical computations, as # system
coe cients become aligned in orders.

1.6 Modeling of the interaction of deformable solids
with acoustic media

Classical linear acoustics study the propagation of small goltude
sound waves in liquids and gases. Acoustic or sound waves aaeised
by elastic perturbations arising during the deformation o solid structure
that is in contact with an acoustic medium. In connection to tls, typical
problems of interest are the problems of interaction of elts, piezoelectric
or more complex solids with acoustic media. In these problerttsere are
two adjacent domains, ¢ and 5. s is the domain occupied by a solid
structure, and 5 is the domain occupied by an acoustic medium. In
each of these domains the behaviour of the medium is simuldtby the
corresponding equations written with respect to various eldfunctions.
Thus, for the statement of the elasticity theory problem with espect
to the displacement function the displacement vectou(x;t), x 2 g is
the unknown function. For the piezoelectric medium under thetandard
substitutions the unknowns are the functions of displacemtn u(x;t)
and electric potential ' (x;t). Meanwhile, for the acoustic medium ,
the main unknown is the function of excessive pressuggx;t) or the
function of acoustic velocity potential (x;t). Therefore on the boundary
of the contact of two media ¢ = ¢\ 4 it IS necessary to use such
conditions of elds conjugation that could be e ectively ircluded in various
mathematical models of elastic, piezoelectric and acoustnedia.

Simulation of coupled problems of interaction of elastic, ipzoelectric
or solid deformable bodies with acoustic media has certain dilties and
makes the scope of the next section.

1.6.1 Classical statements of acoustic problems

Let us rstly provide a brief derivation of the main equatiors of classical
linear acoustics 17].

We denote the density of an acoustic medium (liquid or gas) as=
~Xx;t), the pressure will be denoted byp = p(x;t), and the oscillating
(acoustic) speed will be denoted by = v(x;1t).
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As for any uid, we have the continuity equation that expresss the law
of mass conservation

%t+ r (v =0; (1.190)

Assuming the uid to be ideal and neglecting its viscosity andhermal
conductivity, we obtain the Euler's equation of motion
@

~(@t+(v ryw)=r p (1.191)

In acoustic medium we study the excited or excessive valudsppessure
p(x;t) and density (x;t) with respect to initial equilibrium states py and
0-
=Pt P; ~= ot ; (1.192)
where the valuep=p and = o are assumed to be small.

An acoustic uid is considered to be compressible with the statlaw
(Poisson's adiabatic)

~

pP=po — (1.193)
0

Substituting (1.1929 into (1.193 and taking into account the smallness
of p=p and = o, we get:

P po=po 1+ — Do+ PO (1.194)

0

The value P Po = o IS the main constant of the medium and is called
the adiabatic speed of soundy:

2= (1.195)
0

Thus, from (1.199, (1.195 we obtain the linear relation between the
excessive pressure and the density

p=c5: (1.196)

Assuming the dimensionless velocity=¢ to be small, we linearize
(1.190, (1.191) with account of (1.192

_+ of V=0; (1.197)

oV.= I p: (1.198)
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Di erentiating ( 1.197% by time and taking (1.198 and (1.199 into
account, we obtain the wave equation for the function of exssive pressure

1
z® P ( )

This is the basic equation if the function of excessive pressyp(x;t) is
taken as the main eld function. An alternative approach is tle transition
to an equation with respect to the acoustic velocity potentia

Let us vector multiply both parts of Eq. (1.199 by r . Taking into
account the identity r r p = 0 we get: rotv = 0. Thus, the acoustic
velocity eld is irrotational, and we can introduce the fundion of velocity
potential = (x;t):

V=r . (1.200)

Then from (1.199 we get the relation that connect the functiongp and

p= o+« (1.201)

Formulas (1.207), (1.199 show that the velocity potential satis es
the wave equation

= °* =0: (1.202)

G

For the dierential equations (1.199 or (1.209 it is necessary to
formulate the appropriate boundary conditions.

Let us assume that the boundary ; = @ , of the acoustic medium
is divided into four main parts: 4 is a free boundary; 5 is a rigid
boundary; , is an impedance boundary; 55 is a boundary of a contact
with a deformable solid.

On the free boundary the excessive pressupeshould be equal to zero,
and then according to (.20 the velocity potential should be equal to
zero:

p=0; =0; X2 g4: (1.203)

On the rigid boundary the normal component of the vector of awstic
velocity is equal to zero:ng v =0, X 2 4, Wheren, is the external with
respectto , unit normalto 4. Then by (1.200Q the normal derivative of
the function of velocity potential is equal to zero on 4, and consequently
the same condition holds for the function of excessive prass

@ =@ nr =0; @p=@nn rp=0; X2 g4 (1.204)

The greatly extended domains should be limited by non-re ettg or
absorbing boundaries. On these boundaries we can use an idgee
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boundary condition: p = Zv,; X 2 4, whereZ is the impedance of the
boundary 4. Using (1.20]) this condition can be written as a condition
for the function or for the function p:

nr = oZY nrp= oZ x2 a4 (1.205)

Finally, on the boundary .5 of the contact with a deformable solid the
conjugation conditions should hold:

N v=nu N a=N g X2 as (1.206)

wherev is the acoustic velocity in the medium j; u is the displacement
vector in the body ; n = ngis the external with respectto ¢ unit normal
to as(Ns= Ny ngisthe external with respectto 5 unit normalto s);

s IS the stress tensor in the solid structure; ; = pl is the stress tensor
in the acoustic medium ( is the unit tensor).

The transient problems apart from the boundary conditions rmguire
the initial conditions for the values of eld functions and heir rst time
derivatives att = +0.

Thus, the classical statement of the acoustic problem is pdsie with
respect to both the excessive pressure functigr= p(x;t) and the acoustic
velocity potential function = (x;t). This statement includes the wave
equation (1.199 or (1.202, the boundary conditions (L.203{( 1.209 and
the corresponding initial conditions. If there is a boundar .5 where
a contact with a solid occurs, then this statement is not compte and
it should be considered together with the corresponding prtam for a
deformable solid.

If the acoustic problem is considered separately, then at reeinitial
data its statement should be supplemented by the sources ofcéation
that should be added either to the right-hand sides of the wavequations
or to the boundary conditions.

For the acoustic medium with dissipation we can consider a mochtion
of Eq. (1.199

1
%p p "a P=0; (1.207)

where" 5 is the dissipation coe cient. Then it can be shown ?7] that for
the boundary conditions (L.209 it is possible to take: 4 (p+ "ap)!I.

Such model of acoustic medium with dissipation obviously a@lates
with the models of solid structures with account of the Raylelydamping.
This model is convenient for construction of coupled systenod equations
that describe the interrelation of various media with accourof attenuation
e ects.
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1.6.2 Semi-discrete approximations on the base of generalize d
statements and conjugation of acoustic equations with
equations of solid structure

In order to move to a generalized statement for an acoustic gslem
formulated with respect to the pressure function, as usual waultiply the
di erential equation by a yet arbitrary su ciently smooth f unction q =
g(x), then we integrate it over the domain 5 and perform transformations

related to the integration by parts. As a result from (.199 we obtain:
Z Z Z

1
% ged + (rg rpd-= gqng r pd : (1.208)
Now we need to transform the right-hand side of1(20§, using the

boundary conditions and formulating the restrictions for he function q(x).
On the part of the boundary 4 it is necessary to impose the same
conditions (1.203 on g as those imposed on the functiop:

q=0; X2 g (1.209)

On the part 4 according to (1.209 the normal derivative of the
pressure is equal to zero, and therefore the integral in theght-hand side
of (1.209 over the part 4 vanishes.

The impedance boundary condition on 5 by (1.209 leads to the

following expression:
z z

qna rpd= oZ ' qgpd: (1.210)
Finally, the representation of the right-hand side integrain (1.209
over the boundary .5 in contact with a solid structure depends on the
possibility of the appropriate transformations for elast (piezoelectric,
thermoelastic, etc.) problems. Using the sequence of eqtiab

Na I P= oNa I —= oNa V.= oNa ®;, X2 g4

we get 7 7
gna r pd = 0 gn, ®d : (1.211)

as as

Then, when the constraint (L.209 holds, with account of (1.210, (1.211)
the integral identity (1.209 will be written in the form
1 Z Z Z Z
% ged + ZO gpd + (rg rpd+ o gqn, ®d =0:
) ’ " (1.212)

al
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As our main goal is to construct numerical methods to analyzéé work
of solid structures interacting with acoustic medium, here gwill not fully
formulate the notion of the weak solution. Moreover, it can & easily done
by analogy with the previous sections.

Therefore we proceed directly to the semi-discrete approxations that
we will set in the form:

P Pn=Npx) P(t); g=Nyx) P=(P) Npx);  (1.213)
U Up= U+ Uy Ugn = N, (X) U(L); (1.214)
whereN ,(x) is the row-vector of the shape functions for the pressure &}
P (t) is the vector of (time dependent) constants of approximatin; P is
an arbitrary vector; u,, ugn, N (x), U(t) are the same values that were
de ned previously in section 1.3.3.

Substituting (1.213, (1.2149 into (1.212 and taking into account the
independence of P, we receive

where
1Z Z

— . 0 .

M=z NaNpd i Cp= 22 NaNpd | (1.216)
Z
K= B, Bpd ; Bp=r Ny (1.217)
Z : Z

Rpw= Ny(n Npd; Fp=  Np(n upd: (1.218)

as as

In order to conjugate these semi-discrete equations for arcastic
medium interacting with a solid structure, we need to obtain he
corresponding equations for a deformable solid.

As it was shown in section 1.3, the right-hand sidgyof the corqgsnding
equation for a solid structure contained the integral v (ns 5)d.
Here = is the boundary of the solid structure domain =, ng=n
is the external with respect to ¢ unit normalto s, s= Iis the stress
tensor in the solid structure.

For the part of the boundary 55 with account of the contact conditions
(1.209 and the equalityng= ngat ;= pl we get:

Ns s=Ns a= Na a=n, (pl)= pna

Thus, the equation similar to (1.52 of the weak problem statement for
the solid structure in the right-hand side should be suppleemted by an
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R
integral over the surface of the contact with acoustic medium v ngpd.
Then in the absence of the piezoelectric e ece€0) Eq. (1.52 “of the weak
problem statement for a purely elastic medium will be writtenn the form:
Z
c(v;u) = Cy(v) + V.  ngpd :

Substituting the approximations (1.213 forp  p, and (1.93 for v into

the last integral, we get:
Z
V. ngpd= U R, P:

Thus, the right-hand side of the discretized motion equatianfor the
solid structure should be supplemented by the vectd®,, P. As a result,
con ning ourselves to an elastic case with the Rayleigh danmg for the
solid structure, we will have:

Mw U+ Cuw U+Ky U Ry P=Fy (1.219)

Egs (1.219, (1.219 should be solved simultaneously. These equations
are the discretized by spacial variables motion equation®rf the solid
structure and the acoustic medium that surrounds it.

In a single form these equations can be written as:

M a+C a+K a=F: (1.220)
where
M 0 C 0] K R
M uu . C= uu . K = uu pu -

oRpu Mpp 0 Cpp 0 Kpp
(1.221)
a= Y , F= Fu (1.222)

P oEp

As it can be seen, the matrice$/ and K are not symmetric, and this
fact somehow complicates the process of solving the probléin22Q.

We note that even in neglect of the attenuation mechanisms ia solid
structure in the system (1.220 the damping remains ifC,, 6 0. Obviously,
this takes place in the presence of the impedance boundarnddions, that
permit the out ow of energy from the \solid { acoustic mediunt' system.

Let us see how the semi-discretized equations for acoustiedium will
look like if we choose the acoustic potential(x;t) as an unknown function.
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Let us adopt an appropriate approximation h= N (X) and
take into account that by virtue of (1.200) at N (x) = Np(X)

P= o= (1.223)
Substituting (1.223 into (1.219 and integrating by time, we get
M *+C -+ K Ry U=F ; (1.224)

This equation in association with (.219 and with account of (1.223
gives the system {.220, in which now

M = M uu 0 - C = Cuu OR u .
0 M ’ R C ’
0 omu 0 (1.225)
0 oK ’
a= Y . F F; (1.226)
0

We note that system (1.220 with (1.2259, (1.229 for the unknowns
fU, g has symmetric matrices of saddle structure (in order to inse the
symmetry of the matrices, the equations for the acoustic madan (1.229
were specially multiplied by o). Therefore in this form the system is
numerically preferable than the systemX.220Q{( 1.222 for the unknowns
fu, Pg.

Nevertheless, a range of computational softwarel][ adopt exactly
this approach (1.220{( 1.229, although there are implementations of the
interaction of a solid structure with an acoustic medium on th base of
Egs. (1.220 with (1.229, (1.229.

Exercises for Chapter 1

1.1. Show that in a sequence of equalitiesL (18 one of the equalities
follows from the others.

1.2. Find the maximum number of independent elastic moduli among
the componentscﬁ(I , taking into account (1.18.

1.3. Find the maximum number of independent piezomoduéy , taking
into account (1.19.
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1.4. Show that from the condition of positive de niteness 1.21) of the
fourth rank tensor of elastic modulicE it follows that the componentscE:,
with equal indices must be positive.

1.5. Show that by virtue of the condition of positive de nitenesq1.22
of the second rank tensor of dielectric permittivities S it follows that
the diagonal components ?must be positive. Should the nondiagonal
components E (i 6 j) be positive as well?

1.6. By virtue of symmetry conditions (1.18 the elastic moduli CinEkI

can be arranged in the form of a symmetric matrixcE = ,JEH of the size
6 6 (; =1;2::6) with the following correspondence of the indices
()$ @)

11)$ 1. (22)$ 2 (33)$ 3; (23)=(32) $ 4
13)=(31) $ 5 (12)=(21)$ 6:

Using this correspondence, the components of the strain tems' can
be represented in the form of a vector

S = b'11;"22; "33 2" 23, 2" 13; 2" 12C:

Show that from condition (1.21) it shows that the matrix c& of the size
6 6 must be positive de nite.

1.7. Show that by virtue of condition (1.22 the matrix S composed
of the components of the second rank tensor of dielectric paittivites S
must be positive de nite.

1.8. Prove that for the symm%tric positive de nite matrix K for all i;]
there holds an inequalityjKj; | Ki Kijj

1.9. Show that with the transition to vector-matrix notations described
in problem 1.6 and introduction of the stress vector of the z& 6

T =D 11, 227 33 23 13 12C

and the matrix of the size 3 6 for the piezomodulieg = ey, (k) $
the constitutive relations (1.16, (1.17) can be written in the form:

T=cE S e E;
D=e S+ ° E:
1.10. Show that for semi-symmetric fourth rank tensor the role offte

unit tensor regarding the double contraction with the symmeic second
rank tensor is performed by the tensor

1
ikl = E( ik it k)
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for which

= 5, 8 I = g
Check that if two fourth rank tensors cE and sF are connected by the
relation

E —

= oF

'S cF=

then from the equality ~ = cF : % *=* the equality®*>= sF : ~, ~= ~
follows, and vice versa, i. e. the fourth rank tensors® and sF can be
regarded as reciprocal.

1.11. Show that the unit tensor introduced in problem 1.10 is a semi-
symmetric tensor, i. e. for this tensor the symmetry conditins similar to
(1.18 hold. Is the tensor positive de nite in the sense of {.2])?

1.12. Obtain an equivalent to (1.16, (1.17 form of the constitutive
relations

_ E .
i = Sj kT Okij Ex;

_ T .
Di =dw w+ i«Ek

where Sﬁd are the components of the tensor of elastic compliances
calculated at constant electric eld;di, are the components of the tensor of
piezomoduli; [ are the components of dielectric permittivities calculat

at constant stress.

What are the properties of symmetry and positive de nitenes for
the tensors of elastic compliances®, piezomoduli d and dielectric
permittivities T?

1.13. Show that with the introduction of vector-matrix notations for
problems 1.6 and 1.9, the constitutive relation of problem.12 can be
written in the form:

S=s" T+d E;

D=d T+ T E;

where the components of the matrices® and d; are related to the
components of the tensorsﬁ(I and di, by the laws

SE =2l=4M=dsE g = 204G,

where [ ] is the integer part of .
1.14. Obtain an equivalent to (1.16, (1.17 form of the constitutive
relations
i = Cia " hij Dig

Ei= hw"w+ 2Dk
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where ¢, are the components of the tensor of elastic moduli calculate
at constant electric induction; hy, are the components of the tensor of
piezoelectric constant strains; ? are the components of dielectric non-
permittivities calculated at constant strain.

What are the properties of symmetry and positive de nitenes for the
tensor of elastic modulic®, piezoelectric constant strainsh and dielectric
non-permittivities  >?

1.15. Show that with the introduction of vector-matrix notation for
problems 1.6 and 1.9 the constitutive relations in problem.14 can be
written in the form:

T=c® S h D;
E= h s+ ° D;

wherec® = ci[j)kI andh; = hy,.

1.16. Obtain an equivalent to (1.16, (1.17 form of the constitutive
relations
Y = Si?m ki + Okij D;
Ei= 0w w+ Dk

where s, are the components of the tensor of elastic compliances,
calculated at constant electric induction;gy are the components of the
tensor of piezoelectric constant stresses}, are the components of dielectric
non-permittivities, calculated at constant stress.

What are the properties of symmetry and positive de nitenes for the
tensor of elastic compliances®, piezoelectric constant stresseg and
dielectric non-permittivites ' ?

1.17. Show that with the introduction of vector-matrix notation for
problems 1.6 and 1.9 the constitutive relations in problem.16 can be
written in the form:

S=s® T+g D;

E= g T+ ' D;
where the components of the matrices® and g are related to the
components of the tensorsﬁ’kI and gy by the laws

SD = 2[: 4]+[ :4]Si|j3k| : g = 2[ :4]gik| :

where [ ] is the integer part of .

1.18. Prove that for the strains of a deformable solid, that allows a
rigid body motion, are equal to zero, i. e = 0 for the displacements in
the formu = uygr = Uuc+ ! ¢ X, Uuc=const, ! . =const.
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1.19. Show that in vector-matrix notation for problems 1.6 and 1.9he
Cauchy relation (1.10, motion equation (1.23 and boundary condition
(1.32 can be presented in the form

S(u)=L(r) u;

L(r) T+ f= wu;
p=L(M) T; p=p; x2

where 2 3
@ 0 0 0@ @
Lr)=40@ 0 @0 @>
0O 0 @@ @ O
1.20. Prove that for a deformable solid with ordinary conditions fothe
density, when o > 0, the mass matrixM ,, introduced in (1.96), is

positive de nite.

1.21. Prove that if the essential boundary conditions do not allow
the motion of a solid as a rigid body, i. e. if'( u) 6 0 for any feasible
displacements u 6 0, compatible with the constraints (u =0, x 2 ),
then the sti ness matrix K, introduced in (1.96), is positive de nite.

1.22. Show that if the electric potential is de ned in at least one
point of the boundary of piezoelectric body, then the matriof dielectric
permittivities K- , introduced in (1.96), is positive de nite.

1.23. Show that in a general case of the stiness matrixK
the dielectric permittivities K- , introduced in (1.96, are non-negative
de nite.

1.24. Show that the matrix Ky, = Ky + Ky K.1 K, from (1.109
IS symmetric and positive de nite if the essential boundaryconditions do
not allow the motion of a solid as a rigid body (see problem 1LP

1.25. Prove the conclusion of Pierre Curie that the materials with
piezoelectric e ect cannot have the center of symmetry. Inrder to do
this, consider the inversion transformatiorx ! x°=  x with respect to
the center of symmetry and apply the formulas of component ngersion
for the third rank tensor gy under the transition from initial coordinate
systemOXx1X,X3 to another Cartesian coordinate systen®xxIx3:

0 _ .
ij = il jm kn€mn ;

where ; are the cosines of the angles between the axésand x;. Then
use the fact that for centrosymmetric materials under the @nsformations
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with respect to the center of symmetry there holds an equalitg?j’k = ik
and show that in this case all the piezomodul;x must be equal to zero.

1.26. For the statement of transient electroelastic problem in s#ion
1.3.1 initial conditions (1.37) were formulated only for the functionsu and
u. Are the initial conditions for the electric potential' required for this
problem?

1.27. Show that in vector-matrix notation for problems 1.6 and 1.9
with the additionally introduced vector of thermal stress ce cients

G =D 11, 22 33 23 13 12C
constitutive relations (1.1129, (1.113 can be written in the form:
T=C S G;

Cn
S=G S+ T,
1.28. Obtain an equivalent to (1.112, (1.113 form of the constitutive
relations
=S+
C
S=  + T,
where s is the fourth rank semi-symmetric tensor of elastic complreces,
inverse toc in the sense of problem 1.10; is the second rank symmetric
tensor of thermal expansion coe cients;c is the specic heat under
constant stress. Which value is greaterc or ¢ from (1.113?
1.29. Show that with the introduction of vector-matrix notation for
problems 1.6, 1.9 and the introduction of the vector of theral expansion

coe cients

A =D 11 220 332 232 13,2 12C
the constitutive relations in problem 1.28 can be written in e form:
S=s T+A ;
C
S=A T+ —;
To

where the components of the matrixs are related (as in problem 1.17)
to the components of the tensos; by the law

where [ ] is the integer part of .
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1.30. Prove that for a thermoelastic body under the ordinary condions
for the density o> 0 and speci c heatc: ¢ > 0, the heat capacity
matrix C , introduced in (1.169, is positive de nite.

1.31. Prove that in a general case the thermal conductivity matriK
introduced in (1.1649, is non-negative de nite.

1.32. Formulate the conditions under which the thermal conductiuy
matrix K , introduced in (1.164, is positive de nite (with a proof).

1.33. Prove that the matricesM ,, and Cy, introduced in (1.216, are
positive de nite, and the matrix K p, from (1.217 is non-negative de nite
in a general case.

1.34. Formulate the conditions under which the acoustic matrixX pp,
introduced in (1.217), is positive de nite (with a proof).

1.35. By analogy to Eqgs. (L.220{( 1.229 write the matrix semi-discrete
equations for a piezoelectric body g, interacting with an acoustic medium

a- Take the vectorsfU, g as the unknowns for approximations to
model the processes in the mediumg, and take the vectorf Pg as the
unknown for approximations in the medium ,. As a result, obtain the
system of equations with respect to the vectorsU, , Pg. When solving
the problem, take advantage of the fact that the behaviour o solid
piezoelectric structure is described by Eqs1(97), (1.99.

1.36. By analogy to Egs. (L.220, (1.229, (1.226 write the matrix semi-
discrete equations for a piezoelectric bodys, interacting with an acoustic
medium 4. Take the vectorsfU, g as the unknowns for approximations
to model the processes in the mediumg, and take the vectorf g as
the unknown for approximations in the medium ,. As a result, obtain
the system of equations with respect to the vectorsU, , g. When
solving the problem, take advantage of the fact that the bel@ur of a
solid piezoelectric structure is described by Eqs107), (1.99.

1.37. By analogy to Egs. (L.220{( 1.222 write the matrix semi-discrete
equations for a thermoelastic body g, interacting with an acoustic medium
a (without taking into account the temperature eld in the acoustic
medium). Take the vectorsf U, T g as the unknowns for approximations
to model the processes in the mediums, and take the vectorf Pg as the
unknown for approximations in the medium ,. As a result, obtain the
system of equations with respect to the vectorsU, T, Pg. When solving
the problem, take advantage of the fact that the behaviour cd deformable

thermoelastic body s is described by Eqgs. 1.1653, (1.169.

1.38. By analogy to Egs. (.220, (1.229, (1.229 write the matrix

semi-discrete equations for a thermoelastic bodys, interacting with an
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acoustic medium 5 (without taking into account the temperature eld
in the acoustic medium). Take the vectorsfU, Tg as the unknowns
for approximations to model the processes in the mediumg, and take
the vector f g as the unknown for approximations in the medium ..
As a result, obtain the system of equations with respect to theectors
fU, T, g. When solving the problem, take advantage of the fact that
the behaviour of a deformable thermoelastic body 5 is described by
Egs. (1.165, (1.169.



Chapter 2

Finite element method for coupled
physico-mechanical problems

2.1 General scheme of Galerkin method. Dynamic
and static problems

As it was shown in Chapter 1, in order to nd weak solutions of coupd
problems numerically, we can use the Galerkin method in a s&fascrete
(for dynamic problems) setting. In general form all weak sehgs for the
problem from Chapter 1 can be represented in a form

a(W; &) + da(w;a) + ca(w; a) = Ca(w); (2.1)

wherea = a(x;t) 2 RK a = fa; ay; ., aQg, & are the unknown eld
functions; w = w(x) 2 RX, w = fw;ws;:;;weg are the projection
functions; ,, d,, ¢, are the bilinear forms, that contain integrals over the
domain from the products w a and their derivations; C, is the linear
continuous functional.

For example, let us consider weak statements for three-dimsonal
problems of electroelasticity {.83, (1.84), written without the procedures
(1.62 for removal of inhomogeneous essential boundary condrim®

(vie)+ d(v;u)+ c(v;u) e(v;' )= Cu(v), (2.2)
eu; )+ (' )=C(): (2.3)

As in these equationsy and are arbitrary functions of the required
smoothness, then relations4.2), (2.3) are equivalent to its sum. It is
obvious that the termwise sum 2.2) and (2.3) can be written in the
form (2.1) at kK = 4; a = fu;" g, a1 = UL = Uy, @ = Uy = Uy,
@B=Us= Uz au=";w=fv; g a(w;a)= (v;u); da(w;a) = d(v;u);
Ca(w;a) = c(v;u) e(v;' )+ e(u; )+ (" ) Calw) = Cu(v)+ T ().

73
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Similarly, the weak statement for the thermoelasticity prblem based
on relations (1.137, (1.1389, can be represented in the form4.1) at
kK =4, a=fu; g ag = U = U @& = Uy = Uy; @83 = Uz = Uy,
a = ;w=1"fv; g alw;a)= (viu); da(w;a) = To (u; )+ s(; )
Ca(w;a) = c(viu)  (v; )+ k(; ) Ca(w)= Cu(v)+ C ().

In order to remove the inhomogeneity of the essential bounda
conditions, one can search the solution in the form

a= ag+ ap; (2.4)

where ag = fagi;ag; ::;;ag IS an unknown function that satis es
homogeneous essential boundary conditiorns; = fan1; an; i awg Is the
known (specially selected) function for which the same inhorgeneous
essential boundary conditions as for the functioa are satis ed.

From (2.1), (2.4) it is obvious that after nding ag we have the relation

a(W; 8p) + da(W;ag) + Ca(W;ag) = La(w); (2.5)

La(w) = Cy(v) a(w;8,) da(w;an) ca(w;an): (2.6)

For the problems of electroelasticity Eq. Z.5 should be satis ed for
8w 2 V; V= fHl;H'g; and the unknown part of the solutionay should
belong to the space Q =f Q,; Q g. Similar functional spaces can be also
introduced for other coupled problems from Chapter 1.

The classical version of the Galerkin method assumes the atwif the
nite by x spaces ¥ V, Q, = L?%0;T; Vn), Qn Q and the search
for the approximate solutionang  ag, ang 2 Qn, Which satis es (2.5) at
8w 2 Vi.

In the space V4 an arbitrary vector-function w = fwy; wy; :::; wig can be
expanded in the basis, and for an individual componeny; this expansion
can be written in the form

X
Wi = Naij (X)Wij = Nai Wi; (2.7)
j=1

where N (X) are the basis functions\W;; are the coe cients at the basis
functions; N, = DbNg1; Nai2; i Nain, € Wi = fWi1; Wig; 5 Win, 0, and
there is no summation ovel in (2.7).

As it can be seen, the dimension of the basis of the spacg M the
adopted notations is equal tony, = ny+ ny + ;i + n,. The components
anoi Of the approximate solution vectora,g can be then searched in the
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form 0
anoi = Naj (X)Aj () = Ny Ai(1); (2.8)
j=1
where A i(t) = fA1(t), Aia(t); 25 Ain, (t)g; Aj (t) are the unknown scalar
functions of approximation.
If we compose two single vector8V = fW ;W,, 5, Wig;, A(t) =
fA 1(t); A o(t); ::;; A k(t)g out of the vectorsW; A(t), then from (2.7),
(2.8) we can obtain general representations fav and apg

w=N, W; an=N, A(l); (2.9)

wherei-th row of the matrix of the basis functionsN , has the following
block structure: b0;:::;0; N 4; 0;:::;0c. We should note here that the form
of the matrix N, depends on the chosen way of collecting the vector¢
and A from W; and A;.

Let us substitute (2.9) into (2.5 and take into account that in the
integral forms ,, da, ¢, and in the linear functional L ; the valueswW and
A (t) do not depend on the spacial variableg, and, therefore, can not be
moved outside the integral signs. As a result, we get an equati in the
matrix form

W (M A+C A+K A)=W F (2.10)

with the matrices M, C, K and the vectorF, determined from ,, dj, cy
and L, respectively.

As W is an arbitrary vector from Vy, then from (2.10 we have the
resulting equation of motion

M A+C A+K A=F; (2.11)

If we consider atransient problem then it is necessary to add to 2.117)
the initial conditions

A) = Asn; A(0) = Vg (2.12)

with the known initial values Agn, Vsn, that are easy to nd from the
corresponding continuous initial conditions. Note that if dr individual
blocks A in Eg. (2.11) the second time derivatives are absent, then for
these blocks we do not set the initial conditions for their st derivatives
by t.

Thus, the solutions oftransient problemsby the Galerkin method are
reduced to the Cauchy problem Z.11), (2.12 for the system of ordinary
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di erential equations with respect to time. (In (2.11) there areny scalar
equations with respect to the components  (t).)

We note that there arethree major types of dynamic problemstransient
problems problems of steady-state oscillatiorsnd eigenvalue problems

Transient problems @.11), (2.12 usually are the most dicult and
time-consuming. If all external in uences (including esswial boundary
conditions) change according to the harmonic law with the saenfrequency
f = 1=2 sothat F = Fe", and the solution becomes steady in time
by the same lawA = A €' | then we can omit the initial conditions and
considerthe problem of steady-state oscillationslt is obvious that the
substitution of

A=AKe": F=Fe" (2.13)

into (2.11) gives
(1°M+il C+K) A=F; (2.14)

where A, F are the complex amplitudes of the solution vectors and the
external in uences.

In the linear problem Eq. (2.14) represents a system of linear algebraic
equations with complex arithmetic with respect to the complexectors of
unknownsA. Note that even if there is no attenuation in the system, i. e.
C =0, then the vector F can be complex and, consequently, the vectér
will be complex.

Usually it is necessary to solve the problem of steady-state
oscillations (2.14) several times, changing the frequency in a certain
interval [! ;! ¢]. In this case the values of interest are some characterci
of solution A" that depend on the frequency (frequency characteristics).
Of particular importance are the maximums of these charaatstics and
the frequencies at which the maximums are reached. These frequies
are called theresonance frequenciesIn order to nd feasible resonance
frequencies, we can solve a separagggenvalue problenwhen in (2.14)
F = 0 and usually (but not always) C = 0.

If C =0, F =0, then (2.14) takes the form

1M A=K A: (2.15)

In (2.19 the unknowns are the frequency and the vector A, where
nontrivial solutions A 6 O are of interest. In this casel is called anatural
frequencyor eigenfrequencyand A is called aneigenvectoror oscillation
mode In numerical analysis problem 2.15 is also called ageneralized
eigenvalue problemand the documentation on the nite element software
refers to it asmodal analysis
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The problem considered less often is an eigenvalue problemdanatrix
bundle
(1?°M+il C+K) A=0; (2.16)

where it is also necessary to nd the paird!; Ag, at which (2.16 is
satised, and A 6 0.

Finally, apart from dynamic problems we can also considestatic or
stationary problemswhen in (2.11) A and F are not time-dependent, and
in linear problems Eq. .11 is reduced to a system of linear algebraic
equations

K A=F: (2.17)

As we have shown, the Galerkin method reduces dynamic and stati
problems to standard problems of numerical analysis, forlstion of which
a number of well-developed specialized numerical methodsavailable.

2.2 Finite element method as a version of Galerkin
method. Main ideas of FEM

The main problem of practical application for the Galerkin m#od is the
problem of nding the spaces ¥ and their bases, suitable for the domains
of fairly arbitrary shape. The nite element method (FEM) is aversion of
the Galerkin method where this problem is solved by dividinghie domain

(specically, ) into subdomains €M of standard shapes with
simple basis functions.

As it has turned out, in the framework of FEM it is possible to
implement a range of techniques, that allow to apply and impiment
them in programs for a variety of problems of mathematical pfsics.
The procedures ofassembling and accounting for the essential boundary
conditions and calculating the element matrices and vectors by numerical
integration can be attributed to these approaches. All this led to a
wide application of FEM and its e ective implementation in numerous
computational complexes of both general and specializedrpose.

This book does not claim for the complete presentation of FEM.
A reader is advised to consult numerous monographs where FEM i
presented from the mathematical viewpointZ, 8, 37], from the viewpoint
of specic applications P7] and with specic attention to the program
implementation. Often this division is di cult to make [ 3, 23, 33, 34,
35 36, 37]. A range of monographs are oriented to the application of
FEM for solving coupled problems of mechanicsl4, 17]. Finally, very



78 CHAPTER 2. FEM FOR COUPLED PHYSICO-MECHANICAL PROBLEMS

useful information is contained in the documentation on thenite element
software [L].

Now we pass to a brief description of FEM for classic Lagrangianite
elements in B. Let , and there is a division of the domain |
into a set of subdomains of a simple shape, the nite elements™, i. e.

h=1[mL, M wherem is the element numberng is the general number
of subdomains °™.

We will consider weak statements of the problems ony,, changing the
integration domains in them from to  and moving the boundary
conditions to the boundary , = @ and its parts with various types
of conditions ( pu, h , €tc.)

The structure of the nite element mesh comprises nite elenmds and
their nodes A separate node is characterized by its numbgr and its
coordinatesx; = fXx;;y;;zg. Each nite element °™ has its own set of
nodesfxp™, xP", ..., XP'g, xpM 2 fMis = 1;2n = n®M o n®M s the
number of element nodes.

For the simplest elements the nodes are the vertices of theogeetrical
gures °M. In more complex elements the vertices can lie on the edges
and inside the domains ™. For example, in the elements with quadratic
basis functions the nodes are located both in the vertices cgmsually in
the middle of the edges of the gures M.

Fig. 2.1 and 2.2 show 2D nite element meshes consisting of triangular
and quadrilateral elements. Both variants of the mesh are bufor the same
solid model with the same parameters of nite element mesh. Thefore,
almost all the domains €™M and their numbers in both gures on the left
coincide. Fig.2.1shows simple elements without midside nodes and Fig)2
shows more complex elements with the nodes in the vertices amdthe
middle of the edges. As it can be seen from Fig.2(b), the elements with
middle nodes can have curvilinear sides, which allows to apgnmate the
curved boundaries more precisely, compared to the elemewish the nodes
located only in the element vertices.

We will associate each nodg; with its basis functionN; (x), which has
a range of important interrelated properties.

1) Function N;(x) is identically equal to zero on all elements®, that
do not include the node; (both inside and on the boundaries ).

2) Usually it is assumed that

Nj (Xk) = jk; (2.18)
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Figure 2.1. Example of 2D mesh with elements without midside nodes:
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Figure 2.2. Example of 2D mesh with elements with midside nodes:
(a) with element numbering; (b) with node numbering

i. e. the basis functionN;(x) equals one in the node; and zero in all
other nodes.

3) The basis functions N;(x), probably together with parametric
mappings (look further section 2.3),are de ned by relatively simple
polynomial expressions of low degree

4) The use of consistent nite element mesheswvhen the adjacent
elements €™ have common nodes and sides and border each other without
gaps and overlapping,ensures theCP-smoothness of the approximated
functions in  for the elements with the same type of approximation on
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the sides and/or edgesnd so calledcompleteness condition holds

Xnd
N;(x)=1; 8x2 n; (2.19)
i=1

wheren,q is the total number of nodes.

These features of nite element meshes and bases determineaage of
good computational properties of FEM.

As separate basis function$\; (x) have the supports (i. e. the closures
of the sets whereN; (x) are not equal to zero) related to a small number
of nite elements, then the nite element matrices K, C and M are very
sparse

Fig. 2.3 shows the basis functionNg(x) for a nite element mesh
identical to the one shown above in Fig2.1. Here the nite elements,
where this function equals zero, are darkened. As it can be seenly for
four elements (with the numbers 7{10) this function is not eqal to zero,
and these elements are related to ve nodes (with the numbers 2, 4, 8,
9). Let us consider an example of a problem with one scalar urdwn eld
function in the matrix K of the size 25 25 (hng = 25 is the total number
of nodes in the model). For such matrix in the ninth row only tle elements
Koa1, Koo, Kgs, Kgg and Kgg will be not equal to zero, and in the ninth
column only the elementsK 19, K29, K49, Kgg and Kgg will be not equal
to zero. This holds, because the products of the functioMég(x) on N;(x)
at | 6 1;2;4;8,9g and the products of their derivatives are identically
equal to zero on . Consequently, the integrals from these products that
determine the components of the matriXX will also be equal to zero. A
similar result will be valid here for the matricesC and M.

From the property (2.18 we can determine the physical meaning of the
unknowns in the vectorA . Having written the representation @.8) for the

(@) )

2 1 12 13 11

Figure 2.3. Basis function for triangular elements without midside noes:
(a) with element numbering; (b) with node numbering
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componentayg of the approximate solution in the nodex |, we get

Xi X
anoi (X 1;t) = Naj (X)Aj (1) = A () = A (t): (2.20)
j=1 j=1

Here it is taken into account that the basis functionsN; (x) for various
components of the considered problems in FEM can be taken tkame,
I e. Naij (X) = Nj (X)

Formula (2.20 shows that the componentA; of the vector A is the
value of an unknown functiora,g (i. e. the displacementauy, uy, Uy, the
potential ' , etc.) in the nodex .

As it can be seen from %2.9), (2.20, the eld function angi(X;t) in the
domain 4 is determined by FEM in the form

Xi X
ahOi(x;t) = Nj(X)Aij (t) = Nj(x)ahOi(xj ;t): (2.21)
j=1 j=1

Thus, the function ang(X;t) in  , will be known as soon as its values
in the nodes of the nite element mesh are calculated. In coegtion to
this the valuesAj (t) = anoi(X;;t) are called thenodal degrees of freedom
(degrees of freedom in the nod ).

Let us note that in FEM the vector of unknownsA is easy to collect
by nodal degrees of freedom, and this approach di ers from eéhapproach
explained in section 2.1 after Z.8). Namely, we form thevector of nodal
degrees of freedonA M = fAy;Ay;:i Agg of the sizek; and from the
vectors Aj”OI we form a global vector of nodal degrees of freedom =
f A AL :::;Aj”dg. Therefore, with the j-th node number in the global
numbering we conneck degrees of freedom with the numberfk(j 1)+1,
K(j H+2, ey K(] p 1h+ k=Kkjg.

As  (z)d = n  en(:)d, and for every nite element there is
a small numbern®™ of nodes and nonzero basis functions, then the nite
element matricesK, C, M and some constituents of the vectoF can be
gathered from the element matrice& ®™, C*™, M ®™ and the vectorsF;"
of small sizes. Such approach to form the global nite elemeobjects from
the element objects is called amassembling procedure

Let us consider an element °™ with the nodesx;!", wherers = r™ are
the global node numberss = 1;2;::;;n®*™ are the local numbers. Thus,
we have a to-one correspondence among global and local nodenloers:
feM(xFM) = s.
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Let J°™ be a set of local numbers of the degrees of freedom of the
dimensionni™ = kn®™, consisting of the blockf k(s 1)+1, k(s 1)+2,
.oKk(s 1)+ k=ksg,s=1;2;::;n"M,

In the general (global) numbering these degrees of freedomwvha certain
numbers from the set)§", that includes the corresponding blocksk(rg™
1)+1, k(rg™ 1)+2, ..., k(ré™ 1)+ k= kr"Mg.

Using the mappingf ®M(xf") = s, we can built a one mappingg®™
JEm I J°M, that transforms for the element °™ the global numberp of
the degree of freedom frond&™ into the local numberi from J2™:

o°M(p)=i; p2JI&™ 123 p=rg (2.22)

The element matricesKk ®™, C®™, M ®™M of the sizen§f™ n§™ and the
element vector of the active external in uenced;" are determined by
the formulas similar to those which were used to nd the compants of
the global matricesK, C, M and the vector F. The only di erence is
that the volume integrals are now calculated over the domain®™, and the
surface integrals are calculated over the parts of the bouay ™ = @ °™.
Besides, only the basis function;(x) for k degrees of freedom of the
element nodg = r™, s=1;2;:::;n°M take part in the calculation.

Then with account for the adopted numbering of global and eleme
degrees of freedom the extended element matig" can be determined
by the formula

kem = Ky 1= 07(p) | = g7a) (P2 J6T) " (a2 J6T);
P 0; (PZJIEM) _ (aZJI&M):
(2.23)
In a similar way we can set the extended matrice€g", M g" and the
extended vector of active external in uence$ g}.
A simple analysis show that

K = Kg" C= g M = Mg F= an: (2.24)
m=1 m=1 m=1 m=1

Formulas (2.24) that determine the assembling process in FEM are
usually written in the form

)Qel a
K = Kem=  K&m (2.25)

m=1 m=1

and similarly for C, M and F.
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In computational practice the extended element objects &", C&", M &"
and Fg&} usually are not constructed explicitly. Instead we can orgaze
a loop over the element numbers where the process45 of constructing
global objects out of element objects is implemented with amgnt for the
location of the components of the element matrices and vecsounder
their summation into global objects by .22, (2.23. This assembling
process is e ectively implemented in computer programs fany types of
nite elements, including the elements with various numbersf degrees of
freedom in the nodes.

In FEM in the frameworks of global strategy of nite element nesh
construction it is convenient to set both the approximate uknown
functions ang and the approximations of the specially selected function
ann, Which satisfy inhomogeneous essential boundary conditeanindeed,
let us write an approximation for (2.4) and the second formula from 2.9),
additionally marking N a(x) and A by the subscript \0":

an = Anot Ann;  Ano = NaO Ao(t)Z (2.26)

It is obvious that a complete nite element mesh in |, contains both
the nodes forang and the nodes fora,,. Using one-type basis functions for
all nodes we can adopt a nite element approximation foan,

am = Ny An(t): (2.27)
Then
an= Ny Ao(t)+ Ny, An(t)= N, A(t); (2.28)
Na= fNaiNanG  A(D) = FAD); An(D)g: (2.29)

Here the components of the vectoA ,, are known from inhomogeneous
essential boundary conditions fomy, or a;, i. €. we can write

An(t) = A (D); (2.30)

where A (t) is the known vector of the values for the components of the
eld functions & in the corresponding nodes of the parts with essential
boundary conditions.

Having analyzed the transformation of weak statement(2), (2.3) into
(2.9, (2.6), we can note the following. If we formulate the nite element
equations of motion for the whole ensemble of the nodes andtaielements
in , without account for the essential boundary conditions, themve will
have

M A+C A+K A=F (2.31)
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Moo Mo Coo Con Koo Kon

M =  C = K = : 2.32
MOn Mnn COn Cnn KOn Knn ( )

Ao . _  Fo
A = A, F= F. (2.33)

In (2.3D{( 2.33 the vector A is unknown and the vectorA , is known
by (2.30. But from (2.31){( 2.33 and (2.30 it is easy to obtain an equation
only for an unknown vectorA g

Moo Ao+ Coo Ao+t Koo Ap=Fp Mon A Con A Ko A : (2.34)

Upon the change of notation, Eq. 2.34) coincides with the previously
used Eq. €.11) for the approximation (2.27) for a,,. Certain inconvenience
of the transition from (2.31) to (2.34) consists in the change of the order and
structure of the nite element matrices and vectors (under he transition
from M to M g, etc.)

One version of themethod of taking into account the essential boundary
conditions, that maintains the orders of the global nite element objets,
consists only in their transformation which leads to the foliwing resolving
equations

M, A+C, A+K, A=F (2.35)
_ Mg O . -~ _ Cgp O . _ Kgp 0 |
Me= 0 0 "¢t g o T ReT ) Kd (2.36)
_ Ao | _ Fo Mn A Cnn A Kumn A .
A= A, Fe = Kd A '
(2.37)

where K4 is a diagonal block composed of the corresponding diagonal
components of the matrixK .

It is obvious that formulas (2.39{( 2.37) are equivalent to 2.34), (2.30.

The second way 2.39{(2.37) to take into account the essential
boundary conditions is easier for the computer implementain than the
rst one ((2.34), (2.30), as for this method it is not necessary to change
the sizes of global nite element objects.

Thus, dierent ways of taking into account the essential boudary
conditions can be suggested, in which rstly the nite elemeinmesh is
built without account for these boundary conditions, secorid the general
FEM matrices and the main parts of the right-hand side vectoare formed,
and after that the procedure of taking account the essentidboundary
conditions is reduced to the transformation of the constried matrices
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and vectors. Such methods enable to automate the procességaking
into account the essential boundary conditions in the franveork of the
general concepts of FEM.

Concluding the description of the computational propertiesf FEM we
note that the use of simple basis functions permits to calate the element
matricesK ™, C®™, M ®™M and vectorsF{™ fast enough and with high degree
of accuracy by quadrature formulas of low order.

Besides, the resulting FEM global matrices will be, as a rulayell-
conditioned and their condition numbers will not increase gatly with
the increase of the order. It is also can be noted that these imaes are
sparse and in many problems they are also symmetric and pogt de nite.
Therefore in order to solve nite element problems we can e égely use
powerful modern software for solving linear (and nonlinearsystems of
algebraic equations, integrating the Cauchy problems by timand solving
the eigenvalue problems with large sparse matrices.

In the next section we will provide a summary of basis functiafor
main nite elements used in modern nite element software.

2.3 Basic nite element approximations

This section describes main isoparametric nite elementsif@D, 2D and
3D problems.

Let ©M= M pe a domain in R occupied by a nite element with the
number m. Herel =1 for 1D elements,| = 2 for 2D elements andl = 3
for 3D elements;x = fxgatl =1, x = fx;ygat| =2, x = fx;y;zg at
| = 3.

Let us denote byx;™ = X, a set of nodes of the element with the global
numberingry, r,, ..., rn. Then the total number of nodes for the element

sMis equal ton = n®™M,

We will consider that there is a parametric mappingk = x( ), 2 R
( =fgatl =1, =f; gatl = 2, = f;; gatl = 3),
that transforms a certain canonical domain ®™ into the domain ™.
For the canonical gure there is a set of nodesg with local numbering
s=1;2;:n.

Let us consider some approximate vector-functioa,(x;t) 2 R¥, a, =
fany; ang; i ank0, an = ani(X;t), 1 =1;2;:::;; k. We will consider that on
the element $™ each scalar componenéy;(x;t) of this function can be
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presented in the form

X0
ani(X; 1) = ani(x( );t) = ani( ;1) = Ns( )Ais(t); (2.38)

s=1
where Ng = Ng( ) are the basis functionsor the shape functionsof the
nite element; s=1;2;::::n.
Below for clarity we consider only one speci c approximatedunction

a, for a xed t, therefore we will omit the time dependence. Thus, instead
of (2.39 we will use a simpli ed expression

X
an(x) = Ns( )As (2.39)
s=1

It is assumed that the parametric mapping of the canonical gre °©™
on the domain ;™ can be presented in the form
x=x( )= NE"() X°m (2.40)
where for 1D elementsl(= 1)
N§™ ()= bN1( );N2( ); x5 Na( e (2.41)

M = fXr,; Xryp 20 Xr, O (2.42)
for 2D elements [ = 2)

N, O N, O = N, O

em — .
N> ()= 0O N; O N, :: 0 N,

(2.43)
XM= £Xr,5 Yeoi Xroi Yeoi 550 Xen s Vi O (2.44)
and for 3D elements (= 3)

2 3
N, O O N, O O N, O O

NE"()=4 0 N; 0 O N, O :x 0O N, 0 S; (245)
O O N;i O O Ny @z 0 0O N,

XM= FXe05 Yeus Zrys Xegs Yeos Zrgs 2505 Xegs Yy 2, O (2.46)

The nite elements of the form (2.39{( 2.46 are calledisoparametric,
as their characterization uses the parametric mapping = x( ) and
the sets of basis functions with the total numbemn are the same in
the approximation (2.39 of the eld function a, and in the parametric

mappings @.40{( 2.46.
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Obviously, the behaviour of the elda, by x is more important than its
behaviour by . Therefore usually we need a bijective parametric mapping
x = x( ) and require an existence of an inverse function=(x). Then
from (2.39{(2.49 we will have a dependence,(x) = an( (x)). Here
it should be noted that even for simple basis functionBlg( ) an inverse
to (2.40 mapping can be rather cumbersome. However, despite of pepsa
complex behaviour of the eldan(x) on ™, this function usually has good
approximation properties.

The basis functions of the main nite elements in total compse full
polynomials of the rst or the second degree from each spaltizariable.

Linear nite element in the form of a segment with two nodes

In this 1D element shown in Fig.2.4n = n®*" = 2; ™ = [X;,; X;,];
Xrp <Xrpy SM=[ L1]; 1= 1; 2=1.
The basis functions are de ned by the formulas

Ni()= 5 ) No()= 50+ ) 247)
or in the uniform notation
Ns()= 20+ 5 ) s=1;2 (2.48)

The element ensures a linear representation of the functi@ when it
depends either on or on x. (The latter is true by virtue of linearity of
the inverse mapping = (X) under the linear dependence or = x( ).)

Ni(&) Ny

1IN \
r r | |
1 2 1 2‘%

x % . - 0 1 g
x=x(<)

Figure 2.4. 1D element with two nodes: original segment (left)
and canonical segment with basis functions (right)
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Ny(&) Ny(&) ;\%(;)

x=x(s)

Figure 2.5. 1D element with three nodes: original segment (left)
and canonical segment with basis functions (right)

Quadratic nite element in the form of a segment with three
nodes

For this 1D element (Fig. 2.5 n = n®M =
XrsXe ] [ Xeps Xesls Xey < Xy, < Xy O™ = [
1= 1 2=0; 3=1.

Here the basis functions are quadratic

3’ )e(m = [Xrl;XrS] =
11 =1 1,0][ [0 1];

=

1+ ); (2.49)

NIO)= 5@ ) N()=1 % Ne()= 3

or in the uniform notation

S

N()= @2 2021++ ) (@ AL s=1,23  (250)

In order to ensure a bijective mappingk = x( ), the internal node x,,
must be located from the outermost nodes,, and x,, at the distance
greater than hn,=4, wherehy, = X;, X, is the segment length.

In a general situation the behaviour ofa, from x is described by a
complex transcendental expression. However, if an internabde is located
in the middle of the segment, i. ex,, = (X, + X,)=2, then the quadratic
parametric mappingx = x( ) is degenerated to a linear mapping. In this
case each element gives a quadratic representation of thadtion a,, both
by and by x. Therefore almost always the node;,, is selected in the
middle of the segment.

Triangular nite element with 3 nodes

The gure §" on the plane Oxy has a form of triangle with the
nodesx,, = X ;y.9, s = 1,2;3, located in the counter-clockwise order
of bypassing (Fig.2.6). The canonical gure ™ on the plane O
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Figure 2.6. Triangular element with three nodes:
original triangle (left) and canonical triangle (right)

( = f; g)is a rectangular triangle with the catheti equal to 1. Here
n=3;, ,=10,00; ,=110g; 5= f0;1g.

In order to construct the shape functions, triangular cooriciates or area
coordinates are used

S S S
L, (P) = > (Prara). L., (P) = S(Prary). L., (P)= 2(Pur). (3 57)
S( rifars) S( rifars) S( rirara)

whereP = P(x) = P(X;y) is the point inside triangle, S p(,,) is the area
of triangle with the vertices P (x), X, Xy, .

When bypassing the vertices in counter-clockwise directipnfor
calculation of the area the following formula can be used

1 1 1
X Xi Xj (2.52)
Y Yi Y

For canonical gure €™M the triangular coordinatesL( )= L(; ) have
very simple form

La(; )=1 ; La(; )= La(; )= (2.53)

These functions can be used as basis functions, i. e. for a hgalar
element with three nodes we have

Ng(; )=1Ls(; ); s=1;23 (2.54)

S( Prir,-) -

NI

The element has a linear behaviour of the eldy, both by and by x,
and triangular coordinatesL, (P) can be taken as basis functions fror,
I.e. L, (P) = Ng( (x)). From (2.52 it can be seen that the functions
L,.(P) are linear byx andy. The graphs of these functions were presented
before in Fig. 2.6, if we consider one of the elements.
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Quadrilateral nite element with four nodes

Let us consider a quadrangle ™ on the planeOxy with the nodes in
its verticesx,, = fx,;¥r.0, S=1;2;3;4, located in the counter-clockwise
order of bypassing (Fig.2.7). The canonical gure €™ on the planeO
( = f; g)is asquare with the center in the pointf 0;0g and with the
sides equal to 2. Herm =4, ,=f 1, 1g, ,= f1, 19, ;= f1,1g;

=1 119

The shape functions are the products of the corresponding lms

functions (2.47) of a 1D linear element that depend on or

Ni(; )=1 )T )= No(; )=@Q+ 1 )= (2.55)
Na(; )=+ )1+ )=4 Ng(; )=1 A+ )4 '
or in a uniform notation
Ne()=(1+ )1+ s)= s=1;234 (2.56)

As it can be seen fromZ.59, the basis functions are linear by and ,
I. e. bilinear. Therefore an element is also called lalinear quadrilateral
nite element with four nodes

In order to ensure a bijective mapping = x( ), it is necessary 7] that
a quadrangle is convex, i. e. all its internal nodes at the \&es are less
than

The behaviour of the eld a, by x here is quite complex, but on each
side it is linear. For this reason the contact of two bilineaquadrilateral
nite elements by a common side with shared nodes ensures a taunty
of the eld a,(x). This element can also contact by a common side with
triangular nite element with three nodes. Here a continuity ¢ the eld

Figure 2.7. Quadrilateral element with four nodes:
original quadrangle (left) and canonical quadrangle (righ
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an(x) is also ensured for the transition from bilinear quadranglto a linear
triangle.

This element has a simple shape for which we can demonstrate an
importance of isoparametric approach. As it is known, for a quiaangle
with four nodes and with the sides not parallel to the coordinat
axesx and y it is not possible to construct polynomial representations
an(x) = an(x;y), which ensure their continuity under the transition
from one quadrangle to another. This continuity is ensured dn for
dependencesA.39{( 2.46 with isoparametric mappings.

In order to use more accurate quadratic approximations, isinecessary,
as in 1D case, to consider the elements with the nodes on thenedmt sides
and quadratic basis functions.

Triangular nite element with six nodes

Here a triangle $™ on the planeOxy has three nodes in the vertices
Xr, = TXr;¥r.0, s = 1;2;3, and another three nodex;_ (s = 4;5;6) on
the sides (Fig.2.8). The sides are usually rectilinear with the nodes,,

(s = 4;5;6) in the middle of the sides. However, for a range of cases as,
for example, in a case of curvilinear boundaries, the sidernche described
by a quadratic parametric dependence de ned by a replaced dside node
(Fig. 2.8).

The canonical triangle °™ is the same as in the case of a linear triangle
but with additional nodes , = f1=2;0g; , = f1=2;1=2g;, ;= f0;1=2g.

The basis functions for the considered element are given byrfaulas

Ns=(2Ls 1)Ls s=1;2;3;

N4:4L1L2; N5=4|_2|_3; N6=4L1L3: (257)

Figure 2.8. Triangular element with six nodes:
original triangle (left) and canonical triangle (right)
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The element ensures full quadratic approximatiora,( ) by and . If
the sides of the triangle are rectilinear and the nodes_ at s=4,5;6 are
located in the middle of the sides, then the parametric mappg becomes
linear and therefore we get a quadratic approximation of theeld a,( (x))
by X, y. As a rule, the element is used in this particular form.

On the sides of the triangle there holds the approximatior?(39, (2.40,
(2.43, (2.44 with (2.57) de ned by the location of the nodes on the side
and the value of the degree of freedom in these nodes. For aiteear side
with a node in the middle, naturally, for a, we have a quadratic behaviour
by X.

Quadrilateral nite element with eight nodes

This famous element was suggested by J. Ergatoudis, B. lronsica
O. Zienkiewicz and was called an element sérendipity type[33, 34]. Such
elements do not have nodes inside the domairf™, but give the required
representations of the eld functions in the form of the polgomials of the
required degree (in the framework of the isoparametric appach). It can
be noted that a triangular nite element with six nodes is als@an element
of serendipity type, according to this terminology.

The considered element has a form of quadranglé™ on the planeOxy
with four nodes in the verticesx,, = fx,;¥.0, s = 1;2;3;4. Additional
four nodesx,, (s = 5;6;7,8) are located on the sides of the quadrangle
(Fig. 2.9). Regarding the shape of the sides, here the same remarksdhol
as those for a triangle with six nodes. The canonical quadraegl ™ is in
fact the same square as it was for a quadrilateral nite elemé with four
nodes (;,=f 1, 1g; ,=f1, 1g, ;=1f11g;, ,=f 1;1g), but with
additional nodes ;= f0;, 1g9; ¢=11,09; ,=10;1g; g=1f 1,;0g.

The basis functions have the form

Ns(; )= 2@ )=2 Ne(; )= I+ )=

N7(; )=(@ 9@+ )= Ng(; )=@1 1 )=

Ni(; )= )@ )= A=2Ns(i ) (@RNe(i )i e
No(; )=(@+ )T )=4 (1=2)Ns(; ) (1=2)Ne(; ); '
Na(; )=@+ )1+ )=4 ([A=2)Ne(; ) (@=2N7(; );

Na(; )=(@ )@+ )=4 (1I=2)N7(; ) (1=2)Ng(; )

or in a uniform notation

Ns(; )= %(3 S5 s+ )2+ 5) (2.59)
@ A+ s) @ A+ )
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Figure 2.9. Quadrilateral element with eight nodes:
original quadrangle (left) and canonical quadrangle (righ

wheres =1;2;:::;8, and the nodes ; = f 5; sg were de ned previously.

The element ensures quadratic behaviour of the eld, by and on
the canonical square. In the original quadrangle the eld,(x) behaves
in a complex way. However, on each side the change of the &g is the
same as for a triangular element with six nodes. Therefore a qlrdateral
element with eight nodes is consistent on the common side withaed
nodes with the elements of the same type and with a triangularxsnode
element.

Many 3D nite elements can be constructed by analogy with 2D
elements. For this reason in 3D case we will provide only the mdormulas
of these elements. We will begin with the elements without interediate
midside nodes.

Tetrahedron with four nodes (Fig. 2.10, left)
The nodes (vertices) in a physical spacex;, = X ;¥.;%.0, S =
1,2, 3;4.
The nodes (vertices) of the canonical tetrahedron®™ in the space
.1 =10,0,09, ,=110;09, 3=10;1;09, ,= f0;0;1g.
The tetrahedral coordinates for a canonical tetrahedron:

L1=1 , Lo= Laz=; La=": (2.60)
The basis functions [ { tetrahedral coordinates):

Ns(; )=1Ls(; ); s=1;234 (2.61)
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Hexahedron (\brick") with eight nodes (Fig. 2.10, right)

The nodes (vertices in a physical spacex;, = fX;;¥r.;z.0, S =
1;2;:::: 8.

The nodes (vertices of a canonical hexahedrorf™ in the space

1= 1 1 190 ,=f1 1, 1g

=111 1g; =f 1,1, 1g

3 4

s=f 1, 1, 1g; s= f1l, 1;1g; (2.62)
-=11;1; 1g; g=Tf 1,1;1g:

The basis functions:

No(i 7 )= 0+ )A+ )A% o) s=12m8  (263)

Direct triangular prism with six nodes (Fig. 2.11, left)

The nodes (vertices) in a physical spacex;, = X ;V¥.;%.0, S =
1;2;:::;6.
The nodes (vertices) of a canonical prism®™ in the space

=100, 1g; ,=110; 1g; 5=1f0;1, 1g;

4= 10;0; 1g; s = 11;0; 1g; s = 10;1; 1g: (2.64)
The basis functions:
Ne=Ls(1 )=2; Ngz=Ls(l+ )=2, s=1;23; (2.65)

whereL g are the coordinates of the area(51) for the triangle (L.(; )=
1 ,La(5 )= S Ls(s )= ).

Figure 2.10. Tetrahedron and hexahedron without midside nodes:
tetrahedron with four nodes (left) and hexahedron with eighnodes (right)
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The prismatic element is used to model 3D problems for the badi of a
generalized cylindrical shape. For such problems good 3D shes can be
constructed by a translation of the corresponding plane miess along the
axis z (or curvilinear similar axis). Therefore, the prismatic elments are
obtained through translation of plane triangular elementslong this axis.
As it can be seen from Z.69), the basis functions for a six-node prism are
de ned as a result of multiplication of the corresponding bsis functions of
the linear triangular element by the linear functions by .

Quadrilateral pyramid with ve nodes (Fig. 2.11, right)

The nodes (vertices) in a physical spacex;, = fX,;Y.;z.0, S =
1,2;:::;5.
€M is a canonical cube in the space , on the top edge of which only
one node is chosen (the vertex):

=1 1 1, 19, ,=11 1; 1g;

=111 15, 4=f L1 15 s=foolg &%

The basis functions:

N.=(1 )@ 3 )8 N=(1+ )2 )T )8
Nz=(1+ )1+ )2 )8 N,=(1 )@+ )@ )8 (2.67)
Ns=(1+ )=2

An element in a form of a pyramid is characterized by the fact @t under
a parametric mappingx = Xx( ) the canonical cube ™M is transformed into
a quadrilateral pyramid §™. Naturally, this mapping is not bijective, as all
points of the edge of the cube = 1 are transformed into one vertexx;..

Figure 2.11. Prism and pyramid without midside nodes:
prism with six nodes (left) and pyramid with ve nodes (right)
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Nevertheless, the highlighted feature of the parametric mapg for one
point does not prevent the use of this element in practice. Thgrismatic
element is necessary for transition from tetrahedral mesti¢o hexahedral
meshes, and vice versa.

Regarding the meshes built of the described above tetrahedis,
hexahedrons, prisms and pyramids, one can make the followingmark.
All these elements can be stitched together with preserving ¢hcontinuity
of the eld function an(x) at the transition from one element to another.
It is only necessary that the elements have common edges aramtnon
shared nodes at the shared edges.

More accurate quadratic basis functions are used in 3D nitelements
with additional nodes at the sides.

Tetrahedron with 10 nodes (Fig. 2.12, left)

The nodes in a physical spacex,, = fx,;¥r.; 2.0, s=1;2;::;10.
The nodes of the canonical tetrahedron ™ in the space : | =
f0,0,09, , = f1,0;0g, 5 = f0;1,09, , = f0;0;1g, 5 = f1=2;0;0qg,
e = F1=2;1=2,09, ;= 10;1=2;0g9, g = f0;0,1=29, o = f1=2;0;1=2g,
10 = F0;1=2; 1=2g.
The basis functions [ are tetrahedral coordinates from 2.60)):

Ns=(2Ls 1)Ls; s=1;234
Ns=4L.L,; Ng=4LoL3; N7s=4L4.L3; : (268)
Ng=4L1L4; Ng=4LoL4s Nig=4Lsla:

Figure 2.12. Tetrahedron and hexahedron with midside nodes:
tetrahedron with 10 nodes (left) and hexahedron with 20 node(right)
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Hexahedron (\brick") with 20 nodes (Fig. 2.12, right)
The nodes in a physical space,, = fX, ; V¥r.; 2.0, S=1;2;:::;20.
The nodes of the canonical hexahedron®™ in the space : (2.62 {
fors=1:;2;::::8, and
9= 10, 1, 1g; 10=110; 1g; 11= 10,1, 1g;
=1 1,0, 19, 3=f 1, 1,09, .4="F1 1,0g; (2.69)
15 = f1;1;0g; 16= 1, 1,;0g; 7= f0; 1, 1g; '
18 = 1,0; 1g; 19 = 10;1;1g; o="F 1,0;1g:

The basis functions:

No(i 5 )= 5@222 DIZZ20+ o)A+ o)A+ o)
$i1+ )+ )@ ) i+ )+ ) 3
széz(l"' s )A+ )1 2)];

(2.70)
wheres =1;2;:::;20.

Right triangular prism with 15 nodes (Fig. 2.13, left)

The nodes in a physical space,, = fX,;¥r.;2.0,S=1;2;:::;15.

By analogy with the prism with 5 nodes (see4.64), (2.65), the nodes of
the canonical 15-node prism €™ in the space and the basis functions
are easily obtained as a result of the translation of a 6-nodeangular
element along the axis from 1 to 1 and the multiplication of its basis
functions by the basis functions of a 1D along the-axis quadratic element.

Figure 2.13. Prism and pyramid with midside nodes:
prism with 15 nodes (left) and pyramid with 13 nodes (right)
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Quadrilateral pyramid with 13 nodes (Fig. 2.13, right)

The nodes in a physical space,, = fX,;¥r.; 2.0, S=1,;2;:::;13.
€M is a canonical cube in the space , on the top edge of which only
one node is selected (the vertex):

1= L L 1g0 =11 1, 1g;

;=111 19, ,=f 1,1, 1g;

5s=10; 1; 1g; s= 11,0, 1g;

=101 1g; g=f 1,0, 1g; (2.71)
g=f 1, 1,09, 10=f1, 1,0q;

11 = f1;1;00q; =1 1;1,0qg;

13= f0;0; 1g:

The basis functions:

N.=( ) )X 1 g qg)g=

N=(2+ )1 ) 1+q q)g=

Ng=(1+ )1+ )( 1+q +q)g=

Na=( )21+ ) 1 q +q)gZ

Ns=(1 21 )= Ne=(1+ )1 ?)f=2 (2.72)
N-=(1 @+ )o=2 Ng=(1 )1 =2

No=(1 )1 )g1 09; Np=©@+ )T )ogd o),
Nip=(1+ )@+ )g@@ o; Np=(@1 )2+ )gld o);

Niz=(1 @ 29); g=(1 )=2:

Regarding the parametric mappingx = Xx( ), here the same remarks
hold as those for the pyramid with ve nodes. The prismatic eleenmt
with 13 nodes is required for the transition from tetrahedraimeshes to
hexahedral meshes for the elements with midside nodes.

For all elements with midside nodes (tetrahedrons, hexahamirs, prisms
and pyramids) the continuity of the eld function an(x) is ensured at the
transition from one element to another. Here the elements mukave
common edges and common shared nodes on the shared edges$ (bbahe
vertices and on the sides).

It should be noted that both 2D and 3D elements with midside nceb
cannot be stitched without the loss of the guarantee of the ctinuity of
the eld function an(x). In order to move from an element with midside
nodes to an element without midside nodes it is necessary to diiy the
element with midside nodes by deleting the nodes on the sidddlee shared
side (for 2D elements) or edge (for 3D elements). In order tadhis, the
values of the degrees of freedom in the midside nodes shoutdde ned as
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an arithmetic average of the values of the degrees of freedonthe nodes
located in the vertices of the corresponding sides.

In conclusion we will formulate some general properties of éh nite
elements considered above and their basis functions.

For all basis functions €™ condition (2.18 holds, i. e. all basis functions
are equal to one in one node and are equal to zero in all otherdes of the
element.

For all nite elements considered above the condition of coptete-
ness @.19 is satis ed, i. e. the sum of all shape functions of the eleme
is equal to 1. We note that the condition of completenes.(19 for the
isoparametric elementsZ.39{( 2.46 ensures that an arbitrary linear byx
function on ™ can be accurately represented by2(39{( 2.46).

Exercises for Chapter 2

2.1. Fig. 2.1(b) contains an example of a mixed mesh consisting of
triangular and quadrilateral elements with the nodes locatkonly in the
vertices of the elements. How many nonzero elements will thebbe in a
row 17 of a matrix K of the size 25 25 constructed for one scalar eld
function?

2.2. Fig. 2.2(b) contains an example of a mixed mesh consisting of
triangular and quadrilateral elements with the nodes locateboth in the
vertices of the elements and in the middle of the sides. How manonzero
elements will there be in a row 29 of a matrix of the size 71 71
constructed for one scalar eld function?

2.3. Answer the same question as in Problem 2.2, but for the row 18 of
the matrix K.

2.4. Answer the same question as in Problem 2.2, but for the column
69 of the matrix M.

2.5. Answer the same question as in Problem 2.2, but for the column
68 of the matrix M.

2.6. Show that the triangular coordinated.( ) on the canonical triangle

€M indeed have the form 2.53, i. e. calculate using formulas Z.51) for
canonical right triangle with the catheti equal to 1.

2.7. Show that the behavior of the eld function a, on a quadrangle
with four nodes is linear on every side both by and x. Which of the
valuesAg (s =1;2;3;4) from (2.39 determine this behavior?

2.8. Show that the behavior of the eld functionay, on a triangle with six
nodes on the side is determined by an isoparametric quad@tiependence.
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Also show that if the side is linear and the node is located in éhmiddle
of this side, than this behavior is quadratic byx.

2.9. Show that the behavior of the eld functiona, on a quadrangle of a
serendipity type with 8 nodes on the side is determined by amjgarametric
guadratic dependence. Also show that if the side is linear arilde node is
located in the middle of this side, than this behavior is quadtic by x.

2.10. Build an isoparametric triangular nite element with ve nodes
(three nodes are located in the vertices of the canonical angle and two
(intermediate) nodes are located on two catheti), performg a reduction
of the node 5 on the hypotenuse (Fig2.9). In order to do this, in the
representation of the eld function setAs = (A, + A3z)=2, and in the
parametric mapping setxs = (X2 + X3)=2, Y5 = (Y2 + y3)=2. Obtain new
basis functions instead ofZ.57) and show that the resulting element will
ensure linear behavior of the eld functiona, on the side with reduced
intermediate node.

2.11. Build an isoparametric triangular nite element with ve nodes
(three nodes are located in the vertices of the canonical angle, one
intermediate node is located on the cathetus = 0 and the other
intermediate node is located on the hypotenuse), performgna reduction
of the node 4 on the cathetus = 0 (Fig. 2.8). In order to do this, in
the representation of the eld function setA, = (A1 + Ay)=2, and in the
parametric mapping setxs = (X1 + X2)=2, Y4 = (y1 + y2)=2. Obtain new
basis functions instead ofZ.57) and show that the resulting element will
ensure linear behavior of the eld functiona, on the side with reduced
intermediate node.

2.12. Show that if for an isoparametric triangular element with 6 ndes
we perform a reduction of all three nodes on the middle of thedss, using
the methodology of problems 2.10, 2.11, then we will will obtaia linear
triangular nite element with three nodes.

2.13. Build an isoparametric nite element with 7 nodes, performig a
reduction of an intermediate node on one side of an 8-node quiateral
nite element, using the methodology of problems 2.10, 2.11Obtain
new basis functions instead ofZ.58 and show that the resulting element
will ensure linear behavior of the eld function on the side wit reduced
intermediate node.

2.14. Show that if for an isoparametric quadrilateral nite elemat
with 8 nodes we perform a reduction of all four nodes on the mitidof the
sides, using the methodology of problems 2.10, 2.11, then wd obtain a
bilinear nite element with four nodes.
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() (b)

Figure 2.14. Meshes of elements without midside nodes:
(a) triangular mesh; (b) quadrilateral mesh

2.15. Show that the nite element in the form of a right triangular
prism with 6 nodes is consistent by the side quadrilateral edg with similar
elements and with 8-node hexahedrons.

2.16. Show that the nite element in the form of a right triangular
prism with 6 nodes is consistent by the butt triangular edges Wi similar
elements and with four-node tetrahedrons.

2.17. Write the shape functions of the right triangular prism with 15
nodes shown in Fig2.13 (left).

2.18. Do the meshes of linear triangular nite elements shown in
Fig. 2.14(a) ensure the continuity of the eld function when some of the
nodal vertices of the smaller triangular elements lie on theides of the
bigger elements but are not their nodes? Explain your answer

2.19. Do the meshes of bilinear quadrilateral nite elements showim
Fig. 2.14(b) ensure the continuity of the eld function when some of the
nodal vertices of the smaller quadrilateral elements lie ahe sides of the
bigger elements but are not their nodes? Explain your answer

2.20. Do the meshes of 6-node triangular nite elements shown in
Fig. 2.15(a) ensure the continuity of the eld function when some of the
nodal vertices of some nite elements coincide with the mids nodes of
other elements? Explain your answer.

2.21. Do the meshes of 8-node quadrilateral nite elements shown in
Fig. 2.15(b) ensure the continuity of the eld function when some of the
nodal vertices of some nite elements coincide with the mids nodes of
other elements? Explain your answer.

2.20. Do the meshes of 3-node and 6-node triangular nite elements
shown in Fig. 2.16(a) ensure the continuity of the eld function? Explain
your answer.
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(a) (b)

Figure 2.15. Meshes of elements with midside nodes:
(a) triangular mesh; (b) quadrilateral mesh

() (b)

Figure 2.16. Meshes of elements without and with midside nodes:
(a) triangular mesh; (b) quadrilateral mesh

2.21. Do the meshes of 4-node and 8-node quadrilateral nite elents
shown in Fig.2.16(b) ensure the continuity of the eld function? Explain
your answer.



Chapter 3

Practical assignments and examples
of solving problems in ANSYS

3.1 Practical assignment No. 1.
Static deformation of a piezoceramic transducer
with multi-electrode coating

Objectives of the assignment

1. Study the main features of solving the problems of elecetasticity in
ANSYS APDL:
setting the parameters of piezoelectric material
de ning the element coordinate systems and using them to sahiso-
tropic and piezoelectric properties of the material
using mapped nite element mesh
de ning the electrode surfaces and setting the boundary cditions
on them
The example problem is a two-dimensional static problem for
a piezoelectric transducer with inhomogeneous polarizatio and
multielectrode covering (input le FE_Mod_CP_1.inp).

2. Write a program in ANSYS APDL for an individual assignment prokem
(static problem for a piezoelectric transducer with inhomagneous
polarization and multielectrode covering).

3. Perform computations, analyze the results and prepare aport.

103



104 CHAPTER 3. PRACTICAL ASSIGNMENTS AND EXAMPLES

3.1.1 Example problem and solution methods
Problem description

The piezoelectric disk of the radiudk and the thicknessH is assumed
to be in a state of axisymmetric deformation in a cylindricalkcoordinate
system (O r R,0 z H). By virtue of axial symmetry, it is
enough to consider only a meridional section of the disk. Inceordance
with ANSYS methodology,r is the X -axis andz is the Y -axis.

The disk has four electrode surfaces (Fig.1): electrode 1is 0 X
Ry, Y = H=2; electrode 2is 0 X R., Y = H=2; electrode 3 is
R, X R, Y = H=2; electrode 4 isR, X R, Y = H=2. The
disk is made of piezoceramics PZT-4. Two of its zoné® X R4,

H=2 Y H=2gand fR; X R,, H=2 Y H=2 g are
polarized along theY -axis, and the zoneR, X R, H=2 Y H=2
g is polarized opposite to the direction of they -axis (Fig. 3.2).

The disk is xed in Y -direction in the middle points of its outer surface,
l.e.uy=0at X = R, Y =0, the symmetry conditions hold atX =0, and
the rest of the boundaries are free from mechanical stresses

@) (b)

Figure 3.1. Piezoelectric disk (a) with four electrodes (b)

Figure 3.2. Meridional section of a piezoelectric disk
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The disk is deformed by the applied electric voltage to the el&odes.
The boundary conditions are:' = Viy, on the rst electrode, ' = Vi
on the second electrode, = Vi, on the third electrode, and' = Vi
on the forth electrode.

The objective of the problem is to determine the displacementof the
disk caused by its deformation.

Example of problem solving using ANSYS

The example of problem solving using ANSYS is provided in the le
FE_Mod_CP_1.inp (see the listing below ). The program is intended
for use in command or batch mode. The text of the program contzs
detailed comments. Other examples of piezoelasticity prig@ms can be
found in ANSYS documentation: Coupled-Field Guide, 2.14. San®l
Piezoelectric Analysis (Batch or Command Method), 2.16. Sar®
Electroelastic Analysis of a Dielectric Elastomer (Batch orCommand
Method); Veri cation Manual, les Vml175.dat, Vm176.dat, Vm231l.dat,
Vm237.dat (the references are provided for ANSYS 11.0).

ANSYS Product Launcher is the best option to start working with
ANSYS. In ANSYS Product Launcher, selecGimulation Environment!
ANSYS, chooseWorking Directory for storing the working les and de ne
Job Namefor the project.

If there is an existing ANSYS database, then after the launch of AN
it can be resumed fromFile ! Resume

An ANSYS command le (text le with extension .inp, .dat or .txt),
written in APDL ANSYSS, can be executed fromFile ! Read Input from ...
When creating a command le, it is useful to copy the commandsom the
input le into the command line, execute them step by step andook at
the results in interactive mode.

It is recommended to save results from time to time! The currén
database should be cleared before performing new analydi$etu path:
File ! Clear and Start New.

Text of input le FE ~ _Mod _CP _l.inp

I An exclamation point is a comment in ANSYS APDL.
I Any text after the sign !" is ignored

I File FE\ Mod\_CP\ 1l.inp
I Test problem No.~1
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I AXISYMMETRIC PROBLEM
I PIEZOELECTRIC DISK
I Static problem

I Invert background from black to white
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15

I Title of the problem
ITITLE, PIEZOELECTRIC DISC
I Parameters for geometrical sizes (in SI system)

H=0.002 ! thickness of the disk
R=10*H ! radius of the disk

I Additional geometrical parameters
R1=R/4 ! radius of the inner electrode surface
R23=R/4 ! size along the radius of the electrode ring

I The value of applied electric potential
VINP=1

I Parameters of finite element mesh
SM=1 ! scaling multiplier
HDIV=8*SM I Numbers of elements along the disk thickness

I (should be even number!)
R1DIV=16*SM ! Numbers of elements along the radial directio n from 0 to R1
R12DIV=32*SM ! Numbers of elements along the radial directi on from R1 to R2
R23DIV=16*SM ! Numbers of elements along the radial directi on from R2 to R

I Parameters for material constants of piezoceramics PZT-4
I (all data in SI system)
RO=7.5e3 I density
C11E=13.9e10 ! elastic moduli C\verb*"""E\ ijj
C12E=7.78el0
C13E=7.43el0
C33E=11.5e10
C66E=(C11E-C12E)/2.
C44E=2.56e10
E31=-5.2 ! piezomoduli
E33=15.1
E15=12.7
EPS11=730 ! dielectric permittivities,
I related to the permittivity of vacuum
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EPS33=635

/IPREP7 ! Enter Preprocessor

I Data tables for material constants of piezoelectric mater ial
I (for the case of axisymmetric problem and piezoceramics
I polarized along the axis)

MP,DENS,1,RO

TB,ANEL,1

TBDATA,1,C11E,C13E,C12E

TBDATA,7,C33E,C13E

TBDATA,12,C11E

TBDATA,16,C44E

TB,PIEZ,1

TBDATA,2,E31

TBDATA,5,E33

TBDATA,8,E31

TBDATA,10,E15

MP,PERX,1,EPS11

MP,PERY,1,EPS33

I 2D quadrilateral finite element with 8 nodes for coupled an alysis
ET,1,PLANE223,1001,,1

I KEYOPT(1)=1001 - degrees of freedom UX,UY,VOLT (piezoeletric FE)
I KEYOPT(3)=1 - axisymmetric problem

R2=R-R23 ! Auxiliary geometrical size

I Define keypoints

K,1,0,-H/2 ! Keypoint 1 with coordinates x=0, y=-H/2
K,2,R1,-H/2

K,3,R2,-H/2

K,4,R,-H/2

K,5,R,H/2

K,6,R2,H/2

K,7,R1,H/2

K,8,0,H/2

I Define straight lines
L,1,2 ! Line that connects keypoints 1 and 2 (will have number 1)

L,2,3 $ L,3,4 ! Lines 2 and 3
Isign $ separates the commands written in one command line
L45 $L56 $L67%L,78%L81%L,63 ! Lines4 and 9

I Define areas by keypoints

I Keypoints must be input in a clockwise or counterclockwise order
I around the area

A1,2,3,6,7,8 ! Area 1
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A,3,456 ! Area 2

I Define local coordinate system number 11, rotated at 180 de  grees
I regarding z-axis
LOCAL,11,0,,,,180

I (Change System)
CSYS,0 ! Change active coordinate system to Cartesian (defa ult number 0)

I Define element coordinate system 11 for area 2

I (to set the direction of polarization)

ASEL,S,AREA,,2 ! Select area 2

I AATT - Associate element attributes with selected unmeshe d areas
AATT,1,,1,11 ! 11 - element coordinate system number for the  selected area
I Optional commands

ASEL,S,AREA,,1

AATT,1,,1

ASEL,ALL ! select all areas

I Divide lines for mapped finite element mesh
I Important: total number of divisions for opposite lines of the area
I must be the same!

I Select all vertical lines (lines L8, L9, L4)
LSEL,S,LINE,,8,9
LSEL,A,LINE,,4

I Set the same number of divisions for all selected lines
I LESIZE - Set the number of divisions for unmeshed lines
LESIZE,ALL,,,HDIV ! HDIV is the number of divisions

LSEL,S,LOC,X,0,R1 ! Select lines with coordinates 0<=X<=R 1
I (lines L1 and L7)

LESIZE,ALL,,,R1DIV ! Set the number of divisions R1DIV
I for all selected lines

LSEL,S,LOC,X,R1,R2 ! Select lines with coordinates R1<=X< =R2
I (lines L2 and L6)

LESIZE,ALL,,,R12DIV ! Set the number of divisions R2DIV
I for all selected lines

LSEL,S,LOC,X,R2,R ! Select lines with coordinates R2<=X<= R
I (lines L3 and L5)
LESIZE,ALL,,,R23DIV ! Set the number of divisions R23DIV
I for all selected lines

LSEL,ALL ! Select all lines
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I Prepare area 1 for mapped meshing
LCCAT,1,2 ! Concatenate lines L1 and L2 into one line (line L1 0)
LCCAT,7,6 ! Concatenate lines L6 and L7 into one line (line L1 1)

MSHKEY,1 ! Set mesh key

I (0 - free mesh, 1 - mapped mesh)

MSHAPE,0,2 ! Set finite element shapes

I 1st argument is a key indicating the element shape to be used

I (0 - quadrilateral-shaped elements)

I 2nd argument is the dimension of the model to be meshed (2D - a rea mesh)
AMESH,ALL ! Mesh all areas

FINISH ! Exit the preprocessor

/SOLU ! Enter the solver
ANTYPE,STAT ! Select the analysis type: static analysis

I Define the electrodes

I Select the nodes for the first electrode
I (with coordinates 0<=X<=R1, Y=-H/2)
NSEL,S,LOC,Y,-H/2

NSEL,R,LOC,X,0,R1

I For all selected nodes define a set of coupled degrees of fre edom VOLT
I (group number 1)
CP,1,VOLT,ALL

I Define the parameter N\_VOLT1 - minimal node number from group 1
I Node N\ _VOLTL1 will be the reference node for group 1
*GET,N\_VOLT1,NODE,,NUM,MIN

I Select the nodes for the second electrode
I (with coordinates 0<=X<=R1, Y=H/2)

NSEL,S,LOC,Y,H/2
NSEL,R,LOC,X,0,R1

I For all selected nodes define a set of coupled degrees of fre edom VOLT
I (group number 2)
CP,2,VOLT,ALL

I Define the parameter N_VOLT2 - minimal node number from graup 2
I Node with number N_VOLT2 will be the reference node for grou p 2
*GET,N_VOLT2,NODE,,NUM,MIN
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I Select the nodes for the third electrode
I (with coordinates R2<=X<=R, Y=-H/2)
NSEL,S,LOC,Y,-H/2

NSEL,R,LOC,X,R2,R

I For all selected nodes define a set of coupled degrees of fre edom VOLT
I (group number 3)
CP,3,VOLT,ALL

I Define the parameter N\_VOLT3 - minimal node number from group 3
I Node with number N\ VOLT3 will be the reference node for gro up 3
*GET,N\_VOLT3,NODE,,NUM,MIN

I Select the nodes for the fourth electrode
I (with coordinates R2<=X<=R, Y=H/2)
NSEL,S,LOC,Y ,H/2

NSEL,R,LOC,X,R2,R

I For all selected nodes define a set of coupled degrees of fre edom VOLT
I (group number 4)
CP,4,VOLT,ALL

I Define the parameter N\_VOLT4 - minimal node number from group 4
I Node with number N\ _VOLT4 will be the reference node for gro up 4
*GET,N\_VOLT4,NODE,,NUM,MIN

NSEL,ALL ! Select all nodes

I Set the values of electric potential at the electrodes
D,N\_VOLT1,VOLT,-VINP
D,N\_VOLT2,VOLT,VINP
D,N\_VOLT3,VOLT,-VINP
D,N\_VOLT4,VOLT,VINP

I Conditions of symmetry with respect to OY-axis (axis along line 8)
DL,8,,SYMM

I Constraint of the middle point along the Y-axis

I Select node with coordinates X=R, Y=0

NSEL,S,LOC,Y,0

NSEL,R,LOC,X,R

D,ALL,UY,0 ! Define DOF constraint UY=0 for all selected nod es
NSEL,ALL ! Select all nodes

SOLVE ! Solve the system of finite element equations
FINISH ! Exit the solver
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I Enter the postprocessor

/POST1

I Commands for graphical output

/ISHOW,WIN32C ! Specify device for graphical output
ITRIAD,OFF I Do not show the global coordinate triad
/PLOPTS,INFO,2 I Use Auto-legend format
/PLOPTS,LEG2,0FF

/PLOPTS,LOGO,OFF ! Do not show ANSYS logo
/PLOPTS,FRAME,OFF ! Do not show frame
/PLOPTS,DATE,OFF ! Do not show date

I Plot displacements UY
PLNSOL,U,Y

Now we will provide additional comments to the program.

Geometrical size, parameters for meshing (specic sizes ofite elements), and
material constants are set as user-de ned parameters. Theim the preprocessor
(/PREP7 command enters the preprocessor) the matrices of elastic dudi, piezomoduli
and dielectric permittivities are de ned using the command MP, TB, TBDATA . Let
us have a closer look at the commands that de ne the piezoetiec material.

De nition of material constants for piezoelectric materials

As it was noted before in section 1.3, the piezoelectric e ecian be observed only
in crystals that do not have the central symmetry. Thereforethe piezoelectric bodies
must have anisotropic properties. In a general case, in orde set the material constants
of piezoelectric bodies in ANSYS, the following values shoulcelde ned: the density

; the symmetric matrix of elastic modulicF ; , =1;::,6;cE = & ; the matrix of
piezoelectric moduleg ;i =1;2;3; =1;::;6; and the matrix of dielectric permittivities

ﬁ; i;j =1;2;3, which is diagonal for most materials. These notations fahe modules
of piezoelectric body are conventional in the literature opiezoelectricity and technical
applications |5, 7, 11, 17, 2§, hence the values of these modules can be found in various

reference books on piezoelectric materials.

We note that the transition from the tensor valuesofkI and e to the matrix notations
cE ande was described in problems 1.6 and 1.9. However, as it is mengd in ANSYS
documentation [l], ANSYS uses nonstandard arrangement of the matrix componerds
ande in a form of one-dimensional arrays, which facilitates theansition from 3D to 2D
problems. Besides, ANSYS enables to de ne alternative constaets (problem 1.13), such
as the elastic compliances® calculated at constant electric eld; the strain piezomodli
sE calculated at constant stress, and the dielectric permittities I calculated at constant
stresses. Moreover, all components of the matrices and d; in ANSYS are arranged
in a nonstandard way.

Let us describe the method of de ning the modules® and e in ANSYS in more
detail. The coe cients c& are set in a form of 6 6 matrix (4 4 for 2D problems). By
virtue of symmetry, only the upper triangular part of the matix of elastic moduli is used,
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and the coe cients of the matrix are arranged in a speci ¢ way

X y Z Xy Yz Xz
X | cn ng Cza Cze Cu Cis
. y Gy G Cp Gy G
Cansvs:ap & Z s G G G (3.1)
Xy Css Cis Coo
yz sym Cia Cis
XZ s
X 'y z Xy
c X | ¢y €, C Cp
Cansys:2p & Y Cr G G (3.2)
z G Co
Xy | sym Co6

The components of the matrixciysys.3zp N ANSYS are de ned by the commands:
TB,ANISO ,MAT and TBDATA ,STLOC,C1,C2, ...,C6; where MAT is the number of
the material properties set,STLOC is the starting location in the data table for entering
data valuesC1, C2, ..., C6. The data table for the coe cients that enter in (3.1), (3.2,
is lled by rows (3.1) in a form of one-dimensional array with 21 components:

2 3
12 3 4 5 6
7 8 9 10 11

12 13 14 1

16 17 18

19 20

21

(3.3)

The resulting correspondence between the data from the datable de ned by
TBDATA command and the elasticity modulicE is presented in Table3.1

The most common type of piezoelectric materials is the piezeramics polarized along
the Oz-axis, which matrix of elastic moduli has the following strature (for the material
of crystal class 6m [11])

2

h ¢, ¢z 0 0 O

11 Cg'ég 0 0 0

0O 0 O

E 3 .

c- = E, 0 01’ (3.4)

sym ¢, O

Cos

Table 3.1. Arrangement of the elastic modulicE in the data table TBDATA

No.| 1| 2|3 |4|5|6|7|8]|9]10]11

C | Ch | Ch | Cia|Cls|Cl|Cis| S| B3| G | Ca | Gs
No.| 12| 13|14 | 15| 16| 17| 18| 19| 20| 21

C33 | G5 | G4 | GGs | C66 | Cas | %56 | Caa | Cas | Gss
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Table 3.2. Nonzero elastic modulicE of piezoceramics in data table TBDATA for 3D
problems

No.[ 1 [ 2|3 7] 8[12[16]19] 21
C [ Ch|Ch || Ch| G| G| Cos | Cas | Cas

Table 3.3. Nonzero elastic modulicE of piezoceramics in data table TBDATA for 2D
problems

No.| 1 2 3 7 8 | 12| 16
C | Ch|Ch|Chn | Cha || CnlCy

whereck, = (&5, c5)=2.

Therefore, from comparison of3.1), (3.3) and (3.4), we obtain that for 3D problems
di erent nonzero elastic moduli for the piezoceramics palaed along theOz-axis in the
data table TBDATA will have the numbers that are indicated in Table 3.2

As it can be seen from comparison of3(){( 3.3), for 2D problems it is enough to
specify the rst 16 positions in a one-dimensional array ofhe moduli cE .

We note that for plane and axisymmetric 2D problems th&®y-axis (z = (3) for the
moduli ¢ ) is usually considered to be the axis of polarization in theavking plane Oxy.
In this case for plane and axisymmetric problems di erent nmzero elastic moduli for
piezoceramics in the data table TBDATA will have the numberdhat are indicated in
Table 3.3

Similarly, the piezomodulie in ANSYS are also de ned in an unusual way. The
piezomoduli are arranged in a 6 3 matrix (4 2 for 2D problems) in the following order:

X Yy VA
X | e €31 €3 Xy
Yy | €2 €n €3 X | en exn
eansysap P Z | €3 €3 €3 ; Eansysod Y | e ex (3.5)
Xy | €16 €25 €35 Z | €13 €33
YZ | €4 €4 €3 Xy | €6 €26
XZ | €5 €5 €35

After the execution of the commandTB,PIEZ ,MAT the data table TBDATA for
the piezomoduli will lled by rows with the values from the marix eansys:3p as a one-
dimensional array of the size 18. As a result, we obtain the eespondence between the
data from the data table TBDATA and the piezomodulie; , which can be seen in Tabl8.4,
where for 2D problems it is enough to de ne the elements withumbers 1,2,4,5,7,8,10 and
11.

For the piezoceramics polarized along the direction oDz-axis the matrix of
piezomoduli has the following structure

3
0O O O O es5 O
e= 4 0 0 O es O O S ; (36)
€31 €3 €3 0 0 O
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Table 3.4. Arrangement of the modulie, in the data table TBDATA

No.| 1 |2 |3|4 |56 |7,8]|9

S €11 | €1 | €31 | €2 | €2 | €32 | €13 | €23 | €33
No.| 10| 11| 12| 13| 14| 15| 16| 17 | 18

€16 | €6 | €36 | Crg | €4 | €34 | €5 | €5 | €35

Table 3.5. Nonzero modulig; of piezoceramics in data table TBDATA for 3D problems

No.| 3 6 9 | 14| 16
€ €31 | €31 | €33 | €15 | €15

Table 3.6. Nonzero modulie of piezoceramics in data table TBDATA for 2D problems

No. | 2 5 8 | 10
€ €31 | €33 | €31 | €5

and therefore the nonzero piezomoduli of piezoceramic miagéé for 3D problems in the
data table TBDATA will have the numbers presented in Table3.5.

Finally, for plane and axisymmetric problems in the cases,hen in the planeOxy the
Oy-axis (the axisz = (3) for the piezomoduli g ) is the axis of preliminary polarization
of piezoceramics, di erent nonzero piezomoduli in the dateable TBDATA will have the
numbers that are indicated in Table3.6.

Summarizing the above, for the piezoceramic material we camrite the following
fragments of program code in ANSYS APDL, that de ne the sets of matial constants
MAT with number 1 for 3D and 2D problems, where for the latter caste piezoceramics
is considered to be polarized along th@y-axis of the working planeOxy:

Fragment 1 (3D) Fragment 2 (2D)
MP,DENS,1,RHO MP,DENS,1,RHO
TB,ANEL,1 TB,ANEL,1
TBDATA,1,C11E,C12E,C13E TBDATA,1,C11E,C13E,C12E
TBDATA,7,C11E,C13E TBDATA,7,C33E,C13E
TBDATA,12,C33E TBDATA,12,C11E
TBDATA,16,C66E TBDATA,16,C44E
TBDATA,19,C44E TB,PIEZ,1
TBDATA,21,C44E TBDATA,2,E31
TB,PIEZ,1 TBDATA,5,E33
TBDATA,3,E31 TBDATA,8,E31
TBDATA,6,E31 TBDATA,10,E15
TBDATA,9,E33 MP,PERX,1,EPS11
TBDATA,14,E15 MP,PERY,1,EPS33

TBDATA,16,E15
MP,PERX,1,EPS11
MP,PERZ,1,EPS33
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Here RHO = ; Cl11E = c§ and so on. These values are
scalar parameters in ANSYS APDL and their values should be de ned
beforehand. Besides, in the presented fragment of the pragr code we
have addedMP command, that de nes the density and the dielectric
permittivities of piezoceramics.

As it can be seen, the de nition of piezoelectric materials gelires some
e orts. It should be emphasized that in the presented fragnmés the axes
of Oxy(z)-plane are the axes of the element coordinate systems foreth
de ned constant sets.

Let us now return to the listing of the input le for solving the
test 2D static problem for piezoelectric transducer with inbmogeneous
polarization and multi-electrode coating.

ET,1,PLANE223,1001,,1 command de nes the quadrilateral 8-node
nite element PLANE223 with the options of piezoelectic analysis and
axisymmetry. This element will be used to solve the problem. FANSYS
user all the distinctions between axisymmetric problem an@D plane stress
problem consist in the third option of this nite element (the command
ET,1,PLANE223,1001,,0 will de ne the element for 2D plane stress
problem). However, with this option ANSYS will use the equations of
axisymmetric theory of piezoelectricity that are much moreomplex than
the equations of plane stress or plane strain.

Solid model of the meridional section of piezoelectric disk

In ANSYS APDL the solid model of the original domain with complex
geometry is usually constructed \from bottom to top", staring with the
most simple objects Entities), which are the Keypoints, and nishing with
Areas for 2D problems orVolumesfor 3D problems.

K command is used to build the keypoints. Its rst argument is
the reference number of the keypoint, and the remaining arqents are
the coordinates of the keypoint. For exampleK,2,R1,-H/2 command
de nes a keypoint with the reference number 2 and coordinates= R1,
y = H=2, z = 0 (the last coordinate takes the default value). The
Line between two keypoints can be de ned by. command. For example,
L,2,3 command de nes a line in the active coordinate system betwe¢he
keypoints 2 and 3. The lines are numbered automatically, stiémg with
the lowest available number. In order to construct the areasve can use
the commandsA and AL , where the resulting areas are also numbered
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automatically. AL command creates an area bounded by the previously
de ned lines. The lines (10 lines maximum) must be input in clckwise
or counterclockwise order and must form a simply connectedskd curve.
A command de nes an area by connecting the keypoints. The keyipts
de ning the area must be input in clockwise or counterclockwes order
around the area (maximum 18 keypoints in the list). The existig lines
between adjacent keypoints will be used; and the missing Imevill be
generated as \straight" lines in the active coordinate sysim and will be
assigned the lowest available numbers.

According to Fig. 3.2 in the meridional section of the disk we can
distinguish two zones with two di erent polarization directions. Therefore
the axisymmetric model of the disk can be composed by two asea
Fig. 3.3 shows the areas Al and A2 with indicated area numbers and
keypoint numbers (Menu pathPlot ! Areas, to show the numbers of areas
and keypoints selectPlotCtrls ! Numbering! and tick Area numbers,
Keypoint numbers)

The lines and the keypoints that constitute the areas Al and A2 cebe
seen in Fig.3.4 (Menu path Plot ! Lines, before that in Select! Entities
choose the lines L1{L9 and show the numbers of lines and keymis by
choosing: PlotCtrls !  Numbering! Line numbers, Keypoint numberp
Here a rectangular area A2 is constructed in a standard way ofuiolines
L3, L4, L5, L9 and four keypoints 3, 4, 5, 6. The upper and the laav
boundaries of this area coincide with the lines of the electles location.
The area Al consists of six keypoints 1, 2, 3, 6, 7, 8 and six lines, L2,
L9, L6, L7, L8. For this area both upper and lower boundaries ust be
constructed of two lines, and the keypoints of the lines L1 anL7 that
simulate the electrodes must coincide with the ends of the eteodes. This
requirement ensures that the ends of the electrodes will coide with the
nodes of nite elements. It is also worth noting, that the lire L9 is common
for the adjacent areas Al and A2.

Figure 3.3. Area numbering in the model of a meridional section of piezeelric disk
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Figure 3.4. Keypoints and meshed lines of the disk section model

Direction of the polarization vector for the areas of piezoelectri C
disk

All the moduli c& | g , f introduced for the piezoelectric materials,
generally speaking are the moduli de ned in crystallograpb coordinate
systems Oxyz  These coordinate systems for piecewise-homogeneous
domains can dier with the transition from one domain to anotler,
and for the functionally-graded materials they can dier fom point
to point. Therefore, we can redenote the moduli de ned previsly
in crystallographic coordinate systemOxyz by & , & , f The
computational formulas for nite element matrices use the énsor values
cE, e, S calculated in global Cartesian coordinate system. If presieul
in a vector-matrix form, these formulas will contain the coe cients of the
matricesct , g , f also written in global Cartesian coordinate system.

ANSYS uses the concept of element coordinates systems, in whichrg
nite element can be assigned with its own coordinate systemnd the
material propertiesct | g |, f etc. are de ned in the element coordinate
system. For every nite element ANSYS can recalculate the modu¢® ,
& ,~ intothe modulic® , g , 7, presented in a global coordinate system.
This recalculation can be performed without the participatio of the user,

if the element coordinate system is already de ned for evergite element.

The orientation of the crystallographic coordinate systenOxyz for
piezoelectric materials is de ned by the polarization vecr P. Namely,
for piezoceramics (transversely isotropic material) theigéction of the Oz
axis coincides with the direction of the vectoP, and the axesOx and Oy
lie in the plane perpendicular to the vectoP.

For plane and axisymmetric 2D problems it is convenient to csider the
Oy-axis as the axis of preliminary polarizatiorP in the working plane Oxy,
and therefore in ANSYS for the piezomaterials with di erent polazation
vectors it is enough to de ne for the corresponding areas thelement
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Figure 3.5. The directions of the polarization vectors? for the areas of the disk section

coordinate systems that are rotated in the proper way with rgeect to
the global coordinate systenOxy.

For our example problem (see Fig3.5) the direction of the polarization
vector P in the area Al coincides with the direction of theDy-axis of the
global Cartesian coordinate system, therefore for the nitelements of this
area it is not necessary to introduce special coordinate $ys1. For the area
A2 the direction of the polarization vectorP is opposite to the direction
of the Oy-axis of the global Cartesian coordinate system, thereforerf
this area it is necessary to de ne the element coordinate dgm with the
axis Oy, directed along the polarization vector, i. e. the axi®©y must be
directed in the way opposite to the axiQy.

To achieve this, we need to rotate the original element codrdite system
to 180 degrees with respect to the global Cartesian coordinagstem. The
next block of commands creates the local coordinate systemdade nes it
as an element coordinate system for nite elements that willé created in
the area A2.

LOCAL,11,0,,,,180
ASEL,S,AREA,,2
AATT,1,1,11

Fig. 3.6 shows an example of nite element mesh with the element
coordinate systems. Here more coarse meshing is used than e t
previously provided le FE_Mod CP_1.inp. (Menu path Plot ! Elements
to show the polarization zones with di erent colours selecPlot Ctrls !
Numbering! Elem/Attrib numbering ! then selectElement CS num
Numbering shown witH  Colors only, to show the direction of the element
coordinate system for every element sele®otCtrls ! Symbolsand tick
ESYS Element coordinate sys



3.1. Practical assignment No. 1 119

Figure 3.6. Element coordinate systems in the areas of meridional semtiof the disk

Finite element mapped mesh

As the elementPLANE223 is a quadrilateral nite element and the
simulated area of the meridional section of the disk is a queathgle, more
precisely, rectangle, it is therefore logical to usenapped nite element
meshing in quadrangles (or, even better, in rectangles).

There are two main meshing methods in ANSY $ree Meshand Mapped
Mesh A free mesh does not follow any pattern and has no element
shape restrictions. Free mesh is suitable for areas and voles of complex
shapes. Free mesh is usually de ned by an average nite elemesize.
On the contrary, a mapped mesh restricts the element shap@(fexample,
guadrangles for areas, or hexahedrons for volumes) and tyglily has a
regular pattern with obvious rows of elements. Mapped mesh i®he cial
for areas and volumes of simple shape, such as rectangles rackis. The
use of a mapped mesh facilitates to reduce the computatiomte. Usually
a mapped mesh is built on the base of the divisions and spacirafio,
which are speci ed for its constituting lines. Generally a mgped mesh is
more precise than a free mesh with comparable number of elertseand
nodes.

In order to built a mapped quadrilateral nite element mesh or a
guadrilateral area, this area must satisfy two conditionsl) the area must
consist of four lines, 2) the area must have equal numbers dement
divisions speci ed on the opposite sides. If an area is bousdl by more
than four lines, then some of the lines can be combined (hCOMB
command) or concatenated (b, CCAT command) in order to reduce the
total number of lines to four.

In our example problem there are at least two ways to constrtia solid
model of the meridional section of the disk that would accephapped nite
element mesh. For example, we could build an additional linkeetween
keypoints 2 and 7 and then create three rectangular areas,chaof them
consisting of four lines.

Here we use another way that allows us to reduce the number of the
required areas to two. We create two areas Al and A2, where A2 is a



120 CHAPTER 3. PRACTICAL ASSIGNMENTS AND EXAMPLES

regular area that accepts a mapped mesh, and Al is irregular tine way
that it does not accept a mapped mesh because it consists of 8nes.
In order to make area Al regular, it is enough to concatenatenks L1
and L2 which constitute the lower boundary and lines L6 and L7 wbh
constitute the upper boundary. This can be done byCCAT command
which concatenates multiple, adjacent lines into one line ipreparation
for mapped meshing. Note thal. CCAT accepts only two arguments, so
if it iIs necessary to concatenate more than two lines, the tsargument
should be set toALL. In this case the second argument is ignored and
all previously selected lines (byLSEL command) are concatenated. It
is also worth noting that for a mapped mesh the total number athe line
divisions must be the same for the opposite lines of the arelaig. 3.7 shows
the result of concatenation for the lines of the upper and I@v boundaries
of the area Al. The output lines L10 and L11 keep the element dsions
of the input lines.

Bondary conditions

Boundary conditions on the electrode surfaces. As it was noted
in section 1.3, the metallized surfaces or electrodes on therface of the
piezoelectric body are equipotential surfaces, i. e. theeetric potential
' (x;t) on them must not depend orx, and the boundary conditions (.33
or (1.34), (1.395 must be satis ed.

The boundary conditions on the electrode surfaces can be setthe
following way. The nodes of the nite element mesh that belongot
one electrode ; can be combined in one node (coupled DOF) b§¢P
command that will be a reference node for this electrode. Therorf
this reference nodeN VOLT we can either set the value of the electric
potential V J =V, by the commandD,N _VOLT,VOLT,VJ , orde ne the
total electric chargeQJ = Q; by the commandF,N _-VOLT,CHRG,QJ
(for nite elements PLANE223 , SOLID226 , SOLID227 ) or by

Figure 3.7. Line concatenation for a solid model of the meridional seoti of the disk
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the command F,N _VOLT,AMPS,QJ  (for nite elements PLANE13 |,
SOLID5 , SOLID98 ).

The block of commands, that de ne a group of nodes and set thelua
of the electric potential on the rst electrode, is present below:
NSEL,S,LOC,Y,-H/2
NSEL,R,LOC,X,0,R1
CP,1,VOLT,ALL

*GET,N\_VOLT1,NODE,,NUM,MIN
D,N\_VOLT1,VOLT,-VINP

In order to de ne a free electrode, i. e. satisfy the conditits (1.34),
(1.39 with Q; =0, itis enough to de ne a group of nodes byC_P command
with using D command.

Mechanical boundary conditions . In our example problem we
need to set the symmetry boundary conditions with respect tohe axis
of rotation (Oy-axis) and the constraint on displacements alon@y for the
middle point on the outer surface radius of the meridional s&gon of the
disk .

The degrees-of-freedom constraints (three DORIX, UY, VOLT
for the element PLANE223 with the options of piezoelectric analysis
KEYOPT(1) = 1001) can be set either byD command that de nes DOF
constraints at nodes or byDL command that de nes DOF constraints
on lines. It should be noted that all solid boundary conditins will be
transformed into nite element boundary conditions at the gage of the
solution. The solid boundary conditions on a line have pridgi over the
nite element boundary conditions for the nodes on the saménk.

The condition of symmetry can be set either byDL command or by
D command. DL command accepts a symmetry optionsSYMM, as in
the above exampledDL,8,,SYMM ). Another way is to select all necessary
nodes and usd command. We can select the nodes that lie on the line
L8 by the following commands:

LSEL,S,LINE,,8
NSLL,S,1

where the last command selects the nodes associated with delédines,
and its second argument contains the key that speci es whethenly
interior line nodes are to be selected (0 { select only nodeastarior to
selected lines, 1 { select all nodes associated with seleclieés).
D,ALL,UX,0 command assigns zero UX displacements for all selected
nodes, and this corresponds to the symmetry with respect Ox-axis.
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Figure 3.8. Finite element mesh with boundary conditions

We note that in the considered axisymmetric problem, as it cabe easily
checked in ANSYS, the symmetry boundary conditions on the line = 0
will be satis ed automatically, and the above command®dL,8, SYMM is
provided for reliability and is therefore optional.

The condition of a rigidly xed boundary assumes that for the yen
nodes the displacement vector is equal to zero, i. e. in a casfeplane
problem UX=0 and UY=0. The corresponding block of commands will be
written as:

D,ALL,UX,0
D,ALL,UY,0

Note that in our example problem we use only a constraint on
displacements alon@y-axis, i. e. UY=0.

Finite element model of piezoelectric disk with boundary calitions
Is shown in Fig. 3.8 (Menu path Plot | Elements to show boundary
conditions selectPItCtrls ! Symbols! and tick All applied BC.)

Results

The solution results for the nite element problem can be acessed
in ANSYS via postprocessor. There are two postprocessors in ANSYS,
General Postprocessor and Time History Postprocessor.

General Postprocessor is used for reviewing results for a sip=lly
de ned combination of loads at a single time (or frequency)To enter the
ANSYS general postprocessor, issilfOST1 command or use menu path:
Main Menu ! General Postproc It is the only postprocessor available for
static or steady state analysis.

Time History Postprocessor is used for reviewing results at spe
locations in the model as a function of time, frequency, or s@ other
change in the analysis parameters that can be related to timeTime
History Postprocessor can be used to construct graphics deys, chart
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representations or tabular listings, or to perform math op@ations on the
data sets. Time History Postprocessor is available for traresit, modal

or harmonic analyses. A typical time-history task would be d graph

result items versus time in a transient analysis, or to grapforce versus
de ection in a nonlinear structural analysis. To enter the ANY'S general
postprocessor, issulPOST26 command or use menu pathMain Menu

I TimeHist PostPro, which will launch the Variable Viewer.

Here we provide menu paths for the results that can be reviewddr
structural analysis (after enteringMain Menu.

To display the deformed shape of the structure, select

General Postproc! Plot Results! Deformed Shapddeformed shape
of the structure).

In order to access the results for Degree of freedom soluti@olution in
terms of unknown variables), select:

General Postproc! Plot Results! Contour Plot! Nodal Solu... !
DOF Solution !

| X-Component of displacementdistribution of the displacementsuy);

| Y-Component of displacementdistribution of the displacementsuy);

| Displacement vector suntdistribution of the displacement vector
magnitude);

| Electric potential (distribution of the electric potential);

To display the distribution of vector variables, select Veor Plot in
General Postprocessor: General Postproc! Plot Results! Vector Plot
I Prede ned !

| DOF solution! Translation U (distribution of the displacement
vector);

| Flux & gradient! Elec eld EF (distribution of the electric eld
vector).

The results of distribution of various components of stressgstrains,
electric induction vector, etc. can be also reviewed in Genme
Postprocessor.

There are several ways to save an image into a graphical le.

PlotCtrls ! Capture Image An image will appear in a new window.
Use menu pathFile ! Save as...to save an image as a bmp graphical le
without reversing black and white colors.

Plot Ctrls ! Hard Copy! To File. Here one can choose a color scale
(Monochrome, Gray Scale, Color) and an extension for the grajgal le
(.bmp, postscript, .ti, .jpeg, .png), and also specify the le name and
choose whether or not use a Reverse Video for reversing blackl avhite
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Figure 3.9. Distributions of the displacements UY

colors. There is no option to choose the place where to save tineage.
The graphical le will be saved in the working directory of ANSYS tlat
was selected at the start.

Plot Ctrls ! Redirect Plots! To JPEG File ... The program will open
the window Redirect Plots to JPEG where one can choose various saving
modes for the graphical le Color or Monochromatic, Quality, etc.) and
save the le JPEG format;

| similarly instead of selecting To JPEG File... other formats of saving
modes can also be selected.

PlotCtrls !  Write Metale. It is recommended to tick Invert
White/Black for reversing black and white colors. It is possible to spegif
the directory where to save the image. The graphical le will beaved as
a Windows meta le with an extension .emf or .wmf.

The program code for solving the example problem in ANSYS ends with
the commandPLNSOL,U,Y which shows the picture of displacement UY
distribution (Fig. 3.9, hereinafter the presented results were obtained in
version ANSYS 11.0).

We note that the example problem is axisymmetric in meridical
section, where OY-axis corresponds toOz-axis in 3D, and Ox-axis
corresponds toOr-axis. Therefore displacement UY is in fact the
displacementu,, displacement UX is the displacementl, and so on.
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Figure 3.10. Distribution of the electric eld vector

In postprocessor, it is also easy to obtain the pictures ofdribution for
other mechanical and electric eld values. For example, Fig3.10 shows
the distribution of the electric eld vector.

Let us analyse the obtained results from both physical and rmaematlcal

viewpoints. The dierence of potentials V ="' [ _ Y=H=2 —

2Vinp is applied between the electrodes 1 and 2 (i. e. between conbus
electrodes in the zone 0 X R1) and between the electrodes 3 and
4 (i. e. between ring electrodes in the zonR, X R). Then we
can expect that in the areas between these electrodes an #leceld
will be formed E V=H = 2Vjp=H = 1000 (V/m), as Vipp = 1
(V), H = 0:002 (m). The same values of electric elds are indeed can
be observed in Fig. 3.10 (yellow vectors). For the zone 0 X R1
between continuous electrodes the direction of the polaatzon vector P
IS opposite to the direction of the generated electric eldE. Therefore,
due to the phenomenon of inverse piezoelectric e ect (seecsen 1.3),
piezoelectric elements in this area should shrink. On the mary, in the
zoneR,; X R between ring electrodes the direction of the polarization
vector P coincides with the direction of the generated electric elcE.
Then again, due to the phenomenon of the inverse piezoelecte ect,
piezoelectric elements in the are®R, X R should expand. Indeed,
such deformations of the zones under the electrodes can beady seen
in Fig. 3.9. Thus, the expected physics of electromechanical processes
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the considered problem for a piezoceramic transducer with ttielectrode
coating is supported by the results presented in Fig.9 and 3.10

It is worth noting that nite element calculations are appraximate.
Therefore it is necessary to address the question on the acaty of the
obtained results and determine the situations in which it is ot worth to
expect the convergence. In the above program code, the chamaistics of
the nite element mesh were de ned in the following block of anmands:

I Parameters of finite element mesh

SM=1.00 ! scaling multiplier

HDIV=8*SM ! Numbers of elements along the disk thickness

I (should be even number!)

R1DIV=16*SM ! Numbers of elements along the radial directio n from 0 to R1

R12DIV=32*SM ! Numbers of elements along the radial directi on from R1 to R2
R23DIV=16*SM ! Numbers of elements along the radial directi on from R2 to R

Therefore in order to analyze the convergence we can perform
computations with di erent values of the parameterSM. The results of
this computation series are presented in Tabl8.7. As it can be seen
from the table, the maximum values of the displacements getabilized
already at SM=0.75 and continue stabilizing further with an increase of
the parameterSM, i. e. when the sizes of nite elements become smaller
the values of the displacements almost do not change. Thus,deal on the
data from Table 3.7 we can conclude that in order to estimaténe maximal
displacements for this problem it is enough to tak&M=0.75. However,
already at SM=0.25 the relative error in the determination of displacemets
is less than 3 %, which is enough for the majority of practicalpgplications.

The value SM=0.25 means that we take two nite elements DIV =
2) along the disk thickness . This rather coarse mesh is sa#isfory to
de ne the displacements, as the considered problem is s@and has rather
simple geometry, and the elementPLANE223 are nite elements with
guadratic approximation for each canonic variable.

Meanwhile, as it can be seen from Fig. 3.10, the electric eldegtor
changes signi cantly in the vicinity of the boundaries of tle electrode
surfaces (red vectors). Data from Table 3.7 shows that, whendhmesh

Table 3.7. Data to analyze the convergence of results

SM 0.25] 0.50 [ 0.75] 1.00| 1.25] 1.50 | 1.75] 2.00
maxu, 10 22 (m) | 255 | 260 | 262 | 262 | 262 | 262 | 262 | 262
maxjEj (V/m) | 1001| 1141| 262 | 1293| 1564 1685| 1798 1904
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density increases, the maximal values of the electric elde¢tor magnitude
also increase, and we observe no convergence for this vall(dss e ect can
be expected, as in the electroelasticity problems the sucka electrodes are
the concentrators for various components of the electrontenical elds
of stresses, strains, electric eld intensity and electricmduction (i. e. for
gradient or ow values de ned by the derivatives of displacements and
electric potential). The role of surface electrodes in theggroblems are
similar to the roles of the stamps with non-smooth boundarieis contact
problems. Therefore, as in analogous contact problems, inetlvicinity of
the electrode boundaries some components of stresses,issaelectric eld
intensity and electric induction can have root singularités, such ag=172,
wherer is the distance from the electrode boundary. Naturally, whensing
conventional isoparametric nite elements, we will observan increase of
the values of these elds in the vicinity of the electrode bauwdaries. In
practice it means that speci c values of such ow variablesnia small area
near the electrode boundaries do not have much sense, but &vay from
the electrode boundaries the convergence will take place. Theegral
values (for example, the total electric charge) will also ceerge.

The idea stated above can be illustrated by a graph (Fig. 3.11pat
shows the change of the axial component of the electric eld tamsity
E, (EF, Y in ANSYS) along the radius of the disk on its upper surface
(0O X R,Y = H=2in ANSYS). This graph can be plotted in ANSYS
General Postprocessor by the following commands:

I File FE_Mod_CP_1 Post.inp

I Postprocessor plot of the graphs

\

/PLOPTS,INFO,ON

/COLOR,CURVE,WHIT,1,6 ! color for the graphs - white
I (will be black after inversion)

/COLOR,GRID,WHIT, I color for mesh - white
I (will be black after inversion)

/[PLOPTS,TITLE,OFF ! no title for the graph
/PLOPT,FRAME,OFF ! no frame

IAXLAB,X,r ! label for the X-axis (r-axis)

IAXLAB,Y, E_Z ! label for the Y-axis (z-axis)
/IGROPT,DIVX,4 ! Number of divisions along X-axis
/GROPT,DIVY,4 ! Number of divisions along Y-axis
/GROPT,DIG2,1 ! Number of digits after decimal point

I Commands to define a path by a number of points
PATH,XX,4,,120
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Figure 3.11. Behavior of the componentE, on the disk surface

PPATH,1,,0,H/2

PPATH,2,,R1,H/2

PPATH,3,,R2,H/2

PPATH,4,,R,H/2 ! Define a variable E_Z for plotting a graph a  long the path
PDEF,E_Z,EF)Y ! Define other variables (if needed)

PDEF,T_ZZ,S,Y $ PDEF,T_RR,S,X

PDEF,D_z,D,Y $ PDEF,D R,D,X $ PDEF,E_R,EF,X

PLPATH,E_Z ! Plot a graph of E_Z along the path

The nite element results presented in Fig.3.11 for the dependence
E, = E.(r) are not accurate in the vicinity of the electrode boundari
R1=0:5 10 2(m) and R, =1:5 10 2 (m). If, for example, at I R ; this
curve is somewhat similar to a function with a root singularitk: R%  r2,
than a jump of the function atr > R ; is completely determined by the error
of nite element approximations and the averaging technigess adopted here
for calculation of the eld gradients. However, far away fronthe electrode
boundaries the eld is determined with su cient accuracy.

By analogy we can analyze the behavior of other gradient vads of
electromechanical elds:E,, D,, D,, ,, €etc.
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3.1.2 Individual assignments

Write a program code in ANSYS APDL to compute a static deformation
of a piezoelectric transducer with multi-electrode coatingn 2D setting
(axisymmetric or plane strain problem). Analyze the convernce of results
for various density of nite element mesh. Plot the computabn results
(deformed shape, distribution of displacements, electrield vector, electric
induction vector, von Mises stresses, graph of charactariscomponent of
the electric eld vector along the path with surface electrods). Analyze
the results and prepare a report.

The report should contain the name of the student, the full desiption
of the problem and the results obtained in ANSYS.

The variants of individual tasks are presented in the Table.8. All
sections of piezoelectric transducers are made of piezaweics PZT-4,
which material properties are provided in the above examplagblem (see
program code). The electrodized surfaces are shown in thickds or dots,
the values of electric potential or total electric charge @& provided nearby.
The rigidly xed boundaries are marked by external hatchingthe triangles
outside the boundaries denote the xing conditions in the goesponding
point of the 2D disk section C or B denotes UX=0, M denotes UY=0).
The boundaries without any labels indicate homogeneous naaltboundary
conditions (n D =0 and/or n = 0). For axisymmetric problems the
axis of rotation Y is shown on the left by a dashed line.

Table 3.8. Variants of individual tasks for the practical assignment Nol1
No. Scheme Input data
1 Plane strain.
ay=a=8 10°m,
a=a=7 10 3m,
H=3 10 3m,
V=10V

2 Axisymmetric problem.
a=a=8 10 3m,
H=3 10 3m,
V=5V
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Table 3.8. Variants of individual tasks for the practical assignment Nol (continue)

3 Plane strain.

a=a =7 103m,
a=a;="6 1O3m,
H=2 10 °m,
V=5V

4 Axisymmetric problem.
a; = a3 =0:02 m,

a, =0:03 m,

H =0:005 m,
V=10V

5 Plane strain.

a; = a3 =0:03 m,
a, =0:04 m,

H =0:004 m,
V=10V

6 Axisymmetric problem.
a=a=6 10°m,
a=a=7 10°m,
H=2 103m,
V=10V

7 Axisymmetric problem.
a; =0:01 m,

az; =0:02 m,

a, =0:03 m,

H =0:005 m,

V=5V

8 Plane strain.

a; = az=0:03m,
a, =0:04 m,

H =0:006 m,
V=10V
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Table 3.8. Variants of individual tasks for the practical assignment Nol (continue)

9 Plane strain.
ay=az=7 10°3m,
a=a=8 10 °m,
H=3 10 3m,
V=10V

10 Axisymmetric problem.
a=a=8 10 3m,
a=a=6 10°m,
H=3 10 3m,
V=5V

11 Axisymmetric problem.
ap = a3 =0:01 m,

a; =0:02 m,
H =0:005 m,
V=5V

12 Plane strain.

a; = a3 =0:02 m,
a, =0:04 m,

H =0:008 m,
V=10V

13 Axisymmetric problem.
a; = a3:9 10 3m,
a=a=11 103m,
H=3 10 3m,
V=10V

14 Plane strain.
a=a =11 10 °3m,
a=a=9 10°3m,
H=2 103m,
V=5V
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Table 3.8. Variants of individual tasks for the practical assignment Nol (continue)
15 Plane strain.

a; = a3 =0:015m,
a, =0:03 m,

H =0:004 m,
V=5V

3.2 Practical assignment No. 2.
Plane problem of heating and cooling of a
thermoelastic body

Objectives of the assignment

1. Study the main features of solving transient problems ohermoelastic-
ity in ANSYS APDL on the interaction of solids with acoustic media
in ANSYS APDL. The example problem is a plane problem of slow
heating and cooling of a body in the shape of letter \R" (input le
FE_Mod _CP_2.inp). Estimate the possibilities of solving the problems
where mechanical and temperature elds are not fully-coupdeand dy-
namic terms in the motion equations are neglected.

2. Write a program in ANSYS APDL for an individual assignment probem
(transient problem for a 2D thermoelastic body under the plae strain
conditions).

3. Perform the computations, analyze the results and prepaa report.

3.2.1 Brief information on the solution techniques for the
transient problems of thermoelasticity for isotropic bodie S

The statement of the transient problems of thermoelasticitywas
provided previously in section 1.4. This statement contaimk eld
equations (.110, (1.111, constitutive relations (1.1129, (1.113,
formulas (1.119, (1.115, boundary conditions (L.120{( 1.124, and initial
conditions (1.129.

Let us note that many thermoelastic materials are isotropi@and their
modules from (.112, (1.113, (1.119 have the following structure

Gk = i kmt+ Cikiji+ i jk); (3.7)
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i = i ki =k, (3.8)
where , are Lame's coe cients ( = G is also called the shear modulus),
Is the coe cient of thermal stresses,k is the thermal conductivity

coe cient, j is Kronecker delta.
For isotropic materials, constitutive relations (.112, (1.113 in the
component-wise form can be written as

i = Tkei F2" i ) (3.9)
0
P
where" =divu=r u= > "

Then, using (1.119, (1.119, (3.7, (3.8), the system of di erential
equations of linear thermoelasticity with respect to the coponents of
displacementsu; and temperature for isotropic media can be presented
in the form

Uig  (Uwk)i [ (uig + )l +C )= fqp 1=1;23  (3.11)

Cr it (Kyj)j+ ToUkk = W: (3.12)

In (3.17), (3.12 we have underlined the terms that can be omitted
without signi cant loss of accuracy. For example, as it was ned in
section 1.4, the underlined term in .12 in the majority of thermoelastic
problems appears to be small and can be left out of considaoat (theory
of thermal stresses). In such model in3(12 we can formally setTy = 0,
which will reduce @.12to the classical equation of transient thermal
conductivity. It is clear that Eq. (3.12 with Ty = 0 together with
boundary conditions (1.122{( 1.124 and initial conditions (1.125 for the
temperature gives an uncoupled thermoelastic problem whettee eld is
determined independently from the displacement eldi.

The system @3.11), (3.12 can be additionally simpli ed if we omit the
underlined summand in 8.11). In this case the motion equation 8.11)
turns into a more simpli ed equation of statics (more precisly, quasi-
statics). Such simpli cation is appropriate for many transent problems
when the external heat in uences change in time much slower ropared
to the characteristic times for the elastic waves propagain.

Let us give several comments regarding the material propes of
isotropic media. As it can be seen from3(11), (3.12, the isotropic
thermoelastic media are characterized by six material motas: the
porosity ;the Lame's parameters, ;the coe cient of thermal stresses ;
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the thermal conductivity coe cient k and the specic heatc, calculated
at constant strains. However, more often instead of the parasters |,
, and ¢ the following values are used: the Young's modulus; the
Poisson's ratio ; the coe cient of thermal extension and the specic
heat c , calculated at constant stresses. These modules are presenthe
constitutive relations that connect the pairs (, S) and ( j, ):

1+ )
E !
C .
S= kk + T—O . (314)
From (3.9), (3.10, (3.13, (3.149 it can be obtained that theses modules
can be expressed through one another by formulas:

= i | (3.13)

3 +2 ) a1 2) 3To
E= — Z: = - = . = 0 + : A
In ANSYS APDL the material properties , E, , , kandc can be

set by the commandsMP , Lab, MAT, CO, whereLab is the name of the
module, MAT is the number of the group of material propertiesCO is the
value of the module with the namelLab. Here Lab = DENS de nes the
porosity ; Lab = EX is the Young's modulusg; Lab = NUXY or Lab
= PRXY is the Poisson's ratio (for isotropic mediaNUXY =PRXY );

Lab = ALPX is the coe cient of thermal extension;Lab = KXX is the
thermal conductivity coe cient; Lab = C is the speci ¢ heat, calculated
at constant stresses.

All these modules can also depend on temperature according ttoe
polynomial law when using the commandvP , Lab, MAT, CO, C1, C2,
C3, C4 Then the value with the namelLab will be calculated by the
formula CO+ C1 + C2 2+ C3 3+ C4 4 and the problem becomes
nonlinear by , if any value amongC1, C2, C3, C4will di er from zero.

The following nite elements are available in ANSYS for solving ampled
thermoelastic problems: PLANE223 with KEYOPT(1)=11 is a 2D
guadrilateral element with 8 nodes;SOLID226 with KEYOPT(1)=11
is a hexahedron with 20 nodesSOLID227 with KEYOPT(1)=11 is a
tetrahedron with 10 nodes. These elements enable to solve tseant
problems, problems of steady-state oscillations and statiary problems
of thermoelasticity.

Obsolete nite elements, such asPLANE13 with KEYOPT(1)=4
(2D quadrilateral element with 4 nodes),SOLID5 with KEYOPT(1)=0
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(hexahedron with 8 nodes) and SOLID98 with KEYOPT(1)=0
(tetrahedron with 10 nodes), can be applied for solving trarent and
stationary problems of thermal stresses. The use of the elem®
PLANE223 , SOLID226 and SOLID227 can also lead to the theory
of thermal stresses, if we sefp; = 0. The latter can be done by applying
the commandTOFFST, O .

For simulating the problems of thermal stresses when the dyméc
summand in 3.11) is omitted, but in (3.12 with Ty = 0 a transient
equation for temperature is used, we can set small porosity=~ , where

<< 1, andc, can be substituted bycs =  !c,. Then Eqg. (3.12 will
hold as €, = ¢y, andc, = ¢ for Top = 0.

There are other approaches to solving in ANSYS the problems of
thermoelasticity with various degree of coupling which had le& developed
before the nite elementsPLANE223 , SOLID226 and SOLID227 were
introduced. The description of these approaches can be fourndANSYS
documentation in the sectionCoupled-Field Analyses Guide

3.2.2 Example problem and solution methods
Problem description

Let us consider a transient problem of thermoelasticity fola plane
domain in the shape of the letter \R". The geometry of the domau in the
Cartesian coordinate systen®©xy is shown in Fig.3.12(a) The sizes of the
body are de ned by the following parameters: the height islL = 0:14 (m);
the width is WL = 0:08 (m); the width of the walls isWWL = 0:02 (m);
the additional size along the height isHAL = 0:07 (m). Curvilinear parts
of the domain are de ned by the parts of the ellipses with the Bpticity
parameterPEL = (HAL=2)=(WL WWL), which de ne the ratio of the
ellipsey-axis radius to the ellipsex-axis.

Let us assume that the material of the domain is steel (isotpic
material) with the Young's modulusE = 2 10" (N/m ?), the Poisson's
ratio = 0:29, the density = 7800 (kg/m?), the coe cient of thermal
conductivity k = Kxx = 46:7 (W/(m K)), the coe cient of thermal
expansion = 1:51 10 ° (1/K) and the specic heat ¢ = 462 (J/(kg
K)), calculated at constant stresses.

It is assumed that the temperature on the bottom edge always equals
0 C. At the initial time moment t = 0 the body was at rest. Then
starting from the initial time moment till the time t = TES1 = 10 (s) the
temperature on the top edge has been increasing linearlyrnazero to 90C.



136 CHAPTER 3. PRACTICAL ASSIGNMENTS AND EXAMPLES

(a) (b)

Figure 3.12. Geometry of the domain: (a) scheme of the domain; (b) numbeg of
keypoints and lines

After that the top edge was subjected to the conditions of cometive heat
transfer with the heat transfer coe cient hy = 60 (W/(m ? K)) and the
ambient temperature , =0 C. The rest of the boundary for all considered
time moments is thermally insulated, i. e. the normal compamnt of the
heat ux vector is equal to zero:n g = 0. The bottom edge of the body
is considered to be rigidly xed all the time.

The aim of the problem is to determine the elds of temperature
and displacements in the time intervalt 2 [0; TES2], TES2 = 120 s,
plot the graphs of time dependencies for the temperature and the
displacementsuy for two control points x; = [WWL;HL] and x, =
WWL;HL HAL=2 (WL 2 WWL) PEL] (see Fig.3.12(a) where
the points are marked by numbers 1 and 2).

In order to investigate the in uence of the coupling and dyninic e ects,
it is necessary to compare results for three di erent probies:

1) transient thermoelastic problem with full coupling;

2) transient thermoelastic problem with partial coupling whe the problem
for the temperature eld does not depend on mechanical eldd. e. it
coincides with transient problem of thermal conductivity;

3) thermoelastic problem with partial coupling when the prol@m for
the temperature eld does not depend on mechanical elds, ie. it
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coincides with nonstationary problem of thermal conductity, and the
motion equations are considered in quasi-static statement
The example of problem solving is provided in the le FEMod_CP_2.inp.

Text of input le FE ~ _Mod _CP _2.inp

File FE_Mod_CP_2.inp

Test problem No. 2
TWO-DIMENSIONAL PROBLEM
THERMOELASTIC BODY
Transient problem

I Invert background from black to white
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15

IPREP7
I All values in Sl system

TES1=10 ! time value at the end of the first step
TES2=120 ! time value at the end of the second step
I substeps for time steps

DT1=1 ! substep value for the step 1

DT2=2 ! substep value for the step 2

I Conditions for thermal analysis

T INP1=0 ! Temperature on the bottom edge

T_INP2=90 ! Temperature on the right top edge (for time step 1 )
T _EXT=0 ! Ambient temperature for convective heat transfer conditions
H_F=60 ! Coefficient of convective heat transfer

I Temperature difference from zero to absolute zero

TOFFST, 273

I For TOFFST=0 a heat equation is a thermal conductivity equa tion

I TOFFST, O

I Material properties (steel)

E1=2.1el1l1 ! Young's modulus

NU1=0.29 ! Poisson's ratio

RHO1=7.8e3 ! Density

K1=46.7 ! Thermal conductivity coefficient

C1=462 ! Specific heat

ALPH1=1.51e-05 ! Coefficient of thermal expansion

MP,EX,1,E1
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MP,DENS,1,RHO1
MP,NUXY,1,NU1
MP,KXX,1,K1
MP,C,1,C1
MP,ALPX,1,ALPH1

I Commands to analyze the capabilities for not taking into ac count
I dynamic terms in the motion equations

I KAPPA=1e-6
I MP,DENS,1,RHO1*KAPPA
I MP,C,1,C1/KAPPA

ET,1,PLANE223,11,,2 ! Quadrilateral finite element with 8 nodes
I Degrees of freedom UX, UY, TEMP, plane strain

I Geometrical sizes of the body in the shape of letter "R"
HL=0.14 I Height

WL=0.08 I Width

WWL=0.02 ! Width of the walls of letter "R"

HAL=0.07 ! Additional size along the height

I Meshing parameters
DMESH=WWL/4

PEL=(HAL/2)/(WL-WWL) ! Ellipticity parameter for curvili near part
LOCAL,11,1, WWL,HL-HAL/2,,,,,PEL ! Elliptical CS with num ber 11
CSYS,0 ! Change active coordinate system to Cartesian

I Build the geometry of the domain
I External part - area 1

K,1,0,0

K,2,WWL,0

K,3,WWL,HL-HAL-WWL
K,4,WL-WWL,0

K,5,WL,0

K,6,WWL,HL-HAL

K,7,WL,HL-HAL/2

K,8,WWL,HL

K,9,0,HL

L,1,2 $1L,23%$L34%L45 3$L56

CSYS,11

L,6,7 $ L,7,8
CSYS,0

L,8,9 $ L9,1
AL,1,2,3,4,5,6,7,8,9
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I Hole - area 2
K,10,WWL,HL-HAL/2-(WL-2*WWL)*PEL
K,11,WL-WWL,HL-HAL/2

K,12, WWL,HL-HAL/2+(WL-2*WWL)*PEL
CSYS,11

L,10,11 $ L,11,12

CSYS,0

L,12,10

AL,10,11,12

ASBA,1,2 ! Subtract area 2 from area 1

I Set the size of finite elements

ESIZE,DMESH

AMESH,ALL

I Conditions for rigidly fixed boundary

NSEL,S,LOC,Y,0 I Select the nodes on the bottom (along Y-axi S)
D,ALL,UX,0

D,ALL,UY,0 NSEL,ALL ! Select all nodes of the model

I Select the nodes to monitor the results

I' Node N1_MON is in the upper part of the domain
I Y=HL, X=WWL

NSEL,S,LOC,Y,HL,HL

NSEL,R,LOC,X,WWL
*GET,N1_MON,NODE,,NUM,MIN

I Node N2_MON is below at X=WWL

NSEL,S,LOC,Y,HL-HAL/2-(WL-2*WWL)*PEL
NSEL,R,LOC,X,WWL
*GET,N2_MON,NODE,,NUM,MIN

NSEL,ALL

FINISH

I Solution of coupled thermoelastic problem

/ISOLU ! Enter the solver

ANTYPE,TRANS ! Select the analysis type: transient analysi s
KBC,0 ! Specify linearly interpolated (ramped) load

I Damping coefficient in time integration scheme
ITINTP,0.005 ! TINTP=0.005 - default value
TIME, TES1 I Time at the end of step 1
DELTIM,DT1 ! Substep for step 1
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NSEL,S,LOC,Y,0 I Select the nodes on the bottom (by Y-axis)
D,ALL, TEMP, T _INP1 ! For all selected nodes set TEMP=T_INP1

NSEL,S,LOC,Y,HL,HL ! Select the nodes on the top (by Y-axis)
NSEL,R,LOC,X,0,WWL
D,ALL, TEMP,T_INP2 ! For all selected nodes set TEMP=T_INP2

NSEL,ALL

I Write to the database the results of nodal solution
I for all substeps

OUTRES,BASIC,ALL

SOLVE

I Step 2
TIME, TES2
DELTIM,DT2 KBC,1 | Constant values of external influences

NSEL,S,LOC,Y,HL,HL ! Select the nodes on the top (by Y-axis)
NSEL,R,LOC,X,0,WWL
DDEL,ALL,TEMP ! Remove the conditions TEMP=T_INP2

SF,ALL,CONV,H_F, T_EXT ! Convective heat transfer in the se lected nodes
NSEL,ALL

SOLVE
SAVE
FINISH

/IPOST26
/ISHOW,WIN32C ! Specify device for graphical output
ITRIAD,OFF I Do not show the global coordinate triad

/IPLOPTS,INFO,2 I Use Auto-legend format
/IPLOPTS,LEG2,0FF
/PLOPTS,LOGO,0OFF ! Do not show ANSYS logo
/PLOPTS,FRAME,OFF ! Do not show frame
/PLOPTS,DATE,OFF ! Do not show date
/COLOR,CURVE,WHIT,1,6 ! Curve color for graphs -- white

I (black after inversion)
/COLOR,GRID,WHIT ! Grid color -- white (black after inversi on)
IGMARKER,1,2,3 ! Label 2 for curve 1 -- boxes, for every 3rd va lue
IGMARKER,2,4,3 ! Label 4 for curve 2 -- crosses, for every 3rd value
/IGRID,1 ! Grid by X and Y (full grid)

IXRANG,0,TES2
IAXLAB,Y, Temperature (degree) ! Label for Y-axis
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/IAXLAB,X,Time (sec) ! Label for X-axis
NSOL,2,N1_MON,TEMP, TEMP1 ! Variable 2 -- temperature in ade N1_MON
NSOL,3,N2_MON,TEMP,, TEMP2

NSOL,4,N1_MON,U,Y,UY1 ! Variable 4 -- displacement UY in nae N1_MON
NSOL,5,N2_MON,U,Y,UY2

PLVAR,2,3 ! Plot graphs of variables 2, 3 versus time (variab le 1)

I Remove comments to show UY in control nodes
| /AXLAB,Y,UY (m)
I PLVAR,4,5

This program solves a coupled linear problem of thermoelasty in

assumption of plane strain whenu = fux(x;y;t), uy(x;y;t);09, =
(x;y;t).

As in the example from practical assignment 1, here we begin Wit
building the solid model and then proceed to the nite elemdnmodel.
The solid model is obtained by constructing geometrical obgées using
the bottom to top method. Firstly the keypoints are created,then the
keypoints are connected by lines (see Fi§.12(b), and after that the areas
are generated.

To construct a solid model, we will build two simply connectedomains.
The rst domain is bounded by the outer lines of the letter \R", and the
second domain is bounded by the inner lines of the letter \R'Then we
use Boolean operation of subtractionASBA command) to obtain the
resulting domain in the shape of the letter \R" with a hole. The arved
lines are de ned as segments of two ellipses in the corresdong elliptical
coordinate system.

The nite element model is generated using free meshing in qurdateral
elementsPLANE223 with appropriate options. The global element size
DMESH de nes the maximal element edge length and speci es the detys
of the mesh. The structure of the nite element mesh foDMESH =
WW.L=4 is shown in Fig.3.13 (Fig 3.13(a) shows elements, Fig.13(b)
shows nodes).

Fig. 3.13also shows external in uences at various time steps. (To show
boundary conditions in the interactive mode executePlot ! Elementsor
Plot ! Nodes PlotCtrls !  Symbols! tick All Applied BCs. To plot the
conditions of convective heat transfer with arrows, in menu pla Surface
Load Symbolsspecify Convect FilmCoefand for Show pres and convect as
selectArrows.)
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(a) (b)

Figure 3.13. Finite element model:
(a) elements and boundary conditions at the rst time step;
(b) nodes and boundary conditions at the second time step

The solution of transient problem is divided in two time steps
t 2 [O;TES1] andt 2 [TES1,TES2]. At every time step the
nite element system of ordinary dierential equations of transient
thermoelasticity (1.169, (1.169 is integrated by time with the substep t;
( ty=1s, ty,=2s)bythe modied Newmark scheme 1].

We note that di erent boundary conditions are set at the rst and at
the second time step on the top edge of the domain. At the rstime
step the temperature (Fig.3.13(a)) is speci ed with linear change by time
(KBC,1 ), and at the second time step instead of the temperature the
condition of the convective heat transfer (Fig3.13(a) is speci ed, which
ensures the cooling of the body. The parameters of this bounglaondition
(the coe cient of heat transfer and the ambient temperaturg are constant
at the second time step, which is de ned by the commanigBC,0 .

After solving the problem, the program enters the time-histy
postprocessoPOST26 to plot the graphs of the temperature dependence
on time in characteristic pointsx, and x,. These dependences are shown in
Fig. 3.14(a) where the boxes denote the graph fof(x1;t), and the crosses
denote the graph for ,(x»;t). After executing two commented commands
from the program le, we can obtain the graphs of the time depwlences
for the displacementsuyn(X1;t) and uyn(X2;t). These curves are provided
in Fig. 3.14(b), where by analogy the boxes denote the graph fag,(x1;t)
and the crosses denote the graph fag,(x2; t).



3.2. Practical assignment No. 2 143

(a) (b)

Figure 3.14. Temperature and displacements in characteristic points:
(@) n(xj;1); (b) uyn(X;;t)

As it can be seen from Fig3.14 at the stage of cooling the temperature
on the top edge decreases much faster than the displacememfsdecline.
Besides, inside the body the temperature and the displacentg are
gradually getting aligned, moreover the temperature and #hdisplacements
inside the body can even increase at the stage of cooling focextain time
interval.

Then using the interactive mode in General postprocessBrOST1 we
can plot the pictures of various nodal values distributionN|SOL) for every
substep. In order to do this it is necessary to read the datarfthe selected
substep, for example, by menu patiiseneral PostProc! Read Resultd
By Pick ! then select the time substep valué Read! Close After that
we can plot the distribution of the values of interest NSOL in aisual way.
For example, to plot the contour plot of the temperature eld execute
General PostProc! Plot Results! Contour plot! Nodal Solution'!
DOF Solution! Nodal Temperature to plot the vector plot of the heat
ux, execute General Postproc! Plot Results! Vector Plo! Prede ned
' Flux & gradient! Thermal ux TF ; etc.

Fig. 3.15 demonstrates some results for the time moment at the end
of the rst time step t = TES], i. e. in the end of the heating stage:
Fig. 3.15(a) shows the distribution of the temperature eld, Fig.3.15(b)
shows the vector plot for the heat ux. Similar results at the nal
monitoring stage of the cooling process= TES2 are shown in Fig.3.16

These and other gures clearly demonstrate the process of theeat
distribution in the body. It is only necessary to take into acount that
the color palette in di erent pictures every time correspods to completely
di erent ranges of values.
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(a) (b)

Figure 3.15. Some results at the end of the heating stage:
(a) temperature; (b) heat ux vector

(@) (b)

Figure 3.16. Some results at the end of the monitoring stage:
(a) temperature; (b) heat ux vector

If in the le FE _Mod _CP _2.inp we remove the comment sign in the
line
| TOFFST, 0

I. e. execute the commandlTfOFFST, 0 , then ANSYS will calculate
thermal stresses.
If we additionally remove the comments in the lines

I KAPPA=1e-6
I MP,DENS,1,RHO1*KAPPA
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I MP,C,1,C1/KAPPA

then the problem of thermoelasticity with partial coupling wil be solved,
when the temperature eld does not depend on the mechanicallas, and
for the displacements the quasistatic equation is used. Therputations
show that the same results will be obtained for the temperaterand the
stresses in the control points, i. e. the resulting curvesrfon(x;;t) and
Uyn(X;; t) will visually coincide.

Finally, we note that here the accuracy of the obtained resisl depends
on many parameters. The maximal size of the elementOMESH
determines the errors of discretization by spatial variabs and the use
of the nite elements that are quadratic by canonical coordiates gives
theoretical error of the orderO(DMESH 2). The time tubsteps t; give
the estimation of the error of discretization by time, which e similar to
the estimation of the error of discretization by spatial valables. These
estimations are valid only when the solution has limited devatives of the
required degree of smoothness. However, for the areas withnaarpoints
and with the change of the types of the boundary conditions thgolutions
can have local singularities, i. e. they even can have no rsterivatives
limited in the domain.

Besides, the accuracy of the computations is also sensible the
parameters of the numerical scheme of the modi ed Newmark metd
of time integration. In the program the default parameters ee used that
correspond to the commandl'INTP,0.005 . However, for large solution
oscillations the parameter of numerical damping of the scime can be
increased or other values for the parameters in the commandNTP
can be changed.

The results of the numerical experiments for various nite @ment sizes,
time substeps and modi ed Newmark scheme parameters show suent
accuracy of the temperature and displacement elds which iscaeptable
for the test example with the given values.

3.2.3 Individual assignments

It is required to calculate thermal stresses induced by theral in uence
for a 2D construction in the shape of the letter indicated belv. Consider
a transient coupled problem of thermoelasticity and its sipli ed models
similar to the previously provided example. For input data &ke the values
similar to those from the test example. The geometrical sized the areas
can be chosen individually.
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Use ANSYS command mode to create solid and nite element models,
set the boundary conditions, solve the problem and plot theesults using
Time-history postprocessorPOST26 . Use ANSYS interactive mode to
view the results in General postprocessé#tOST1 and plot solid and nite
element models.

Analyze the convergence for various values of nite element ash
density, time substeps and modi ed Newmark scheme parameteBrovide
a valid version of the nite element mesh with boundary condibns for
various time steps. Analyze the results (graphs of the tempeure and
displacement dependences on time in the characteristic pts, vector plot
for the heat ux eld) and prepare a report.

The report should contain the name of the student, the full desiption
of the problem and the results obtained in ANSYS.

The variants of individual tasks are presented in the Tabl&.9. The
domains have the shapes of Latin and Greek letters.

Table 3.9. Variants of individual tasks for the practical assignment No2

No 12|34 |5|6|7]8
Domainshape B | C |D |G |J |O | P |Q

No 9110|11|12| 13|14 15
Domain shapel S | U

3.3 Practical assignment No. 3.
Steady-state oscillations of an elastic transmitter
In acoustic medium

Objectives of the assignment

1. Study the main features of solving the problems on the intaction of
solids with acoustic media in ANSYS APDL:

acoustic nite elements, including the elements with an optin of
interaction with solid elements;
de ning non-re ecting boundary conditions for simulation of
\in nite" domains;
selecting the parameters and structure of nite element méss;
choosing the solver options;
postprocessing features.
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The example problem is a two-dimensional problem of steady-
state oscillations for an elastic transmitter submerged o acoustic
medium (input les FE _Mod CP_3.sm.inp, FE Mod CP_3 ha.inp,
FE_Mod_CP_3_hi.inp).

2. Write a program in ANSYS APDL for an individual assignment prokem
(two-dimensional problem of steady-state oscillations foan elastic
transmitter submerged into acoustic medium).

3. Perform the computations, analyze the results and prepaa report.

3.3.1 Brief information on the solution techniques for the
problems of interaction of solids with acoustic media

Among numerous acoustic problems, the problems of interagii of a
solid deformable transmitter with acoustic media are of greanterest.
Transmitters are usually elastic or piezoelectric bodieh&t make steady-
state oscillations or transient movements under the applie governing
in uences. If these bodies are submerged into acoustic madihan, as
it was mentioned in section 1.6, the boundaries of solid andjliid media
interact with each other. As a result, acoustic waves are spra acoustic
media, and these waves should be analyzed for the problemdlo$ type
(distribution of pressure, pressure gradients, velocitgound pressure level).

Very often the transmitters have much smaller sizes in compaon with
external acoustic medium, and the phenomena of re ection @fcoustic
waves from their remote boundaries are not of great interestin such
cases we can arti cially \cut" the sizes of acoustic mediumrad set \non-
re ecting" boundary conditions on new boundaries. Such calitions ideally
should simulate the processes of propagation of acousticwea through
these boundaries without re ection.

The problems of interaction of solids with acoustic media areydamic
problems (problems of steady-state oscillations or traresit problems).
Therefore, in order to ensure appropriate accuracy of the saibn, the
nite element sizes should be selected not only from the errestimations
for static problems of typeO(hB=sin' ), where hs is the maximal element
size,' is the minimal angle at the element vertex, but should also krelated
to the lengths of characteristic waves. For example, & is the velocity of
acoustic waves, and the transmitter oscillates with the fragencyf, then
the characteristic wave lengths can be found by the formula: = cy=f.
Then, depending on the nite element type, its recommendedz2 hy for
the correct account for oscillation of the acoustic eld vales can be taken
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as hy = =10 (for the elements with middle nodes) ohy = =20 (for

the elements without middle nodes). For small values of thedguencies
f the sizehy can considerably exceetls, and therefore cannot be taken
into account. However, for large frequencies there can beusitions when
hg << h 4, I. e. the element size related to the oscillations of the agstic

eld values for the oscillation period is the de ning value.

Therefore in the considered problems it is required to deterre the
boundaries of the interaction of solids and acoustic mediapn-re ecting
boundaries (if there is a necessity) and set reasonable paweters of nite
element meshes.

It should be noted that the capabilities of ANSYS software in seing
acoustic problems expanded signi cantly in the recent year For this book
ANSYS 11.0 is used, and therefore main attention is paid to the aastic
analysis implemented in this version of ANSYS. However, the féites of
newer ANSYS versions will be brie y discussed as well.

In ANSYS 11.0 there are two main types of uid elementsFLUID29
and FLUID30 , of the dimension 2-D and 3-D, respectivelyFLUID29
Is a quadrilateral element with four nodes and has a triangulasersion.
FLUID30 is an 8-node hexahedral element and has versions with prisncat
and tetrahedral forms. The element$LUID29 and FLUID30 can be in
contact with similar solid elements (both with elastic and pieoelectric),
for example, with PLANE13 , PLANE42 , SOLID5 , SOLID45 , etc.
Naturally, in order to ensure consistency of nite element nghes here the
elements of the same shape should be selected.

For acoustic elements, that are in contact with solid elemest it
IS necessary to use the option KEYOPT(2)=0 (interaction permision).
This leads to a non-symmetric nite element matrix. For all oher
acoustic elements we can set KEYOPT(2)=1, which will permit to
obtain symmetric nite element matrices. As the solution of &ebraic
systems with symmetric matrices requires much less memoryase and
computation time, it is recommended to use symmetric matres wherever
possible.

For acoustic elements in ANSYS it is necessary to set the valuew f
the material parameters MP ), which are DENS (the uid density ) and
SONC (the speed of soundy).

If there is a sound absorption at the media interface (the bawary
with the impedanceZ), then we use additional material parameteMU
to set the absorption coe cient = Z=Zy, Zo = oC. The value s
usually determined from experimental measurements. The abption is
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greater when the value of is close to one. For one-dimensional problems
the value = 1 ensures total absorption of plane acoustic waves at the
impedance boundary ;.

More modern approaches are related to unconventional actias
\in nite" elements FLUID129 and FLUID130 , that can be used
together with FLUID29 and FLUID30 to simulate in nitely extended
domains. These elements implement non-re ecting boundaryrditions of
the second kind that give more accurate results compared toroventional
impedance boundaries 5. The development of numerical methods for
simulating in nitely extended domains is a topic for specikaresearch
[15]. The approach presented inl[f] is implemented in nite elements
FLUID129 and FLUID130 .

The elements FLUID129 and FLUID130 can contact only with
acoustic elementsFLUID29 and FLUID30 , correspondingly, but not
with elastic or piezoelectric solid elements. The external badary of
the acoustic nite element mesh, covered by the elementsLUID129
or FLUID130 , should have the shape of a circumference (for 2D or
axisymmetric elements) or sphere (for 3D). The radius of a cumference
or a spherical boundary of a bounded domain, as well as the cdioates
of a circumference or sphere center, should be set in the edginconstants
with the commandR .

As it is written in ANSYS documentation, the use of in nite elemens
gives good results both for low and high frequencies. It is miened
that good solution accuracy is achieved when the in nite eleemts are
located approximately at the distance =5 outside the domain occupied
by solid. Here = cp=f is the dominant wave length for the pressure
waves. For example, in the case of a submerged annular ringsmherical
shell of the radiusRs, the radius of the external boundaryR, = RAD
for the in nite elements can be approximately equal toRs + =5. More
accurate estimations can be obtained in numerical experimts for various
values of R,. Besides, it should be taken into account that in plane
problems at large distances jrom the point gource the acoiusst elds
attenuate in the point as = R, whereR = = (X1 )2+ (x> 2)?
Bnd in 3D problems the acoustic elds attenuate as =k, wherer =

(X1 1)2+(x2  2)2+(x3 2)3

In ANSYS Postprocessor, analyzing the solution results for thoblems
on the interaction of solids with acoustic media has partical features,
which are related to the fact that the eld functions associatd with
solids and acoustic media are de ned in dierent domains. Thefore,
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for example, if we need to show the mode shapes of elastic azuielectric
body, rstitis necessary to select only elastic or only pie®lectric elements
and plot the mode shapes only after that. Similarly, if we nekto plot the
pressure eldsPRES in acoustic medium, then it is necessary to select the
acoustic elements and then apply the commands [IEBLNSOL,PRES

The higher versions of ANSYS contain a lot of improvements for agstic
analysis: the models of acoustic uids with absorptionNIP , VISC , MAT ,
C0); the elementsFLUID220 and FLUID221 with middle nodes for 3D
problems; symmetric solvers for the problems of interactioof solid and
uid media (FSI); new impedance boundary conditions, as, foexample,
an ideal absorbing layer \perfectly matched layer" (PML), éc. Moreover,
recently developed Application Customization Toolkit (ACT) nav provides
a range of convenient tools for performing acoustic compuitans in ANSYS
Workbench.

Unfortunately, the documentation on new facilities for acaostic
analysis in ANSYS is poor in details. Therefore for more in-depth
acquaintance with acoustic analysis in ANSYS we recommend to eef
to a voluminous monograph 14] with examples available by the link:
http://www.mecheng.adelaide.edu.au/avc/software

3.3.2 Example problem and solution methods

Problem description.

Let us consider a pipe immersed in sea water. The domain lled
with water is so large then it can be considered in nitely exteded in all
directions. The pipe consists of two layers of di erent mateals. The
inner radius of the pipe isR; = 0:25 (m), the external radius of the
pipe is Rz = 0:27 (m), and the middle radius at the layer interface is
R, =0:26 (m). The rstlayer Ry r R is made of isotropic material
(steel) with the Young's modulusE; = 2 10" (N/m?), the Poisson's
ratio ;1 = 0:29 and the density ; = 7860 (kg/m3). The second layer
R> r R3 iIs made of another isotropic material (copper) with the
Young's modulusE, = 1:2 10' (N/m?), the Poisson's ratio , = 0:33
and the density , = 8900 (kg/m?). Let us assume that the density of
sea water is g = , = 1030 (kg/m?), and the sound speed in sea water is
Co = Cy = 1560 (m/s).

As the pipe has rather large length along the axial directionral the
external in uences are uniformly applied along the axis, wean consider a
2D plane strain problem for a pipe cross-section (Fig.17). The domain
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occupied by uid is bounded by the radiusR,. On the boundaryr = R, we
will use non-re ecting boundary conditions, which will be simlated either
by impedance boundary conditions or by special acoustic t@ elements
for in nite domains.

The aim of the problem is to analyze the displacement elds inhe
solid and the pressure elds in the uid in an assumtption of ®ady-
state oscillations in the vicinity of the smallest resonare frequencyf,,
the oscillation modes of which can be excited by two concentea forces
F = Fexp[i2ft ]with the amplitudes F = 100 N/m, applied in two points
on the inner boundary of the ring (cross-section of the pipé) the opposite
directions, as it is shown in Fig.3.17.

Example of problem solving using ANSYS

First of all, let us note that the problem is symmetric with repect to
the axesX and Y. Therefore it is enough to consider a quarter of the
model, for example, atX 0,Y 0. Itis necessary to take into account
that as the forceF acts on both halves of the mode¥Y OandY O,
therefore for the considered part we need to take a half of therce value
F=2.

Figure 3.17. Geometry of the problem
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We will begin with the calculation of the natural frequencies
of the transmitter without account for uid, by executing the le

FE _Mod CP _3_sm.inp .

Text of input le FE  _Mod _CP _3_sm.inp

File FE_Mod_CP_3_sm.inp

Test problem No.~3

PLANE PROBLEM

OSCILLATIONS OF A COMPOUND RING (CYLINDER)

Calculation of natural frequencies of the body without flu

I Invert background from black to white
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15

/IPREP7
F R='FE_Mod_CP_3 sm' ! file name for results

I Parameters for geometrical sizes (all in SI system)

R1=0.25 ! inner radius of the ring
R2=0.26 ! middle radius of the ring
R3=0.27 ! outer radius of the ring

NFREQ=4 ! number of output frequencies
FBEG=0.1 ! start value for the frequency range
FEND=1el0 ! end value for the frequency range

I Material properties of the body
I Material constants of steel
RO1=7.86e3 ! density

E1=2el1l1 ! Young's modulus
NU1=0.29 ! Poisson's ratio

I Material constants of copper

R0O2=8.9e3

E2=1.2el1l

NU2=0.33

MP,DENS,1,RO1 I density of the medium 1
MP,EX,1,E1 I Young's modulus of the medium 1
MP,NUXY,1,NU1 I Poisson's ratio of the medium 1
MP,DENS,2,RO2 I density of the medium 2
MP,EX,2,E2 I Young's modulus of the medium 2

MP,NUXY,2,NU2 I Poisson's ratio of the medium 2
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ET,1,PLANE42,,,2 ! Elastic finite element with 4 nodes, pla ne strain

I Parameters of finite element mesh
SM=1.00 ! Scaling multiplier
HDIV=2*SM ! Number of elements along the thickness (for one material)

TDIV=32*SM | Number of elements along the circumferential d irection

/OUTPUT,F_R,res

*VWRITE

(AX,” MODAL ANALYSIS (Block Lanczos, Plane42)")
*VWRITE,NFREQ

(1X," NFREQ= ',F4.0)

*YWRITE,HDIV, TDIV

(AX,” HDIV= "F4.0,, TDIV= "F4.0)

/OUTPUT

*DIM,FR,ARRAY,NFREQ ! Array for natural frequencies

I Geometry of the model

CSYS,1 ! Change active coordinate system to cylindrical
K,1,R1 $ K,2,R2 $ K,3,R3

K,4,R3,90 $ K,5,R2,90 $ K,6,R1,90
L61%$L12$%$L25%L56%L23%L34%L45
A1,2,5,6

A,2,3,4,5

CSYS,0 ! Change active coordinate system to Cartesian

I Divide lines
LESIZE,1,,, TDIV $ LESIZE,3,,,TDIV $ LESIZE,6,, TDIV

LESIZE,2,,HDIV $ LESIZE,5,, HDIV

LESIZE 4,,,HDIV $ LESIZE,7,, HDIV

MSHKEY,1

MSHAPE,0,2D

ASEL,S,AREA,,2 ! Select new set of areas - area 2

AATT,2,,1 ! Associate material 2 and element type 1 (MAT=2, T YPE=1)
I with selected area

ASEL,ALL ! Select all areas

AMESH,ALL ! Mesh all areas

FINISH

/SOLU

ANTYPE,MODA ! Modal analysis

I Block Lanczos method

I Number of frequencies NFREQ in the interval FBEG,FEND
MODOPT,LANB,NFREQ,FBEG,FEND
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I Conditions of symmetry
LSEL,S,LOC,Y,0
LSEL,A,LOC,X,0
DL,ALL,,SYMM
LSEL,ALL

SOLVE
FINISH

/POST1

I Output the table of resonance frequencies into the file

*DO,I,1,NFREQ
SET,,I
*GET,FR(l),MODE,|,FREQ
FRI=FR(I)
/OUTPUT,F_R,res,,append
*VYWRITE,I,FRI
(1X,F4.0, ' E12.5)
/OUTPUT

*ENDDO

I Plot pictures of mode shapes
/PNUM,MAT,1 ! Enumerate elements by material properties

/INUMBER,1 ! Show numbers only by color

ITRIAD,OFF ! Do not show the global coordinate triad
/PLOPTS,LOGO,OFF ! Do not show ANSYS logo
/PLOPTS,DATE,OFF ! Do not show date

/PLOPTS,FRAME,OFF ! Do not show frame

/WINDOW,1,LTOP I Place Window 1 at the left top of the screen
SET,,1 ! read data for the first mode

PLDISP,2 ! show mode shape together with undeformed shape

/WINDOW,1,0FF ! Make Window 1 passive

INOERASE ! Don not erase window content

/WINDOW,2,RTOP ! Place Window 2 at the right top of the screen
SET,,2 ! read data for the second mode

PLDISP,2

/WINDOW,2,0FF

/WINDOW,3,LBOT ! Place Window 3 at the left bottom of the screen
SET,,3 ! read data for the third mode

PLDISP,2

/WINDOW,3,0FF

/WINDOW,4,RBOT ! Place Window 4 at the right bottom of the screen
SET,,4 ! read data for the fourth mode

PLDISP,2
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Figure 3.18. Natural mode shapes of the transmitter without uid

I Return to default settings (one window at full screen)
/WINDOW,1,0N

/WINDOW,1,FULL

/WINDOW,4,0FF

I Execute this command to erase the content of the window
I ERASE

After executing this le in ANSYS we obtain the values of the rst four natural
frequencies and the mode shapes at these frequencies of thegmitter without account
for uid (Fig. 3.18. Here the elements that have di erent material properties g shown
in di erent colors: material 1 is shown by turquoise, and matdrial 2 is shown by violet. We
note that the starting value FBEG of the frequency range, in Wwich we search for natural
frequencies, was taken slightly greater than zero in ordeonto search zero frequencies of
a rigid body motion. (Although in this problem, as we consideonly a quarter of a model
with symmetry boundary conditions, there can be no zero fregncies, and here it is done
only for convenience of using the commands from the providdd for other problems.)
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It is clear that the concentrated forces shown in Fig3.17 can excite oscillations at all
rst four natural frequencies under relevant values of . In the presence of uid the values
of all resonance frequencies will decrease, and, presurgathle expected value of the real
part of the rst natural frequency of the transmitter in the uid can be around 130 Hz
(For the transmitter without uid the rst natural frequenc y computed by the program
FE_Mod_CP_3_sm.inp wasf ¢, = 164:313 Hz).

Similarly we could have conducted modal analysis (solve aigenvalue problem) for
the transmitter in uid and re ne the value of the expected rst natural frequency.
Omitting this step, let us move to solving the problem of stedy-state oscillations for
an elastic transmitter in acoustic medium. We choose a comiation frequency interval
freg T fend; foeg =100 Hz; feng = 150 Hz; and the number of values on the interval
Nireqg = 100. Therefore, the problem of steady-state oscillatiorfer the transmitter in uid
will be solvednseq = 100 times with the step by frequency f = (fend foeg)=Nrreq = 0:2
Hz for the frequencied = fpeg+ k f, K =121 Nireq -

By the resonance frequency, we will call the value of the frequency from an array
fr, kK = 1;2 5 nseq , Which enables to achieve maximal value of the amplitude ohe
displacementuy or acoustic pressurgp-(u, = ty expli2 ft ]; p= pexp[i2 ft ]) at the top
point of the transmitter X =0, Y = Rs. We have to remember that even if nite element
computations were completely accurate, there would stilldan incorporated absolute error
of the frequency determination f = 0:2 Hz, or a relative error ( f=f p¢g) 100% = 0:2 %.

ANSYS documentation determines the distance, at which in niteelements should be
located, as no less thaRs+ =5, whereRs is the external diameter of the ring, = co=f is
the dominant wavelength of the pressure waves. In this pradrh the external radius of the
rng isRs = Rz = 0:27 m, the speed of sound in water i = ¢, = 1560 m/s, the dominant
frequency can be estimated ds= 130 Hz. ThenR3+ =5 = 0:27+1560=130-5 = 2:67 (m).
However, in this problem under very low frequency oscillatie we can expect that this
distance would be much larger than the allowable distance rfadhe in nite elements
location. Therefore we will takeR, = 4Rs = 1:08 m as the base value of the radius
R, for the location of acoustic element&LUID129 or impedance acoustic boundaries.
The results obtained for this value will be compared with theesults obtained atR, = 2Rq
and R; = 8R..

Under a very large wavelength value = cy=f 12 (m) a restriction on the nite
element sizehy = =20 0:6 (m) is larger than the value of the external radius of the
rng Rs = Rs = 0:27 (m). As a basic example for each material of the ring we will
consider the area division along the thickneddDIV =2 SM, the line division along the
circumferential direction of the ring and acoustic ared DIV =32 SM, and the division
of acoustic areaHADIV =32 SM, whereSM = 1. The nite elements in acoustic area
will be built with an increase of their length along the radiadirections with the multiplier
SPACE = 3. For the convergence analysis the paramete8M will be changed towards
both larger (SM = 2) and smaller (SM = 0:5) values.

The main program for calculating the steady-state oscill&ins of the ring in acoustic
medium FE Mod _CP _3_ha.inp is used for simulation of non-re ecting boundaries of
acoustic nite elementsFLUID129 .

Text of input le FE ~ _Mod _CP _3_ha.inp

I File FE_Mod_CP_3 ha.inp
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Test problem No. 3
PLANE PROBLEM

Calculation of natural frequencies of the body with fluid
Infinite elements FLUID129

I Invert background from black to white
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15

/IPREP7
F R='FE_Mod_CP_3 ha 4 SM1'! file name for output results

I Parameters for geometrical sizes (all in Sl system)

R1=0.25 ! inner radius of the ring

R2=0.26 ! middle radius of the ring

R3=0.27 ! outer radius of the ring

KRA=4 I coefficient for the computation of the radius RA
RA=KRA*R3 ! radius for external boundary of the fluid

FP=100 ! Force value

NFREQ=100 ! number of output frequencies
FBEG=100 ! start value for the frequency range
FEND=150 ! end value for the frequency range

I Material properties

I Material constants of steel
RO1=7.86e3 ! density
E1=2el1l ! Young's modulus

NU1=0.29 I Poisson's ratio

I Material constants of copper

R0O2=8.9e3

E2=1.2ell

NU2=0.33

I Material constants of fluid

ROA=1030

CA=1560

AD=1

MP,DENS,1,RO1 ! density of medium 1
MP,EX,1,E1 I Young's modulus of medium 1

MP,NUXY,1,NU1 ! Poisson's ratio of medium 1

MP,DENS,2,RO2 ! density of medium 2
MP,EX,2,E2 I Young's modulus of medium 2

OSCILLATIONS OF A COMPOUND RING (CYLINDER) IN ACQUSTIC MED
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MP,NUXY,2,NU2 I Poisson's ratio of medium 2

MP,DENS,3,ROA | density of acoustic medium
MP,SONC,3,CA ! speed of sound in acoustic medium
MP,MU,3,AD ! absorbing coefficient at the impedance bounda ry

ET,1,PLANE42,,,2 ! Elastic finite element with 4 nodes, pla ne strain
ET,2,FLUID29,,1 ! Acoustic finite element with 4 nodes, wit hout UX & UY

ET,3,FLUID29 I Acoustic finite element with 4 nodes, with UX & UY
ET,4,FLUID129 I Acoustic finite element for infinite bound aries
R,4,RA ! Radius of infinite boundary for finite element FLUI D129

I Parameters of finite element mesh
SM=1.00 ! scaling multiplier
HDIV=2*SM | Number of FEs along the thickness (for one materi al)

TDIV=32*SM | Number of FEs along the circumferential direct ion
HADIV=32*SM ! Number of FEs along the radial direction for ac oustic medium
SPACE=3 ! Multiplier to increase the length of acoustic FE

I along the radial direction

/OUTPUT,F_Rres

*VWRITE

(AX,” HARMONIC ANALYSIS (Plane42, Fluid29))
*VWRITE,KRA

(1X," RA/R3= '[F4.0)

*VWRITE,NFREQ

(AX,” NFREQ= 'F4.0)

*VWRITE,HDIV,TDIV,HADIV

(1X," HDIV= "JF4.0,/ TDIV= "F4.0,, HADIV= "F4.0)
/OUTPUT

I Geometry of the model

CSYS,1 ! Change active coordinate system to cylindrical
K,1,R1 $ K,2,R2 $ K,3,R3

K,4,R3,90 $ K,5R2,90 $ K,6,R1,90
L61%$L12%$L25%L56%L23%$L34%L45
A1,256 $ A2345

K,7,RA $ K,8,RA,90

L,3,7 $L,78 $L,84

A3,7,8,4

CSYS,0 ! Change active coordinate system to Cartesian

I Line division

LESIZE,1,,, TDIV $ LESIZE,3,,, TDIV $ LESIZE,®6,, TDIV
LESIZE,2,,HDIV $ LESIZE,5,,,HDIV

LESIZE 4,,,HDIV $ LESIZE,7,, HDIV
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LESIZE,9,, TDIV

LESIZE,8,, HADIV,SPACE

LESIZE,10,,,HADIV,1/SPACE

MSHKEY,1

MSHAPE,0,2D

ASEL,S,AREA,,2 ! Select new set of areas - area 2

AATT,2,,1 ! Associate material 2 and element type 1 (MAT=2, T YPE=1)
I with the selected area

ASEL,S,AREA,,3 ! Select new set of areas - area 3

AATT,3,,2 ! Associate material 3 and element type 2 (MAT=3, T YPE=2)
I with the selected area

ASEL,ALL ! Select all areas

AMESH,ALL ! Mesh all areas

I Change acoustic finite elements on the border of the ring to type 3

LSEL,S,LINE,,6 ! Select line 6 - border of the ring and acoust ic medium
NSLL,S,1 ! Select nodes on the selected lines

ESLN,S,0 ! Select finite elements that are attached to the se lected nodes
ESEL,U,TYPE,,1 ! Unselect elements of type 1 from the select ed set

EMODIF,ALL, TYPE,3 ! Modify all selected elements to type 3
ALLSEL

I' Fluid-Structure Interface (FSI)
CSYS,1
NSEL,S,LOC,X,R3 ! Select the nodes at the border of solid and fluid bodies

ESLN ! Select elements attached to the selected nodes
ESEL,R,TYPE,,3 ! Select finite elements that have TYPE=3
SF,ALL,FSI ! Set the flag FSI for the contact nodes
NSEL,ALL

ESEL,ALL

CSYS,0

FINISH

/SOLU

ANTYPE,HARMIC | Steady-state oscillations
HROPT,FULL

HARFRQ,FBEG,FEND

NSUBST,NFREQ

KBC,1

I Symmetry conditions
LSEL,S,LOC,Y,0
LSEL,A,LOC,X,0
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DL,ALL,,SYMM
LSEL,ALL

CSYS,1

KSEL,S,LOC,X,R1

KSEL,R,LOC,Y,0

FK,ALL,FX,-FP/2 ! Divide FP into 2, as we consider half of the model

KSEL,ALL
CSYS,0

I Define infinite elements FLUID129

CSYS,1

NSEL,S,LOC,X,RA | Select nodes at the impedance boundary
TYPE,4 $ REAL,4 $ MAT,3

ESURF

ESEL,ALL

NSEL,ALL

CSYS,0

OUTRES,BASIC,ALL
SOLVE

SAVE

FINISH

/IPOST26
/SHOW,WIN32C
ITRIAD,OFF I Do not show the global coordinate triad

/PLOPTS,INFO,2 I Use auto-legend
/IPLOPTS,LEG2,0FF

/PLOPTS,LOGO,OFF ! Do not show ANSYS logo
/PLOPTS,DATE,OFF I Do not show date
/PLOPTS,FRAME,OFF ! Do not show frame

/ICOLOR,CURVE,WHIT,1,6
/COLOR,GRID,WHIT
/IGRID,1

CSYS,1

NSEL,S,LOC,X,R3

NSEL,R,LOC,Y,90 ! Node with number N_RES1 is the point (0,R3 in Cartesian CS
*GET,N_RES1,NODE,,NUM,MIN

NSEL,S,LOC,X,RA

NSEL,R,LOC,Y,90 ! Node with number N_RES2 is the point (O,RAIn Cartesian CS
*GET,N_RES2,NODE,,NUM,MIN

NSEL,ALL
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CSYS,0

IXRANG,FBEG,FEND

IAXLAB,X,Frequency (Hz)

/AXLAB,Y ,Displacement UY (m)

NSOL,2,N_RES1,UY

ABS,3,2,,ABSUY

*GET,FRES,VARI,3,EXTREM, TMAX ! Define resonance frequsn

/OUTPUT,F_R res,,append
*YWRITE,FRES

(X, FRES= 'E12.5)
PRVAR,2

/OUTPUT PLCPLX,2 ! Real part
PLVAR,2

I PLVAR,3 ! Amplitude UY

I Commands to plot the pressure at the same point
I NSOL,4,N_RES1,PRES

I JAXLAB,Y,Acoustic pressure PRES (Pa)

I PLVAR,4

This program constructs nite element mesh shown in Fig3.19 where
on the left (a) the elements colors indicate material propaes and on the
right (b) the colors indicate the element types. Besides, &i3.19(b) shows
the boundary with the nodes of acoustic elements_UID29,,0 , for which
the uid-structure interface ag FSI has been set.

(a) (b)

Figure 3.19. Finite element mesh: (a) highlight MAT; (b) highlight TYPE
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Let us recall that in order to plot nite element mesh in interactive mode
we need to execut®lot ! Elements For showing the material properties
of the elements by colors without showing the material numberselect
PItCtrls ! Numbering! Elem/Attrib numbering ! Material numbers!
[NUM] Numbering shown with! Colors only! OK, and for showing the
element types by colors without showing the element type numbseselect
PItCtrls ! Numbering! Elem/Attrib numbering ! Element type num!
Material numbers! [NUM] Numbering shown withl  Colors only! OK.

At the end of the program in postprocessofPOST26 the data
on the frequency characteristic of the displacementiy~in the point
of the transmitter (X = 0, Y = Rj3) are written in the output
le FE _Mod _CP _3_ha_4_SMl.res, and Rex is displayed as a graph
(Fig. 3.20(a). Execution of the commandPLVAR,3 gives the graph of
the frequency dependencpt,j at the same point (Fig. 3.20(b)). Besides,
the resonance frequency value is written to the variable FRE&d also to
the output le. As a result we get that the resonance frequencyalue is
equal tof, = 126:5 Hz.

The following le enables to obtain for the resonance frequend-RES
a graph of the real part of the pressure along th& -axis of the acoustic
domain, i. e. the dependence BRE3:Y), vy 2 [R3; Ry].

Text of input le FE _Mod _CP _3_Post.inp

I File FE_Mod_CP_3 _Post.inp

I Postprocessor plot of acoustic pressure

I along the path between the nodes N_RES1, N_RES2 at the freqency FRES
I N_RES1, N_RES2, FRES - should be determined earlier

/POST1

/COLOR,CURVE,WHIT,1,6 ! graph color -- white (black after i nvertion)
/COLOR,GRID,WHIT, ! grid color -- white (black after invert ion)
/PLOPTS,TITLE,OFF ! no graph title

/PLOPT,FRAME,OFF ! no frame

IAXLAB,X,Y ! label for X-axis

IAXLAB,Y,Re PRES ! label for Y-axis

IXRANG /DSCALE,,OFF ! Remove displacement scaling (scale idplacements by 0)

I Read results for real part at the frequency FRES
SET,NEAR,,,0,FRES

I Commands to determine a path with keypoints
PATH,YY,2,,120
PPATH,1,N_RES1
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(@)

(b)

Figure 3.20. Frequency characteristicuy: (a) Redy; (b) jtt]

PPATH,2,N_RES2
I Determine the value of RePRES to plot the graph along the pat h
PDEF,RePRES,PRES

PLPATH,RePRES ! Plot the graph RePRES along the path

Plot picture of pressure distribution (uncomment)
ESEL,S,TYPE, 2,4

PLNSOL,PRES

Read results for imaginary part at the frequency FRES
SET,NEAR,,,1,FRES

!
!
!
!
!
I PLNSOL,PRES

The resulting graph is shown in Fig.3.21 As expected, the pressure
rather rapidly decreases along the path.
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Figure 3.21. Acoustic pressure RpalongY -axis

Figure 3.22. Distribution of the real part of the pressure
at the frequencyf, = 126:5 Hz

Let us plot the distribution of real and imaginary parts of the pressure at
the resonance frequency. According to the last commands okthbove le,
using the commandESEL,S,TYPE,,2,4 we rstly select only acoustic
elements (type 2{4) and then we executPLNSOL,PRES . As a result,
we obtain the distribution of the real part of the pressure athe resonance
frequency, which is shown in Fig3.22

After executing the commandsSET,NEAR,,,1,FRES and PLNSOL,
PRES , we can obtain similar picture for the imaginary part of the pessure



3.3. Practical assignment No. 3 165

Figure 3.23. Deformed shape of the ring at the resonance frequency
f, =126:5 Hz, (real part)

at the resonance frequency and ensure that the pressure \egwvill be much
smaller.

At last, we plot the picture of the deformed shape at the resamce
frequency. To do this, rstly it is necessary to select onlydid elements
(of element type 1) ESEL,S,TYPE, 1 and set automatic displacement
scaling/DSCALE,,AUTO . Secondly, we need to read the results at this
frequency for the real part of the solutionSET,NEAR,,,0,FRES and
plot the picture of the deformed shape with an undeformed edd&lenu
path: Plot Results! Deformed Shapeé Def+undef edg! OK or execute
the commandPLDISP,2 ). In order to achieve more similarities with the
rst natural mode shape of the transmitter without uid that i s shown
in the top left quarter in Fig. 3.18 we can paint the elements according
to the numbers of their material properties without showing tle material
numbers: PItCtrls ! Numbering! Elem/Attrib numbering ! Material
numbers! [NUM] Numbering shown with!  Colors only! OK.

The result of these actions is shown in Fig3.23 From this gure it can
be seen that the deformed shape in general repeats the rsttoaal mode
shape of the transmitter without uid, which is shown in Fig. 3.18 (the
natural mode shape is determined up to an arbitrary factor,herefore the
sign of its displacements is not important).

The numerical experiments with varying the mesh density paraeter
SM show thatf, = 127 Hz for SM = 0:5, f, = 126:5 Hz for SM = 1,
f, = 126 Hz for SM = 2. As it can be seen, with the decrease of the
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maximal size of nite elements the frequency decreases. THmct also
follows from theoretical conclusions on the convergence cheter for the
natural frequencies. However, this change in the value of thest natural
frequency appears to be less than 1 %, which indicates a sattbry choice
of the parameters of the nite element mesh (even more coarseesh is
acceptable).

If we vary the sizes of acoustic domain aBM = 1 by changing the
parameter KRA = R;=R3 from 2 to 8, than we can note that the value
f, = 126:5 Hz will not change. Therefore, the selected sizes of acoustic
domain are also quite satisfactory and even smaller sizes acceptable.
(However, here we do not analyze maximal values of the disptaents and
acoustic pressure that are calculated with larger error).

Finally, instead of locating acoustic element$-LUID129 at the far
boundary of the acoustic domaimr = R, we can set impedance boundary
conditions by changing several commands in the le FMod_CP_3_ha.inp:

I Define infinite element FLUID129

CSYS,1

NSEL,S,LOC,X,RA ! Select nodes at the impedance boundary
TYPE,4 $ REAL,4 $ MAT,3

ESURF

ESEL,ALL

NSEL,ALL
CSYS,0

I Impedance boundary conditions
CSYS,1
NSEL,S,LOC,X,RA ! Select nodes at the impedance boundary

SF,ALL,IMPD,1 ! Set impedance boundary condition
NSEL,ALL
CSYS,0

The computations show that for the considered problem both vints
are acceptable for simulating a non-re ecting acoustic bawary. However,
the rst approach appears to be more accurate.

3.3.3 Individual assignments

Write a program code in ANSYS APDL to compute a problem of
interaction of a solid with an acoustic medium in a steady-sta oscillation
mode in a 2D setting (axisymmetric or plane strain problem).

As the rst step, solve the problem on natural oscillations of solid.
Find several rst natural frequencies and estimate the po#slity of their
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excitation by external in uencesF = Fexpli2ft Jorp = p expfi2ft ].
As a result, select a frequency interval in the vicinity of therst (among
the excited frequencies) resonance frequency.

Estimate the value of the radius for locating the acoustic ite elements
FLUID129 or impedance acoustic boundaries and the nite element sie

Obtain the amplitude-frequency characteristics of the dmacements in
the characteristic point. For the resonance frequency gehé deformed
shape of the solid, the pressure distribution in the acoustimedium and
the graph of the change of the acoustic pressure along the chaeristic
path.

Perform the computations for various densities of the niteelement
mesh and for several values of the acoustic medium radius.n&ioptimal
values.

Analyze the results and prepare a report. The report should ctain
the name of the student, the full description of the problemrad the results
obtained in ANSYS.

For simulation use the following values of the material conanhts for
isotropic media de ned in Sl system:

{ steel with the Young's modulusE =2 10" (N/m ?), the Poisson's ratio
= 0:29 and the density = 7860 (kg/m?3);

{ copper with the Young's modulus = 1:2 10 (N/m ?), the Poisson's

ratio = 0:33 and the density = 8900 (kg/m?3);

{ titanium with the Young's modulus E = 1:12 10 (N/m 2), the Poisson's

ratio = 0:32 and the density = 4500 (kg/m?3);

{ sea water with the speed of sound, = 1560 (m/s) and the density
a = 1030 (kg/m?3);

{ fresh water with the speed of soundt, = 1500 (m/s) and the density
a = 1000 (kg/m3);

{ air with the speed of soundc, = 340 (m/s) and the density , = 1:2

(kg/m 3).

The variants of individual tasks are presented in Tabl&3.10 (When
possible, use the symmetry of the problem!)

The concentrated forced= here have the dimension N/m, as in reality
for a plain strain state they are distributed along the line prallel to
the axis z, and for an axisymmetric problem they are distributed along
the circumference with the radiusR; equal to the coordinateX of the
point of the application of the force in meridional section. In ANSYS
for an axisymmetric problem the force value must be multipid by
the circumference length R ;. Therefore, in the case of de ning the
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concentrated force~ for an axisymmetric problem the value R ¢ F should
be used, and for a plane strain state use the vall&. (An exception for
an axisymmetric problem is the case of de ning the forcE on the axis of
rotation, i. e. at Ry = 0. Here F has the dimension N, and precisely this

value of F is used.)

Everywhere in Table3.10 , is an acoustic domain, 4 is the surface of
an acoustic domain with the boundary conditions of a rigid wal 1.2049.

Table 3.10. Variants of individual tasks for the practical assignment No3

No. Scheme

Input data

Axisymmetric problem.

The transmitter is made of titanium,

the external dome radius iR; = 0:2 m,
its thickness ish =0:01 m,a=0:3 m.
Acoustic medium (sea water)

lIs the domain from the side of external
normal to the surface of the transmitter
of the radiusRy, p =50 N/m 2.

Axisymmetric problem.

The transmitter is made of steel,

the external dome radius iR; = 0:2 m,
its thickness ish =0:01 m,a=0:3 m.
Acoustic medium (fresh water)

lIs the domain from the side of external
normal to the surface of the transmitter
of the radiusR; h, p =50 N/m?2.

Plane strain.

The transmitter is made of titanium,

its thickness ish =0:02 m,a=0:4 m,
b=c=0:3m.

Acoustic medium (air)

lIs the domain from the side of external
normal to the surface of the transmitter,
F =100 N/m.

Plane strain.

The transmitter is made of copper,

its thickness ish =0:01 m,a=0:2 m,
b= c=0:15m.

Acoustic medium (air)

lIs the domain from the side of external
normal to the upper surface

of the transmitter, F = 150 N/m.
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Table 3.10. Variants of individual tasks for the practical assignment No3 (continue)

5

Plane strain.

The cross section of the transmitter is
a two-layer hollow ellipse.

The boundary of the interaction of

the transmitter with an acoustic medium:

(x=a)? + (y=h? =1,

wherea=0:4 m,b=0:2 m.
External layer 2 is steel,

its thickness ish, = 0:02 m.
Internal layer 1 is copper,

its thickness ish; = hs.

Acoustic medium (fresh water)

lls the domain (x=a)? + (y=B> 1,
F =100 N/m.

Axisymmetric problem.

The cross section of the transmitter is
a two-layer hollow ellipse.

The boundary of the interaction of

the transmitter with an acoustic medium:

(x=a)?+ (y=h? =1,
wherea=0:5m, b=0:25 ml
External layer 2 is titanium,

its thickness ish, = 0:02 m.
Internal layer 1 is copper,

its thickness ish; = h,.

Acoustic medium (sea water)

lls the domain (x=a)%>+ (y=B? 1,
F =80 N/m.

Axisymmetric problem.

The cross-section of the transmitter is
a two-layer body.

External layer 2 is titanium,

its thickness ish, = 0:02 m.

Internal layer 1 is copper,

its thickness ish; = hs.
a=0:3m,b=0:2m,c=0:5m.
Acoustic medium (fresh water)

lIs the domain from the side of external

surface of the transmitter,p~ = 75 N/m 2.
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Table 3.10. Variants of individual tasks for the practical assignment No3 (continue)

8 Axisymmetric problem.

The cross section of the transmitter is
a two-layer body.

External layer 2 is steel,

its thickness ish, = 0:02 m.

Internal layer 1 is copper,

its thickness ish; = hs.
a=0:6m,b=0:5m,c=0:3m.
Acoustic medium (sea water)

lls the domain from the side of external
surface of the transmitter,p~ = 50 N/m 2.

9 Axisymmetric problem.

The cross section of the transmitter is
a three-layer body.

Leg 1 is steel, the radius is; = 0:02 m,
b=0:5m.

The lower hat 2 is copper,

its thickness ish, =0:01 m,a=0:4 m.
The upper hat 3 is titanium,

its thickness ishz = hy,

Acoustic medium (fresh water)

lls the domain from the side of external
surface of the transmitter,p~ = 70 N/m 2.

10 Axisymmetric problem.

The cross section of the transmitter is

a two-layer body.

External layer 2 is titanium,

its thickness ish, = 0:05 m.

Internal layer 1 is steel, its thickness is
hy=0:04 ma=0:3m,b=0:5m.
Acoustic medium (sea water)

lls the domain from the side of external
surface of the transmitter,p~ = 120 N/m 2.

11 Plane strain.

The cross section of the transmitter is
a three-layer body.

Leg 1 is steel, its thickness if; = 0:04 m,
b=0:2 m,

The lower hat 2 is copper,

its thickness ish, = 0:02 m,a=0:3 m.
The upper hat 3 is titanium,

its thickness ishz = hy,

Acoustic medium (fresh water)

lIs the domain from the side of external
surface of the transmitter,F = 150 N/m.
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Table 3.10. Variants of individual tasks for the practical assignment No3 (continue)
12 Plane strain.

The transmitter is made of titanium,
a=0:3m,b=0:1m,

R;=0:5m,R;=0:6 m.

Acoustic medium (air)

surrounds the surface of the transmitter,

F =100 N/m.

13 Axisymmetric problem.

The transmitter is made of steel,
a=0:3m,b=0:05m,c=0:2 m,
d=0:05m,s=0:35m.

Acoustic medium (sea water)

surrounds the surface of the transmitter,
p =100 N/m?2,

14 Axisymmetric problem.

The cross-section of the transmitter is
a two-layer body.

External layer 2 is titanium,

its thickness ish, = 0:05 m.

Internal layer 1 is steel, its thickness is
hy =0:05m,a=0:5m, =45 m.
Acoustic medium (fresh water)

lIs the domain from the side of external
surface of the transmitter,F = 100 N/m.

15 Plane strain.

The transmitter is made of steel,

its thickness ish =0:02 m,
a=0:4m,b=0:2m,c=0:5m,d=0:2 m.
Acoustic medium (fresh water)

lIs the domain from the side of external
surface of the transmitter,p~ = 60 N/m 2.
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