
FEDERAL STATE AUTONOMOUS EDUCATIONAL
ESTABLISHMENT OF HIGHER EDUCATION

SOUTHERN FEDERAL UNIVERSITY

A. V. Nasedkin, A. A. Nasedkina

FINITE ELEMENT MODELING
OF COUPLED PROBLEMS

Rostov-on-Don
2015



UDK 519.6+539.3+004.4
BBK 22.251

N24

Published by decision of Editorial and Publishing Council of Southern
Federal University

Reviewers:
Soloviev A. N., Doctor of Physical and Mathematical Sciences,

Associate Professor
Tkachev A. N., Doctor of Engineering, Professor

Nasedkin A. V., Nasedkina A. A.
N24 Finite element modeling of coupled problems: textbook /

A. V. Nasedkin, A. A. Nasedkina. { Rostov-on-Don: publishing
house of Southern Federal University, 2015. {174p.
ISBN 978-5-9275-1611-7

This book partially corresponds to the lecture course \Finite element modeling of
coupled problems" which is given in the framework of the Master degree program \IT in
Biomechanics" in Institute of Mathematics, Mechanics and Computer Science of Southern
Federal University. The book can be also used by students, post-graduate students and
specialists who work in various areas of applied mathematics and mechanics.

The lecture course considers the issues of mathematical modeling of coupled physico-
mechanical problems and application of �nite element method for their solution. Special
attention is given to coupled problems of electroelasticity, thermoelasticity, poroelasticity,
and problems of interaction of deformable solids with acoustic media. Mathematical
features of classical and generalized statements for the considered problems are given in
details. Theoretical part of the book is supported by practical assignments for solving
test problems of piezoelectricity, thermoelasticity and problems of interaction of solids
with acoustic media in ANSYS 11.0 and higher versions.

Published in the original edition.

The publishing of this textbook was carried out in the framework of the Tempus-IV
project \Internationalized Curricula Advancement at Russian Universities in the Southern
Region (ICARUS)".

ISBN 978-5-9275-1611-7 UDK 519.6+539.3+004.4
BBK 22.251

c
 Nasedkin A. V., Nasedkina A. A., 2015



Contents

Introduction 5

1 Some models of coupled problems for mechanics of solids 9
1.1 Basic notations. Vectors and tensors. . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Introduction to vectors and tensors. . . . . . . . . . . . . . . . . . 9
1.1.2 Main notations and values in coupled problems of elasticity theory . 13

1.2 General issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Modeling of electroelasticity problems. . . . . . . . . . . . . . . . . . . . . 19

1.3.1 Classical statements of electroelasticity problems. . . . . . . . . . 21
1.3.2 Generalized statements of electroelasticity problems . . . . . . . . . 28
1.3.3 Semi-discrete approximations in electroelasticityproblems . . . . . 38
1.3.4 Summary of the main features of electroelasticity problems . . . . . 41

1.4 Modeling of thermoelasticity problems . . . . . . . . . . . . . . . . . . . . 45
1.4.1 Classical statements of thermoelasticity problems. . . . . . . . . . 45
1.4.2 Generalized statements of thermoelasticity problems . . . . . . . . . 49
1.4.3 Semi-discrete approximations in thermoelasticity problems . . . . . 52

1.5 Problems of poroelasticity. Porothermoelastic analogy . . . . . . . . . . . . 54
1.6 Modeling of the interaction of deformable solids with acoustic media. . . . 57

1.6.1 Classical statements of acoustic problems. . . . . . . . . . . . . . . 58
1.6.2 Semi-discrete approximations on the base of generalized statements

and conjugation of acoustic equations with equations of solid structure 61
Exercises for Chapter 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2 Finite element method for coupled physico-mechanical pro blems 73
2.1 General scheme of Galerkin method. Dynamic and static problems. . . . . 73
2.2 Finite element method as a version of Galerkin method. Main ideas of FEM 77
2.3 Basic �nite element approximations. . . . . . . . . . . . . . . . . . . . . . 85
Exercises for Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3 Practical assignments and examples of solving problems in ANSYS 103
3.1 Practical assignment No. 1. Static deformation of a piezoceramic

transducer with multi-electrode coating. . . . . . . . . . . . . . . . . . . . 103
3.1.1 Example problem and solution methods. . . . . . . . . . . . . . . 104
3.1.2 Individual assignments. . . . . . . . . . . . . . . . . . . . . . . . . 129

3.2 Practical assignment No. 2. Plane problem of heating and cooling of a
thermoelastic body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3



4 CONTENTS

3.2.1 Brief information on the solution techniques for the transient
problems of thermoelasticity for isotropic bodies. . . . . . . . . . . 132

3.2.2 Example problem and solution methods. . . . . . . . . . . . . . . 135
3.2.3 Individual assignments. . . . . . . . . . . . . . . . . . . . . . . . . 145

3.3 Practical assignment No. 3. Steady-state oscillations of an elastic
transmitter in acoustic medium . . . . . . . . . . . . . . . . . . . . . . . . 146
3.3.1 Brief information on the solution techniques for the problems of

interaction of solids with acoustic media . . . . . . . . . . . . . . . 147
3.3.2 Example problem and solution methods. . . . . . . . . . . . . . . 150
3.3.3 Individual assignments. . . . . . . . . . . . . . . . . . . . . . . . . 166

References 171



Introduction

The main goal of this book is to describe mathematical models and
numerical methods of solving coupled physico-mechanical problems with
the use of modern software, mainly ANSYS �nite element package.

In accordance to this goal in the �rst chapter of this book we consider the
issues of mathematical modeling of coupled physico-mechanical problems,
such as the problems of electroelasticity, thermoelasticity, poroelasticity
and the problems of interaction of deformable solids with acoustic media.
The second chapter brie
y describes the classical techniqueof �nite element
approximations and basic �nite elements. The theoretical part of this book
in the third chapter is supplemented by a set of practical assignments on
solving coupled physico-mechanical problems in ANSYS of the version 11.0
and higher.

The methodology of studying coupled physico-mechanical problems
includes the following common stages: the formulation of theclassical
problem statement (the system of di�erential equations andthe boundary
and initial conditions); the transition from the classicalproblem statements
to the generalized problem statements; the application of discrete
approximations by spatial variables; the obtaining of the corresponding
system of discretized equations.

Despite of the common approach applied for simulating all problems
considered in the �rst chapter, each type of these coupled problems has its
own peculiarities.

The problems of electroelasticity are characterized by nonstandard
boundary conditions for electrodized surfaces, especially for the electrodes
powered by the current generators. These conditions are the analogs to the
boundary conditions of the contact type with rigid stamps foran elastic
solid.

In the problems of electroelasticity the feasible problem statements
include the statements for multilayer bodies with various physical
properties: piezoelectric bodies, elastic bodies, dielectrics.

5



6 INRODUCTION

An important role for practical applications of piezoelectric devices
belongs to the two sets of natural frequencies, namely, the frequencies
of electric resonances and antiresonances. In order to �nd them, it is
necessary to solve twice a generalized eigenvalue problem with slightly
di�erent boundary conditions for the electrodes. The necessity of solving
these problems is signi�cant for complete analysis of the majority of
piezotransducers that work in dynamic modes.

The problems of thermoelasticity are characterized by the boundary
conditions of the third kind, namely, the condition of the convective
heat transfer. These boundary conditions give additional contribution
to the symmetric bilinear forms of the generalized problem statement.
The important classes of the problems of thermoelasticity are the weakly
coupled problems, especially the problems of thermal stresses, in which the
problem for the temperature �eld does not depend on the displacement
�eld.

An interesting feature of the problems of poroelasticity is that an
analysis of one class of problems can be performed using the tools
developed for the other class of problems. Indeed, using porothermoelastic
analogy, the problems of poroelasticity can be solved as theproblems
of thermoelasticity. An important methodological example is the
demonstration of the e�ectiveness of the transition to a dimensionless
statement of the problem of poroelasticity, which makes it possible to align
the orders of the system coe�cients and as a result increase the e�ciency
of numerical methods, especially for nonlinear problems.

The problems of the interaction of deformable solids with acoustic media
are peculiar because they combine the problem statements for di�erent
�eld types, de�ned in di�erent media: a solid structure and a surrounding
acoustic (liquid or gaseous) medium. Here the coupling arises from the
boundary conditions of the contact between the solid structure and the
acoustic medium. Another feature of the problem is a nonre
ecting or
impedance boundary condition that determines the damping properties
in the problem. Using the example of such problems, it can be shown
how the choice of the main unknowns functions a�ects the form of the
resulting system of discretized equations. It turns out that the statements
of the acoustic problems on the base of the functions of the potential of
acoustic velocity are more convenient for conjugation with the statements
of the problems for the solid structure than the statements of the acoustic
problems on the base of the functions of the excessive pressure.
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The resulting boundary-value and initial boundary problemsare rather
complex and therefore require numerical methods that can e�ectively solve
these problems for the domains of complex shape. Nowadays, one of
such methods is the �nite element method. In connection to this, in the
second chapter we brie
y describe the �nite element method focusing on
its application to the solution of coupled physico-mechanical problems.

We show that the �nite element method is a special case of the general
procedure of discretization by the Galerkin method with the choice of a
special type of the basis from piecewise polynomial functions on canonical
domains. Usually these functions are of low order and have a compact
support. We note that the choice of the bases for the �nite element
methods determine the numerical e�ectiveness of the method: the sparsity
of the matrix, the simplicity of the calculation of the �nite element objects,
the possibility of the implementation of the assembling procedure, the
ease of taking into account the essential boundary conditions. The fact
that the �nite element method is constructed on the base of generalized
problem statements that have energetic and variational meaning leads to
the convergence of the approximate solutions by energy norms and also
to the possibility of the implementation of the methods for searching
the minimum of the quadratic functionals for the problems with positive
de�nite symmetric operators.

The popularity of the �nite element method is to a signi�cant degree
caused by its developed technology which is given some attention in this
book. We consider the issues of forming the global �nite element objects
from the corresponding element objects using the procedureof assembling
and the issues of the taking into account the essential boundary conditions.

In the framework of the general approach we describe isoparametric
�nite elements. Basic Lagrangian �nite elements are considered for 1D,
2D and 3D problems. For 1D problems, the shape functions for linear
and quadratic �nite elements are provided. For 2D problems linear and
quadratic �nite elements are considered for the elements ofthe serendipity
type. The ideology used for the construction of 2D problems isextented to
3D elements for tetrahedrons and hexahedrons with linear andquadratic
approximations on canonical �gures. The basis functions of �nite elements
are also provided in the form of prisms and pyramids. The issues of the
consistency of the �nite element meshes are also discussed.

In the third chapter we provide the practical assignments that support
the theoretical part of this book. The assignments are devoted to solving
the model problems of piezoelectricity, thermoelasticityand problems of
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the interactions of solids with acoustic media using ANSYS version 11.0
and higher. Each assignment is supplied by a description of nonstandard
methods and techniques of solving in ANSYS the speci�c types of coupled
physico-mechanical problems. The programs in the command program
language APDL ANSYS are provided with detailed comments. An analysis
of the obtained results is also given. For independent work we provide a set
of individual assignments for solving the model problems ofpiezoelectricity,
thermoelasticity and problems of interaction of solids withacoustic media
in ANSYS. It is assumed that the readers have basic knowledge of working
with ANSYS [20, 30, 31] and are familiar with its program language APDL.

The book is intended in the �rst place as a support for the course
\Finite element modeling of coupled problems", that is given in the
framework of the Master's degree program `IT in Biomechanics" in the
Institute of Mathematics, Mechanics and Computer Science ofSouthern
Federal University. The book can be also used by the under-graduate
students and graduate students of various specializationswho study
Applied Mathematics, Numerical Methods or the problems of speci�c
coupled physico-mechanical problems as well as by researches and engineers
who wish to deepen their knowledge concerning the methodology of the
mathematical modeling of coupled problems of mathematicalphysics and
�nite element technologies of their solution.

The authors express their gratitude to the Director of the Institute of
Mathematics, Mechanics and Computer Science M. Karyakin who initiated
the publication of the series of the monographs in the framework of the
project of Tempus-IV program, which facilitated the intensi�cation of the
author's work on this book.



Chapter 1

Some models of coupled problems
for mechanics of solids

1.1 Basic notations. Vectors and tensors

This section serves for reference purposes and concerns the notations
on vector and tensor values that we will use further. More details on
vectors and tensors can be found in numerous publications (see, for example
[38, 18, 19], etc.) Here we provide basic information on this issue.

1.1.1 Introduction to vectors and tensors

Let Rn be a Eucledian space. The elements of this space calledvectors
will be denoted here by bold and (as a rule) small letters:a 2 Rn.

Let us select an orthonormal basisei 2 Rn, i = 1; 2; :::; n in Rn. Then
any vector a 2 Rn can be presented as a series expansion in the basis

a =
nX

i =1

ai ei
def= ai ei

with the coordinatesa1, a2, ..., an.
Hereinafter we useEinstein summation rule over repeated indiceswhere

upper and lower indices are not distinguished.
As Rn is a linear space, then the operations of addition and

multiplication by a scalar are already de�ned in it. Thus, if � , � 2 R;
a = ai ei , b = bi ei 2 Rn, then � a + � b = ( �a i + �b i ) ei 2 Rn.

The space Rn, as a Eucledian space has an operation ofscalar
multiplication:

a � b = ( ai ei ) � (bj ej ) = ai bj ei � ej = ai bj � ij = ai bi :

9



10 CHAPTER 1. SOME MODELS OF COUPLED PROBLEMS

Here � ij is the Kronecker delta (� ij = 1, if i = j ; � ij = 0, if i 6= j ), and
we use that for the orthonormal basisei � ej = � ij .

In vector-matrix notations we will write the set of vector coordinates
a in a form of a column vectora = f a1; a2; :::; ang or row vector a� =
ba1; a2; :::; anc. Whereas in tensor notations the column vector and the row
vector can be not distinguished, in the matrix algebra we willdenote the
multiplication of a matrix K by a column vectora on the right as K � a,
and the multiplication of a matrix K by a row vector a� on the left will
be denoted asa� � K . Then if I is a unit matrix, then b � � I � a = b � � a.
Thus, the scalar multiplication of two vectors can be presented in di�erent
forms: b � a (using tensor notation) orb � � a (using matrix notation).

If e0
1, e0

2, ..., e0
n is another orthonormal basis inR n, then we can introduce

a matrix Q (matrix of direction cosines)

[Q]ij = qij = e�
i � e0

j ; (1.1)

and represent the vectors of one basis by the vectors of another basis

ei = qij e0
j ; e0

i = � ij ej ; � ij = qj i ; (1.2)

and obtain the recalculation formulas for the coe�cients of the vector
a = ai ei = a0

j e
0
j under the change of the basis

ai = qij a0
j ; a0

i = � ij aj ; (1.3)

or in the matrix form

a = Q � a0; a0= A � a; A = Q � ; (1.4)

whereQ � is the transpose matrix.
As it can be easily proved, the transition matrixQ is orthogonal:

Q � � Q = Q � Q � = I ; Q = ( Q � )� 1:

As a result, the vectora can be thought of as a set of numbersf a1; a2,
:::, ang, referred to the basisf e1, e2, ..., eng where with the transition to
a di�erent basis f e0

1, e0
2, ..., e0

ng the numbers change according to the laws
(1.3), (1.4).

Let us now consider a Cartesian product ofp Euclidean spaces Rn:

Tn
p

def= R n 
 Rn 
 ::: 
 Rn
| {z }

p

:

The elements of this space will be calledtensors(Euclidean tensors) of
the rank p and will be denoted, as vectors, in bold letters.
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In T n
p we can select a basis consisting of the elements

ei 1 
 ei 2 
 ::: 
 ei p| {z }
p

def= ei 1 ei 2::: ei p ;

wherei k 2 f 1; 2; :::; ng, ei k are the vectors of an orthonormal basis in Rn.
Then any elementX 2 Tn

p can be presented as an expansion in the basis

X = X i 1i 2:::i pei 1 ei 2::: ei p

with the componentsX i 1i 2:::i p , and it is obvious that dim Tn
p = np.

The vectors can be considered as the tensors of the �rst rank, i. e.
Rn � Tn

1; and from the components of the second rank tensorX = X ij ei ej

we can compose a square matrix [X ]ij = X ij of the order n � n.
The Cartesian product of the Euclidean spaces is closely connected with

the operation oftensor multiplication (external multiplication)

X = X i 1i 2:::i pei 1 ei 2::: ei p 2 Tn
p ; Y = Yj 1j 2:::j qej 1 ej 2::: ej q 2 Tn

q :

X Y def= X i 1i 2:::i pYj 1j 2:::j qei 1 ei 2::: ei p ej 1 ej 2::: ej q 2 Tn
p+ q:

Accordingly, two vectorsa = ai ei , b = bj ej 2 Rn = T n
1 can constitute

a second rank tensora b = ai bj ei ej 2 Tn
2, called diad. The components of

this tensor constitute a matrix a b � : [a b � ]ij = ai bj .
For the second rank tensorX = X ij ei ej we will use theoperation of

transposition:
X � = X ji ei ej ;

which leads to the transposition of the matrix of the tensor coe�cients.
The second rank tensorX 2 Tn

2 is calledsymmetric, if X = X � .
In a similar way we can speak of symmetry of an arbitrary rank tensor by

a certain pair of indices. For example, the third rank tensors of piezomoduli
e = eikl ei ek el , that will be used further in section 1.3, will be symmetric
by the last two indices: eikl = eilk . For such tensors the transposition
operation will denote the permutation of the �rst and the third indices or a
pair of the �rst two indices and the third one: e� = elki ei ek el = elik ei ek el .

By analogy with vectors, for tensors of arbitrary rank we can consider
the operations of addition and multiplication by a scalar. Namely,

8 �; � 2 R; X = X i 1i 2:::i pei 1 ei 2::: ei p ; Y = Yi 1i 2:::i pei 1 ei 2::: ei p 2 Tn
p :

� X + � Y = ( �X i 1i 2:::i p + �Y i 1i 2:::i p) ei 1 ei 2::: ei p 2 Tn
p:
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Although there is a speci�c concept of scalar multiplicationfor tensors,
we will consider a more important for further application operation of inner
product (simple productor contraction)

8 X = X i 1i 2:::i pei 1 ei 2::: ei p 2 Tn
p; Y = Yj 1j 2:::j qej 1 ej 2::: ej q 2 Tn

q :

X � Y def= X i 1i 2:::i p� 1kYki p:::i p+ q� 2ei 1 ei 2::: ei p+ q� 2 2 Tn
p+ q� 2;

where there is a contraction of the last index ofX and the �rst index of Y
(summation overk in the last formula).

For the tensorsX 2 Tn
p, Y 2 Tn

q with p � 2, q � 2 we can de�ne the
operation ofdouble inner product(double contraction)

8 X = X i 1i 2:::i pei 1 ei 2::: ei p 2 Tn
p; Y = Yj 1j 2:::j qej 1 ej 2::: ej q 2 Tn

q; p; q � 2 :

X : Y def= X � �Y def= X i 1i 2:::i p� 2lk Ykli p� 1:::i p+ q� 4ei 1 ei 2::: ei p+ q� 4 2 Tn
p+ q� 4;

which, as it can be seen, consists of successive application of the simple
product (contraction) operation two times.

Thus, for the fourth rank tensor of elastic sti�nesscE = cE
ijkl ei ej ek el 2

T3
4 and the second rank strain tensor" = " rser es 2 T3

2 that will be
introduced further in section 1.3 it holds thatcE : " = cE

ijkl " lk ei ej 2 T3
2.

Under the transition to an orthonormal basise0
1, e0

2, ..., e0
n in R n

according to the laws(1.1), (1.2) the components of the tensorX 2 Tn
p

change according to the laws that generalize(1.3)

X = X i 1i 2:::i pei 1 ei 2::: ei p = X 0
j 1j 2:::j p

e0
j 1

e0
j 2

::: e0
j p

;

X i 1i 2:::i p = qi 1j 1qi 2j 2:::qi p j p X 0
j 1j 2:::j p

; X 0
i 1i 2:::i p

= � i 1j 1 � i 2j 2:::� i p j p X j 1j 2:::j p :
(1.5)

A change in the tensor componentsX 2 Tn
p under the transition from

one orthonormal basis to another according to the formulas (1.5) is a
fundamental property that de�nes the very concept of the tensor.

Let � = � (x) 2 T3
p be a tensor function of the vector of spacial

coordinatesx 2 R3, that has su�cient properties of smoothness (tensor
�eld ). A gradient operator

r = ek
@

@xk
;

is callednabla operatorand has a rank of a vector (i. e. it is a �rst rank
tensor).
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A nabla operator and a tensor �eld can be used for various tensor
operations. For example, a tensor product of the operatorr and the
vector �eld a = a(x) 2 T3

1 gives the second rank tensor

r a =
@aj
@xi

ei ej :

Inner product of the nabla operatorr and the tensor �eld � (x) 2 T3
p

gives the tensor of the rankp � 1 which is called thedivergenceof the
tensor �eld

div � def= r � � = ek
@�
@xk

=
@� ki 2:::i p

@xk
ei 2::: ei p :

In particular, the divergence of the vector �elda = a(x) is a scalar value
(zero rank tensor)

r � a =
@ak
@xk

def= ak;k :

Finally, we provide the Gauss (Gauss-Ostrogradsky) formula for the
tensor �elds. If 
 is a bounded volume in R3, � = @
 is a closed piecewise
smooth surface,n = n(x) is the vector of an external unit normal to the
point x 2 �, then for continuously di�erentiable tensor �eld � 2 T3

p of an
arbitrary rank p the Gauss (Gauss-Ostrogradsky) formulaholds:

Z



r � � d
 =

Z

�
n � � d� ;

which generalize an analogous formula from mathematical analysis for
vector �elds.

1.1.2 Main notations and values in coupled problems of
elasticity theory

This subsection contains main notations for the �eld characteristics,
material properties and external in
uences, that are introduced and used
further in sections 1.3 { 1.6. The description of each value contains its
dimension in international system of units SI, where a dimensionless value
is denoted by symbol \1".

Characteristics of mechanical, electric, thermal, �ltration and acoustic
�elds:
u { displacement vector, m;
" { strain tensor, 1;
� { stress tensor, N/m2 = Pa;
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' { electric potential, V;
E { electric �eld intensity vector, V/m;
D { electric induction (electric displacement) vector, C/m2;
T { temperature, K;
T0 { temperature of the natural state, K;
� { temperature increase, K;
S { density of entropy (thermodynamic entropy), measured from the
natural state, J/(K � m3) = N/(m 2 � K) = Pa/K;
q { heat 
ux vector (speci�c heat 
ux vector, heat 
ux density v ector),
W/m 2;
� { porosity, 1;
v { �ltration velocity (in poroelasticity), acoustic veloci ty (in acoustics),
m/s;
p { pore pressure (in poroelasticity), excess acoustic pressure (in acoustics),
N/m 2 = Pa;
 { velocity potential, m 2/s.

Material properties:
� { density, kg/m 3;
cE (c) { elastic moduli tensor, calculated at constant electric �eld, N/m2

= Pa;
e { piezomoduli tensor, C/m2;
� S { tensor of dielectric permittivities, calculated at constant strains, F/m;
� d { damping coe�cient (the �rst damping coe�cient with account for
Rayleigh damping), 1/s;
� d { damping coe�cient (the second damping coe�cient with account for
Rayleigh damping), s;

 { tensor of thermal stress coe�cients, J/(K � m3) = N/(m 2 � K) = Pa/K;
c" { speci�c heat at constant strain, J/(kg � K) = m 2/(s 2 � K);
k { tensor of thermal conductivities, W/(m � K);
� f { 
uid density, kg/m 3;
b { Biot's tensor, 1;
N { Biot's modulus, m2/N = 1/Pa;
K { tensor of �ltration coe�cients, m/s;
c0 { speed of sound in acoustic medium, m/s.

External in
uences and couplings:
f { mass force density vector, N/kg = m/s2;
� 
 { bulk density of the electric charges, C/m3;
W { heat source intensity, W/m3;
u � { displacement vector on the boundary, m;
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p � { stress vector, N/m2 = Pa;
Vj { electric potential on the electrode �'j , V;
Qj { total electric charge on the electrode �'j , C;
� � { surface density of electric charges, C/m2;
! { circular frequency (angular frequency, radial frequency, rotation
frequency), rad/s = rad � Hz;
f = != (2� ) { frequency, 1/s = Hz;
� � { temperature (temperature increase) on the part of the boundary, K;
q� { heat 
ux on the surface, W/m 2;
hf { heat transfer coe�cient on the surface, W/(m2�K);
� b { temperature (temperature increase) of external medium, K;
Z { impedance of the boundary, N� s/m.

1.2 General issues

In classical problems of mathematical physics physical �elds are usually
considered to be of speci�c nature. For example, the problems of the
elasticity theory for deformable solids study the mechanical �elds arising
from mechanical external in
uences, such as the displacement vector �elds
u = u(x; t), the tensor �elds of strains " = " (x; t), stresses� = � (x; t),
etc. The thermal conductivity problems consider the changesof the
temperature �eld � = � (x; t) under the thermal in
uences. The problems
of electrostatics and quasielectrostatics investigate the electric �elds, such
as the scalar �eld of the electric potential' = ' (x; t), the vector of the
electric �eld intensity E = E(x; t), etc., that emerge in dielectrics under
the electric external in
uences. The examples of similar problems can be
easily extended.

All above cases can be attributed to the speci�c type of the problems
of mathematical physics. Indeed, transient dynamic problems of the
elasticity theory are described by the systems of equationsof hyperbolic
type (limiting case). Transient equations of thermal conductivity are the
equations of parabolic type, and the equations for dielectrics have elliptical
type. Note that for the problems with systems of di�erential equations (for
example, the problems of elasticity theory), all equationsusually contain
spatial derivatives of the same order and time derivatives of the same order.

The coupled problems, where the �elds of di�erent nature are dependent
on each other, are more complex from the mathematical viewpoint. For
example, in the problems of thermoelasticity the mechanical and thermal
�elds are coupled with each other. In the problems of electroelasticity for
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the piezoelectric media the mechanical and electric �elds are coupled, in
the problems of thermoelectroelasticity the coupled �eldsare the thermal,
mechanical and electric ones.

The interaction of the �elds of di�erent nature is re
ected in
fundamental laws that form the basis of the theories of coupled physico-
mechanical �elds. This coupling has many forms and appears inessentially
di�erent ways for various situations and for various media.As a result,
there are a lot of independent practically important theories of mechanics
of solids with complex properties, which additionally can consider various
mechanisms of coupling. For example, several theories can be considered
in the framework of the theory of thermoelasticity, such as theory of
thermal stresses, theory of thermal conductivity with a �nite velocity of
heat propagation, theory of thermal heating under steady-state oscillations,
etc.

The computational results of the problems with coupled physico-mecha-
nical �elds are quite complex, because of both increasing number of the
unknown �eld parameters and di�erent scales changes in time for the main
and associated �elds. Nowadays, the most e�cient numerical method that
enables to conduct analysis of the problems of the elasticity theory with
complicated properties is the �nite element method (FEM).

There is a range of \heavy" commercial �nite element (FE) packages
(ANSYS, ABAQUS, COMSOL, MSC MARC, etc.) that allow performing
computations of the coupled problems, as well as several specialized
packages oriented to various classes of the elasticity theory problems with
complicated physico-mechanical properties (for example,ICEPACK for the
thermoelasticity problems, PZFlex, ATILA, ACELAN for piezoelectricity,
etc.)

It is obvious, that in the view of complexity of the coupled problems
both in the methodology and in the implementation of �nite element
calculations, there is still a wide �eld for research. The comparison of
di�erent �nite element methods and their implementations in terms of
accuracy, speed and e�ciency is also of interest. Speci�c features of
coupled physico-mechanical problems make relevant both mathematical
studies and development of e�ective numerical methods, special software
and modules for existing computational packages enabling to automate
some of the important stages of coupled analysis.

Let us give a classi�cation of the coupled problems on the example of
two �elds of di�erent nature, such as the displacement �eldu(x; t) and the
temperature �eld (more precisely, the temperature increase �eld) � (x; t).
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The system of coupled di�erential equations for the main �eldu(x; t) and
for the related �eld � (x; t) in general case can be described in the form:

Luu(r ; @t)u + Lu� (r ; @t)� = fu;

L �u (r ; @t)u + L �� (r ; @t)� = f � ;

where Luu, Lu� , L �u , L �� are the di�erential operators, which can be
nonlinear and dependent on the functionsu and � .

For classical problem settings this system should be supplied with the
corresponding boundary and initial conditions. For further mathematical
analysis and application of numerical method it is convenient to move to
the generalized or weak problem settings usually represented by variational
or energy relations, that express the principles of the equality of works and
the energy balance of the system.

Let us apply semi-discrete approximations to the weak boundary-value
problems setting in the corresponding �nite-dimensional space that can be
expressed as

u(x; t) � N �
u(x) � U (t); � (x; t) � N �

� (x) � T (t)

with the matrix of the basis functions N u(x), the vector of the
basis functions N � (x) and the vectors of the functions (constants) of
approximation U and T (nodal degrees of freedom in the �nite element
method)

A uu(@t) � U + A u� (@t) � T = Fu; (1.6)

A �u (@t) � U + A �� (@t) � T = F � ; (1.7)

whereA uu 6= 0; A �� 6= 0.
The most important types of coupled problems are as follows:

{ if A u� 6= 0; A �u 6= 0, then we have the problems with full matrix coupling;
{ if A u� = 0; A �u = 0, and some diagonal blocks (A uu of A �� ) depend on
the �elds of di�erent nature (for example, A uu = A uu(T )), then we have
the problems with block-diagonal matrix coupling;
{ if one of the blocksA u� or A �u is equal to zero, than we have the problems
with partial coupling.

Then, there are cases when the time derivatives are absent in certain
matrix blocks and present in the others.

The classes of coupled physico-mechanical problems comprise the prob-
lems of thermoelasticity, electroelasticity, magnetoelasticity, acoustoelas-
ticity, thermoelectroelasticity, acoustoelectroelasticity, etc.
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The solution methods for coupled problems depend on the coupling
type. The problems with full matrix coupling can be solved by conventional
�nite element algorithms, for example, the algorithms for asingle vector
of unknownsa = f U ; T g. In the problems with the time derivatives of
di�erent order the block algorithms, that use the reductionof quasi-static
degrees of freedom, can be more suitable. For example, in theproblems
of electroelasticity, it can be convenient to reduce the electric potential
degrees of freedom.

The problems with block-diagonal matrix coupling are usually
nonlinear, and they can be solved with the use of the Newton-Raphson
method for nonlinear problems.

In the problems with partial coupling, for example, whenA �u = 0, the
discretized problems are solved in two steps. First, we solve the problem
for the related �eld T

A �� (@t) � T = F � :

Second, the obtained valuesT are substituted in the equation for the main
�eld U :

A uu(@t) � U = Fu � A u� (@t) � T :

Essentially this problem is an ordinary problem for the main�eld, but it
contains additional terms in the vector of the right-hand side.

Finally, there are coupled problems in which the right-hand side vectors
depend on unknown functions, for example,Fu = Fu(U ; T ), F � =
F � (U ; T ). Such situations also arise when solving the problems with full
matrix coupling using iterative algorithms. For example, problem (1.6),
(1.7) with full matrix coupling can be written in the form

A uu(@t) � U = ~Fu; (1.8)

A �� (@t) � T = ~F � ; (1.9)

with ~Fu = Fu � A u� (@t) � T , ~F � = F � � A �u (@t) � U , and it is possible to
apply iterative methods to solve this problem.

In more general case, ifA uu = A uu(U ; T ), A �� = A �� (U ; T ), ~Fu =
~Fu(U ; T ), ~F � = ~F � (U ; T ), then problem (1.8), (1.9) is nonlinear and
its solution requires special iterative methods. Accordingto ANSYS
terminology [1], such problem is called a problem with weak (sequential)
coupling.
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1.3 Modeling of electroelasticity problems

In this section, the main objects for investigation will be active
dielectrics that have piezoelectric properties. The piezoelectric e�ect
consists in the linear relation between electric and mechanical �elds. The
history of this phenomenon is described in many works, such as [7, 10]
and others. Here we will only provide a brief history of the piezoelectric
e�ect. In the 1880s, Pierre and Jacques Curie found that some crystals
were exhibiting unusual properties under tension in certain directions:
the electric charges were generated on the surfaces of thesecrystals, and
these charges were proportional to the applied load. This phenomenon has
been called thedirect piezoelectric e�ect (from the Greek verb \piezein"
meaning \to press"). Soon after this discovery in 1881 Gabriel Lippmann,
using thermodynamic relations and his theorem of reversibility of physical
phenomena, predicted aninverse piezoelectric e�ectthat consisted in the
following: the crystals that had piezoelectric properties under the presence
of electric �eld should deform according to the linear law. Inthe same
year the existence of the inverse piezoelectric e�ect was experimentally
con�rmed by Pierre and Jacques Curie who found that the piezoelectric
modules (the proportionality factors) of the direct and inverse piezoelectric
e�ect were the same.

Pierre Curie has also formulated the principles that relate the properties
of symmetry and asymmetry in the phenomena to the causes thatgenerate
them [11]. According to the principles of Pierre Curie, the phenomenon
has all elements of symmetry of the causes that generate it and can also
has higher symmetry that its causes. Similarly, an asymmetry of the
phenomenon is predetermined by an asymmetry of its causes. In other
words, the phenomenon can exist only in the system that is thesymmetry
subgroup for this phenomenon.

According to these principles, in the system \crystal { external
in
uences" the crystal changes its symmetry in such way thatthe only
remaining elements are those common with the elements of the in
uence.
Therefore, as the symmetrical tension has the center of symmetry, than for
the crystals with the center of symmetry under symmetrical tension the
central symmetry should remain. However, as the phenomenon of electric
polarization does not have the central symmetry, than such asymmetry
should be predetermined by asymmetry of the system. Therefore, from the
Curie principle we can conclude thatonly those crystals that do not have the
centers of symmetry can have piezoelectric properties. The connection of
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the piezoelectric e�ect phenomenon with the crystal structure was studied
in more details by V. Feucht in 1884. As it follows from the previous
discussion, all these classes of crystals cannot have the center of symmetry.
As a result, it was theoretically proved that the piezoelectric materials were
necessarily bound to be anisotropic.

Over many years natural crystals were the only available piezoelectric
materials, and many piezoelectric devices were constructed on their base.
Later, approximately since the middle 60s of the twentieth century,
arti�cial piezoceramic materials became to be developed and used. It was
found that the materials on the base of barium titanate (BaTiO3) had
rather strong piezoelectric e�ect. The subsequent developments showed
that the PZT materials on the base of zirconate, or lead titanate, had
even greater sensitivity and could work at rather high temperatures. As
a result, this led to the emergence of a whole production technology
for new piezoceramic materials and piezoelectric devices based on them.
Modern piezoelectric ceramics is several times more sensitive to the electric
and mechanical in
uences than natural piezocrystals. Varying the initial
compounds of piezoceramics, it is possible to create materials with various
properties that meet the needs of the consumer. Piezoceramics is strong
enough, chemically inert and relatively cheap in production. Besides, it
can be used to manufacture piezoelectric elements of almostany required
shape and sizes.

At present the work of many piezoelectric devices is based onthe e�ect
of mechanical and electric �eld coupling. These devices are made of various
specially designed formulations of piezoceramics. Modernpiezoelectric
manufacture has an extremely wide �eld of application.

Piezoelectric transducers transform electric external in
uence (electric
voltage or current) into mechanical movements, usually, insonic or
ultrasonic vibrations. Piezoelectric transducers that generate ultrasonic
acoustic vibrations, are used in medical diagnosis and therapy for spraying
liquids, cleaning surfaces, as, for example, in ultrasoundwashing machines,
in welding, in order to improve gas and oil recovery and for many
other applications. The reversibility of the piezoelectrice�ect allows
piezoelectric transducer not only to generate mechanical vibrations but also
to receive and register them transforming mechanical signals into electrical.
Therefore, piezoelectric transducers are widely used as distance sensors,
liquid level sensors, parameters of environment, etc.

Other types of piezotechical devices are generators, piezoelectric
transformers, piezoelectric �lters, delay lines, etc. Mathematical models
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of piezoelectric devices are based on the equations of coupled theory of
elasticity or piezoelectricity. The bibliography on piezoelectricity is wide
enough and it can be subdivided in several groups, such as theworks on
physics aspects, the works devoted to application or technical issues of
piezoelectric engineering which are the most numerous, and,lastly, the
works that cover mechanical, mathematical and numerical problems of the
electroelasticity theory. The classical works that describe in details the
physical and mechanical aspects of piezoelectricity are [6, 7] and others.
Various problems of the electroelasticity theory as the area of mechanics are
presented in [17, 21, 26, 28], and numerical methods of solving the problems
of electroelasticity are given in [17]. Modern approaches to the calculation
of piezoelectric devices are based on the �nite element technologies, the
triangulation and assembly algorithms, and the methods forsolving the
problems of computational mathematics with large sparse matrices. The
base for these approaches lies in the weak or variational statements for
coupled problems of electroelasticity and their approximations. These
issues will be discussed below.

1.3.1 Classical statements of electroelasticity problems

Let 
 be a bounded domain in R3, occupied by a piezoelectric body;
� = @
 is the boundary of the domain 
; n = n(x) is the vector of the
external unit normal to � ( x 2 �).

We will consider that the state of the piezoelectric medium isde�ned by
the vector-function of displacementsu = u(x; t) and the scalar function of
electric potential ' = ' (x; t).

The vector-function of displacementsu(x; t) determines the tensor of
small strains

" = ( r u + r u � )=2; (1.10)

and the vector of electric �eld intensity depends on the function of electric
potential

E = �r ': (1.11)

We note that the components" ij of the strain tensor and the components
E i of the electric �eld intensity vector are obtained through the �rst
derivatives by spatial coordinates from the �eld functionsui (x; t) and
' (x; t), respectively,

" ij =
1
2

(
@ui
@xj

+
@uj
@xi

) =
1
2

(ui;j + uj;i ); (1.12)
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E i = �
@'
@xi

= � ' ;i : (1.13)

In linear approximation, for piezoelectric medium there isa linear
relation between the strain tensor" and the electric �eld intensity vector
E on one side and the stress tensor� and the electric induction vectorD
on the other side. These dependences are called the constitutive relations
and are given in the form:

� = cE : " � e� � E; (1.14)

D = e : " + � S � E: (1.15)

Here cE is the fourth rank tensor of the elastic moduli calculated at
constant electric �eld (E); e is the third rank tensor of piezomoduli;� S is
the second rank tensor of dielectric permittivities, calculated at constant
strains (S).

In a component-wise setting, Eqs. (1.14), (1.15) can be written in the
form:

� ij = cE
ijkl "kl � ekij Ek; (1.16)

D i = eikl "kl + � S
ik Ek: (1.17)

Let us note that the stress tensor� is the symmetric second rank tensor,
i. e. � ij = � ji .

The elastic moduli tensorcE is the semi-symmetric fourth rank tensor

cE
ijkl = cE

jikl = cE
ijlk = cE

klij ; (1.18)

and the piezomoduli tensore of the third rank is symmetrical only by the
last two indices

eikl = eilk : (1.19)

The components cE
ijkl , eijk , � S

ij are the material constants that
characterize the elastic (sti�), piezoelectric and dielectric properties
of the body, respectively. In the majority of cases these values are
constant (for homogeneous bodies) or piecewise constant (for piecewise
homogeneous bodies). However, for inhomogeneous bodies themodules
can be continuous or piecewise continuous functions ofx.

If we reduce Eq. (1.14), using double inner product (double contraction)
by " , scalar multiply Eq. (1.15) by E � , and then add up the obtained
relations, then we will get the expression for the density of the internal
energy of piezoelectric body

� =
1
2

(" : � + E � � D ) =
1
2

(" : cE : " + E � � � S � E): (1.20)
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From physical requirements of the positive de�niteness forthe internal
energy the following conditions of the positive de�nitenessfor the elastic
moduli and dielectric permittivity tensors take place:

9� 1 > 0 : 8" = " � ; " : cE : " � � 1 " : " ; (1.21)

9� 2 > 0 : 8 E; E � � � S � E � � 2 E � � E: (1.22)

For a continuum the motion equations must hold, which in linear
approximation and neglect of damping factors have the same form as in a
conventional elasticity theory:

r � � + � f = � •u; (1.23)

where� = � (x) is the density of the material,f = f (x; t) is the mass force
density vector, •u = @2u=@t2.

As the velocities of elastic and electromagnetic waves di�erin orders,
and piezoelectric media are the non-conducting dielectrics, we can adopt
the approximation equations of quasi-electrostatics

r � D = � 
 ; (1.24)

where � 
 is the bulk density of electric charges, and usually in dielectrics
� 
 = 0.

In a component-wise setting, Eqs. (1.23), (1.24) take the form:

� ij;j + � f i = �u i;tt ; (1.25)

D i;i = � 
 : (1.26)

Substituting (1.23), (1.24) into the constitutive relations (1.14), (1.15)
and formulas (1.10), (1.11), we get the resulting system of di�erential
equations for linear electroelasticity regarding the functions u and ' :

r � (cE : r u + e� � r ' ) + � f = � •u; (1.27)

r � (e : r u � � S � r ' ) = � 
 : (1.28)

(Here we have used the fact that, as a result of the symmetry properties
(1.18), (1.19) of the tensors cE and e, the following equalities hold:
cE : " = cE : r u; e : " = e : r u.)

In a component-wise setting, system (1.27), (1.28) will be written as
follows:

(cE
ijkl uk;l + ekij ' ;k);j + � f i = �u i;tt ; i = 1; 2; 3; (1.29)
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(eikl uk;l � � S
ik ' ;k);i = � 
 : (1.30)

As it is seen, for piezoelectric medium we have coupled system(1.29),
(1.30) of four di�erential equations with respect to the four functions
ui = ui (x; t), i = 1; 2; 3; ' = ' (x; t). All these equations are the equations
of the second order in spatial variables. Meanwhile, time derivatives (of the
second order) are present in Eqs. (1.29), but are absent in the equations
of quasi-electrostatics (1.30). This fact is a signi�cant feature of the
electroelasticity equations.

In order to set an initial boundary value electroelasticityproblem,
system of equations (1.27), (1.28) or (1.29),(1.30) should be supplemented
by boundary and initial conditions.

The boundary conditions can be split in two groups, mechanical and
electric. To formulate mechanical boundary conditions, weassume that
the boundary � is divided into two parts � u and � � , where, respectively,
the displacement vectorsu � and the stress vectorsp � are set:

u = u � ; x 2 � u ; (1.31)

p = n � � ; p = p � ; x 2 � � ; (1.32)

where, generally speaking, the external in
uencesu � and p � can depend
on x and t.

Therefore, here we con�ne ourselves only to the main conditions of the
�rst and second kind: condition (1.31) is the condition of the �rst kind or
the condition of the Dirichlet type, and condition (1.32) is the condition
of the second kind or the condition of the Neumann type. However, these
conditions can be set on the parts of the boundary, i. e. it is not necessary
that � = � u or � = � � .

Important cases are the homogeneous boundary conditions ofthe �rst
and second kind, whenu � = 0 or p � = 0. In the case ofu � = 0 the part
of the boundary � u is said to be rigidly �xed, and whenp � = 0 the part
of the boundary � � is said to be free from stresses. In the same way as it
holds for elastic body, in the electroelasticity theory thecondition of the
rigidly �xed boundary is the most common type of the boundarycondition
of the �rst kind ( 1.31), and on the major part of the boundary � = � � the
vector p � is usually equal to zero.

We note that for the uniqueness of the solution it is convenient to require
that the boundary � u is not empty, i. e. the solutions of the homogeneous
boundary-value problem in a form of rigid body motion are notallowed:
u = urigit = uc + ! c � x, uc = const, ! c = const.
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In order to set electric boundary conditions, we will assume that there
exists another division of the boundary �: � = � ' [ � D .

The part � ' can in its turn consist of discontiguous parts �'j ; j =
0; 1; :::; M , i. e. � ' = [ j � 'j . We will call these parts the electrode
surfaces. In reality the regions �'j are the parts of the boundary of
the piezoelectric body, that are covered with metallized surfaces that are
called electrodes. The metal covering is usually very thin and can be
mathematically considered to be in�nitely thin. However, because of the
assumption that is adopted in quasi-electrostatics, the electric potential � � j

that falls to the electrode � 'j immediately spreads to the entire part �'j ,
and therefore � � j does not depend onx on � 'j . Consequently, the electrode
should be considered as an equipotential surface.

The presence of the electrodes is an important feature of the problems
of quasi-electrostatics for dielectrics and more general problems of
electroelasticity.

Besides, two important cases should be distinguished for electrodes. On
some electrode surfaces �'j the values of potentials �� j can be considered
to be known (� � j = Vj ), and such electrodes will be further referred to as
the electrodes powered by voltage generators.

On the other electrode surfaces �'j the potentials � � j , that are still
independent fromx, are the unknown values. However, for them the total
electric chargeQj or current I j = � dQj =dt is considered to be unknown,
where the sign \+" or \ � " is determined by the direction of the current
in the external circuit. The parts � 'j of the second type will be called the
electrodes powered by current generators.

For the electrodes of the �rst type, whenVj = 0, we will speak about
short-circuited of grounded electrodes, and for the electrodes of the second
type, whenQj = 0 we will speak about free electrodes that are not powered
by electric current.

The described above boundary conditions for the electrodes can be
mathematically formulated in the following way. Let � ' = � V [ � Q;
� V = [ � 'j , j 2 JV = f 0; m + 1; :::; M g; � Q = [ � 'j , j 2 JQ = f 1; 2; :::; mg,
and the parts � 'j do not touch each other. (The latter is required in order
not to allow situations with discontinuous boundary conditions for electric
potential.)

On the electrodes �'j � � V , powered by voltage generators we set the
potentials Vj :

' = � � j ; � � j = � � j (t) = Vj (t); x 2 � 'j ; j 2 JV : (1.33)
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On the electrodes �'j � � Q, powered by current generators we set the
following boundary conditions:

' = � � j ; � � j = � � j (t); x 2 � 'j ; j 2 JQ ; (1.34)
Z

� 'j

n � D d� = � Qj ; I j = � _Qj ; j 2 JQ : (1.35)

The speci�city of boundary conditions (1.34), (1.35) consists not only in
the fact that the function ' (x; t) should take constant values �� j (at every
�xed time moment t) but also in the setting of a special integral condition
that is actually an additional equation for �nding � � j .

In the elasticity theory an analogue of conditions (1.34), (1.35) is
the contact boundary condition. If a rigid stamp is indentedinto the
deformable body, than the stamp sediment is analogous to thepotential
� � j , and an integral condition is set for �nding the sediment, that expresses
the equality of the integral of contact stresses under the stamp and the total
force acting on the stamp (if we do not take into account the moments and
rotations of the stamp).

Here the distinction from the problems of the elasticity theory consists
in the following fact. For the problems of the elasticity theory the boundary
conditions (1.34), (1.35) are adopted only for some types of problems,
whereas for the problems of electroelasticity conditions (1.34), (1.35) are
required to analyze the work of the majority of real-world piezoelectric
devices.

Finally, on the non-electrode surfaces �D the surface density of electric
charges� � = � � (x; t) is set

n � D = � � � ; x 2 � D : (1.36)

Condition (1.36) clari�es ( 1.35). As it is known from electrostatics of
dielectrics, (� n � D ) is the surface density of electric charges, therefore an
integration of the function (� n � D ) over the whole part � 'j gives the total
electric charge on this part.

Thus, the main types of the boundary conditions for electroelasticity
are given by formulas (1.31) { ( 1.36).

As it is known, transient problems require initial conditions

u(x; +0) = us(x); _u(x; +0) = vs(x); x 2 
 ; (1.37)

whereus, vs are respectively the initial displacements and velocitiesof the
body points.
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Thus, the statement of initial boundary-value problem of electroelas-
ticity includes the system of di�erential equations (1.27), (1.28) or (1.29),
(1.30), boundary conditions (1.31) { ( 1.36) and initial conditions (1.37).

We note that the described above system of di�erential equations of
the dynamic electroelasticity theory (1.27), (1.28) or (1.29), (1.30) has
one drawback for practical applications. This system does nottake into
account the e�ects of attenuation, damping or viscosity. (Hereinafter we
will use these words as synonyms). By analogy with the classical problems
of the elasticity theory here we adopt the Rayleigh method ofaccount for
damping, that is convenient for further application of numerical methods.
We will add the term proportional to the velocity of the body points into
the motion equation (1.23)

r � � + � f = � •u + � d� _u; (1.38)

and constitutive relation (1.14) will be changed in the following way

� = cE : (" + � d _" ) � e� � E: (1.39)

Here in (1.38), (1.39) � d and � d are non-negative damping coe�cients.
Then the system of di�erential equations of the electroelasticity theory

with Rayleigh damping will be determined by Eqs. (1.10), (1.11), (1.39),
(1.15), (1.38), (1.24), and therefore in the system (1.27), (1.28) instead of
(1.27) we will have

r � (cE : (r u + � dr _u) + e� � r ' ) + � f = � •u + � d� _u: (1.40)

The way of Rayleigh account for damping, that is adopted here,has
many disadvantages. For example, adding of the term� d� _u in (1.38) is not
justi�ed thermodynamically, and instead of (1.39) for anisotropic bodies it
would be more logical to adopt the relation

� = cE : " + ~cE : _" � e� � E;

where~cE = � dcE will be only a particular case of this more general relation.
Other even more general forms of constitutive relations canbe built in the
frameworks of the theory of viscoelectroelasticity.

However, despite of all the drawbacks, the Rayleigh method of account
for damping is one of the most simple and permit to describe qualitatively
the main e�ects of the waves attenuation. This method is adopted in the
models and implemented in such well-known �nite element computational
software, as ANSYS, ABAQUS and others.
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With regard to the stated above, further when we need to account
for damping in the electroelasticity problems, we will use the Rayleigh
method of account for damping, i. e. initial boundary-valueproblems of
electroelasticity will be described by Eqs. (1.10), (1.11), (1.39), (1.15),
(1.38), (1.24), boundary conditions (1.31) { ( 1.36) and initial conditions
(1.37).

In the case of static problems all external in
uences do not depend on
time t, initial conditions are absent, and in the motion equations(1.23) or
in (1.38), (1.39) the terms containing time derivatives should be omitted
(as for the problems of staticsu = u(x), and _u = 0, •u = 0).

We will call the pair of functions u, ' , that satisfy the di�erential
equations, boundary conditions and initial conditions (for transient
problems), the classical or ordinary solution.

The establishment of the smoothness properties of the solution
depending on the smoothness of the external in
uences, the domain 
,
its boundary �, the parts with various boundary conditions, material
constants (cE

ijkl , ekij , � S
ik ), external in
uences (f , � 
 , u � , p � , Vj , Qj or I j , � � )

and initial conditions (us, vs) is the problem for a separate mathematical
investigation. It is obvious that the functions u(x; t) and ' (x; t) must
be at least two times di�erentiable with respect tox and t, as the second
derivatives are present in the system of di�erential equations (1.29), (1.30).
In the next section we will formulate another concept of the solution of the
electroelasticity problem with weaker smoothness requirements than for
the classical solution.

1.3.2 Generalized statements of electroelasticity problems

The transition from the classical problem statement to the generalized
one is quite standard, and for the electroelasticity problems it consists in
the same steps as for other boundary-value problems with the systems of
di�erential equations of divergent type.

Considering transformations only in spatial coordinates, these stages
consist in the following:

1) multiplication of di�erential equations by yet arbitrar y, but
su�ciently smooth projection functions and integration over the domain

;

2) integration in parts of the integrals with the divergence operator,
reduction in the order of higher derivatives by spatial coordinates and
obtaining (if possible) symmetrical integral forms;
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3) application of the Gauss-Ostrogradskii formulas for transition from
the integrals over domain with the divergence operator to theintegrals over
boundary;

4) transformation of the integrals over domain obtained after
the application of the Gauss-Ostrogradskii formulas, using boundary
conditions;

4.1) on the part of the boundary the restrictions on the projection
functions are set that correspond to the homogeneous boundary conditions
(essential boundary conditions) on these parts;

4.2) on other parts of the boundary the boundary conditions with the
projection along the normal for the 
ow values (n � � , n � D , etc.) are used;

5) removal of inhomogeneity of essential boundary conditions by
selecting the functions that satisfy inhomogeneous essential boundary
conditions on the part of the boundary;

6) determination of the necessary functional spaces and formulation of
a weak (generalized) problem statement.

We note that for the equations of the order 2m the second stage is
required to be repeatedm times. For example, the problems of the beam
bending are described by di�erential equations of the fourth order, and the
procedure of integration by parts should be repeated two times.

The described scheme forms the base for such called semi-discrete
numerical algorithms, when in the beginning no conversions in time are
made and therefore the projection functions can depend onlyon x but
not on t. The weak or generalized statement of the problem in this case
corresponds to the Lagrange variational principle.

An alternative approach consists in the integration over thedomain 

and over timet on some interval [0; T]. In this case, the projection functions
should depend both onx and t, and for time integration the convolution
operations can be used. Further transformations can lead toa completely
di�erent generalized problem statement that correspond tothe Hamilton
variational principle.

In the case of stationary (static) problems only the �rst scheme is
possible, as there is no time dependence (apart from the problems with
memory, such as the problems of viscoelasticity). Let us consider, for
example, a static or quasi-static problem of electroelasticity, when in
(1.23) there is no term with � •u, and the motion equation is reduced to
the equilibrium equation. Following the scheme described above, let us
multiply the equation of statics (1.23) without � •u scalarly by some yet
arbitrary but su�ciently smooth vector-function v � (x) and integrate over
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the domain 
. Analogously, we will multiply Eq. ( 1.24) by an arbitrary
su�ciently smooth function � (x) and also integrate it over 
.

Using the formulas of tensor analysis

v � � (r � � (u; ' )) = r � (v � � � (u; ' )) � (r v)� : � (u; ' ); (1.41)

� r � D (u; ' )) = r � (� D (u; ' )) � (r � )� � D (u; ' ); (1.42)

we get
Z



(r v)� : � (u; ' ) d
 =

Z



v � � � f d
 +

Z



r � (v � � � (u; ' )) d
 ; (1.43)

�
Z



(r � )� � D (u; ' ) d
 =

Z



�� 
 d
 �

Z



r � (� D (u; ' )) d
 : (1.44)

The last integrals in (1.43), (1.44) are the integrals with the divergence
operator and can be transformed to the surface integrals using the Gauss-
Ostrogradskii formulas

Z



r � (v � � � (u; ' )) d
 =

Z

�
v � � (n � � (u; ' )) d� ; (1.45)

Z



r � (� D (u; ' )) d
 =

Z

�
� (n � � D (u; ' )) d� : (1.46)

Now we should try to account for boundary conditions in the integrals
over the boundary �.

For mechanical boundary conditions, according to (1.32) the stress
vector p � = n � � (u; ' ) is set on � = � u [ � � , and on � � . On � u the
variable n � � (u; ' ) is unknown, and the only possibility to exclude the
dependence onu, ' is the requirement that v equals zero on �u.

Thus, we must impose a homogeneous boundary condition correspond-
ing to (1.31) on the projections functionv(x):

v = 0; x 2 � u : (1.47)

The surface integral in (1.45) can be presented in the form
Z

�
v � � (n � � (u; ' )) d� =

Z

� �

v � � p � d� : (1.48)

For electric boundary conditions � = � ' [ � D ; � ' = � V [ � Q; � V = [ � 'j ,
j 2 JV = f 0; m + 1; :::; M g; � Q = [ � 'j , j 2 JQ = f 1; 2; :::; mg; and we get
formulas (1.33){( 1.36).
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On the part � D the variable n � � D (u; ' ) is known from (1.36) and is
equal to (� � � ).

On � V , by analogy to the mechanical boundary condition on �u, we
require that the projection function � become zero:

� = 0; x 2 � 'j ; j 2 JV : (1.49)

On � Q it is enough to impose a condition that the function� (x) take
the values that do not depend onx:

� = X j ; X j = constj ; x 2 � 'j ; j 2 JQ : (1.50)

Therefore, on the parts �'j , j 2 JQ, powered by current generators, we
have:

Z

� 'j

� (n � � D (u; ' )) d� = X j

Z

� 'j

n � � D (u; ' ) d� = � X j Qj ; j 2 JQ:

As a result, when the requirements (1.49), (1.50) for the projection
function � are satis�ed, the surface integral in (1.46) will take the form:

Z

�
� (n � � D (u; ' )) d� = �

Z

� D

�� � d� �
X

j 2JQ

X j Qj : (1.51)

Thus, the last integrals in (1.43), (1.44) can be presented as functionals
from v and � , using (1.45), (1.46), (1.48), (1.51). Taking into account these
transformations and (1.14), (1.15), relations (1.43), (1.44) will be written
in the �nal form:

c(v; u) � e(v ; ' ) = ~Lu(v); (1.52)

e(u; � ) + � (�; ' ) = ~L ' (� ); (1.53)

where

c(v; u) =
Z



(r v)� : cE : r u d
 =

Z



" (v) : cE : " (u) d
 ; (1.54)

e(v; ' ) =
Z



" (v) : e� � E(' ) d
 =

Z



E � (' ) � e : " (v) d
 ; (1.55)

� (�; ' ) =
Z



r � � � S � r ' d 
 =

Z



E � (� ) � � S � E(' ) d
 ; (1.56)

~Lu(v) =
Z



v � � � f d
 +

Z

� �

v � � p � d� ; (1.57)
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~L ' (� ) =
Z



�� 
 d
 +

Z

� D

�� � d� +
X

j 2JQ

X j Qj : (1.58)

As it can be noted, if f u; ' g is a classical solutions of a static
electroelasticity problem, than for any su�ciently smooth functions v,
that satisfy (1.47), and functions � , that satisfy (1.49), (1.50), integral
relations (1.52), (1.53) hold. However, the functionsu, ' should satisfy
inhomogeneous conditions (1.31), (1.33), (1.34).

It turns out that the projection functions v, � should satisfy
homogeneous boundary conditions (1.47), (1.49), and the solution f u, ' g
satis�es analogous but inhomogeneous boundary conditions(1.31), (1.33).
It is possible to remove the heterogeneity of these boundaryconditions
in the following way. Let us take such functionsun, ' n, that satisfy
inhomogeneous conditions (1.31), (1.33), and also some conditions of type
(1.34):

un = u � ; x 2 � u ; (1.59)

' n = � n� j ; � n� j = constj = Vj ; x 2 � 'j ; j 2 JV ; (1.60)

' n = � n� j ; � n� j = constj ; x 2 � 'j ; j 2 JQ ; (1.61)

where � n� j in (1.61) are, generally speaking, unknown variables that do
not depend onx.

We will seek the solutionf u; ' g in the form:

u = u0 + un; ' = ' 0 + ' n; (1.62)

where now the functions u0 and ' 0 satisfy the conditions, that are
analogous to the conditions forv and � :

u0 = 0; x 2 � u ; (1.63)

' 0 = 0; x 2 � 'j ; j 2 JV ; (1.64)

' 0 = � 0� j ; � 0� j = constj ; x 2 � 'j ; j 2 JQ : (1.65)

Using (1.62), let us present (1.52), (1.53) as relations for �nding u0 and
' 0:

c(v ; u0) � e(v ; ' 0) = Lu(v); (1.66)

e(u0; � ) + � (�; ' 0) = L ' (� ); (1.67)

where
Lu(v) = ~Lu(v) � c(v ; un) + e(v; ' n); (1.68)

L ' (� ) = ~L ' (� ) � e(un; � ) � � (�; ' n): (1.69)
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In order to give strict de�nitions of a generalized solution, we only need
to set the necessary functional spaces.

We introduce the scalar product on the set of vector-functions v 2 C1,
that satisfy (1.47)

(v ; u)H1
u

=
Z



(r v)� : r u d
 : (1.70)

The closure of this set in the norm generated by the scalar product
(1.70) will be called the H1

u space.
By analogy, we introduce the scalar product on the set of functions

� 2 C1, that satisfy (1.49), (1.50)

(�; ' )H1
'

=
Z



(r � )� � r ' d 
 : (1.71)

The closure of this set in the norm generated by the scalar product
(1.71) will be called the H1

' space.
Finally, we can strictly formulate the concept of a generalized solution

of a static electroelasticity problem.
De�nition . A generalized or weak solution of a static boundary-value

electroelasticity problem is a pair of functionsf u, ' g; u = u0 + un;
' = ' 0 + ' n; u0 2 H1

u; ' 0 2 H1
' , that satisfy the system of equations

(1.66), (1.67) for 8v 2 H1
u; 8� 2 H1

' . At that un, ' n are considered to
be specially selected (known) functions for which conditions(1.59){( 1.61)
hold.

Let us note the distinction between the boundary conditions.
The boundary conditions (1.63){( 1.65) (or (1.47), (1.49), (1.50)) have

entered the characterization of the spaces H1
u, H1

' , in which we seek
the generalized solutionu0, � 0. Therefore, the boundary conditions that
should be satis�ed by the functions of the weak problem statement are
called the essential boundary conditions. In analogous inhomogeneous
case as, for example, for1.31), (1.33), (1.34), we will also speak about
essential boundary conditions (which can be removed when selecting special
functions u0 and ' 0).

The boundary conditions (1.32), (1.35), (1.36) take part only in forming
the functionals ~Lu(u), ~L ' (� ) in (1.57), (1.58), i. e. they are naturally
included in the statement of the problem. For this reason such boundary
conditions will be called thenatural boundary conditions.

We note that conditions (1.34), (1.35), which should be considered in
conjunction, here belong to di�erent types of boundary conditions. Thus,
the adopted classi�cation for such complex forms of boundary conditions
is fairly arbitrary.
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It is obvious that if a pair of functions f u, ' g is a classical solution
of a static electroelasticity problem then integral relations (1.66), (1.67)
hold for any su�ciently smooth functions v, � , that satisfy (1.47), (1.49),
(1.50).

Therefore, if there exists a classical solution, then it is a generalized
solution.

The reverse statement, generally speaking, may not be satis�ed, i. e.
the generalized solution can exist, but the classical solution may not exist.
For the generalized solution as a result of an integration byparts using
the Gauss-Ostrogradsii formulas, compared with the classical solution, the
smoothness requirements are reduced. Indeed, for existence of the integrals
in (1.54){( 1.56) it is enough that the functionsu and ' have only the �rst
derivatives in generalized sense, square-integrable, whereas the classical
solution should be at least twice di�erentiable.

An important example, when the classical solution in the whole domain

 does not exist, but there exists a generalized solution, isthe case of a
piecewise-homogeneous medium. Let the body 
 consist of two domains

 1 and 
 2 (
 = 
 1 [ 
 2) with di�erent homogeneous properties. Then
some of the modules in 
1 and 
 2 di�er, for example, cE(1)

ijkl 6= cE(2)
ijkl , where

the superscript (1) or (2) points to the belonging to the subdomain 
 1 or

 2.

On the interface of the media �12 for a rigid contact it is necessary that
the continuity conditions are satis�ed:

[u] = 0; [' ] = 0; n � [� ] = 0; n � [D ] = 0; x 2 � 12: (1.72)

Here [a] denotes a jump in the value of the vector or tensora over the
interface � 12: [a] = a2 � a1, wherea2 and a1 are the limit values ofa on
� 12 when approaching �12, respectively, from the positive or negative sides
of the normal n, external with regard to 
 1.

Then if n � � does not change when passing through the interface �12,
then because of (1.14) and inequality cE(1)

ijkl 6= cE(2)
ijkl , some of the components

of the stress tensor" should be discontinuous. Therefore, the corresponding
�rst derivatives undergo a jump, and the solutionu does not belong even
to the class C1. Thus, there is no classical solution for the whole piecewise-
homogeneous medium. Meanwhile, there exists a generalized solution, as
u has the �st derivatives in a generalized sense.

Naturally, the problems for piecewise-homogeneous media have many
practical applications, and for the right statement their solutions must
exist. In the case of the boundary-value problem statement,the reason
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for the non-existence of an ordinary solution is that the classical solution
should be sought separately in the domains 
1 and 
 2 with the conjugation
conditions between them. The classical solutionu(j ) will exist in each of
the domains 
 j . In the same time, the generalized solution exists in the
whole domain 
 = 
 1 [ 
 2, and in this sense it is closer to practice.

Another advantage of the generalized problem statement consists in its
energy form.

The functions v and � can be regarded as variations of the real �elds
of displacementsu and electric potential ' , respectively. Then, using the
notations adopted in the variational calculus, let us set in(1.52), (1.53) or
in (1.66), (1.67) v = � u, � = �' .

Let us note that � u = � u0, �' = �' 0, as � un = 0, �� n = 0. In the
terms of mechanics it means that the variations should be consistent with
the kinematic relationships.

Then the weak problem statement based on (1.66), (1.67) or on (1.52),
(1.53) can be interpreted as the Lagrange variational principle or as a
variational principle of virtual work based on the principle of potential
displacements and electric potentials. For example, from (1.52), (1.53), we
have:

c(� u; u) � e(� u; ' ) = ~Lu(� u); (1.73)

e(u; �' ) + � (�'; ' ) = ~L ' (�' ): (1.74)

The right-hand side of (1.73)

~Lu(� u) =
Z



(� u)� � � f d
 +

Z

� �

(� u)� � p � d� (1.75)

is the work of the mass (bulk) and surface forces on the virtual
displacements, i. e. the virtual work of external forces.

The right-hand side of (1.74)

~L ' (�' ) =
Z



�'� 
 d
 +

Z

� D

�'� � d� +
X

j 2JQ

� � � j Qj (1.76)

is the electric work of the charges on the virtual electric potentials.
The left-hand side of (1.73)

c(� u; u) � e(� u; ' ) =
Z



" (� u) : � (u; ' ) d
 (1.77)

is the increment of the work of strains induced by the virtualdisplacement
� u, and the left-hand side of (1.74)

e(u; �' ) + � (�'; ' ) =
Z



E(�' ) � D (u; ' ) d
 (1.78)
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is the increment of the work of electric �eld induced by the virtual electric
potential �' .

Thus, according to (1.75){( 1.78), relations (1.73), (1.74) determine the
equalities of the virtual mechanical and electric works of external forces
and the increments of the works of the virtual strains and electric �eld.

If we subtract (1.74) from (1.73), then we can obtain the variational
principle of stationary virtual electric enthalpy

�H (u; ' ) = � [~Lu(u) � ~L ' (' )]; (1.79)

where

H (u; ' ) =
1
2

c(u; u) � e(u; ' ) �
1
2

� ('; ' ) =
1
2

Z



(" : � � E � � D ) d
 (1.80)

is the electric enthalpy.
We note that the electric enthalpy does not coincide with the internal

energy

U(u; ' ) =
1
2

c(u; u) +
1
2

� ('; ' ) =
1
2

Z



(" : � + E � � D ) d
 ; (1.81)

and the electric enthalpy is not positive de�nite byu and ' .
In connection to this, from variational principle (1.79) it only follows

that the functional

� e(u; ' ) = H (u; ' ) � ~Lu(u) + ~L ' (' ) (1.82)

is stationary on the real (true) �elds of displacements and electric potential.
There are no minimality properties, but the main formsc(u; u) and

� ('; ' ) are symmetrical and positive de�nite.
It is also important to note that the norms

kvk2
W1

2
=

Z



[v � � v + ( r v)� : r v ] d
 ; kvk2

H1
u

=
Z



(r v)� : r v d
 ;

kvk2
c =

Z



" (v) : cE : " (v) d


are equivalent in H1
u. Here in order to prove the equivalence of the norms

we can use one of the main results of the mathematical theory of elasticity,
the inequality of Korn [13]. For the equivalence of the norms it is also
important to exclude the solid body motions in the selected space, as it
was adopted for H1

u.
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By analogy, in H1
' the norms

k� k2
W1

2
=

Z



[� 2 + ( r � )� � r � ] d
 ; k� k2

H1
'

=
Z



(r � )� � r � d 
 ;

k� k2
� =

Z



E � (� ) � � S � E(� ) d
 :

are equivalent.
The property of the positive de�niteness of the formsc(u; u) and � ('; ' )

are important both in theory and in justi�cation of the numerical methods
applied.

Thus, the weak problem settings are convenient instruments for proving
the mathematical statements and also serve the basis for building e�ective
numerical methods, based on the approximations of energy relations.

The generalized statements can be also constructed for transient
problems with Rayleigh account for damping. Here the analogous
transformations lead to the system

� (v ; •u0) + d(v; _u0) + c(v; u0) � e(v ; ' 0) = Lu(v); (1.83)

e(u0; � ) + � (�; ' 0) = L ' (� ); (1.84)

where

� (v ; u) =
Z



� v � � u d
 ; d(v ; u) = � d� (v ; u) + � dc(v; u); (1.85)

Lu(v) = ~Lu(v) � � (v ; •un) � d(v ; _un) � c(v ; un) + e(v; ' n); (1.86)

L ' (� ) = ~L ' (� ) � e(un; � ) � � (�; ' n): (1.87)

This system should be supplemented by initial conditions (1.37), that
can be presented in the weak form

(v; u0(x; +0)) = ( v; usn); (v ; _u0(x; +0)) = ( v; vsn); (1.88)

where (v; u) =
R


 v � � u d
 is an ordinary scalar product in L 2; usn =
us � un(x; +0); vsn = vs � _un(x; +0).

Here relations (1.83){( 1.87) must hold when t 2 (0; T) for any v 2 H1
u,

� 2 H1
' . At that for the solution f u = u0 + un, ' = ' 0 + ' ng the

displacementsu0 must belong to the space Qu, and the electric potential
' 0 must belong to the space Q' :

Qu = L 2(0; T; H1
u); Q' = L 2(0; T; H1

' ); (1.89)
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where for the Banach space X with the normjj :jjX by L2(0; T; X) we denote
the space (of classes) of the functionst ! f (t) from [0; T] in X such that

(
Z T

0
jj f (t)jj2

X dt)1=2 = jj f jjL2(0;T; X) < 1 :

The statement of the problem in the form (1.83), (1.84) has also the
meaning of the energy principle of virtual work, that is analogous to the
static case considered before. As in the elasticity theory, the form � (v ; •u)
is the virtual inertial force taken with the opposite sign.

The generalized or weak statement of dynamic electroelasticity problems
in the form (1.83){( 1.88) serves the basis for building the semi-discrete
approximations of the Galerkin (Bubnov-Galerkin) method,which will be
considered in the next section.

1.3.3 Semi-discrete approximations in electroelasticity pro b-
lems

The main issue that remained open in section 1.2.2 consists inthe way
of �nding the weak solutions for the problems of electroelasticity. The
general approach called the Bubnov-Galerkin method is based on the idea
of �nding solutions for the weak statements in �nite-dimensional spaces.

When we consider transient problems with weak statements (1.83),
(1.84), corresponding to the principle of virtual work, we seek semi-discrete
approximations uh0 � u0, ' h0 � ' 0 in the form

uh0 = N �
u(x) � U (t); ' h0 = N �

' (x) � � (t); (1.90)

where U (t), � (t) are the vectors of approximation constants (not
depending on time),N �

u(x) is the matrix of the basis functions foruh0,
and N �

' (x) is the row-vector of the basis functions for' h0.
These approximations are called semi-discrete, because here the

discretizations are made only in spatial variables, and there are no time
discretizations in (1.90).

If the basis functionsNs(x) are the same for all three components of
the displacementsuh0j , j = 1; 2; 3, and electric potential ' h0 (in the case
of the problem in R3), then the matrix N �

u(x) and the row-vector N �
' (x)

have the form

N �
u(x) =

2

4
N1(x) 0 0 ::: Nn(x) 0 0

0 N1(x) 0 ::: 0 Nn(x) 0
0 0 N1(x) ::: 0 0 Nn(x)

3

5 ; (1.91)
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N �
' (x) = bN1(x); N2(x); :::; Nn(x)c; (1.92)

where n is the number of the basis functions that are required to
approximate one of the components of displacements or electric potential.

The basis functions must be linearly independent and have theproperty
of completeness in H1u, H1

' . Naturally, they are assumed to be known, and
the vectorsU (t), � (t) in (1.90) are to be de�ned from the solution of the
electroelasticity problem in the weak form.

We will take the probe functionsv(x) and � (x) from the same �nite-
dimensional spaces

v = N �
u(x) � � U ; � = N �

' (x) � � � ; (1.93)

where � U , � � are arbitrary vectors, for example, containing unit in one
position and zero in all others.

Substituting (1.90), (1.93) into the weak problem statement (1.83),
(1.84) and taking (1.54){( 1.58), (1.85){( 1.87) into account, we get the
following system:

� U � � (M uu � •U + Cuu � _U + K uu � U + K u' � � ) = � U � � Fu; (1.94)
� � � � (� K �

u' � U + K '' � � ) = � � � � F ' : (1.95)

Here

M uu =
Z



� N uN �

u d
 ; Cuu = � dM uu + � dK uu;

K uu =
Z



B �

u : cE : B u d
 ; B u = r N �
u;

K u' =
Z



B �

u : e� � B ' d
 ; B ' = r N �
' ; (1.96)

K '' =
Z



B �

' � � S � B ' d
 ;

Fu = ~Fu �
Z



� N u � •un d
 � � d

Z



� N u � _un d
 �

�
Z



B �

u : cE : (r un + � dr _un) d
 �
Z



B �

u : e� � r ' n d
 ;

~Fu =
Z



N u � � f d
 +

Z

� �

N u � p � d� ;

F ' = ~F ' +
Z



B �

' � e : r un d
 �
Z



B �

' � � S � r ' n d
 ;
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~F ' =
Z



N ' � 
 d
 +

Z

� D

N ' � � d� +
X

j 2JQ

N ' j � 'j Qj :

We note that every matrix in (1.96) re
ects speci�c material
characteristics of the body: M uu denotes the mass or the density,
Cuu denotes the damping,K uu denotes the sti�ness, K u' denotes the
piezoelectric e�ect,K '' denotes the dielectric permeability.

Then by virtue of arbitrariness of the vectors� U , � � , from (1.94), (1.95)
we get the �nal system

M uu � •U + Cuu � _U + K uu � U + K u' � � = Fu; (1.97)
� K �

u' � U + K '' � � = F ' : (1.98)

For transient problems system (1.97), (1.98) is a system of ordinary
di�erential equations of the second order by time. It should be
supplemented by initial conditions that can be obtained from (1.37) or
from (1.88) and (1.90), (1.93). As a result, the initial conditions in a
discrete form will be given in the following way:

U (0) = U sn; _U (0) = V sn; (1.99)

whereU sn, V sn are the unknown vectors obtained from initial datausn(x),
vsn(x) under their approximations in �nite-dimensional spaces.

Numerical solution of the Cauchy problem (1.97){( 1.99) allows to take
into account the features of system (1.97), (1.98), consisting in a possibility
of the reduction of the vector � . Indeed, �nding � from (1.98) and
substituting it into ( 1.97), we get:

� = K � 1
'' � K �

u' � U + K � 1
'' � F ' ; (1.100)

M uu � •U + Cuu � _U + K uu � U = Fu; (1.101)

where
K uu = K uu + K u' � K � 1

'' � K �
u' ; (1.102)

Fu = Fu � K u' � K � 1
'' � Fu' : (1.103)

As a result we obtain the problem (1.101), (1.99) but with respect to
the vector U with symmetric and at least non-negative de�nite matrix
K uu. This problem has almost the same properties as the problem for
pure elastic medium. The distinction lies in the presence of the inverse
matrix K � 1

'' . If we use a sparse matrix technology [29] when implementing
numerical algorithms for sparse matricesM uu, K uu, K u' , K '' , then it
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is highly undesirable to form the matrix K � 1
'' in explicit form, because,

generally speaking, the matrix, that is inverse to the sparse one, is dense.
Therefore, in order to implement the matrix-vector productK u' � � , it is
necessary every time to solve system (1.98) of linear algebraic equations
with respect to � and substitute the result into (1.97).

1.3.4 Summary of the main features of electroelasticity
problems

In this section, we will summarize what we have considered in the
previous sections regarding the problems of electroelasticity.

The classical statements of the electroelasticity problemsinclude the
systems of di�erential equations with dynamic motion equations (without
account for coupling, hyperbolic type) and the equations ofquasi-
electrostatics (without account for coupling, elliptic type). Therefore,
in total in the equations of linear dynamic theory of electroelasticity the
orders of the higher time derivatives are di�erent.

The boundary-value and initial boundary-value problems of electroe-
lasticity are characterized by nonstandard electric boundary conditions,
especially for the electrodes powered by the current generators. On sepa-
rate electrode surfaces powered by voltage generators the electric potential
should take the same values for all points of the electrode, and these values
are known. On the electrodes powered by current generators the electric
potential also should take the same values on every part, butthese values
are unknown, and �nding them requires additional integral conditions that
de�ne total charges on the electrodes.

The generalized or weak statements of the electroelasticityproblems
obtained as a result of standard transformations, lead to a variational
principle of stationary electric enthalpy (without the minimality property).
Thus, for the electroelasticity problems, there is no conventional variational
principle of virtual works with variation of the �elds of displacement and
electric potential that leads to a minimum of an energy functional.

The functional spaces H1' that de�ne the weak solutions of the
electroelasticity problems are also rather unusual. For the space H1' the
functions should take stationary (not depending onx), but arbitrary values
on some parts �'j , powered by current generators. Only the restrictions of
homogeneity for the essential boundary conditions (u = 0; x 2 � u) are set
in a standard way, as, for example, for H1u. Here the essential boundary
conditions may also be inhomogeneous.
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The numerical solution by the Bubnov-Galerkin method for thestatic
problems of electroelasticity gives a coupled system of equation with
respect to the displacements and electric potentials with a common matrix
that is not positive de�nite. The matrix of this system can be transformed
to a quasi-de�nite symmetric matrix (matrices for the problems with a
saddle point) [5]:

K =
�

K uu K u'

K �
u' � K ''

�
:

The reduction of the values of electric potentials permits toobtain
the systems of equations with positive de�nite matrices for �nding the
displacements, which are similar to the equations of structural analysis (for
pure elastic medium). At the same time the presence of the piezoelectric
e�ect only enhances the properties of positive de�nitenessfor the sti�ness
matrix, i. e. K uu � K uu, asK uu � K uu = K u' � K � 1

'' � K �
u' is a non-negative

de�nite matrix.
We note that hereinafter the inequalitiesA > B and A � B for the

matrices mean that the matrixA � B is positive or non-negative de�nite,
respectively. We will write the condition of the positive de�niteness for
the matrix A in the form A > 0, and the condition of the non-negative
de�niteness will be written in the form A � 0.

For piezoelectric bodies, an important role is given to special sets of
natural frequencies, namely the frequencies of electric resonancesf rj and
the frequencies of electric anti-resonancesf aj .

Both the frequencies of electric resonancesf rj and electric anti-
resonancesf aj are the natural frequencies, and the oscillations on them
can be excited under electric external in
uences that change according to
harmonic law. These external in
uences are di�erent for the frequencies
f rj and f aj .

In order to �nd the natural frequencies for a piezoelectric (electroelastic)
body, we need to consider the mode of steady-state oscillations U =
~U exp(i!t ), � = ~� exp(i!t ) with the circular frequency ! (! = f=2� ).
Besides, for �nding the natural frequencies we consider homogeneous
problems with Fu = 0, F ' = 0 without damping , i. e. with Cuu = 0.
Then from (1.97), (1.98) we get a generalized eigenvalue problem:

K uu � U + K u' � � = ! 2M uu � U ; (1.104)
� K �

u' � U + K '' � � = 0; (1.105)

where the sign \~" for the amplitude values~U , ~� is dropped.
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In (1.104), (1.105) the matrices K u' , K '' di�er for the frequencies of
electric resonances and anti-resonances. The di�erence in the problems of
�nding the natural frequencies of electric resonances and anti-resonances
consists in the following. For the problem of �nding the frequencies
of electric resonances some electrodes �'j are considered to be short-
circuited (' = 0, x 2 � 'j ), and for the corresponding problems of �nding
the frequencies of electric anti-resonances these electrodes are considered
to be free (' = � � j , x 2 � 'j ;

R
� 'j

n � D d� = 0). Thus, in two
corresponding eigenvalue problems we need to consider di�erent electric
boundary conditions on some (but not all!) electrode surfaces � 'j .

Mathematically this di�erence consists in the di�erent structures of the
matricesK u' and K '' . If for a problem of �nding the frequencies of electric
anti-resonances we present the matricesK u' , K '' and the vector � in a
block form

K u' =
�

K c
u' ; K s

u'

�
; K '' =

�
K c

'' K cs
''

K cs�
'' K s

''

�
; � =

�
� c

� s

�
; (1.106)

than for the problem of �nding the frequencies of electric resonances the
matrices K u' , K '' and the vector � will have the form

K u' = K c
u' ; K '' = K c

'' ; � = � c: (1.107)

Here in the vector� in (1.106) we can separately allocate the degrees
of freedom� s, when �nding the frequencies of electric anti-resonances for
which it is considered that the total electric charges on the corresponding
electrodes are equal to zero, and when �nding the frequenciesof electric
resonances we set� s = 0.

Therefore for �nding the frequencies of electric resonancesand anti-reso-
nances we should solve the problems (1.104), (1.105) twice with di�erent
matrices K u' , K '' and the vector � in the forms (1.106) and (1.107).

Let us denote by! aj the natural frequencies for problem (1.104){( 1.106),
and ! rj will denote the natural frequencies for problem (1.104), (1.105),
(1.107). We note that by virtue of positive de�niteness of the matrix
M uu (problem 1.20) and at least non-negative de�niteness of thematrix
K uu (problem 1.24) all these frequencies are real and can be chosen non-
negative.

If we enumerate the frequencies in ascending order, then it is possible
to show [4] that the following equalities hold

! rj � ! aj ; j = 1; 2; :::; m; (1.108)



44 CHAPTER 1. SOME MODELS OF COUPLED PROBLEMS

wherem is the order of the matrix M uu or K uu.
The value that is relevant in practice is the dynamic electromechanical

coupling coe�cient (DECC) kdj for the j -th frequency that is given by the
formula

k2
dj =

! 2
aj � ! 2

rj

! 2
aj

: (1.109)

Dynamic electromechanical coupling coe�cient de�nes the e�ciency
of the energy conversion at thej -th oscillation mode. Naturally, if kdj

is not equal to zero, then! rj 6= ! aj , and these very frequencies are
electrically active. (Some oscillation modes can be purelyelastic, and for
them ! rj = ! aj .)

Therefore, in order to analyze the work of piezoelectric devices in a
steady-state oscillation mode it is often required to �nd the frequencies! rj ,
! aj , solving slightly di�erent generalized eigenvalue problems two times
and �nding the frequencies, for which! rj and ! aj di�er. This type of
problems is a distinctive feature of the piezoelectric analysis of real-world
piezoelectric devices.

Piezoelectric transducers can represent the bodies composed of a set of
elastic and piezoelectric subdomains (for example, piezoelectric emitter in a
case). Besides, for some devices, for example, for counter-pin transducers
on the surface acoustic waves, it is necessary to account forthe contact
of piezoelectric body with the external medium (air). In suchcases
we have compound problems for multilayer medium 
 = [ 
 k with,
generally speaking, di�erent physico-mechanical properties. One part of
these domains 
k = 
 p

k can be piezoelectric, other part of these domains

 k = 
 e

k can be elastic, and one more part 
k = 
 d
k can be dielectric. For

elastic and dielectric media we can use the same models of electroelasticity
with the coupling coe�cients e equal to zero and apply either mechanical or
dielectric part of the model. The conjugation conditions (continuity of u,
n � � , ' , n � D when crossing the interface) will then be naturally contained
in the generalized problem statements. The numerical algorithms intended
for solving the problems for compound bodies with di�erent physico-
mechanical properties will have peculiarities, related to the presence of
the media with di�erent �eld functions ( u, ' for the piezoelectric media,
u for the elastic media,' for the dielectric media). It is also worth noting
that external dielectric media (surrounding air) can be very extensive and
therefore should be modeled by unbounded domains. These unbounded
dielectric media require the conditions for the �eld' at in�nity. Also,
special numerical solution methods should be used for in�nite domains.
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Thus, the problems of electroelasticity have a number of signi�cant
features caused by both peculiarities of mathematical models and practical
needs for calculation of real-world piezoelectric devices.

1.4 Modeling of thermoelasticity problems

The problems of thermoelasticity consider the coupling of mechanical
and thermal �elds. Concerning the mechanical part, it has much
in common with ordinary elasticity theory and electroelasticity theory
considered before. However, the equations for thermal �eldssigni�cantly
di�er from the equations of quasi-electrostatics of dielectrics. There is an
extensive literature on theory of thermoelasticity, amongwhich the basic
monographs of W. Nowacki [24, 25] are worth noting.

1.4.1 Classical statements of thermoelasticity problems

Let a thermoelastic body occupy the domain 
 with the boundary
� = @
. The state of the body is characterized by the displacement
vector u = u(x; t) and the thermal �eld change� = � (x; t). The function
� (x; t) describes the temperature increaseT(x; t) from the natural state
T0: � = T � T0.

The statement of the problems of linear thermoelasticity includes the
following group of equations.

The �eld equations consist of the motion equations for continuum, which
are identical to (1.23)

r � � + � f = � •u; (1.110)

and local conservation law of thermal energy

T0
_S + r � q = W: (1.111)

Here for mechanical values we adopt the same notations as those in the
electroelasticity theory in section 1.3 (� is the density; � is the second
rank stress tensor;f is the vector of mass force density), also, the following
notations are introduced for thermal values:S is the density of entropy,
measured from the natural state;q is thermal 
ow vector; W = W(x; t) is
the intensity of heat sources.

The constitutive relations connect the stresses� and the entropyS with
the strain tensor " and the temperature �eld � . For a linear medium the
constitutive relations have the form:

� = c : " � 
 �; (1.112)
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S = 
 : " +
�c "

T0
�; (1.113)

where c is the semi-symmetric fourth rank tensor of elastic moduli;
 is
the symmetric second rank tensor of thermal stresses;c" is the speci�c heat
at constant strains.

Finally, the relations that connect the 
ow values" and q with the �eld
functions u and � have the following form:

" = ( r u + r u � )=2; (1.114)

q = � k � r �; (1.115)

wherek is the second rank tensor of thermal conductivity coe�cients.
Formula (1.115) expresses the Fourier law for the thermal conductive

medium. The tensork in (1.115) should be symmetric and positive de�nite:

kij = kji ; 9� k > 0 : 8a a� � k � a � � ka� � a:

Thus, the system of di�erential equations of thermoelasticity is given
by formulas (1.110){( 1.115). If we present these equations as a system of
equations with respect to the displacementsu and temperature increase� ,
then we will obtain:

� •u � r � (c : r u � 
 � ) = � f ; (1.116)

�c "
_� + T0
 : r _u � r � (k � r � ) = W; (1.117)

or in a component-wise form:

�u i;tt � (cijkl uk;l � 
 ij � );j = � f i ; i = 1; 2; 3; (1.118)

�c " � ;t + T0
 ij ui;jt � (kij � ;j );i = W: (1.119)

As it can be seen, the coupling of mechanical and thermal �eldsis
determined by the thermal stress tensor
 . If 
 = 0, then (1.116) is simply
a motion equation in a dynamic elasticity theory, and (1.117) is a thermal
conductivity equation. We note, that the motion equation ina theory of
elasticity is an equation of hyperbolic type, and the thermal conductivity
equation is an equation of parabolic type. The system of coupled equations
keeps the di�erent order of the higher time derivatives: (1.116) has the time
derivatives of the second order, and (1.117) has the time derivatives of the
�rst order.

System (1.116), (1.117) or (1.118), (1.119) requires the boundary
conditions that are here subdivided into two groups, namely, mechanical
and thermal boundary conditions.
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We will adopt the same mechanical boundary conditions as those
adopted in section 1.3 for the electroelastic body (� = �u [ � � ):

u = u � ; x 2 � u ; (1.120)

p = n � � ; p = p � ; x 2 � � ; (1.121)

where the mechanical sense of the values used is the same as for(1.31),
(1.32).

In order to formulate the thermal boundary conditions, let us assume
that the boundary � is divided in three parts � � , � q and � c: � = � � [ � q[ � c.

We will consider that the temperature� � (x; t) is set on � � :

� = � � ; x 2 � � : (1.122)

On � q we will set the heat 
ow, or the surface density of the heat source
intensity q� (x; t) :

n � � q = � q� ; x 2 � q : (1.123)

Finally, on � c we will set the condition of convective heat exchange with
the external environment:

n � � q = � hf (� b � � ); x 2 � c ; (1.124)

wherehf is the heat exchange factor or heat transfer coe�cient onhf > 0),
� b is the temperature of external environment.

According to (1.122){( 1.124), we have three types of thermal boundary
conditions. The condition (1.122) is the condition of the �rst kind, the
Dirichlet type or the essential boundary condition. The condition ( 1.123)
is the condition of the second kind, the Neumann type or the natural
boundary condition. The condition (1.124) is the condition of the third
kind.

Boundary conditions (1.122){( 1.124) are the main conditions both
in thermal conductivity problems and more general thermoelasticity
problems. In addition to these conditions, other boundary conditions can
be set, for example, nonlinear condition of radiative heat transfer on Stefan-
Boltzmann law and so on. However, the most frequently used arethe
conditions (1.122){( 1.124), which we will consider hereinafter.

Let us note that the conditions of the third kind are speci�c mostly to the
problems of thermal conductivity and thermoelasticity. These conditions
have the features of both the �rst kind boundary conditions (at large hf

from (1.122) we have� � � b = h� 1
f n � � q � 0) and the second kind boundary
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conditions (at small hf (1.122) can be approximated by the condition
n � � q = 0).

If for an elastic body the larger part of its boundary is �� with a
homogeneous boundary of the second kind, i. e. the larger part of the
boundary � � is free from mechanical stressesp � , than for thermal boundary
conditions the homogeneous conditions of the second kind (q� = 0 in
(1.123)) indicate a thermally insulated boundary. The case of thermally
insulated boundary is a much bigger abstraction than the condition of
a convective heat exchange with external environment, i. e. than the
condition of the third kind.

In the case of transient processes, in addition to the boundary conditions
we need to set the initial conditions. Here, apart from setting the initial
position of the body us(x) and the initial velocity vs(x), the initial
temperature � s(x) should be de�ned:

u = us; _u = vs; � = � s; x 2 
 ; t = +0 : (1.125)

Thus, the conventional or classical statement of transient problems of
thermoelasticity in linear approximation includes the system equations
(1.116), (1.117), the boundary conditions (1.120){( 1.124) and initial
conditions (1.125).

For stationary case there are no initial conditions;u = u(x), � = � (x);
external in
uences do not depend on time, and the system of di�erential
equations (1.116), (1.117) takes the form:

� r � (c : r u � 
 � ) = � f ; (1.126)

� r � (k � r � ) = W: (1.127)

As it can be seen from (1.126), (1.127), a stationary case corresponds
to a partial coupling of �elds: the displacement �eld u depends on� , but
for the temperature �eld � we obtain an uncoupled problem of thermal
conductivity ( 1.127), (1.122){( 1.124).

Another case of thermoelastic problem with partial coupling can be
given with the use of the theory of thermal stresses [24, 25]. In this
theory, the coupling for the temperature �eld is neglected in (1.117), and
the term T0
 : r _u is omitted, however, for the mechanical �elds the
dynamic equation (1.116) is considered. As a result, the �eld equations
of the thermal stress theory have the form:

r � � + � f = � •u; � = c : " � 
 �; (1.128)

�c "
_� + r � q = W; q = � k � r �: (1.129)
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The transfer from (1.116), (1.117) to (1.128), (1.129) can be justi�ed by
lots of experimental data and by the analysis of the couplingcoe�cients
with appropriate nondimentionalization of thermoelasticity problem.

Therefore, both the equations of thermal stresses (1.128), (1.129) and
the equations of stationary thermoelasticity (1.126), (1.127) give the
problems with partial �eld coupling.

It is important to note the following issue. For the problems of coupled
thermoelasticity (1.116), (1.117), (1.120){( 1.125) the presence of the term
T0
 : r _u with the �rst time derivative with respect to the displacements
lead to the energy dissipation, and additional account for damping is not
particularly necessary in this problem. Meanwhile, in a partially coupled
problem of thermal stresses for mechanical �elds there is nodamping, and
therefore we can adopt the Rayleigh account for damping similar to the
one in section 1.3.1 for the problem of electroelasticity. Indeed, instead of
(1.128) we can use the relations

r � � + � f = � •u + � d� _u; � = c : (" + � d _" ) � 
 � (1.130)

with the damping coe�cients � d � 0, � d � 0. Regarding the advantages
and disadvantages of this approach we can repeat the same arguments as
those considered in section 1.3.1.

1.4.2 Generalized statements of thermoelasticity problems

Following the scheme described in section 1.3.2, we will obtain the
generalized or weak statement for the coupled problem of thermoelasticity
(1.116), (1.117), (1.120){( 1.125).

Let us scalar multiply Eq. (1.110) by a yet arbitrary but su�ciently
smooth function v = v(x), and Eq. (1.111) will be multiplied by a
su�ciently smooth function � = � (x). Then let us integrate the obtained
equalities over 
, using the operations of tensor and vector analysis (1.41),
(1.42), and the Gauss-Ostrogradskii formulas (1.45), (1.46). (In ( 1.42),
(1.46) � is replaced by� , and D is replaced byq.)

Imposing a homogeneous boundary condition (1.47) on the function v

v = 0; x 2 � u ; (1.131)

and using natural boundary condition (1.121), we receive:
Z



� v � •u d
+

Z



(r v)� : � (u; � ) d
 =

Z



v � � � f d
+

Z

� �

v � �p � d� : (1.132)
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On the transformations of Eq. (1.111), taking (1.113) into account, we
get:

T0

Z



� _S d
 �

Z



(r � )� �q(u; � ) d
 =

Z



�W d 
 �

Z

�
� n � �q(u; � ) d� : (1.133)

Let us impose the zero condition on the function ��

� = 0; x 2 � � : (1.134)

Then, using boundary conditions (1.123) on � q and (1.124) on � c, the
last integral in (1.133) can be transformed in the following way:

�
Z

�
� n � � q(u; � ) d� =

Z

� q

�q � d� +
Z

� c

�h f � bd� �
Z

� c

hf �� d � : (1.135)

The integral identity ( 1.133) with account for (1.135) can written in the
form:

T0

Z



� _S d
 �

Z



(r � )� � q(u; � ) d
 +

Z

� c

hf �� d � =
Z



�W d 
 +

Z

� q

�q � d� +
Z

� c

�h f � bd� :
(1.136)

Now we can use in (1.132), (1.136) the constitutive relations (1.112),
(1.113) for thermoelastic medium and obtain the main integral relations

� (v ; •u) + c(v; u) � 
 (v ; � ) = ~Lu(v); (1.137)

T0
 ( _u; � ) + s(�; _� ) + k(�; � ) = ~L � (� ); (1.138)

where
� (v ; u) =

Z



� v � � u d
 ; (1.139)

c(v; u) =
Z



(r v)� : cE : r u d
 =

Z



" (v) : cE : " (u) d
 ; (1.140)


 (v ; � ) =
Z



(r v)� : 
 � d 
 =

Z



" (v) : 
 � d 
 ; (1.141)

s(�; � ) =
Z



�c " �� d 
 ; (1.142)

k(�; � ) =
Z



(r � )� � k � r � d 
 +

Z

� c

hf �� d � ; (1.143)

~Lu(v) =
Z



v � � � f d
 +

Z

� �

v � � p � d� ; (1.144)
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~L � (� ) =
Z



�W d 
 +

Z

� q

�q � d� +
Z

� c

�h f � bd� : (1.145)

Now it remains to remove inhomogeneity in the essential boundary
conditions (1.120), (1.122). In order to do this, we will seek the solution
f u, � g in the form

u = u0 + un; � = � 0 + � n; (1.146)

where un = un(x; t), � n = � n(x; t) are specially selected functions that
satisfy the inhomogeneous essential boundary conditions

un = u � ; x 2 � u ; (1.147)

� n = � � ; x 2 � � ; (1.148)

and, therefore, the functionsu0 = u0(x; t), � 0 = � 0(x; t) satisfy the
homogeneous essential boundary conditions

u0 = 0; x 2 � u ; (1.149)

� 0 = 0; x 2 � � : (1.150)

Substituting (1.146) into ( 1.137), (1.138), we get the �nal system written
with respect to the unknown functionsu0 and � 0:

� (v ; •u0) + c(v; u0) � 
 (v ; � 0) = Lu(v); (1.151)

T0
 ( _u0; � ) + s(�; _� 0) + k(�; � 0) = L � (� ); (1.152)

where

Lu(v) = ~Lu(v) � � (v ; •un) � c(v ; un) + 
 (v ; � n); (1.153)

L � (� ) = ~L � (� ) � T0
 ( _un; � ) � s(�; _� n) � k(�; � n): (1.154)

Let us add to the system (1.137), (1.138) or to (1.151), (1.152) the initial
conditions (1.125) in the weak form

(v; u (x; +0)) = ( v; us); (v ; _u (x; +0)) = ( v; vs);
(�; � (x; +0)) = ( �; � s);

(1.155)

where

(v; u0(x; +0)) = ( v; usn); (v ; _u0(x; +0)) = ( v; vsn);
(�; � 0(x; +0)) = ( �; � sn);

(1.156)

whereusn(x) = us(x) � un(x; +0), etc.
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The comparison of (1.151), (1.152) with analogous system (1.83), (1.84)
of the electroelasticity problem shows that forv and u0 we can select
the same functional spaces as those selected in section 1.3:v 2 H1

u,
u0 2 Qu = L 2(0; T; H1

u).
For � and � 0 let us introduce the spaces analogous to H1

u, Qu, but in a
scalar form.

Namely, on the set of functions� 2 C1, that satisfy (1.134), we introduce
the scalar product

(�; � )H1
�

=
Z



(r � )� � r � d 
 : (1.157)

The closure of this set in the norm generated by the scalar product
(1.157) will be called the space H1� , and we de�ne the space Q� =
L2(0; T; H1

� ).
Now we can formulate a strict de�nition of a generalized solution for a

transient problem of thermoelasticity.

De�nition . A generalized or weak solution of a transient problem of
thermoelasticity is a pair of functionsf u, � g; u = u0+ un; � = � 0+ � n, such
that un, � n satisfy boundary conditions(1.147), (1.148), u0 2 Qu, � 0 2 Q� ;
u0, � 0 satisfy initial conditions (1.156), and system of di�erential equations
(1.151), (1.152) holds8t 2 (0; T), 8v 2 H1

u; � 2 H1
� .

In a stationary case system (1.151), (1.152) takes the form

c(v; u0) � 
 (v ; � 0) = Lu(v); (1.158)

k(�; � 0) = L � (� ); (1.159)

and we can give the corresponding de�nition of a generalizedsolution for
a stationary problem.

De�nition . A generalized or weak solution of a stationary problem of
thermoelasticity is a pair of functionsf u, � g; u = u0+ un; � = � 0+ � n, such
that un, � n satisfy boundary conditions(1.147), (1.148), u0 2 H1

u, � 0 2 H1
� ;

and system of equations(1.158), (1.159) holds8v 2 H1
u; � 2 H1

� .

Regarding the interrelation of generalized and classical solutions and
the importance of the generalized solution, the arguments similar to those
in section 1.3 are also valid here.
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1.4.3 Semi-discrete approximations in thermoelasticity pro b-
lems

By analogy to section 1.3.3, let us set semi-discrete approximations
uh0 � u0, � h0 � � 0 in the form

uh0 = N �
u(x) � U (t); � h0 = N �

� (x) � T (t); (1.160)

where U (t), T (t) are the vectors of approximation constants (time
dependent), N �

u(x) is the matrix of the basis functions foruh0, de�ned
in (1.91), N �

� (x) is the row-vector of the basis functions for� h0, that has
the structure analogous to (1.92).

We will present the projection functionsv(x) and � (x) from the same
�nite-dimensional spaces in the form

v = N �
u(x) � � U ; � = N �

� (x) � � T : (1.161)

The substitution of (1.160), (1.161) into ( 1.151), (1.152) with account
for (1.139){( 1.145), (1.153), (1.154) gives

� U � � (M uu � •U + K uu � U � K u� � T ) = � U � � Fu; (1.162)
� T � � (T0K �

u� � _U + C �� � _T + K �� � T ) = � T � � F � : (1.163)

Here the matricesM uu and K uu are those de�ned by (1.96) previously
in section 1.3.3,

K u� =
Z



B �

u : 
 N �
� d
 ; C �� =

Z



�c "N � N �

� d
 ;

K �� =
Z



B �

� � k � B � d
 +
Z

� c

hf N � N �
� d� ; B � = r N �

� ; (1.164)

Fu = ~Fu �
Z



� N u � •un d
 �

Z



B �

u : c : r un d
 +
Z



B �

u : 
 � n d
 ;

F � = ~F � � T0

Z



(r _un)� : 
 N � d
 �

Z



�c "N �

_� n d
 �

�
Z



B �

� � k � r � n d
 �
Z

� c

hf N � � n d� ;

~F � =
Z



N � W d
 +

Z

� q

N � q� d� +
Z

� c

N � hf � bd� ;

and the vector ~Fu also was de�ned in (1.96) in section 1.3.3.
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Taking into account the arbitrariness of� U , � T , from (1.162), (1.163)
we obtain the system of equations of transient thermoelasticity discretized
by spacial variables:

M uu � •U + K uu � U � K u� � T = Fu; (1.165)
T0K �

u� � _U + C �� � _T + K �� � T = F � ; (1.166)

This system should be supplemented by initial conditions

U (0) = U sn; _U (0) = V sn; � (0) = � sn; (1.167)

that follow from initial conditions ( 1.156) and approximations (1.160),
(1.161).

We note that for the system (1.165), (1.166) the matricesM uu and C ��

are positive de�nite (M uu > 0, C �� > 0), and the matricesK uu and K ��

are at least non-negative de�nite (see problems 1.20, 1.21,1.23, 1.30{1.32).
For static (stationary) problems system (1.165), (1.166) becomes only

vector-coupled

K uu � U = Fu + K u� � T ; (1.168)
K �� � T = F � : (1.169)

Here we have uncoupled problem (1.169) for �nding the vector T , and
problem (1.168) is almost the same as for purely elastic medium and di�ers
only in the addition of the right-hand side vectorK u� � T .

Finally, for the problem of thermal stresses with account fordamping
the system of FEM can be also written in a form of a vector-coupled system

M uu � •U + Cuu � _U + K uu � U = Fu + K u� � T ; (1.170)
C �� � _T + K �� � T = F � ; (1.171)

where the damping matrixCuu is the same as in (1.96).

1.5 Problems of poroelasticity. Porothermoelastic
analogy

In this section we will consider the issues of modeling the problems
of geomechanics of deformable porous rocks with account of �ltration.
These problems are described by the systems of coupled equations of
poroelasticity. The comparison of the equations of poroelasticity and
thermoelasticity shows that there is a complete analogy between the system
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of these equations. Consequently, using the analogy betweenthe problems
of poroelasticity and the problems of thermoelasticity, wecan simulate
complex coupled deformation and �ltration processes in geomechanical
media in the framework of the problems of thermoelasticity described in
the previous section.

We will consider the poroelastic media to be heterogeneous with an
elastic matrix and the pores �lled by a 
uid. Let us assume that the
porosity is small and the distribution of a 
uid in a matrix is subjected to
the laws of �ltration. The stress tensor� and the porosity � are expressed
in terms of the strain tensor" and the pore pressure functionp by the
constitutive equations of poroelasticity [9]

� � � 0 = c : " � b (p � p0) (1.172)

� � � 0 = b : " +
1
N

(p � p0); (1.173)

where c is the fourth rank tensor of elastic sti�ness, b is the second
rank Biot's tensor, N � 1 is the inverse Biot's modulus, which connects the
porosity change with the pressure change at constant strain,� 0, � 0, p0 are
the initial stresses, porosity and pore pressure, respectively.

The deformation of the poroelastic matrix is described by themotion
equations (1.23)

r � � + � f = � •u: (1.174)

To describe the �ltration process, we will use the Darcy's lawin a quasi-
static approximation

v = �
K

� f g
� (r p � � f g); (1.175)

wherev is the �ltration velocity, K is the second rank tensor of �ltration
coe�cients, � f is the 
uid density, g is the vector of gravitational
acceleration.

In order to obtain the equation for the porosity we use the continuity
equation in the form

@(� f � )
@t

+ r � (� f v) = 0 (1.176)

and the 
uid state equation

d� f

� f
=

dp
K f

; (1.177)

whereK f is the 
uid bulk modulus.
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Substituting (1.175), (1.177), (1.173) in continuity equation (1.176) and
assuming the changes in the compressibility and porosity tobe small, we
get

b : _" +
1

M
_p � r � (

K
� f 0g

� r p) = 0 ; (1.178)

where� f 0 is the initial 
uid density, 1 =M = 1=N + �=K f .
For a saturated porous medium the Biot's tensor can be taken unit

(b = I ), and then with account for (1.172) and (1.178) Eq. (1.174) will
give the following system of equations for poroelastic medium

� •u � r � (c : " � pI ) = � f ; (1.179)

I : _" +
1

M
_p � r � (

K
� f 0g

� r p) = 0 ; (1.180)

whereI is the unit tensor and consequentlyI : _" = r � _u = _" ii .
System (1.179), (1.180) represents a coupled system of di�erential

equations with di�erent order of time derivatives and the values of material
parameters and physical modules that signi�cantly vary in magnitude.
In simulation of the phenomenon of hydraulic disjointing and failure of
the rocks the �ltration modules are adopted to be dependent on the pore
pressure, and the elastic moduli can depend on the strains, which makes
system (1.179), (1.180) nonlinear. To formulate the poroelastic problem
statements, Eqs. (1.179), (1.180) should be supplemented by the boundary
and initial conditions, and this �nally leads to coupled transient linear or
nonlinear initial boundary-value problems of geomechanics of poroelastic
media.

In order to solve the problems of poroelasticity, we can use the analogy
between the equations and boundary conditions for the poroelastic and the
thermoelastic media.

As it was shown in section 1.4, the di�erential equations for
thermoelastic media have the form

� •u � r � (c : r u � 
 � ) = � f ; (1.181)

T0
 : r _u + �c "
_� � r � (k � r � ) = W: (1.182)

The comparison of (1.179), (1.180) and (1.181), (1.182) shows that the
equations of coupled poroelasticity after the multiplication of (1.180) by T0

are transformed into the equations of coupled thermoelasticity with W = 0
under the changes

p $ �; I $ 
 ;
T0

�M
$ c" ;

T0K
� f 0g

$ k; (1.183)
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where in the equations of poroelasticity it should be setT0 = 1.
Thus, for solving the coupled initial boundary-value problems of

poroelasticity we can solve the corresponding initial boundary-value
problems of thermoelasticity and use the software developed for solving
the problems of thermoelasticity.

For numerical calculation of the poroelasticity problems it is necessary
to take into account that in the problems of geomechanics thevalues of
the elastic moduli, �ltration coe�cients and porosity have substantially
various orders and di�er from the corresponding values (apart from the
elastic moduli) of the problems of thermoelasticity. In connection to this
in order to ensure the stability of the solution convergencefor the numerical
methods it is useful to make a transition to dimensionless parameters and
notations.

Let us choose the characteristic lengthR of the domain as a parameter
for nondimentionalization over spacial coordinates, the characteristic
time t � of the geomechanical process will be the parameter for
nondimentionalization over time and the characteristic pressurep� will be
the parameter for nondimentionalization over pressure andstresses. We
will mark the dimensionless variables by a \tilde" above.

~x = x=R; ~u = u=R; ~r = Rr ; ~t = t=t � ; (1.184)

~c = c=p� ; ~� = � =p� ; ~p = p=p� : (1.185)

Using these notations, equations of poroelasticity (1.179), (1.180) can
be rewritten in the form

~�
@2~u
@~t2

� ~r � (~c : " � ~pI ) = ~� ~f ; (1.186)

T0 I :
@"
@~t

+ ~� ~cp
@~p
@~t

� ~r � ( ~K � ~r ~p) = 0 ; (1.187)

where

~� =
R2

p2t2
�
�; ~f =

t2
�

R
f ; ~cp =

T0p�

M ~�
; ~K =

T0p� t �

R2� f 0g
K : (1.188)

We note that the poroelastic equations in dimensionless form are
transformed into the dimensionless equations of thermoelasticity under the
change

~p $ ~�; I $ ~
 ; ~cp $ ~c" ; ~K $ ~k; (1.189)

with the corresponding notations for the dimensionless thermal values,
where in the equations of thermoelasticityT0 = 1 can be set.
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As the test calculations show, the transition to the dimensionless
equations and values (1.184){( 1.189) enables to increase signi�cantly the
stability and accuracy of the numerical computations, as the system
coe�cients become aligned in orders.

1.6 Modeling of the interaction of deformable solids
with acoustic media

Classical linear acoustics study the propagation of small amplitude
sound waves in liquids and gases. Acoustic or sound waves are caused
by elastic perturbations arising during the deformation ofa solid structure
that is in contact with an acoustic medium. In connection to this, typical
problems of interest are the problems of interaction of elastic, piezoelectric
or more complex solids with acoustic media. In these problemsthere are
two adjacent domains, 
s and 
 a. 
 s is the domain occupied by a solid
structure, and 
 a is the domain occupied by an acoustic medium. In
each of these domains the behaviour of the medium is simulated by the
corresponding equations written with respect to various �eldfunctions.
Thus, for the statement of the elasticity theory problem with respect
to the displacement function the displacement vectoru(x; t), x 2 
 s is
the unknown function. For the piezoelectric medium under thestandard
substitutions the unknowns are the functions of displacements u(x; t)
and electric potential ' (x; t). Meanwhile, for the acoustic medium 
a
the main unknown is the function of excessive pressurep(x; t) or the
function of acoustic velocity potential (x; t). Therefore on the boundary
of the contact of two media �sa = 
 s \ 
 a it is necessary to use such
conditions of �elds conjugation that could be e�ectively included in various
mathematical models of elastic, piezoelectric and acoustic media.

Simulation of coupled problems of interaction of elastic, piezoelectric
or solid deformable bodies with acoustic media has certain di�culties and
makes the scope of the next section.

1.6.1 Classical statements of acoustic problems

Let us �rstly provide a brief derivation of the main equations of classical
linear acoustics [12].

We denote the density of an acoustic medium (liquid or gas) as~� =
~� (x; t), the pressure will be denoted by ~p = ~p(x; t), and the oscillating
(acoustic) speed will be denoted byv = v(x; t).
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As for any 
uid, we have the continuity equation that expresses the law
of mass conservation

@~�
@t

+ r � (v ~� ) = 0 : (1.190)

Assuming the 
uid to be ideal and neglecting its viscosity andthermal
conductivity, we obtain the Euler's equation of motion

~� (
@v
@t

+ ( v � r )v) = �r ~p: (1.191)

In acoustic medium we study the excited or excessive values of pressure
p(x; t) and density � (x; t) with respect to initial equilibrium states p0 and
� 0:

~p = p0 + p; ~� = � 0 + �; (1.192)

where the valuesp=p0 and �=� 0 are assumed to be small.
An acoustic 
uid is considered to be compressible with the state law

(Poisson's adiabatic)

~p = p0

�
~�

� 0

� 


: (1.193)

Substituting (1.192) into ( 1.193) and taking into account the smallness
of p=p0 and �=� 0, we get:

p + p0 = p0

�
1 +

�
� 0

� 


� p0 +
p0

� 0

�: (1.194)

The value
p

p0
=� 0 is the main constant of the medium and is called
the adiabatic speed of soundc0:

c2
0 =

p0

� 0

: (1.195)

Thus, from (1.194), (1.195) we obtain the linear relation between the
excessive pressure and the density

p = c2
0�: (1.196)

Assuming the dimensionless velocityv=c0 to be small, we linearize
(1.190), (1.191) with account of (1.192)

_� + � 0r � v = 0; (1.197)

� 0 _v = �r p: (1.198)
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Di�erentiating ( 1.197) by time and taking (1.198) and (1.196) into
account, we obtain the wave equation for the function of excessive pressure

1
c2

0
•p � � p = 0: (1.199)

This is the basic equation if the function of excessive pressure p(x; t) is
taken as the main �eld function. An alternative approach is the transition
to an equation with respect to the acoustic velocity potential.

Let us vector multiply both parts of Eq. (1.198) by r . Taking into
account the identity r � r p = 0 we get: rot v = 0. Thus, the acoustic
velocity �eld is irrotational, and we can introduce the function of velocity
potential  =  (x; t):

v = r  : (1.200)

Then from (1.198) we get the relation that connect the functionsp and
 :

p = � � 0
_ : (1.201)

Formulas (1.201), (1.199) show that the velocity potential  satis�es
the wave equation

1
c2

0

• � �  = 0: (1.202)

For the di�erential equations (1.199) or (1.202) it is necessary to
formulate the appropriate boundary conditions.

Let us assume that the boundary �a = @
 a of the acoustic medium
is divided into four main parts: � af is a free boundary; �ar is a rigid
boundary; � ai is an impedance boundary; �as is a boundary of a contact
with a deformable solid.

On the free boundary the excessive pressurep should be equal to zero,
and then according to (1.201) the velocity potential should be equal to
zero:

p = 0;  = 0; x 2 � af : (1.203)

On the rigid boundary the normal component of the vector of acoustic
velocity is equal to zero:na � v = 0, x 2 � ar , wherena is the external with
respect to 
 a unit normal to � ar . Then by (1.200) the normal derivative of
the function of velocity potential is equal to zero on �ar , and consequently
the same condition holds for the function of excessive pressure

@ =@n= n � r  = 0; @p=@n= n � r p = 0; x 2 � ar : (1.204)

The greatly extended domains should be limited by non-re
ecting or
absorbing boundaries. On these boundaries we can use an impedance
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boundary condition: p = Zvn; x 2 � ai , where Z is the impedance of the
boundary � ai . Using (1.201) this condition can be written as a condition
for the function  or for the function p:

n � r  = � � 0Z � 1 _ ; n � r p = � � 0Z � 1 _p; x 2 � ai : (1.205)

Finally, on the boundary � as of the contact with a deformable solid the
conjugation conditions should hold:

n � v = n � _u; n � � a = n � � s; x 2 � as; (1.206)

wherev is the acoustic velocity in the medium 
a; u is the displacement
vector in the body 
 s; n = ns is the external with respect to 
 s unit normal
to � as (ns = � na; na is the external with respect to 
 a unit normal to � as);
� s is the stress tensor in the solid structure;� a = � pI is the stress tensor
in the acoustic medium (I is the unit tensor).

The transient problems apart from the boundary conditions require
the initial conditions for the values of �eld functions and their �rst time
derivatives at t = +0.

Thus, the classical statement of the acoustic problem is possible with
respect to both the excessive pressure functionp = p(x; t) and the acoustic
velocity potential function  =  (x; t). This statement includes the wave
equation (1.199) or (1.202), the boundary conditions (1.203){( 1.206) and
the corresponding initial conditions. If there is a boundary � as where
a contact with a solid occurs, then this statement is not complete and
it should be considered together with the corresponding problem for a
deformable solid.

If the acoustic problem is considered separately, then at zero initial
data its statement should be supplemented by the sources of excitation
that should be added either to the right-hand sides of the wave equations
or to the boundary conditions.

For the acoustic medium with dissipation we can consider a modi�cation
of Eq. (1.199)

1
c2

0
•p � � p � "a� _p = 0; (1.207)

where"a is the dissipation coe�cient. Then it can be shown [22] that for
the boundary conditions (1.206) it is possible to take: � a � � (p + "a _p) I .

Such model of acoustic medium with dissipation obviously correlates
with the models of solid structures with account of the Rayleigh damping.
This model is convenient for construction of coupled systemsof equations
that describe the interrelation of various media with account of attenuation
e�ects.
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1.6.2 Semi-discrete approximations on the base of generalize d
statements and conjugation of acoustic equations with
equations of solid structure

In order to move to a generalized statement for an acoustic problem
formulated with respect to the pressure function, as usual wemultiply the
di�erential equation by a yet arbitrary su�ciently smooth f unction q =
q(x), then we integrate it over the domain 
a and perform transformations
related to the integration by parts. As a result from (1.199) we obtain:

1
c2

0

Z


 a

q•p d
 +
Z


 a

(r q)� � r p d
 =
Z

� a

qna � r p d� : (1.208)

Now we need to transform the right-hand side of (1.208), using the
boundary conditions and formulating the restrictions for the functionq(x).

On the part of the boundary � af it is necessary to impose the same
conditions (1.203) on q as those imposed on the functionp:

q = 0; x 2 � af : (1.209)

On the part � ar according to (1.204) the normal derivative of the
pressure is equal to zero, and therefore the integral in the right-hand side
of (1.208) over the part � ar vanishes.

The impedance boundary condition on �ai by (1.205) leads to the
following expression:

Z

� ai

qna � r p d� = � � 0Z � 1
Z

� ai

q_p d� : (1.210)

Finally, the representation of the right-hand side integral in (1.208)
over the boundary �as in contact with a solid structure depends on the
possibility of the appropriate transformations for elastic (piezoelectric,
thermoelastic, etc.) problems. Using the sequence of equalities

na � r p = � � 0na � r _ = � � 0na � _v = � � 0na � •u; x 2 � as;

we get Z

� as

qna � r p d� = � � 0

Z

� as

qna � •u d� : (1.211)

Then, when the constraint (1.209) holds, with account of (1.210), (1.211)
the integral identity ( 1.208) will be written in the form

1
c2

0

Z


 a

q•p d
 +
� 0

Z

Z

� ai

q_p d� +
Z


 a

(r q)� � r p d
 + � 0

Z

� as

qna � •u d� = 0 :

(1.212)
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As our main goal is to construct numerical methods to analyze the work
of solid structures interacting with acoustic medium, here we will not fully
formulate the notion of the weak solution. Moreover, it can be easily done
by analogy with the previous sections.

Therefore we proceed directly to the semi-discrete approximations that
we will set in the form:

p � ph = N �
p(x) � P(t); q = N �

p(x) � � P = ( � P)� � N p(x); (1.213)

u � uh = u0h + un; u0h = N �
u(x) � U (t); (1.214)

whereN �
p(x) is the row-vector of the shape functions for the pressure �eld;

P(t) is the vector of (time dependent) constants of approximation; � P is
an arbitrary vector; un, u0h, N �

u(x), U (t) are the same values that were
de�ned previously in section 1.3.3.

Substituting (1.213), (1.214) into ( 1.212) and taking into account the
independence of� P, we receive

M pp � •P + Cpp � _P + K pp � P + � 0R pu � •U = � � 0
_Fp; (1.215)

where

M pp =
1
c2

0

Z


 a

N pN �
p d
 ; Cpp =

� 0

Z

Z

� ai

N pN �
p d� ; (1.216)

K pp =
Z


 a

B �
p � B p d
 ; B p = r N �

p; (1.217)

R pu =
Z

� as

N p(n � � N �
u) d� ; Fp =

Z

� as

N p(n � � _un) d� : (1.218)

In order to conjugate these semi-discrete equations for an acoustic
medium interacting with a solid structure, we need to obtain the
corresponding equations for a deformable solid.

As it was shown in section 1.3, the right-hand side of the corresponding
equation for a solid structure contained the integral

R
� s

v � � (ns � � s) d�.
Here � s = � is the boundary of the solid structure domain 
 s = 
, ns = n
is the external with respect to 
 s unit normal to � s, � s = � is the stress
tensor in the solid structure.

For the part of the boundary � as with account of the contact conditions
(1.206) and the equality ns = � na at � a = � pI we get:

ns � � s = ns � � a = � na � � a = n �
a � (pI ) = pna:

Thus, the equation similar to (1.52) of the weak problem statement for
the solid structure in the right-hand side should be supplemented by an
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integral over the surface of the contact with acoustic medium
R

� as
v � �nap d�.

Then in the absence of the piezoelectric e�ect (e=0) Eq. ( 1.52) of the weak
problem statement for a purely elastic medium will be written in the form:

c(v; u) = ~Lu(v) +
Z

� as

v � � nap d� :

Substituting the approximations (1.213) for p � ph and (1.93) for v into
the last integral, we get:

Z

� as

v � � nap d� = � U � � R �
pu � P:

Thus, the right-hand side of the discretized motion equations for the
solid structure should be supplemented by the vectorR �

pu � P. As a result,
con�ning ourselves to an elastic case with the Rayleigh damping for the
solid structure, we will have:

M uu � •U + Cuu � _U + K uu � U � R �
pu � P = Fu: (1.219)

Eqs (1.219), (1.215) should be solved simultaneously. These equations
are the discretized by spacial variables motion equations for the solid
structure and the acoustic medium that surrounds it.

In a single form these equations can be written as:

M � •a + C � _a + K � a = F; (1.220)

where

M =
�

M uu 0
� 0R pu M pp

�
; C =

�
Cuu 0

0 Cpp

�
; K =

�
K uu � R �

pu
0 K pp

�
;

(1.221)

a =
�

U
P

�
; F =

�
Fu

� � 0
_Fp

�
: (1.222)

As it can be seen, the matricesM and K are not symmetric, and this
fact somehow complicates the process of solving the problem(1.220).

We note that even in neglect of the attenuation mechanisms ina solid
structure in the system (1.220) the damping remains ifCpp 6= 0. Obviously,
this takes place in the presence of the impedance boundary conditions, that
permit the out
ow of energy from the \solid { acoustic medium" system.

Let us see how the semi-discretized equations for acoustic medium will
look like if we choose the acoustic potential (x; t) as an unknown function.
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Let us adopt an appropriate approximation �  h = N �
 (x) � 	 and

take into account that by virtue of (1.201) at N  (x) = N p(x)

P = � � 0
_	 : (1.223)

Substituting (1.223) into ( 1.215) and integrating by time, we get

M   � •	 + C   � _	 + K   � 	 � R  u � _U = F  ; (1.224)

whereM   = M pp, C   = Cpp, K   = K pp, R  u = R pu, F  = Fp.
This equation in association with (1.219) and with account of (1.223)

gives the system (1.220), in which now

M =
�

M uu 0
0 � � 0M   

�
; C =

�
Cuu � 0R �

 u
� 0R  u � � 0C   

�
;

K =
�

K uu 0
0 � � 0K   

�
;

(1.225)

a =
�

U
	

�
; F =

�
Fu

� 0F  

�
: (1.226)

We note that system (1.220) with ( 1.225), (1.226) for the unknowns
f U , 	 g has symmetric matrices of saddle structure (in order to insure the
symmetry of the matrices, the equations for the acoustic medium (1.224)
were specially multiplied by � 0). Therefore in this form the system is
numerically preferable than the system (1.220){( 1.222) for the unknowns
f U , Pg.

Nevertheless, a range of computational software [1] adopt exactly
this approach (1.220){( 1.222), although there are implementations of the
interaction of a solid structure with an acoustic medium on the base of
Eqs. (1.220) with ( 1.225), (1.226).

Exercises for Chapter 1

1.1. Show that in a sequence of equalities (1.18) one of the equalities
follows from the others.

1.2. Find the maximum number of independent elastic moduli among
the componentscE

ijkl , taking into account (1.18).
1.3. Find the maximum number of independent piezomodulieikl , taking

into account (1.19).
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1.4. Show that from the condition of positive de�niteness (1.21) of the
fourth rank tensor of elastic modulicE it follows that the componentscE

iiii
with equal indices must be positive.

1.5. Show that by virtue of the condition of positive de�niteness(1.22)
of the second rank tensor of dielectric permittivities� S it follows that
the diagonal components� S

ii must be positive. Should the nondiagonal
components� S

ij (i 6= j ) be positive as well?
1.6. By virtue of symmetry conditions (1.18) the elastic moduli cE

ijkl

can be arranged in the form of a symmetric matrixcE
�� = cE

ijkl of the size
6 � 6 (�; � = 1; 2; :::; 6) with the following correspondence of the indices
(ij ) $ � , (ij ) $ � :

(11) $ 1; (22) $ 2; (33) $ 3; (23) = (32) $ 4;

(13) = (31) $ 5; (12) = (21) $ 6:

Using this correspondence, the components of the strain tensor " can
be represented in the form of a vector

S� = b"11; "22; "33; 2"23; 2"13; 2"12c:

Show that from condition (1.21) it shows that the matrix cE
�� of the size

6 � 6 must be positive de�nite.
1.7. Show that by virtue of condition (1.22) the matrix � S composed

of the components of the second rank tensor of dielectric permittivities � S

must be positive de�nite.
1.8. Prove that for the symmetric positive de�nite matrix K for all i; j

there holds an inequalityjK ij j �
p

K ii K jj .
1.9. Show that with the transition to vector-matrix notations described

in problem 1.6 and introduction of the stress vector of the size 6

T � = b� 11; � 22; � 33; � 23; � 13; � 12c

and the matrix of the size 3� 6 for the piezomoduliei� = eikl , (kl ) $ � ,
the constitutive relations (1.16), (1.17) can be written in the form:

T = cE � S � e� � E;

D = e � S + � S � E:

1.10. Show that for semi-symmetric fourth rank tensor the role of the
unit tensor regarding the double contraction with the symmetric second
rank tensor is performed by the tensor� :

� ijkl =
1
2

(� ik � jl + � il � jk );
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for which
� = � : � ; 8� : � ij = � ji :

Check that if two fourth rank tensors cE and sE are connected by the
relation

cE : sE = sE : cE = � ;

then from the equality ~� = cE : ~" , ~" = ~" � the equality ~" = sE : ~� , ~� = ~� �

follows, and vice versa, i. e. the fourth rank tensorscE and sE can be
regarded as reciprocal.

1.11. Show that the unit tensor� introduced in problem 1.10 is a semi-
symmetric tensor, i. e. for this tensor the symmetry conditions similar to
(1.18) hold. Is the tensor� positive de�nite in the sense of (1.21)?

1.12. Obtain an equivalent to (1.16), (1.17) form of the constitutive
relations

" ij = sE
ijkl � kl + dkij Ek;

D i = dikl � kl + � T
ik Ek;

where sE
ijkl are the components of the tensor of elastic compliances

calculated at constant electric �eld;dikl are the components of the tensor of
piezomoduli; � T

ik are the components of dielectric permittivities calculated
at constant stress.

What are the properties of symmetry and positive de�niteness for
the tensors of elastic compliancessE , piezomoduli d and dielectric
permittivities � T?

1.13. Show that with the introduction of vector-matrix notations for
problems 1.6 and 1.9, the constitutive relation of problem 1.12 can be
written in the form:

S = sE � T + d � � E;

D = d � T + � T � E;

where the components of the matricessE
�� and di� are related to the

components of the tensorssE
ijkl and dikl by the laws

sE
�� = 2 [�= 4]+[ �= 4]sE

ijkl ; di� = 2 [�= 4]dikl ;

where [
 ] is the integer part of 
 .
1.14. Obtain an equivalent to (1.16), (1.17) form of the constitutive

relations
� ij = cD

ijkl "kl � hkij Dk;

E i = � hikl "kl + � S
ik Dk;
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where cD
ijkl are the components of the tensor of elastic moduli calculated

at constant electric induction; hikl are the components of the tensor of
piezoelectric constant strains;� S

ik are the components of dielectric non-
permittivities calculated at constant strain.

What are the properties of symmetry and positive de�niteness for the
tensor of elastic modulicD , piezoelectric constant strainsh and dielectric
non-permittivities � S?

1.15. Show that with the introduction of vector-matrix notation for
problems 1.6 and 1.9 the constitutive relations in problem 1.14 can be
written in the form:

T = cD � S � h � � D ;

E = � h � S + � S � D ;

wherecD
�� = cD

ijkl and hi� = hikl .
1.16. Obtain an equivalent to (1.16), (1.17) form of the constitutive

relations
" ij = sD

ijkl � kl + gkij Dk;

E i = � gikl � kl + � T
ik Dk;

where sD
ijkl are the components of the tensor of elastic compliances,

calculated at constant electric induction;gikl are the components of the
tensor of piezoelectric constant stresses;� T

ik are the components of dielectric
non-permittivities, calculated at constant stress.

What are the properties of symmetry and positive de�niteness for the
tensor of elastic compliancessD , piezoelectric constant stressesg and
dielectric non-permittivities � T?

1.17. Show that with the introduction of vector-matrix notation for
problems 1.6 and 1.9 the constitutive relations in problem 1.16 can be
written in the form:

S = sD � T + g� � D ;

E = � g � T + � T � D ;

where the components of the matricessD
�� and gi� are related to the

components of the tensorssD
ijkl and gikl by the laws

sD
�� = 2 [�= 4]+[ �= 4]sD

ijkl ; gi� = 2 [�= 4]gikl ;

where [
 ] is the integer part of 
 .
1.18. Prove that for the strains of a deformable solid, that allows a

rigid body motion, are equal to zero, i. e." = 0 for the displacements in
the form u = urigit = uc + ! c � x, uc = const, ! c = const.
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1.19. Show that in vector-matrix notation for problems 1.6 and 1.9the
Cauchy relation (1.10), motion equation (1.23) and boundary condition
(1.32) can be presented in the form

S(u) = L(r ) � u;

L � (r ) � T + � f = � •u;

p = L � (n) � T ; p = p � ; x 2 � � ;

where

L � (r ) =

2

4
@1 0 0 0 @3 @2

0 @2 0 @3 0 @1

0 0 @3 @2 @1 0

3

5 :

1.20. Prove that for a deformable solid with ordinary conditions for the
density, when� � � 0 > 0, the mass matrixM uu, introduced in (1.96), is
positive de�nite.

1.21. Prove that if the essential boundary conditions do not allow
the motion of a solid as a rigid body, i. e. if" (� u) 6= 0 for any feasible
displacements� u 6= 0, compatible with the constraints (� u = 0, x 2 � u),
then the sti�ness matrix K uu, introduced in (1.96), is positive de�nite.

1.22. Show that if the electric potential is de�ned in at least one
point of the boundary of piezoelectric body, then the matrixof dielectric
permittivities K '' , introduced in (1.96), is positive de�nite.

1.23. Show that in a general case of the sti�ness matrixK uu

the dielectric permittivities K '' , introduced in (1.96), are non-negative
de�nite.

1.24. Show that the matrix K uu = K uu + K u' � K � 1
'' � K �

u' from (1.102)
is symmetric and positive de�nite if the essential boundaryconditions do
not allow the motion of a solid as a rigid body (see problem 1.21).

1.25. Prove the conclusion of Pierre Curie that the materials with
piezoelectric e�ect cannot have the center of symmetry. In order to do
this, consider the inversion transformationx ! x0 = � x with respect to
the center of symmetry and apply the formulas of component conversion
for the third rank tensor eijk under the transition from initial coordinate
systemOx1x2x3 to another Cartesian coordinate systemOx0

1x
0
2x

0
3:

e0
ijk = � il � jm � knelmn ;

where � il are the cosines of the angles between the axesx0
i and x l . Then

use the fact that for centrosymmetric materials under the transformations



70 CHAPTER 1. SOME MODELS OF COUPLED PROBLEMS

with respect to the center of symmetry there holds an equalitye0
ijk = eijk

and show that in this case all the piezomodulieijk must be equal to zero.
1.26. For the statement of transient electroelastic problem in section

1.3.1 initial conditions (1.37) were formulated only for the functionsu and
_u. Are the initial conditions for the electric potential ' required for this
problem?

1.27. Show that in vector-matrix notation for problems 1.6 and 1.9
with the additionally introduced vector of thermal stress coe�cients

G � = b
 11; 
 22; 
 33; 
 23; 
 13; 
 12c

constitutive relations (1.112), (1.113) can be written in the form:

T = C � S � G �;

S = G � � S +
�c "

T0
�:

1.28. Obtain an equivalent to (1.112), (1.113) form of the constitutive
relations

" = s : � + � �;

S = � : � +
�c �

T0
�;

where s is the fourth rank semi-symmetric tensor of elastic compliances,
inverse toc in the sense of problem 1.10;� is the second rank symmetric
tensor of thermal expansion coe�cients; c� is the speci�c heat under
constant stress. Which value is greater:c� or c" from (1.113)?

1.29. Show that with the introduction of vector-matrix notation for
problems 1.6, 1.9 and the introduction of the vector of thermal expansion
coe�cients

A � = b� 11; � 22; � 33; 2� 23; 2� 13; 2� 12c

the constitutive relations in problem 1.28 can be written in the form:

S = s � T + A � �;

S = A � � T +
�c �

T0
�;

where the components of the matrixs�� are related (as in problem 1.17)
to the components of the tensorsijkl by the law

s�� = 2 [�= 4]+[ �= 4]sijkl ;

where [
 ] is the integer part of 
 .
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1.30. Prove that for a thermoelastic body under the ordinary conditions
for the density � � � 0 > 0 and speci�c heatc" � c"0 > 0, the heat capacity
matrix C �� , introduced in (1.164), is positive de�nite.

1.31. Prove that in a general case the thermal conductivity matrixK �� ,
introduced in (1.164), is non-negative de�nite.

1.32. Formulate the conditions under which the thermal conductivity
matrix K �� , introduced in (1.164), is positive de�nite (with a proof).

1.33. Prove that the matricesM pp and Cpp, introduced in (1.216), are
positive de�nite, and the matrix K pp from (1.217) is non-negative de�nite
in a general case.

1.34. Formulate the conditions under which the acoustic matrixK pp,
introduced in (1.217), is positive de�nite (with a proof).

1.35. By analogy to Eqs. (1.220){( 1.222) write the matrix semi-discrete
equations for a piezoelectric body 
s, interacting with an acoustic medium

 a. Take the vectors f U , � g as the unknowns for approximations to
model the processes in the medium 
s, and take the vector f Pg as the
unknown for approximations in the medium 
a. As a result, obtain the
system of equations with respect to the vectorsf U , � , Pg. When solving
the problem, take advantage of the fact that the behaviour ofa solid
piezoelectric structure is described by Eqs. (1.97), (1.98).

1.36. By analogy to Eqs. (1.220), (1.225), (1.226) write the matrix semi-
discrete equations for a piezoelectric body 
s, interacting with an acoustic
medium 
 a. Take the vectorsf U , � g as the unknowns for approximations
to model the processes in the medium 
s, and take the vector f 	 g as
the unknown for approximations in the medium 
a. As a result, obtain
the system of equations with respect to the vectorsf U , � , 	 g. When
solving the problem, take advantage of the fact that the behaviour of a
solid piezoelectric structure is described by Eqs. (1.97), (1.98).

1.37. By analogy to Eqs. (1.220){( 1.222) write the matrix semi-discrete
equations for a thermoelastic body 
s, interacting with an acoustic medium

 a (without taking into account the temperature �eld in the acoustic
medium). Take the vectorsf U , T g as the unknowns for approximations
to model the processes in the medium 
s, and take the vectorf Pg as the
unknown for approximations in the medium 
a. As a result, obtain the
system of equations with respect to the vectorsf U , T , Pg. When solving
the problem, take advantage of the fact that the behaviour ofa deformable
thermoelastic body 
 s is described by Eqs. (1.165), (1.166).

1.38. By analogy to Eqs. (1.220), (1.225), (1.226) write the matrix
semi-discrete equations for a thermoelastic body 
s, interacting with an
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acoustic medium 
a (without taking into account the temperature �eld
in the acoustic medium). Take the vectorsf U , T g as the unknowns
for approximations to model the processes in the medium 
s, and take
the vector f 	 g as the unknown for approximations in the medium 
a.
As a result, obtain the system of equations with respect to the vectors
f U , T , 	 g. When solving the problem, take advantage of the fact that
the behaviour of a deformable thermoelastic body 
s is described by
Eqs. (1.165), (1.166).



Chapter 2

Finite element method for coupled
physico-mechanical problems

2.1 General scheme of Galerkin method. Dynamic
and static problems

As it was shown in Chapter 1, in order to �nd weak solutions of coupled
problems numerically, we can use the Galerkin method in a semidescrete
(for dynamic problems) setting. In general form all weak settings for the
problem from Chapter 1 can be represented in a form

� a(w; •a) + da(w; _a) + ca(w; a) = ~La(w); (2.1)

where a = a(x; t) 2 Rk, a = f a1; a2; :::; akg, ai are the unknown �eld
functions; w = w(x) 2 Rk, w = f w1; w2; :::; wkg are the projection
functions; � a, da, ca are the bilinear forms, that contain integrals over the
domain 
 from the products w � a and their derivations; ~La is the linear
continuous functional.

For example, let us consider weak statements for three-dimensional
problems of electroelasticity (1.83), (1.84), written without the procedures
(1.62) for removal of inhomogeneous essential boundary conditions

� (v ; •u) + d(v; _u) + c(v; u) � e(v ; ' ) = ~Lu(v); (2.2)

e(u; � ) + � (�; ' ) = ~L ' (� ): (2.3)

As in these equationsv and � are arbitrary functions of the required
smoothness, then relations (2.2), (2.3) are equivalent to its sum. It is
obvious that the termwise sum (2.2) and (2.3) can be written in the
form (2.1) at k = 4; a = f u; ' g; a1 = u1 = ux ; a2 = u2 = uy;
a3 = u3 = uz; a4 = ' ; w = f v; � g; � a(w; a) = � (v ; u); da(w; a) = d(v; u);
ca(w; a) = c(v; u) � e(v ; ' ) + e(u; � ) + � (�; ' ); ~La(w) = ~Lu(v) + ~L ' (� ).

73
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Similarly, the weak statement for the thermoelasticity problem based
on relations (1.137), (1.138), can be represented in the form (2.1) at
k = 4; a = f u; � g; a1 = u1 = ux ; a2 = u2 = uy; a3 = u3 = uz;
a4 = � ; w = f v; � g; � a(w; a) = � (v ; u); da(w; a) = T0
 (u; � ) + s(�; � );
ca(w; a) = c(v; u) � 
 (v ; � ) + k(�; � ); ~La(w) = ~Lu(v) + ~L � (� ).

In order to remove the inhomogeneity of the essential boundary
conditions, one can search the solution in the form

a = a0 + an; (2.4)

where a0 = f a01; a02; :::; a0kg is an unknown function that satis�es
homogeneous essential boundary conditions;an = f an1; an2; :::; ankg is the
known (specially selected) function for which the same inhomogeneous
essential boundary conditions as for the functiona are satis�ed.

From (2.1), (2.4) it is obvious that after �nding a0 we have the relation

� a(w; •a0) + da(w; _a0) + ca(w; a0) = La(w); (2.5)

La(w) = ~Lu(v) � � a(w; •an) � da(w; _an) � ca(w; an): (2.6)

For the problems of electroelasticity Eq. (2.5) should be satis�ed for
8 w 2 V; V = f H1

u; H1
' g; and the unknown part of the solutiona0 should

belong to the space Q =f Qu; Q' g. Similar functional spaces can be also
introduced for other coupled problems from Chapter 1.

The classical version of the Galerkin method assumes the choice of the
�nite by x spaces Vh � V, Qh = L 2(0; T; Vh), Qh � Q and the search
for the approximate solutionah0 � a0, ah0 2 Qh, which satis�es (2.5) at
8 w 2 Vh.

In the space Vh an arbitrary vector-function w = f w1; w2; :::; wkg can be
expanded in the basis, and for an individual componentwi this expansion
can be written in the form

wi =
niX

j =1

Naij (x)Wij = N �
ai � W i ; (2.7)

whereNaij (x) are the basis functions;Wij are the coe�cients at the basis
functions; N �

ai = bNai1; Nai2; :::; Nain i c; W i = f Wi 1; Wi 2; :::; Win i g; and
there is no summation overi in (2.7).

As it can be seen, the dimension of the basis of the space Vh in the
adopted notations is equal tonV h = n1 + n2 + ::: + nk. The components
ah0i of the approximate solution vectorah0 can be then searched in the
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form

ah0i =
niX

j =1

Naij (x)A ij (t) = N �
ai � A i (t); (2.8)

whereA i (t) = f A i 1(t), A i 2(t); :::; A in i (t)g; A ij (t) are the unknown scalar
functions of approximation.

If we compose two single vectorsW = f W 1; W 2, :::, W kg; A (t) =
f A 1(t); A 2(t); :::;A k(t)g out of the vectors W i ; A i (t), then from (2.7),
(2.8) we can obtain general representations forw and ah0

w = N �
a � W ; ah0 = N �

a � A (t); (2.9)

where i -th row of the matrix of the basis functionsN �
a has the following

block structure: b0; :::; 0; N �
ai ; 0; :::; 0c. We should note here that the form

of the matrix N �
a depends on the chosen way of collecting the vectorsW

and A from W i and A i .
Let us substitute (2.9) into ( 2.5) and take into account that in the

integral forms � a, da, ca and in the linear functional La the valuesW and
A (t) do not depend on the spacial variablesx, and, therefore, can not be
moved outside the integral signs. As a result, we get an equation in the
matrix form

W � � (M � •A + C � _A + K � A ) = W � � F (2.10)

with the matrices M , C, K and the vector F, determined from� a, da, ca

and La, respectively.
As W is an arbitrary vector from Vh, then from (2.10) we have the

resulting equation of motion

M � •A + C � _A + K � A = F: (2.11)

If we consider atransient problem, then it is necessary to add to (2.11)
the initial conditions

A (0) = A sn; _A (0) = V sn (2.12)

with the known initial values A sn, V sn, that are easy to �nd from the
corresponding continuous initial conditions. Note that if for individual
blocks A i in Eq. (2.11) the second time derivatives are absent, then for
these blocks we do not set the initial conditions for their �rst derivatives
by t.

Thus, the solutions oftransient problemsby the Galerkin method are
reduced to the Cauchy problem (2.11), (2.12) for the system of ordinary
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di�erential equations with respect to time. (In (2.11) there arenV h scalar
equations with respect to the componentsA ij (t).)

We note that there arethreemajor types of dynamic problems: transient
problems, problems of steady-state oscillationsand eigenvalue problems.

Transient problems (2.11), (2.12) usually are the most di�cult and
time-consuming. If all external in
uences (including essential boundary
conditions) change according to the harmonic law with the same frequency
f = != 2� so that F = ~Fei!t , and the solution becomes steady in time
by the same lawA = ~A ei!t , then we can omit the initial conditions and
consider the problem of steady-state oscillations. It is obvious that the
substitution of

A = ~A ei!t ; F = ~Fei!t (2.13)

into (2.11) gives
(� ! 2M + i! C + K ) � ~A = ~F; (2.14)

where ~A , ~F are the complex amplitudes of the solution vectors and the
external in
uences.

In the linear problem Eq. (2.14) represents a system of linear algebraic
equations with complex arithmetic with respect to the complexvectors of
unknowns ~A . Note that even if there is no attenuation in the system, i. e.
C = 0, then the vector ~F can be complex and, consequently, the vector~A
will be complex.

Usually it is necessary to solve the problem of steady-state
oscillations (2.14) several times, changing the frequency! in a certain
interval [! b; ! e]. In this case the values of interest are some characteristics
of solution ~A that depend on the frequency! (frequency characteristics).
Of particular importance are the maximums of these characteristics and
the frequencies at which the maximums are reached. These frequencies
are called theresonance frequencies. In order to �nd feasible resonance
frequencies, we can solve a separateeigenvalue problemwhen in (2.14)
~F = 0 and usually (but not always) C = 0.

If C = 0, ~F = 0, then (2.14) takes the form

! 2M � ~A = K � ~A : (2.15)

In (2.15) the unknowns are the frequency! and the vector ~A , where
nontrivial solutions ~A 6= 0 are of interest. In this case! is called anatural
frequencyor eigenfrequency, and ~A is called aneigenvectoror oscillation
mode. In numerical analysis problem (2.15) is also called ageneralized
eigenvalue problem, and the documentation on the �nite element software
refers to it asmodal analysis.
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The problem considered less often is an eigenvalue problem for a matrix
bundle

(� ! 2M + i! C + K ) � ~A = 0; (2.16)

where it is also necessary to �nd the pairsf !; ~A g, at which (2.16) is
satis�ed, and ~A 6= 0.

Finally, apart from dynamic problems we can also considerstatic or
stationary problems, when in (2.11) A and F are not time-dependent, and
in linear problems Eq. (2.11) is reduced to a system of linear algebraic
equations

K � A = F: (2.17)

As we have shown, the Galerkin method reduces dynamic and static
problems to standard problems of numerical analysis, for solution of which
a number of well-developed specialized numerical methods is available.

2.2 Finite element method as a version of Galerkin
method. Main ideas of FEM

The main problem of practical application for the Galerkin method is the
problem of �nding the spaces Vh and their bases, suitable for the domains
of fairly arbitrary shape. The �nite element method (FEM) is a version of
the Galerkin method where this problem is solved by dividing the domain

 (speci�cally, 
 h � 
) into subdomains 
 em of standard shapes with
simple basis functions.

As it has turned out, in the framework of FEM it is possible to
implement a range of techniques, that allow to apply and implement
them in programs for a variety of problems of mathematical physics.
The procedures ofassembling and accounting for the essential boundary
conditions and calculating the element matrices and vectors by numerical
integration can be attributed to these approaches. All this led to a
wide application of FEM and its e�ective implementation in numerous
computational complexes of both general and specialized purpose.

This book does not claim for the complete presentation of FEM.
A reader is advised to consult numerous monographs where FEM is
presented from the mathematical viewpoint [2, 8, 32], from the viewpoint
of speci�c applications [27] and with speci�c attention to the program
implementation. Often this division is di�cult to make [ 3, 23, 33, 34,
35, 36, 37]. A range of monographs are oriented to the application of
FEM for solving coupled problems of mechanics [14, 17]. Finally, very
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useful information is contained in the documentation on the�nite element
software [1].

Now we pass to a brief description of FEM for classic Lagrangian �nite
elements in R3. Let 
 h � 
, and there is a division of the domain 
 h

into a set of subdomains of a simple shape, the �nite elements
 em, i. e.

 h = [ nel

m=1 
 em, wherem is the element number,nel is the general number
of subdomains 
em.

We will consider weak statements of the problems on 
h, changing the
integration domains in them from 
 to 
 h and moving the boundary
conditions to the boundary �h = @
 h and its parts with various types
of conditions (� hu, � h� , etc.)

The structure of the �nite element mesh comprises �nite elements and
their nodes. A separate node is characterized by its numberj and its
coordinatesx j = f x j ; yj ; zj g. Each �nite element 
 em has its own set of
nodesf xem

r 1
, xem

r 2
, ..., xem

r n
g; xem

r s
2 
 em; s = 1; 2; :::; n = nem; nem is the

number of element nodes.
For the simplest elements the nodes are the vertices of the geometrical

�gures 
 em. In more complex elements the vertices can lie on the edges
and inside the domains 
em. For example, in the elements with quadratic
basis functions the nodes are located both in the vertices and usually in
the middle of the edges of the �gures 
em.

Fig. 2.1 and 2.2 show 2D �nite element meshes consisting of triangular
and quadrilateral elements. Both variants of the mesh are built for the same
solid model with the same parameters of �nite element mesh. Therefore,
almost all the domains 
em and their numbers in both �gures on the left
coincide. Fig.2.1shows simple elements without midside nodes and Fig.2.2
shows more complex elements with the nodes in the vertices and in the
middle of the edges. As it can be seen from Fig.2.2(b), the elements with
middle nodes can have curvilinear sides, which allows to approximate the
curved boundaries more precisely, compared to the elementswith the nodes
located only in the element vertices.

We will associate each nodex j with its basis functionN j (x), which has
a range of important interrelated properties.

1) Function N j (x) is identically equal to zero on all elements
 el, that
do not include the nodex j (both inside and on the boundaries 
el).

2) Usually it is assumed that

N j (xk) = � jk ; (2.18)
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(a) (b)

Figure 2.1. Example of 2D mesh with elements without midside nodes:
(a) with element numbering; (b) with node numbering

(a) (b)

Figure 2.2. Example of 2D mesh with elements with midside nodes:
(a) with element numbering; (b) with node numbering

i. e. the basis function N j (x) equals one in the nodex j and zero in all
other nodes.

3) The basis functions N j (x), probably together with parametric
mappings (look further section 2.3), are de�ned by relatively simple
polynomial expressions of low degree.

4) The use of consistent �nite element meshes, when the adjacent
elements 
em have common nodes and sides and border each other without
gaps and overlapping,ensures theC0-smoothness of the approximated
functions in 
 h for the elements with the same type of approximation on
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the sides and/or edgesand so calledcompleteness condition holds:

nndX

j =1

N j (x) = 1 ; 8 x 2 
 h; (2.19)

wherennd is the total number of nodes.
These features of �nite element meshes and bases determine a range of

good computational properties of FEM.
As separate basis functionsN j (x) have the supports (i. e. the closures

of the sets whereN j (x) are not equal to zero) related to a small number
of �nite elements, then the �nite element matrices K , C and M are very
sparse.

Fig. 2.3 shows the basis functionN9(x) for a �nite element mesh
identical to the one shown above in Fig.2.1. Here the �nite elements,
where this function equals zero, are darkened. As it can be seen, only for
four elements (with the numbers 7{10) this function is not equal to zero,
and these elements are related to �ve nodes (with the numbers 1, 2, 4, 8,
9). Let us consider an example of a problem with one scalar unknown �eld
function in the matrix K of the size 25� 25 (nnd = 25 is the total number
of nodes in the model). For such matrix in the ninth row only the elements
K 91, K 92, K 94, K 98 and K 99 will be not equal to zero, and in the ninth
column only the elementsK 19, K 29, K 49, K 89 and K 99 will be not equal
to zero. This holds, because the products of the functionsN9(x) on N l (x)
at l 6= f 1; 2; 4; 8; 9g and the products of their derivatives are identically
equal to zero on 
h. Consequently, the integrals from these products that
determine the components of the matrixK will also be equal to zero. A
similar result will be valid here for the matricesC and M .

From the property (2.18) we can determine the physical meaning of the
unknowns in the vectorA . Having written the representation (2.8) for the

(a) (b)

Figure 2.3. Basis function for triangular elements without midside nodes:
(a) with element numbering; (b) with node numbering
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componentah0i of the approximate solution in the nodex l , we get

ah0i (x l ; t) =
niX

j =1

Naij (x l )A ij (t) =
niX

j =1

� jl A ij (t) = A il (t): (2.20)

Here it is taken into account that the basis functionsNaij (x) for various
components of the considered problems in FEM can be taken thesame,
i. e. Naij (x) = N j (x).

Formula (2.20) shows that the componentA il of the vector A is the
value of an unknown functionah0i (i. e. the displacementsux , uu, uz, the
potential ' , etc.) in the nodex l .

As it can be seen from (2.8), (2.20), the �eld function ah0i (x; t) in the
domain 
 h is determined by FEM in the form

ah0i (x; t) =
niX

j =1

N j (x)A ij (t) =
niX

j =1

N j (x)ah0i (x j ; t): (2.21)

Thus, the function ah0i (x; t) in 
 h will be known as soon as its values
in the nodes of the �nite element mesh are calculated. In connection to
this the valuesA ij (t) = ah0i (x j ; t) are called thenodal degrees of freedom
(degrees of freedom in the nodex j ).

Let us note that in FEM the vector of unknownsA is easy to collect
by nodal degrees of freedom, and this approach di�ers from the approach
explained in section 2.1 after (2.8). Namely, we form thevector of nodal
degrees of freedomA nd

j = f A1j ; A2j ; :::; Akj g of the sizek; and from the
vectors A nd

j we form a global vector of nodal degrees of freedomA =
f A nd

1 ; A nd
2 ; :::;A nd

j g. Therefore, with the j -th node number in the global
numbering we connectk degrees of freedom with the numbersf k(j � 1)+1,
k(j � 1) + 2, ..., k(j � 1) + k = kj g.

As
R


 h
(:::) d
 =

P
m

R

 em (:::) d
, and for every �nite element there is

a small numbernem of nodes and nonzero basis functions, then the �nite
element matricesK , C, M and some constituents of the vectorF can be
gathered from the element matricesK em, Cem, M em and the vectorsFem

a
of small sizes. Such approach to form the global �nite element objects from
the element objects is called anassembling procedure.

Let us consider an element 
em with the nodesxem
r s

, wherer s = r em
s are

the global node numbers,s = 1; 2; :::; nem are the local numbers. Thus,
we have a to-one correspondence among global and local node numbers:
f em(xem

r s
) = s.
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Let J em
L be a set of local numbers of the degrees of freedom of the

dimensionnem
d = knem, consisting of the blocksf k(s � 1) + 1, k(s � 1) + 2,

..., k(s � 1) + k = ksg, s = 1; 2; :::; nem.
In the general (global) numbering these degrees of freedom have certain

numbers from the setJ em
G , that includes the corresponding blocksf k(r em

s �
1) + 1, k(r em

s � 1) + 2, ..., k(r em
s � 1) + k = kr em

s g.
Using the mapping f em(xem

r s
) = s, we can built a one mappinggem:

J em
G ! J em

L , that transforms for the element 
 em the global numberp of
the degree of freedom fromJ em

G into the local number i from J em
L :

gem(p) = i ; p 2 J em
G ; i 2 J em

L ; p = r s: (2.22)

The element matricesK em, Cem, M em of the sizenem
d � nem

d and the
element vector of the active external in
uencesFem

a are determined by
the formulas similar to those which were used to �nd the components of
the global matricesK , C, M and the vector F. The only di�erence is
that the volume integrals are now calculated over the domain
 em, and the
surface integrals are calculated over the parts of the boundary � em = @
 em.
Besides, only the basis functionsN j (x) for k degrees of freedom of the
element nodej = r em

s , s = 1; 2; :::; nem take part in the calculation.
Then with account for the adopted numbering of global and element

degrees of freedom the extended element matrixK em
G can be determined

by the formula

K em
Gpq =

�
K em

ij ; i = gem(p); j = gem(q); (p 2 J em
G ) ^ (q 2 J em

G );
0; (p =2 J em

G ) _ (q =2 J em
G ):

(2.23)
In a similar way we can set the extended matricesCem

G , M em
G and the

extended vector of active external in
uencesFem
Ga.

A simple analysis show that

K =
nelX

m=1

K em
G ; C =

nelX

m=1

Cem
G ; M =

nelX

m=1

M em
G ; F =

nelX

m=1

Fem
Ga: (2.24)

Formulas (2.24) that determine the assembling process in FEM are
usually written in the form

K =
nelX

m=1

a
K em =

nelX

m=1

K em
G ; (2.25)

and similarly for C, M and F.
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In computational practice the extended element objectsK em
G , Cem

G , M em
G

and Fem
Ga usually are not constructed explicitly. Instead we can organize

a loop over the element numbers where the process (2.25) of constructing
global objects out of element objects is implemented with account for the
location of the components of the element matrices and vectors under
their summation into global objects by (2.22), (2.23). This assembling
process is e�ectively implemented in computer programs forany types of
�nite elements, including the elements with various numbersof degrees of
freedom in the nodes.

In FEM in the frameworks of global strategy of �nite element mesh
construction it is convenient to set both the approximate unknown
functions ah0 and the approximations of the specially selected function
ahn, which satisfy inhomogeneous essential boundary conditions. Indeed,
let us write an approximation for (2.4) and the second formula from (2.9),
additionally marking N a(x) and A by the subscript \0":

ah = ah0 + ahn; ah0 = N �
a0 � A 0(t): (2.26)

It is obvious that a complete �nite element mesh in
 h contains both
the nodes forah0 and the nodes forahn. Using one-type basis functions for
all nodes we can adopt a �nite element approximation forahn

ahn = N �
an � A n(t): (2.27)

Then
ah = N �

a0 � A 0(t) + N �
an � A n(t) = ~N �

a � ~A (t); (2.28)
~N �

a = f N �
a0; N �

ang; ~A (t) = f A 0(t); A n(t)g: (2.29)

Here the components of the vectorA n are known from inhomogeneous
essential boundary conditions forahn or ah, i. e. we can write

A n(t) = A � (t); (2.30)

where A � (t) is the known vector of the values for the components of the
�eld functions ai in the corresponding nodes of the parts with essential
boundary conditions.

Having analyzed the transformation of weak statements (2.2), (2.3) into
(2.5), (2.6), we can note the following. If we formulate the �nite element
equations of motion for the whole ensemble of the nodes and �nite elements
in 
 h without account for the essential boundary conditions, thenwe will
have

~M � •~A + ~C � _~A + ~K � ~A = ~F; (2.31)
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~M =
�

M 00 M 0n

M �
0n M nn

�
; ~C =

�
C00 C0n

C �
0n Cnn

�
; ~K =

�
K 00 K 0n

K �
0n K nn

�
; (2.32)

~A =
�

A 0

A n

�
; ~F =

�
F0

Fn

�
: (2.33)

In (2.31){( 2.33) the vector A 0 is unknown and the vectorA n is known
by (2.30). But from ( 2.31){( 2.33) and (2.30) it is easy to obtain an equation
only for an unknown vectorA 0

M 00� •A 0+ C00� _A 0+ K 00�A 0 = F0 � M 0n � •A � � C0n � _A � � K 0n �A � : (2.34)

Upon the change of notation, Eq. (2.34) coincides with the previously
used Eq. (2.11) for the approximation (2.27) for ahn. Certain inconvenience
of the transition from (2.31) to (2.34) consists in the change of the order and
structure of the �nite element matrices and vectors (under the transition
from ~M to M 00, etc.)

One version of themethod of taking into account the essential boundary
conditions, that maintains the orders of the global �nite element objects,
consists only in their transformation which leads to the following resolving
equations

~M t � •~A + ~C t � _~A + ~K t � ~A = ~F t ; (2.35)

~M t =
�

M 00 0
0 0

�
; ~C t =

�
C00 0
0 0

�
; ~K t =

�
K 00 0
0 K d

nn

�
; (2.36)

~A =
�

A 0

A n

�
; ~F t =

�
F0 � M 0n � •A � � C0n � _A � � K 0n � A �

K d
nn � A �

�
;

(2.37)
where K d

nn is a diagonal block composed of the corresponding diagonal
components of the matrixK nn .

It is obvious that formulas (2.35){( 2.37) are equivalent to (2.34), (2.30).
The second way (2.35){( 2.37) to take into account the essential

boundary conditions is easier for the computer implementation than the
�rst one (( 2.34), (2.30)), as for this method it is not necessary to change
the sizes of global �nite element objects.

Thus, di�erent ways of taking into account the essential boundary
conditions can be suggested, in which �rstly the �nite element mesh is
built without account for these boundary conditions, secondly the general
FEM matrices and the main parts of the right-hand side vectorare formed,
and after that the procedure of taking account the essentialboundary
conditions is reduced to the transformation of the constructed matrices
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and vectors. Such methods enable to automate the processes of taking
into account the essential boundary conditions in the framework of the
general concepts of FEM.

Concluding the description of the computational propertiesof FEM we
note that the use of simple basis functions permits to calculate the element
matricesK em, Cem, M em and vectorsFem

a fast enough and with high degree
of accuracy by quadrature formulas of low order.

Besides, the resulting FEM global matrices will be, as a rule,well-
conditioned and their condition numbers will not increase greatly with
the increase of the order. It is also can be noted that these matrices are
sparse and in many problems they are also symmetric and positive de�nite.
Therefore in order to solve �nite element problems we can e�ectively use
powerful modern software for solving linear (and nonlinear) systems of
algebraic equations, integrating the Cauchy problems by time and solving
the eigenvalue problems with large sparse matrices.

In the next section we will provide a summary of basis functions for
main �nite elements used in modern �nite element software.

2.3 Basic �nite element approximations

This section describes main isoparametric �nite elements for 1D, 2D and
3D problems.

Let 
 em = 
 em
x be a domain in Rl occupied by a �nite element with the

number m. Here l = 1 for 1D elements,l = 2 for 2D elements andl = 3
for 3D elements;x = f xg at l = 1, x = f x; yg at l = 2, x = f x; y; zg at
l = 3.

Let us denote byxem
r s

= x r s a set of nodes of the element with the global
numbering r1, r2, ..., rn. Then the total number of nodes for the element

 em

x is equal ton = nem.
We will consider that there is a parametric mappingx = x(� ), � 2 Rl

(� = f � g at l = 1, � = f �; � g at l = 2, � = f �; �; � g at l = 3),
that transforms a certain canonical domain 
em

� into the domain 
 em
x .

For the canonical �gure there is a set of nodes� s with local numbering
s = 1; 2; :::; n.

Let us consider some approximate vector-functionah(x; t) 2 Rk, ah =
f ah1; ah2; :::; ahkg, ahi = ahi (x; t), i = 1; 2; :::; k. We will consider that on
the element 
 em

x each scalar componentahi (x; t) of this function can be
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presented in the form

ahi (x; t) = ahi (x(� ); t) = ahi (� ; t) =
nX

s=1

Ns(� )A is(t); (2.38)

where Ns = Ns(� ) are the basis functionsor the shape functionsof the
�nite element; s = 1; 2; :::; n.

Below for clarity we consider only one speci�c approximatedfunction
ah for a �xed t, therefore we will omit the time dependence. Thus, instead
of (2.38) we will use a simpli�ed expression

ah(x) =
nX

s=1

Ns(� )A s: (2.39)

It is assumed that the parametric mapping of the canonical �gure 
 em
�

on the domain 
 em
x can be presented in the form

x = x(� ) = N em�
x (� ) � X em; (2.40)

where for 1D elements (l = 1)

N em�
x (� ) = bN1(� ); N2(� ); :::; Nn(� )c; (2.41)

X em = f xr 1; xr 2; :::; xr n g; (2.42)

for 2D elements (l = 2)

N em�
x (� ) =

�
N1 0 N2 0 ::: Nn 0
0 N1 0 N2 ::: 0 Nn

�
; (2.43)

X em = f xr 1; yr 1; xr 2; yr 2; :::; xr n ; yr n g; (2.44)

and for 3D elements (l = 3)

N em�
x (� ) =

2

4
N1 0 0 N2 0 0 ::: Nn 0 0
0 N1 0 0 N2 0 ::: 0 Nn 0
0 0 N1 0 0 N2 ::: 0 0 Nn

3

5 ; (2.45)

X em = f xr 1; yr 1; zr 1; xr 2; yr 2; zr 2; :::; xr n ; yr n zr n g: (2.46)

The �nite elements of the form (2.39){( 2.46) are called isoparametric,
as their characterization uses the parametric mappingx = x(� ) and
the sets of basis functions with the total numbern are the same in
the approximation (2.39) of the �eld function ah and in the parametric
mappings (2.40){( 2.46).
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Obviously, the behaviour of the �eldah by x is more important than its
behaviour by� . Therefore usually we need a bijective parametric mapping
x = x(� ) and require an existence of an inverse function� = � (x). Then
from (2.39){( 2.46) we will have a dependenceah(x) = ah(� (x)). Here
it should be noted that even for simple basis functionsNs(� ) an inverse
to (2.40) mapping can be rather cumbersome. However, despite of perhaps
complex behaviour of the �eldah(x) on 
 em

x , this function usually has good
approximation properties.

The basis functions of the main �nite elements in total comprise full
polynomials of the �rst or the second degree from each spatial variable.

Linear �nite element in the form of a segment with two nodes

In this 1D element shown in Fig.2.4 n = nem = 2; 
 em
x = [ xr 1; xr 2];

xr 1 < x r 2; 
 em
� = [ � 1; 1]; � 1 = � 1; � 2 = 1.

The basis functions are de�ned by the formulas

N1(� ) =
1
2

(1 � � ); N2(� ) =
1
2

(1 + � ); (2.47)

or in the uniform notation

Ns(� ) =
1
2

(1 + � s� ); s = 1; 2: (2.48)

The element ensures a linear representation of the functionah when it
depends either on� or on x. (The latter is true by virtue of linearity of
the inverse mapping� = � (x) under the linear dependence onx = x(� ).)

Figure 2.4. 1D element with two nodes: original segment (left)
and canonical segment with basis functions (right)
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Figure 2.5. 1D element with three nodes: original segment (left)
and canonical segment with basis functions (right)

Quadratic �nite element in the form of a segment with three
nodes

For this 1D element (Fig. 2.5) n = nem = 3; 
 em
x = [ xr 1; xr 3] =

[xr 1; xr 2] [ [xr 2; xr 3]; xr 1 < x r 2 < x r 3; 
 em
� = [ � 1; 1] = [ � 1; 0] [ [0; 1];

� 1 = � 1; � 2 = 0; � 3 = 1.
Here the basis functions are quadratic

N1(� ) =
1
2

� (1 � � ); N2(� ) = 1 � � 2; N3(� ) =
1
2

� (1 + � ); (2.49)

or in the uniform notation

Ns(� ) =
1
2

(3� 2
s � 2)[� 2

s(1 + + � s� ) � (1 � � 2)]; s = 1; 2; 3: (2.50)

In order to ensure a bijective mappingx = x(� ), the internal node xr 2

must be located from the outermost nodesxr 1 and xr 3 at the distance
greater than hm=4, wherehm = xr 3 � xr 1 is the segment length.

In a general situation the behaviour ofah from x is described by a
complex transcendental expression. However, if an internalnode is located
in the middle of the segment, i. e.xr 2 = ( xr 1 + xr 3)=2, then the quadratic
parametric mappingx = x(� ) is degenerated to a linear mapping. In this
case each element gives a quadratic representation of the function ah both
by � and by x. Therefore almost always the nodexr 2 is selected in the
middle of the segment.

Triangular �nite element with 3 nodes

The �gure 
 em
x on the plane Oxy has a form of triangle with the

nodesx r s = f xr s ; yr sg, s = 1; 2; 3, located in the counter-clockwise order
of bypassing (Fig. 2.6). The canonical �gure 
 em

� on the plane O��



2.3. Basic �nite element approximations 89

Figure 2.6. Triangular element with three nodes:
original triangle (left) and canonical triangle (right)

(� = f �; � g) is a rectangular triangle with the catheti equal to 1. Here
n = 3; � 1 = f 0; 0g; � 2 = f 1; 0g; � 3 = f 0; 1g.

In order to construct the shape functions, triangular coordinates or area
coordinates are used

L r 1(P) =
S�( P r2r 3)

S�( r 1r 2r 3)
; L r 2(P) =

S�( P r3r 1)

S�( r 1r 2r 3)
; L r 3(P) =

S�( P r1r 2)

S�( r 1r 2r 3)
; (2.51)

whereP = P(x) = P(x; y) is the point inside triangle,S�( P r i r j ) is the area
of triangle with the vertices P(x), x r i , x r j .

When bypassing the vertices in counter-clockwise direction, for
calculation of the area the following formula can be used

S�( P r i r j ) =
1
2

�
�
�
�
�
�

1 1 1
x x i x j

y yi yj

�
�
�
�
�
�

: (2.52)

For canonical �gure 
 em
� the triangular coordinatesL(� ) = L(�; � ) have

very simple form

L1(�; � ) = 1 � � � �; L 2(�; � ) = �; L 3(�; � ) = �: (2.53)

These functions can be used as basis functions, i. e. for a triangular
element with three nodes we have

Ns(�; � ) = L s(�; � ); s = 1; 2; 3: (2.54)

The element has a linear behaviour of the �eldah both by � and by x,
and triangular coordinatesL r s(P) can be taken as basis functions fromx,
i. e. L r s(P) = Ns(� (x)). From (2.52) it can be seen that the functions
L r s(P) are linear byx and y. The graphs of these functions were presented
before in Fig.2.6, if we consider one of the elements.
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Quadrilateral �nite element with four nodes

Let us consider a quadrangle 
em
x on the planeOxy with the nodes in

its vertices x r s = f xr s ; yr sg, s = 1; 2; 3; 4, located in the counter-clockwise
order of bypassing (Fig.2.7). The canonical �gure 
 em

� on the planeO��
(� = f �; � g) is a square with the center in the pointf 0; 0g and with the
sides equal to 2. Heren = 4; � 1 = f� 1; � 1g; � 2 = f 1; � 1g; � 3 = f 1; 1g;
� 4 = f� 1; 1g.

The shape functions are the products of the corresponding basis
functions (2.47) of a 1D linear element that depend on� or �

N1(�; � ) = (1 � � )(1 � � )=4; N2(�; � ) = (1 + � )(1 � � )=4;
N3(�; � ) = (1 + � )(1 + � )=4; N4(�; � ) = (1 � � )(1 + � )=4;

(2.55)

or in a uniform notation

Ns(� ) = (1 + � s� )(1 + � s� )=4; s = 1; 2; 3; 4: (2.56)

As it can be seen from (2.55), the basis functions are linear by� and � ,
i. e. bilinear. Therefore an element is also called abilinear quadrilateral
�nite element with four nodes.

In order to ensure a bijective mappingx = x(� ), it is necessary [32] that
a quadrangle is convex, i. e. all its internal nodes at the vertices are less
than � .

The behaviour of the �eld ah by x here is quite complex, but on each
side it is linear. For this reason the contact of two bilinearquadrilateral
�nite elements by a common side with shared nodes ensures a continuity
of the �eld ah(x). This element can also contact by a common side with
triangular �nite element with three nodes. Here a continuity of the �eld

Figure 2.7. Quadrilateral element with four nodes:
original quadrangle (left) and canonical quadrangle (right)
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ah(x) is also ensured for the transition from bilinear quadrangle to a linear
triangle.

This element has a simple shape for which we can demonstrate an
importance of isoparametric approach. As it is known, for a quadrangle
with four nodes and with the sides not parallel to the coordinate
axes x and y it is not possible to construct polynomial representations
ah(x) = ah(x; y), which ensure their continuity under the transition
from one quadrangle to another. This continuity is ensured only for
dependences (2.39){( 2.46) with isoparametric mappings.

In order to use more accurate quadratic approximations, it is necessary,
as in 1D case, to consider the elements with the nodes on the element sides
and quadratic basis functions.

Triangular �nite element with six nodes

Here a triangle 
 em
x on the planeOxy has three nodes in the vertices

x r s = f xr s ; yr sg, s = 1; 2; 3, and another three nodesx r s (s = 4; 5; 6) on
the sides (Fig.2.8). The sides are usually rectilinear with the nodesx r s

(s = 4; 5; 6) in the middle of the sides. However, for a range of cases as,
for example, in a case of curvilinear boundaries, the side can be described
by a quadratic parametric dependence de�ned by a replaced midside node
(Fig. 2.8).

The canonical triangle 
 em
� is the same as in the case of a linear triangle

but with additional nodes � 4 = f 1=2; 0g; � 2 = f 1=2; 1=2g; � 3 = f 0; 1=2g.
The basis functions for the considered element are given by formulas

Ns = (2 L s � 1)L s; s = 1; 2; 3;
N4 = 4L1L2; N5 = 4L2L3; N6 = 4L1L3:

(2.57)

Figure 2.8. Triangular element with six nodes:
original triangle (left) and canonical triangle (right)
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The element ensures full quadratic approximationah(� ) by � and � . If
the sides of the triangle are rectilinear and the nodesx r s at s = 4; 5; 6 are
located in the middle of the sides, then the parametric mapping becomes
linear and therefore we get a quadratic approximation of the�eld ah(� (x))
by x, y. As a rule, the element is used in this particular form.

On the sides of the triangle there holds the approximation (2.39), (2.40),
(2.43), (2.44) with ( 2.57) de�ned by the location of the nodes on the side
and the value of the degree of freedom in these nodes. For a rectilinear side
with a node in the middle, naturally, for ah we have a quadratic behaviour
by x.

Quadrilateral �nite element with eight nodes

This famous element was suggested by J. Ergatoudis, B. Irons and
O. Zienkiewicz and was called an element ofserendipity type[33, 34]. Such
elements do not have nodes inside the domain 
em

x , but give the required
representations of the �eld functions in the form of the polynomials of the
required degree (in the framework of the isoparametric approach). It can
be noted that a triangular �nite element with six nodes is alsoan element
of serendipity type, according to this terminology.

The considered element has a form of quadrangle 
em
x on the planeOxy

with four nodes in the verticesx r s = f xr s ; yr sg, s = 1; 2; 3; 4. Additional
four nodesx r s (s = 5; 6; 7; 8) are located on the sides of the quadrangle
(Fig. 2.9). Regarding the shape of the sides, here the same remarks hold
as those for a triangle with six nodes. The canonical quadrangle 
 em

� is in
fact the same square as it was for a quadrilateral �nite element with four
nodes (� 1 = f� 1; � 1g; � 2 = f 1; � 1g; � 3 = f 1; 1g; � 4 = f� 1; 1g), but with
additional nodes� 5 = f 0; � 1g; � 6 = f 1; 0g; � 7 = f 0; 1g; � 8 = f� 1; 0g.

The basis functions have the form

N5(�; � ) = (1 � � 2)(1 � � )=2; N6(�; � ) = (1 � � 2)(1 + � )=2;
N7(�; � ) = (1 � � 2)(1 + � )=2; N8(�; � ) = (1 � � 2)(1 � � )=2;
N1(�; � ) = (1 � � )(1 � � )=4 � (1=2)N5(�; � ) � (1=2)N8(�; � );
N2(�; � ) = (1 + � )(1 � � )=4 � (1=2)N5(�; � ) � (1=2)N6(�; � );
N3(�; � ) = (1 + � )(1 + � )=4 � (1=2)N6(�; � ) � (1=2)N7(�; � );
N4(�; � ) = (1 � � )(1 + � )=4 � (1=2)N7(�; � ) � (1=2)N8(�; � ):

(2.58)

or in a uniform notation

Ns(�; � ) =
1
4

(3� 2
s � 2

s � 2)[� 2
s � 2

s(1 + � s� )(1 + � s� )�

� � 2
s(1 � � 2)(1 + � s� ) � � 2

s(1 � � 2)(1 + � s� )];
(2.59)
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Figure 2.9. Quadrilateral element with eight nodes:
original quadrangle (left) and canonical quadrangle (right)

wheres = 1; 2; :::; 8, and the nodes� s = f � s; � sg were de�ned previously.
The element ensures quadratic behaviour of the �eldah by � and � on

the canonical square. In the original quadrangle the �eldah(x) behaves
in a complex way. However, on each side the change of the �eldah is the
same as for a triangular element with six nodes. Therefore a quadrilateral
element with eight nodes is consistent on the common side with shared
nodes with the elements of the same type and with a triangular six-node
element.

Many 3D �nite elements can be constructed by analogy with 2D
elements. For this reason in 3D case we will provide only the main formulas
of these elements. We will begin with the elements without intermediate
midside nodes.

Tetrahedron with four nodes (Fig. 2.10, left)

The nodes (vertices) in a physical space:x r s = f xr s ; yr s ; zr sg, s =
1; 2; 3; 4.

The nodes (vertices) of the canonical tetrahedron 
em
� in the space��� :

� 1 = f 0; 0; 0g, � 2 = f 1; 0; 0g, � 3 = f 0; 1; 0g, � 4 = f 0; 0; 1g.
The tetrahedral coordinates for a canonical tetrahedron:

L1 = 1 � � � � � �; L 2 = �; L 3 = �; L 4 = �: (2.60)

The basis functions (L s { tetrahedral coordinates):

Ns(�; � ) = L s(�; � ); s = 1; 2; 3; 4: (2.61)
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Hexahedron (\brick") with eight nodes (Fig. 2.10, right)

The nodes (vertices in a physical space:x r s = f xr s ; yr s ; zr sg, s =
1; 2; :::; 8.

The nodes (vertices of a canonical hexahedron 
em
� in the space��� :

� 1 = f� 1; � 1; � 1g; � 2 = f 1; � 1; � 1g;
� 3 = f 1; 1; � 1g; � 4 = f� 1; 1; � 1g;
� 5 = f� 1; � 1; 1g; � 6 = f 1; � 1; 1g;
� 7 = f 1; 1; 1g; � 8 = f� 1; 1; 1g:

(2.62)

The basis functions:

Ns(�; �; � ) =
1
8

(1 + � s� )(1 + � s� )(1 + � s� ); s = 1; 2; :::; 8: (2.63)

Direct triangular prism with six nodes (Fig. 2.11, left)

The nodes (vertices) in a physical space:x r s = f xr s ; yr s ; zr sg, s =
1; 2; :::; 6.

The nodes (vertices) of a canonical prism 
em
� in the space��� :

� 1 = f 0; 0; � 1g; � 2 = f 1; 0; � 1g; � 3 = f 0; 1; � 1g;
� 4 = f 0; 0; 1g; � 5 = f 1; 0; 1g; � 6 = f 0; 1; 1g:

(2.64)

The basis functions:

Ns = L s(1 � � )=2; Ns+3 = L s(1 + � )=2; s = 1; 2; 3; (2.65)

whereL s are the coordinates of the area (2.51) for the triangle (L1(�; � ) =
1 � � � � , L2(�; � ) = � , L3(�; � ) = � ).

Figure 2.10. Tetrahedron and hexahedron without midside nodes:
tetrahedron with four nodes (left) and hexahedron with eight nodes (right)
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The prismatic element is used to model 3D problems for the bodies of a
generalized cylindrical shape. For such problems good 3D meshes can be
constructed by a translation of the corresponding plane meshes along the
axis z (or curvilinear similar axis). Therefore, the prismatic elements are
obtained through translation of plane triangular elementsalong this axis.
As it can be seen from (2.65), the basis functions for a six-node prism are
de�ned as a result of multiplication of the corresponding basis functions of
the linear triangular element by the linear functions by� .

Quadrilateral pyramid with �ve nodes (Fig. 2.11, right)

The nodes (vertices) in a physical space:x r s = f xr s ; yr s ; zr sg, s =
1; 2; :::; 5.


 em
� is a canonical cube in the space��� , on the top edge of which only

one node is chosen (the vertex):

� 1 = f� 1; � 1; � 1g; � 2 = f 1; � 1; � 1g;
� 3 = f 1; 1; � 1g; � 4 = f� 1; 1; � 1g; � 5 = f 0; 0; 1g:

(2.66)

The basis functions:

N1 = (1 � � )(1 � � )(1 � � )=8; N2 = (1 + � )(1 � � )(1 � � )=8;
N3 = (1 + � )(1 + � )(1 � � )=8; N4 = (1 � � )(1 + � )(1 � � )=8;
N5 = (1 + � )=2:

(2.67)

An element in a form of a pyramid is characterized by the fact that under
a parametric mappingx = x(� ) the canonical cube 
em

� is transformed into
a quadrilateral pyramid 
 em

x . Naturally, this mapping is not bijective, as all
points of the edge of the cube� = 1 are transformed into one vertexx r 5.

Figure 2.11. Prism and pyramid without midside nodes:
prism with six nodes (left) and pyramid with �ve nodes (right)
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Nevertheless, the highlighted feature of the parametric mapping for one
point does not prevent the use of this element in practice. Theprismatic
element is necessary for transition from tetrahedral meshes to hexahedral
meshes, and vice versa.

Regarding the meshes built of the described above tetrahedrons,
hexahedrons, prisms and pyramids, one can make the followingremark.
All these elements can be stitched together with preserving the continuity
of the �eld function ah(x) at the transition from one element to another.
It is only necessary that the elements have common edges and common
shared nodes at the shared edges.

More accurate quadratic basis functions are used in 3D �niteelements
with additional nodes at the sides.

Tetrahedron with 10 nodes (Fig. 2.12, left)

The nodes in a physical space:x r s = f xr s ; yr s ; zr sg, s = 1; 2; :::; 10.
The nodes of the canonical tetrahedron 
em

� in the space��� : � 1 =
f 0; 0; 0g, � 2 = f 1; 0; 0g, � 3 = f 0; 1; 0g, � 4 = f 0; 0; 1g, � 5 = f 1=2; 0; 0g,
� 6 = f 1=2; 1=2; 0g, � 7 = f 0; 1=2; 0g, � 8 = f 0; 0; 1=2g, � 9 = f 1=2; 0; 1=2g,
� 10 = f 0; 1=2; 1=2g.

The basis functions (L s are tetrahedral coordinates from (2.60)):

Ns = (2 L s � 1)L s; s = 1; 2; 3; 4;
N5 = 4L1L2; N6 = 4L2L3; N7 = 4L1L3;
N8 = 4L1L4; N9 = 4L2L4; N10 = 4L3L4:

: (2.68)

Figure 2.12. Tetrahedron and hexahedron with midside nodes:
tetrahedron with 10 nodes (left) and hexahedron with 20 nodes (right)



2.3. Basic �nite element approximations 97

Hexahedron (\brick") with 20 nodes (Fig. 2.12, right)

The nodes in a physical space:x r s = f xr s ; yr s ; zr sg, s = 1; 2; :::; 20.
The nodes of the canonical hexahedron 
em

� in the space��� : (2.62) {
for s = 1; 2; :::; 8, and

� 9 = f 0; � 1; � 1g; � 10 = f 1; 0; � 1g; � 11 = f 0; 1; � 1g;
� 12 = f� 1; 0; � 1g; � 13 = f� 1; � 1; 0g; � 14 = f 1; � 1; 0g;
� 15 = f 1; 1; 0g; � 16 = f 1; � 1; 0g; � 17 = f 0; � 1; 1g;
� 18 = f 1; 0; 1g; � 19 = f 0; 1; 1g; � 20 = f� 1; 0; 1g:

(2.69)

The basis functions:

Ns(�; �; � ) =
1
8

(3� 2
s � 2

s� 2
s � 2)[� 2

s � 2
s� 2

s (1 + � s� )(1 + � s� )(1 + � s� )�

� � 2
s � 2

s(1 + � s� )(1 + � s� )(1 � � 2) � � 2
s� 2

s (1 + � s� )(1 + � s� )(1 � � 2)�
� � 2

s � 2
s (1 + � s� )(1 + � s� )(1 � � 2)];

(2.70)
wheres = 1; 2; :::; 20.

Right triangular prism with 15 nodes (Fig. 2.13, left)

The nodes in a physical space:x r s = f xr s ; yr s ; zr sg, s = 1; 2; :::; 15.
By analogy with the prism with 5 nodes (see (2.64), (2.65)), the nodes of

the canonical 15-node prism 
em
� in the space��� and the basis functions

are easily obtained as a result of the translation of a 6-nodetriangular
element along the axis� from � 1 to 1 and the multiplication of its basis
functions by the basis functions of a 1D along the� -axis quadratic element.

Figure 2.13. Prism and pyramid with midside nodes:
prism with 15 nodes (left) and pyramid with 13 nodes (right)
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Quadrilateral pyramid with 13 nodes (Fig. 2.13, right)

The nodes in a physical space:x r s = f xr s ; yr s ; zr sg, s = 1; 2; :::; 13.

 em

� is a canonical cube in the space��� , on the top edge of which only
one node is selected (the vertex):

� 1 = f� 1; � 1; � 1g; � 2 = f 1; � 1; � 1g;
� 3 = f 1; 1; � 1g; � 4 = f� 1; 1; � 1g;
� 5 = f 0; � 1; � 1g; � 6 = f 1; 0; � 1g;
� 7 = f 0; 1; � 1g; � 8 = f� 1; 0; � 1g;
� 9 = f� 1; � 1; 0g; � 10 = f 1; � 1; 0g;
� 11 = f 1; 1; 0g; � 12 = f� 1; 1; 0g;
� 13 = f 0; 0; 1g:

(2.71)

The basis functions:

N1 = (1 � � )(1 � � )( � 1 � q� � q� )q=4;
N2 = (1 + � )(1 � � )( � 1 + q� � q� )q=4;
N3 = (1 + � )(1 + � )( � 1 + q� + q� )q=4;
N4 = (1 � � )(1 + � )( � 1 � q� + q� )q=4;
N5 = (1 � � 2)(1 � � )q2=2; N6 = (1 + � )(1 � � 2)q2=2;
N7 = (1 � � 2)(1 + � )q2=2; N8 = (1 � � )(1 � � 2)q2=2;
N9 = (1 � � )(1 � � )q(1 � q); N10 = (1 + � )(1 � � )q(1 � q);
N11 = (1 + � )(1 + � )q(1 � q); N12 = (1 � � )(1 + � )q(1 � q);
N13 = (1 � q)(1 � 2q); q = (1 � � )=2:

(2.72)

Regarding the parametric mappingx = x(� ), here the same remarks
hold as those for the pyramid with �ve nodes. The prismatic element
with 13 nodes is required for the transition from tetrahedralmeshes to
hexahedral meshes for the elements with midside nodes.

For all elements with midside nodes (tetrahedrons, hexahedrons, prisms
and pyramids) the continuity of the �eld function ah(x) is ensured at the
transition from one element to another. Here the elements must have
common edges and common shared nodes on the shared edges (both in the
vertices and on the sides).

It should be noted that both 2D and 3D elements with midside nodes
cannot be stitched without the loss of the guarantee of the continuity of
the �eld function ah(x). In order to move from an element with midside
nodes to an element without midside nodes it is necessary to modify the
element with midside nodes by deleting the nodes on the sides of the shared
side (for 2D elements) or edge (for 3D elements). In order to do this, the
values of the degrees of freedom in the midside nodes should be de�ned as
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an arithmetic average of the values of the degrees of freedomin the nodes
located in the vertices of the corresponding sides.

In conclusion we will formulate some general properties of the �nite
elements considered above and their basis functions.

For all basis functions 
 em
� condition (2.18) holds, i. e. all basis functions

are equal to one in one node and are equal to zero in all other nodes of the
element.

For all �nite elements considered above the condition of complete-
ness (2.19) is satis�ed, i. e. the sum of all shape functions of the element
is equal to 1. We note that the condition of completeness (2.19) for the
isoparametric elements (2.39){( 2.46) ensures that an arbitrary linear byx
function on 
 em

x can be accurately represented by (2.39){( 2.46).

Exercises for Chapter 2

2.1. Fig. 2.1(b) contains an example of a mixed mesh consisting of
triangular and quadrilateral elements with the nodes located only in the
vertices of the elements. How many nonzero elements will therebe in a
row 17 of a matrix K of the size 25� 25 constructed for one scalar �eld
function?

2.2. Fig. 2.2(b) contains an example of a mixed mesh consisting of
triangular and quadrilateral elements with the nodes located both in the
vertices of the elements and in the middle of the sides. How many nonzero
elements will there be in a row 29 of a matrixK of the size 71� 71
constructed for one scalar �eld function?

2.3. Answer the same question as in Problem 2.2, but for the row 18 of
the matrix K .

2.4. Answer the same question as in Problem 2.2, but for the column
69 of the matrix M .

2.5. Answer the same question as in Problem 2.2, but for the column
68 of the matrix M .

2.6. Show that the triangular coordinatesL(� ) on the canonical triangle

 em

� indeed have the form (2.53), i. e. calculate using formulas (2.51) for
canonical right triangle with the catheti equal to 1.

2.7. Show that the behavior of the �eld function ah on a quadrangle
with four nodes is linear on every side both by� and x. Which of the
valuesAs (s = 1; 2; 3; 4) from (2.39) determine this behavior?

2.8. Show that the behavior of the �eld functionah on a triangle with six
nodes on the side is determined by an isoparametric quadratic dependence.
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Also show that if the side is linear and the node is located in the middle
of this side, than this behavior is quadratic byx.

2.9. Show that the behavior of the �eld functionah on a quadrangle of a
serendipity type with 8 nodes on the side is determined by an isoparametric
quadratic dependence. Also show that if the side is linear andthe node is
located in the middle of this side, than this behavior is quadratic by x.

2.10. Build an isoparametric triangular �nite element with �ve nodes
(three nodes are located in the vertices of the canonical triangle and two
(intermediate) nodes are located on two catheti), performing a reduction
of the node 5 on the hypotenuse (Fig.2.8). In order to do this, in the
representation of the �eld function set A5 = ( A2 + A3)=2, and in the
parametric mapping setx5 = ( x2 + x3)=2, y5 = ( y2 + y3)=2. Obtain new
basis functions instead of (2.57) and show that the resulting element will
ensure linear behavior of the �eld functionah on the side with reduced
intermediate node.

2.11. Build an isoparametric triangular �nite element with �ve nodes
(three nodes are located in the vertices of the canonical triangle, one
intermediate node is located on the cathetus� = 0 and the other
intermediate node is located on the hypotenuse), performing a reduction
of the node 4 on the cathetus� = 0 (Fig. 2.8). In order to do this, in
the representation of the �eld function setA4 = ( A1 + A2)=2, and in the
parametric mapping setx4 = ( x1 + x2)=2, y4 = ( y1 + y2)=2. Obtain new
basis functions instead of (2.57) and show that the resulting element will
ensure linear behavior of the �eld functionah on the side with reduced
intermediate node.

2.12. Show that if for an isoparametric triangular element with 6 nodes
we perform a reduction of all three nodes on the middle of the sides, using
the methodology of problems 2.10, 2.11, then we will will obtain a linear
triangular �nite element with three nodes.

2.13. Build an isoparametric �nite element with 7 nodes, performing a
reduction of an intermediate node on one side of an 8-node quadrilateral
�nite element, using the methodology of problems 2.10, 2.11. Obtain
new basis functions instead of (2.58) and show that the resulting element
will ensure linear behavior of the �eld function on the side with reduced
intermediate node.

2.14. Show that if for an isoparametric quadrilateral �nite element
with 8 nodes we perform a reduction of all four nodes on the middle of the
sides, using the methodology of problems 2.10, 2.11, then wewill obtain a
bilinear �nite element with four nodes.
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(a) (b)

Figure 2.14. Meshes of elements without midside nodes:
(a) triangular mesh; (b) quadrilateral mesh

2.15. Show that the �nite element in the form of a right triangular
prism with 6 nodes is consistent by the side quadrilateral edges with similar
elements and with 8-node hexahedrons.

2.16. Show that the �nite element in the form of a right triangular
prism with 6 nodes is consistent by the butt triangular edges with similar
elements and with four-node tetrahedrons.

2.17. Write the shape functions of the right triangular prism with 15
nodes shown in Fig.2.13(left).

2.18. Do the meshes of linear triangular �nite elements shown in
Fig. 2.14(a) ensure the continuity of the �eld function when some of the
nodal vertices of the smaller triangular elements lie on thesides of the
bigger elements but are not their nodes? Explain your answer.

2.19. Do the meshes of bilinear quadrilateral �nite elements shownin
Fig. 2.14(b) ensure the continuity of the �eld function when some of the
nodal vertices of the smaller quadrilateral elements lie onthe sides of the
bigger elements but are not their nodes? Explain your answer.

2.20. Do the meshes of 6-node triangular �nite elements shown in
Fig. 2.15(a) ensure the continuity of the �eld function when some of the
nodal vertices of some �nite elements coincide with the midside nodes of
other elements? Explain your answer.

2.21. Do the meshes of 8-node quadrilateral �nite elements shown in
Fig. 2.15(b) ensure the continuity of the �eld function when some of the
nodal vertices of some �nite elements coincide with the midside nodes of
other elements? Explain your answer.

2.20. Do the meshes of 3-node and 6-node triangular �nite elements
shown in Fig. 2.16(a) ensure the continuity of the �eld function? Explain
your answer.
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(a) (b)

Figure 2.15. Meshes of elements with midside nodes:
(a) triangular mesh; (b) quadrilateral mesh

(a) (b)

Figure 2.16. Meshes of elements without and with midside nodes:
(a) triangular mesh; (b) quadrilateral mesh

2.21. Do the meshes of 4-node and 8-node quadrilateral �nite elements
shown in Fig. 2.16(b) ensure the continuity of the �eld function? Explain
your answer.



Chapter 3

Practical assignments and examples
of solving problems in ANSYS

3.1 Practical assignment No. 1.
Static deformation of a piezoceramic transducer
with multi-electrode coating

Objectives of the assignment

1. Study the main features of solving the problems of electroelasticity in
ANSYS APDL:
� setting the parameters of piezoelectric material
� de�ning the element coordinate systems and using them to setaniso-

tropic and piezoelectric properties of the material
� using mapped �nite element mesh
� de�ning the electrode surfaces and setting the boundary conditions

on them
The example problem is a two-dimensional static problem for
a piezoelectric transducer with inhomogeneous polarization and
multielectrode covering (input �le FE Mod CP 1.inp).

2. Write a program in ANSYS APDL for an individual assignment problem
(static problem for a piezoelectric transducer with inhomogeneous
polarization and multielectrode covering).

3. Perform computations, analyze the results and prepare a report.

103
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3.1.1 Example problem and solution methods

Problem description

The piezoelectric disk of the radiusR and the thicknessH is assumed
to be in a state of axisymmetric deformation in a cylindricalcoordinate
system (0 � r � R, 0 � z � H ). By virtue of axial symmetry, it is
enough to consider only a meridional section of the disk. In accordance
with ANSYS methodology,r is the X -axis andz is the Y-axis.

The disk has four electrode surfaces (Fig.3.1): electrode 1 is 0� X �
R1, Y = � H=2; electrode 2 is 0� X � R1, Y = H=2; electrode 3 is
R2 � X � R, Y = � H=2; electrode 4 isR2 � X � R, Y = H=2. The
disk is made of piezoceramics PZT-4. Two of its zonesf 0 � X � R1,
� H=2 � Y � H=2 g and f R1 � X � R2, � H=2 � Y � H=2 g are
polarized along theY-axis, and the zoneR2 � X � R, � H=2 � Y � H=2
g is polarized opposite to the direction of theY-axis (Fig. 3.2).

The disk is �xed in Y-direction in the middle points of its outer surface,
i.e. uy = 0 at X = R, Y = 0, the symmetry conditions hold atX = 0, and
the rest of the boundaries are free from mechanical stresses.

(a) (b)

Figure 3.1. Piezoelectric disk (a) with four electrodes (b)

Figure 3.2. Meridional section of a piezoelectric disk
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The disk is deformed by the applied electric voltage to the electrodes.
The boundary conditions are:' = � Vinp on the �rst electrode, ' = Vinp

on the second electrode,' = � Vinp on the third electrode, and' = Vinp

on the forth electrode.
The objective of the problem is to determine the displacements of the

disk caused by its deformation.

Example of problem solving using ANSYS

The example of problem solving using ANSYS is provided in the �le
FE Mod CP 1.inp (see the listing below ). The program is intended
for use in command or batch mode. The text of the program contains
detailed comments. Other examples of piezoelasticity problems can be
found in ANSYS documentation: Coupled-Field Guide, 2.14. Sample
Piezoelectric Analysis (Batch or Command Method), 2.16. Sample
Electroelastic Analysis of a Dielectric Elastomer (Batch orCommand
Method); Veri�cation Manual, �les Vm175.dat, Vm176.dat, Vm231.dat,
Vm237.dat (the references are provided for ANSYS 11.0).

ANSYS Product Launcher is the best option to start working with
ANSYS. In ANSYS Product Launcher, selectSimulation Environment !
ANSYS, chooseWorking Directory for storing the working �les and de�ne
Job Namefor the project.

If there is an existing ANSYS database, then after the launch of ANSYS
it can be resumed fromFile ! Resume.

An ANSYS command �le (text �le with extension .inp, .dat or .txt),
written in APDL ANSYS, can be executed fromFile ! Read Input from ...
When creating a command �le, it is useful to copy the commandsfrom the
input �le into the command line, execute them step by step andlook at
the results in interactive mode.

It is recommended to save results from time to time! The current
database should be cleared before performing new analysis (Menu path:
File ! Clear and Start New).

Text of input �le FE Mod CP 1.inp

! An exclamation point is a comment in ANSYS APDL.
! Any text after the sign ``!'' is ignored

! File FE\_Mod\_CP\_1.inp
! Test problem No.~1
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! AXISYMMETRIC PROBLEM
! PIEZOELECTRIC DISK
! Static problem

! Invert background from black to white
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15

! Title of the problem

/TITLE, PIEZOELECTRIC DISC

! Parameters for geometrical sizes (in SI system)

H=0.002 ! thickness of the disk
R=10*H ! radius of the disk

! Additional geometrical parameters
R1=R/4 ! radius of the inner electrode surface
R23=R/4 ! size along the radius of the electrode ring

! The value of applied electric potential

VINP=1

! Parameters of finite element mesh
SM=1 ! scaling multiplier
HDIV=8*SM ! Numbers of elements along the disk thickness

! (should be even number!)
R1DIV=16*SM ! Numbers of elements along the radial directio n from 0 to R1
R12DIV=32*SM ! Numbers of elements along the radial directi on from R1 to R2
R23DIV=16*SM ! Numbers of elements along the radial directi on from R2 to R

! Parameters for material constants of piezoceramics PZT-4
! (all data in SI system)
RO=7.5e3 ! density
C11E=13.9e10 ! elastic moduli C\verb*"^"E\_ij
C12E=7.78e10
C13E=7.43e10
C33E=11.5e10
C66E=(C11E-C12E)/2.
C44E=2.56e10
E31=-5.2 ! piezomoduli
E33=15.1
E15=12.7
EPS11=730 ! dielectric permittivities,

! related to the permittivity of vacuum
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EPS33=635

/PREP7 ! Enter Preprocessor
! Data tables for material constants of piezoelectric mater ial
! (for the case of axisymmetric problem and piezoceramics
! polarized along the axis)
MP,DENS,1,RO
TB,ANEL,1
TBDATA,1,C11E,C13E,C12E
TBDATA,7,C33E,C13E
TBDATA,12,C11E
TBDATA,16,C44E
TB,PIEZ,1
TBDATA,2,E31
TBDATA,5,E33
TBDATA,8,E31
TBDATA,10,E15
MP,PERX,1,EPS11
MP,PERY,1,EPS33

! 2D quadrilateral finite element with 8 nodes for coupled an alysis
ET,1,PLANE223,1001,,1
! KEYOPT(1)=1001 - degrees of freedom UX,UY,VOLT (piezoelectric FE)
! KEYOPT(3)=1 - axisymmetric problem
R2=R-R23 ! Auxiliary geometrical size

! Define keypoints
K,1,0,-H/2 ! Keypoint 1 with coordinates x=0, y=-H/2
K,2,R1,-H/2
K,3,R2,-H/2
K,4,R,-H/2
K,5,R,H/2
K,6,R2,H/2
K,7,R1,H/2
K,8,0,H/2

! Define straight lines
L,1,2 ! Line that connects keypoints 1 and 2 (will have number 1)

L,2,3 $ L,3,4 ! Lines 2 and 3
!sign $ separates the commands written in one command line
L,4,5 $ L,5,6 $ L,6,7 $ L,7,8 $ L,8,1 $ L,6,3 ! Lines 4 and 9

! Define areas by keypoints
! Keypoints must be input in a clockwise or counterclockwise order
! around the area
A,1,2,3,6,7,8 ! Area 1
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A,3,4,5,6 ! Area 2

! Define local coordinate system number 11, rotated at 180 de grees
! regarding z-axis
LOCAL,11,0,,,,180

! (Change System)
CSYS,0 ! Change active coordinate system to Cartesian (defa ult number 0)

! Define element coordinate system 11 for area 2
! (to set the direction of polarization)
ASEL,S,AREA,,2 ! Select area 2
! AATT - Associate element attributes with selected unmeshe d areas
AATT,1,,1,11 ! 11 - element coordinate system number for the selected area
! Optional commands
ASEL,S,AREA,,1
AATT,1,,1
ASEL,ALL ! select all areas

! Divide lines for mapped finite element mesh
! Important: total number of divisions for opposite lines of the area
! must be the same!

! Select all vertical lines (lines L8, L9, L4)
LSEL,S,LINE,,8,9
LSEL,A,LINE,,4

! Set the same number of divisions for all selected lines
! LESIZE - Set the number of divisions for unmeshed lines
LESIZE,ALL,,,HDIV ! HDIV is the number of divisions

LSEL,S,LOC,X,0,R1 ! Select lines with coordinates 0<=X<=R 1
! (lines L1 and L7)

LESIZE,ALL,,,R1DIV ! Set the number of divisions R1DIV
! for all selected lines

LSEL,S,LOC,X,R1,R2 ! Select lines with coordinates R1<=X< =R2
! (lines L2 and L6)

LESIZE,ALL,,,R12DIV ! Set the number of divisions R2DIV
! for all selected lines

LSEL,S,LOC,X,R2,R ! Select lines with coordinates R2<=X<= R
! (lines L3 and L5)

LESIZE,ALL,,,R23DIV ! Set the number of divisions R23DIV
! for all selected lines

LSEL,ALL ! Select all lines
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! Prepare area 1 for mapped meshing
LCCAT,1,2 ! Concatenate lines L1 and L2 into one line (line L1 0)
LCCAT,7,6 ! Concatenate lines L6 and L7 into one line (line L1 1)

MSHKEY,1 ! Set mesh key
! (0 - free mesh, 1 - mapped mesh)

MSHAPE,0,2 ! Set finite element shapes
! 1st argument is a key indicating the element shape to be used
! (0 - quadrilateral-shaped elements)
! 2nd argument is the dimension of the model to be meshed (2D - a rea mesh)

AMESH,ALL ! Mesh all areas

FINISH ! Exit the preprocessor

/SOLU ! Enter the solver
ANTYPE,STAT ! Select the analysis type: static analysis

! Define the electrodes
! Select the nodes for the first electrode
! (with coordinates 0<=X<=R1, Y=-H/2)
NSEL,S,LOC,Y,-H/2
NSEL,R,LOC,X,0,R1

! For all selected nodes define a set of coupled degrees of fre edom VOLT
! (group number 1)
CP,1,VOLT,ALL

! Define the parameter N\_VOLT1 - minimal node number from group 1
! Node N\_VOLT1 will be the reference node for group 1
*GET,N\_VOLT1,NODE,,NUM,MIN

! Select the nodes for the second electrode
! (with coordinates 0<=X<=R1, Y=H/2)

NSEL,S,LOC,Y,H/2
NSEL,R,LOC,X,0,R1

! For all selected nodes define a set of coupled degrees of fre edom VOLT
! (group number 2)
CP,2,VOLT,ALL

! Define the parameter N_VOLT2 - minimal node number from group 2
! Node with number N_VOLT2 will be the reference node for grou p 2
*GET,N_VOLT2,NODE,,NUM,MIN
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! Select the nodes for the third electrode
! (with coordinates R2<=X<=R, Y=-H/2)
NSEL,S,LOC,Y,-H/2
NSEL,R,LOC,X,R2,R

! For all selected nodes define a set of coupled degrees of fre edom VOLT
! (group number 3)
CP,3,VOLT,ALL

! Define the parameter N\_VOLT3 - minimal node number from group 3
! Node with number N\_VOLT3 will be the reference node for gro up 3
*GET,N\_VOLT3,NODE,,NUM,MIN

! Select the nodes for the fourth electrode
! (with coordinates R2<=X<=R, Y=H/2)
NSEL,S,LOC,Y,H/2
NSEL,R,LOC,X,R2,R

! For all selected nodes define a set of coupled degrees of fre edom VOLT
! (group number 4)
CP,4,VOLT,ALL

! Define the parameter N\_VOLT4 - minimal node number from group 4
! Node with number N\_VOLT4 will be the reference node for gro up 4
*GET,N\_VOLT4,NODE,,NUM,MIN

NSEL,ALL ! Select all nodes

! Set the values of electric potential at the electrodes
D,N\_VOLT1,VOLT,-VINP
D,N\_VOLT2,VOLT,VINP
D,N\_VOLT3,VOLT,-VINP
D,N\_VOLT4,VOLT,VINP

! Conditions of symmetry with respect to OY-axis (axis along line 8)
DL,8,,SYMM

! Constraint of the middle point along the Y-axis
! Select node with coordinates X=R, Y=0
NSEL,S,LOC,Y,0
NSEL,R,LOC,X,R
D,ALL,UY,0 ! Define DOF constraint UY=0 for all selected nod es
NSEL,ALL ! Select all nodes

SOLVE ! Solve the system of finite element equations
FINISH ! Exit the solver
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! Enter the postprocessor
/POST1
! Commands for graphical output
/SHOW,WIN32C ! Specify device for graphical output
/TRIAD,OFF ! Do not show the global coordinate triad
/PLOPTS,INFO,2 ! Use Auto-legend format
/PLOPTS,LEG2,OFF
/PLOPTS,LOGO,OFF ! Do not show ANSYS logo
/PLOPTS,FRAME,OFF ! Do not show frame
/PLOPTS,DATE,OFF ! Do not show date

! Plot displacements UY
PLNSOL,U,Y

Now we will provide additional comments to the program.
Geometrical size, parameters for meshing (speci�c sizes of�nite elements), and

material constants are set as user-de�ned parameters. Thenin the preprocessor
(/PREP7 command enters the preprocessor) the matrices of elastic moduli, piezomoduli
and dielectric permittivities are de�ned using the commands MP, TB, TBDATA . Let
us have a closer look at the commands that de�ne the piezoelectric material.

De�nition of material constants for piezoelectric materials

As it was noted before in section 1.3, the piezoelectric e�ectcan be observed only
in crystals that do not have the central symmetry. Therefore, the piezoelectric bodies
must have anisotropic properties. In a general case, in order to set the material constants
of piezoelectric bodies in ANSYS, the following values should be de�ned: the density
� ; the symmetric matrix of elastic moduli cE

�� ; � , � = 1; :::; 6; cE
�� = cE

�� ; the matrix of
piezoelectric modulesei� ; i = 1; 2; 3; � = 1; :::; 6; and the matrix of dielectric permittivities
� S

ij ; i; j = 1; 2; 3, which is diagonal for most materials. These notations forthe modules
of piezoelectric body are conventional in the literature onpiezoelectricity and technical
applications [6, 7, 11, 17, 28], hence the values of these modules can be found in various
reference books on piezoelectric materials.

We note that the transition from the tensor valuescE
ijkl and eijk to the matrix notations

cE
�� and ei� was described in problems 1.6 and 1.9. However, as it is mentioned in ANSYS

documentation [1], ANSYS uses nonstandard arrangement of the matrix componentscE
��

and ei� in a form of one-dimensional arrays, which facilitates the transition from 3D to 2D
problems. Besides, ANSYS enables to de�ne alternative constant sets (problem 1.13), such
as the elastic compliancessE

�� calculated at constant electric �eld; the strain piezomoduli
sE

�� calculated at constant stress, and the dielectric permittivities � T
ij calculated at constant

stresses. Moreover, all components of the matricessE
�� and di� in ANSYS are arranged

in a nonstandard way.
Let us describe the method of de�ning the modulescE

�� and ei� in ANSYS in more
detail. The coe�cients cE

�� are set in a form of 6� 6 matrix (4 � 4 for 2D problems). By
virtue of symmetry, only the upper triangular part of the matrix of elastic moduli is used,
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and the coe�cients of the matrix are arranged in a speci�c way:

cE
ANSYS ;3D $

x y z xy yz xz
x cE

11 cE
12 cE

13 cE
16 cE

14 cE
15

y cE
22 cE

23 cE
26 cE

24 cE
25

z cE
33 cE

36 cE
34 cE

35
xy cE

66 cE
46 cE

56
yz sym cE

44 cE
45

xz cE
55

(3.1)

cE
ANSYS ;2D $

x y z xy
x cE

11 cE
12 cE

13 cE
16

y cE
22 cE

23 cE
26

z cE
33 cE

36
xy sym cE

66

(3.2)

The components of the matrixcE
ANSYS ;3(2)D in ANSYS are de�ned by the commands:

TB,ANISO ,MAT and TBDATA ,STLOC,C1,C2, ...,C6; whereMAT is the number of
the material properties set,STLOC is the starting location in the data table for entering
data valuesC1, C2, ..., C6. The data table for the coe�cients that enter in (3.1), (3.2),
is �lled by rows (3.1) in a form of one-dimensional array with 21 components:

2

6
6
6
6
6
6
4

1 2 3 4 5 6
7 8 9 10 11

12 13 14 15
16 17 18

19 20
21

3

7
7
7
7
7
7
5

(3.3)

The resulting correspondence between the data from the datatable de�ned by
TBDATA command and the elasticity modulicE

�� is presented in Table3.1.
The most common type of piezoelectric materials is the piezoceramics polarized along

the Oz-axis, which matrix of elastic moduli has the following structure (for the material
of crystal class 6mm [11])

cE =

2

6
6
6
6
6
6
4

cE
11 cE

12 cE
13 0 0 0

cE
11 cE

13 0 0 0
cE

33 0 0 0
cE

44 0 0
sym cE

44 0
cE

66

3

7
7
7
7
7
7
5

; (3.4)

Table 3.1. Arrangement of the elastic modulicE
�� in the data table TBDATA

No. 1 2 3 4 5 6 7 8 9 10 11
cE

�� cE
11 cE

12 cE
13 cE

16 cE
14 cE

15 cE
22 cE

23 cE
26 cE

24 cE
25

No. 12 13 14 15 16 17 18 19 20 21
cE

33 cE
36 cE

34 cE
35 cE

66 cE
46 cE

56 cE
44 cE

45 cE
55
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Table 3.2. Nonzero elastic modulicE
�� of piezoceramics in data table TBDATA for 3D

problems

No. 1 2 3 7 8 12 16 19 21
cE

�� cE
11 cE

12 cE
13 cE

11 cE
13 cE

33 cE
66 cE

44 cE
44

Table 3.3. Nonzero elastic modulicE
�� of piezoceramics in data table TBDATA for 2D

problems

No. 1 2 3 7 8 12 16
cE

�� cE
11 cE

13 cE
12 cE

33 cE
13 cE

11 cE
44

wherecE
66 = ( cE

11 � cE
12)=2.

Therefore, from comparison of (3.1), (3.3) and (3.4), we obtain that for 3D problems
di�erent nonzero elastic moduli for the piezoceramics polarized along theOz-axis in the
data table TBDATA will have the numbers that are indicated in Table 3.2.

As it can be seen from comparison of (3.1){( 3.3), for 2D problems it is enough to
specify the �rst 16 positions in a one-dimensional array of the moduli cE

�� .
We note that for plane and axisymmetric 2D problems theOy-axis (z = (3) for the

moduli cE
�� ) is usually considered to be the axis of polarization in the working planeOxy.

In this case for plane and axisymmetric problems di�erent nonzero elastic moduli for
piezoceramics in the data table TBDATA will have the numbersthat are indicated in
Table 3.3.

Similarly, the piezomoduli ei� in ANSYS are also de�ned in an unusual way. The
piezomoduli are arranged in a 6� 3 matrix (4 � 2 for 2D problems) in the following order:

eANSYS ;3D $

x y z
x e11 e21 e31

y e12 e22 e32

z e13 e23 e33

xy e16 e26 e36

yz e14 e24 e34

xz e15 e25 e35

; eANSYS ;2D $

x y
x e11 e21

y e12 e22

z e13 e23

xy e16 e26

(3.5)

After the execution of the commandTB,PIEZ ,MAT the data table TBDATA for
the piezomoduli will �lled by rows with the values from the matrix eANSYS ;3D as a one-
dimensional array of the size 18. As a result, we obtain the correspondence between the
data from the data table TBDATA and the piezomoduliei� , which can be seen in Table3.4,
where for 2D problems it is enough to de�ne the elements with numbers 1,2,4,5,7,8,10 and
11.

For the piezoceramics polarized along the direction ofOz-axis the matrix of
piezomoduli has the following structure

e =

2

4
0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

3

5 ; (3.6)
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Table 3.4. Arrangement of the moduliei� in the data table TBDATA

No. 1 2 3 4 5 6 7 8 9
ei� e11 e21 e31 e12 e22 e32 e13 e23 e33

No. 10 11 12 13 14 15 16 17 18
e16 e26 e36 e14 e24 e34 e15 e25 e35

Table 3.5. Nonzero moduliei� of piezoceramics in data table TBDATA for 3D problems

No. 3 6 9 14 16
ei� e31 e31 e33 e15 e15

Table 3.6. Nonzero moduliei� of piezoceramics in data table TBDATA for 2D problems

No. 2 5 8 10
ei� e31 e33 e31 e15

and therefore the nonzero piezomoduli of piezoceramic material for 3D problems in the
data table TBDATA will have the numbers presented in Table3.5.

Finally, for plane and axisymmetric problems in the cases, when in the planeOxy the
Oy-axis (the axisz = (3) for the piezomoduli ei� ) is the axis of preliminary polarization
of piezoceramics, di�erent nonzero piezomoduli in the datatable TBDATA will have the
numbers that are indicated in Table3.6.

Summarizing the above, for the piezoceramic material we canwrite the following
fragments of program code in ANSYS APDL, that de�ne the sets of material constants
MAT with number 1 for 3D and 2D problems, where for the latter casethe piezoceramics
is considered to be polarized along theOy-axis of the working planeOxy:

Fragment 1 (3D) Fragment 2 (2D)

MP,DENS,1,RHO MP,DENS,1,RHO
TB,ANEL,1 TB,ANEL,1
TBDATA,1,C11E,C12E,C13E TBDATA,1,C11E,C13E,C12E
TBDATA,7,C11E,C13E TBDATA,7,C33E,C13E
TBDATA,12,C33E TBDATA,12,C11E
TBDATA,16,C66E TBDATA,16,C44E
TBDATA,19,C44E TB,PIEZ,1
TBDATA,21,C44E TBDATA,2,E31
TB,PIEZ,1 TBDATA,5,E33
TBDATA,3,E31 TBDATA,8,E31
TBDATA,6,E31 TBDATA,10,E15
TBDATA,9,E33 MP,PERX,1,EPS11
TBDATA,14,E15 MP,PERY,1,EPS33
TBDATA,16,E15
MP,PERX,1,EPS11
MP,PERZ,1,EPS33



3.1. Practical assignment No. 1 115

Here RHO = � ; C11E = cE
11 and so on. These values are

scalar parameters in ANSYS APDL and their values should be de�ned
beforehand. Besides, in the presented fragment of the program code we
have addedMP command, that de�nes the density and the dielectric
permittivities of piezoceramics.

As it can be seen, the de�nition of piezoelectric materials requires some
e�orts. It should be emphasized that in the presented fragments the axes
of Oxy(z)-plane are the axes of the element coordinate systems for the
de�ned constant sets.

Let us now return to the listing of the input �le for solving the
test 2D static problem for piezoelectric transducer with inhomogeneous
polarization and multi-electrode coating.

ET,1,PLANE223,1001,,1 command de�nes the quadrilateral 8-node
�nite element PLANE223 with the options of piezoelectic analysis and
axisymmetry. This element will be used to solve the problem. For ANSYS
user all the distinctions between axisymmetric problem and2D plane stress
problem consist in the third option of this �nite element (the command
ET,1,PLANE223,1001,, 0 will de�ne the element for 2D plane stress
problem). However, with this option ANSYS will use the equations of
axisymmetric theory of piezoelectricity that are much morecomplex than
the equations of plane stress or plane strain.

Solid model of the meridional section of piezoelectric disk

In ANSYS APDL the solid model of the original domain with complex
geometry is usually constructed \from bottom to top", starting with the
most simple objects (Entities), which are theKeypoints, and �nishing with
Areas for 2D problems orVolumesfor 3D problems.

K command is used to build the keypoints. Its �rst argument is
the reference number of the keypoint, and the remaining arguments are
the coordinates of the keypoint. For example,K,2,R1,-H/2 command
de�nes a keypoint with the reference number 2 and coordinatesx = R1,
y = � H=2, z = 0 (the last coordinate takes the default value). The
Line between two keypoints can be de�ned byL command. For example,
L,2,3 command de�nes a line in the active coordinate system between the
keypoints 2 and 3. The lines are numbered automatically, starting with
the lowest available number. In order to construct the areas, we can use
the commandsA and AL , where the resulting areas are also numbered
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automatically. AL command creates an area bounded by the previously
de�ned lines. The lines (10 lines maximum) must be input in clockwise
or counterclockwise order and must form a simply connected closed curve.
A command de�nes an area by connecting the keypoints. The keypoints
de�ning the area must be input in clockwise or counterclockwise order
around the area (maximum 18 keypoints in the list). The existing lines
between adjacent keypoints will be used; and the missing lines will be
generated as \straight" lines in the active coordinate system and will be
assigned the lowest available numbers.

According to Fig. 3.2 in the meridional section of the disk we can
distinguish two zones with two di�erent polarization directions. Therefore
the axisymmetric model of the disk can be composed by two areas.
Fig. 3.3 shows the areas A1 and A2 with indicated area numbers and
keypoint numbers (Menu pathPlot ! Areas, to show the numbers of areas
and keypoints selectPlotCtrls ! Numbering ! and tick Area numbers,
Keypoint numbers.)

The lines and the keypoints that constitute the areas A1 and A2 can be
seen in Fig.3.4 (Menu path Plot ! Lines, before that in Select! Entities
choose the lines L1{L9 and show the numbers of lines and keypoints by
choosing: PlotCtrls ! Numbering ! Line numbers, Keypoint numbers).
Here a rectangular area A2 is constructed in a standard way of four lines
L3, L4, L5, L9 and four keypoints 3, 4, 5, 6. The upper and the lower
boundaries of this area coincide with the lines of the electrodes location.
The area A1 consists of six keypoints 1, 2, 3, 6, 7, 8 and six linesL1, L2,
L9, L6, L7, L8. For this area both upper and lower boundaries must be
constructed of two lines, and the keypoints of the lines L1 and L7 that
simulate the electrodes must coincide with the ends of the electrodes. This
requirement ensures that the ends of the electrodes will coincide with the
nodes of �nite elements. It is also worth noting, that the line L9 is common
for the adjacent areas A1 and A2.

Figure 3.3. Area numbering in the model of a meridional section of piezoelectric disk
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Figure 3.4. Keypoints and meshed lines of the disk section model

Direction of the polarization vector for the areas of piezoelectri c
disk

All the moduli cE
�� , ei� , � S

ij introduced for the piezoelectric materials,
generally speaking are the moduli de�ned in crystallographic coordinate
systems O~x~y~z. These coordinate systems for piecewise-homogeneous
domains can di�er with the transition from one domain to another,
and for the functionally-graded materials they can di�er from point
to point. Therefore, we can redenote the moduli de�ned previously
in crystallographic coordinate systemO~x~y~z by ~cE

�� , ~ei� , ~� S
ij . The

computational formulas for �nite element matrices use the tensor values
cE , e, � S calculated in global Cartesian coordinate system. If presented
in a vector-matrix form, these formulas will contain the coe�cients of the
matrices cE

�� , ei� , � S
ij , also written in global Cartesian coordinate system.

ANSYS uses the concept of element coordinates systems, in which every
�nite element can be assigned with its own coordinate system, and the
material properties ~cE

�� , ~ei� , ~� S
ij , etc. are de�ned in the element coordinate

system. For every �nite element ANSYS can recalculate the moduli ~cE
�� ,

~ei� , ~� S
ij into the moduli cE

�� , ei� , � S
ij , presented in a global coordinate system.

This recalculation can be performed without the participation of the user,
if the element coordinate system is already de�ned for every�nite element.

The orientation of the crystallographic coordinate systemO~x~y~z for
piezoelectric materials is de�ned by the polarization vector P. Namely,
for piezoceramics (transversely isotropic material) the direction of the O~z-
axis coincides with the direction of the vectorP, and the axesO~x and O~y
lie in the plane perpendicular to the vectorP.

For plane and axisymmetric 2D problems it is convenient to consider the
O~y-axis as the axis of preliminary polarizationP in the working planeO~x~y,
and therefore in ANSYS for the piezomaterials with di�erent polarization
vectors it is enough to de�ne for the corresponding areas theelement
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Figure 3.5. The directions of the polarization vectorsP for the areas of the disk section

coordinate systems that are rotated in the proper way with respect to
the global coordinate systemOxy.

For our example problem (see Fig.3.5) the direction of the polarization
vector P in the area A1 coincides with the direction of theOy-axis of the
global Cartesian coordinate system, therefore for the �niteelements of this
area it is not necessary to introduce special coordinate system. For the area
A2 the direction of the polarization vectorP is opposite to the direction
of the Oy-axis of the global Cartesian coordinate system, therefore for
this area it is necessary to de�ne the element coordinate system with the
axis O~y, directed along the polarization vector, i. e. the axisO~y must be
directed in the way opposite to the axisOy.

To achieve this, we need to rotate the original element coordinate system
to 180 degrees with respect to the global Cartesian coordinatesystem. The
next block of commands creates the local coordinate system and de�nes it
as an element coordinate system for �nite elements that will be created in
the area A2.

LOCAL,11,0,,,,180
ASEL,S,AREA,,2
AATT,1,,1,11

Fig. 3.6 shows an example of �nite element mesh with the element
coordinate systems. Here more coarse meshing is used than in the
previously provided �le FE Mod CP 1.inp. (Menu path Plot ! Elements,
to show the polarization zones with di�erent colours selectPlot Ctrls !
Numbering ! Elem/Attrib numbering ! then select Element CS num,
Numbering shown with! Colors only, to show the direction of the element
coordinate system for every element selectPlotCtrls ! Symbolsand tick
ESYS Element coordinate sys).
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Figure 3.6. Element coordinate systems in the areas of meridional section of the disk

Finite element mapped mesh

As the elementPLANE223 is a quadrilateral �nite element and the
simulated area of the meridional section of the disk is a quadrangle, more
precisely, rectangle, it is therefore logical to usemapped �nite element
meshing in quadrangles (or, even better, in rectangles).

There are two main meshing methods in ANSYS:Free Meshand Mapped
Mesh. A free mesh does not follow any pattern and has no element
shape restrictions. Free mesh is suitable for areas and volumes of complex
shapes. Free mesh is usually de�ned by an average �nite element size.
On the contrary, a mapped mesh restricts the element shape (for example,
quadrangles for areas, or hexahedrons for volumes) and typically has a
regular pattern with obvious rows of elements. Mapped mesh is bene�cial
for areas and volumes of simple shape, such as rectangles or bricks. The
use of a mapped mesh facilitates to reduce the computation time. Usually
a mapped mesh is built on the base of the divisions and spacingratio,
which are speci�ed for its constituting lines. Generally a mapped mesh is
more precise than a free mesh with comparable number of elements and
nodes.

In order to built a mapped quadrilateral �nite element mesh for a
quadrilateral area, this area must satisfy two conditions:1) the area must
consist of four lines, 2) the area must have equal numbers of element
divisions speci�ed on the opposite sides. If an area is bounded by more
than four lines, then some of the lines can be combined (byLCOMB
command) or concatenated (byLCCAT command) in order to reduce the
total number of lines to four.

In our example problem there are at least two ways to construct a solid
model of the meridional section of the disk that would acceptmapped �nite
element mesh. For example, we could build an additional linebetween
keypoints 2 and 7 and then create three rectangular areas, each of them
consisting of four lines.

Here we use another way that allows us to reduce the number of the
required areas to two. We create two areas A1 and A2, where A2 is a
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regular area that accepts a mapped mesh, and A1 is irregular inthe way
that it does not accept a mapped mesh because it consists of six lines.
In order to make area A1 regular, it is enough to concatenate lines L1
and L2 which constitute the lower boundary and lines L6 and L7 which
constitute the upper boundary. This can be done byLCCAT command
which concatenates multiple, adjacent lines into one line inpreparation
for mapped meshing. Note thatLCCAT accepts only two arguments, so
if it is necessary to concatenate more than two lines, the �rst argument
should be set toALL . In this case the second argument is ignored and
all previously selected lines (byLSEL command) are concatenated. It
is also worth noting that for a mapped mesh the total number ofthe line
divisions must be the same for the opposite lines of the area.Fig. 3.7shows
the result of concatenation for the lines of the upper and lower boundaries
of the area A1. The output lines L10 and L11 keep the element divisions
of the input lines.

Bondary conditions

Boundary conditions on the electrode surfaces. As it was noted
in section 1.3, the metallized surfaces or electrodes on thesurface of the
piezoelectric body are equipotential surfaces, i. e. the electric potential
' (x; t) on them must not depend onx, and the boundary conditions (1.33)
or (1.34), (1.35) must be satis�ed.

The boundary conditions on the electrode surfaces can be set in the
following way. The nodes of the �nite element mesh that belong to
one electrode �'j can be combined in one node (coupled DOF) byCP
command that will be a reference node for this electrode. Then for
this reference nodeN VOLT we can either set the value of the electric
potential V J = Vj by the commandD,N VOLT,VOLT,VJ , or de�ne the
total electric chargeQJ = Qj by the commandF,N VOLT,CHRG,QJ
(for �nite elements PLANE223 , SOLID226 , SOLID227 ) or by

Figure 3.7. Line concatenation for a solid model of the meridional section of the disk
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the command F,N VOLT,AMPS,QJ (for �nite elements PLANE13 ,
SOLID5 , SOLID98 ).

The block of commands, that de�ne a group of nodes and set the value
of the electric potential on the �rst electrode, is presented below:

NSEL,S,LOC,Y,-H/2
NSEL,R,LOC,X,0,R1
CP,1,VOLT,ALL
*GET,N\_VOLT1,NODE,,NUM,MIN
D,N\_VOLT1,VOLT,-VINP

In order to de�ne a free electrode, i. e. satisfy the conditions (1.34),
(1.35) with Qj = 0, it is enough to de�ne a group of nodes byCP command
with using D command.

Mechanical boundary conditions . In our example problem we
need to set the symmetry boundary conditions with respect to the axis
of rotation (Oy-axis) and the constraint on displacements alongOy for the
middle point on the outer surface radius of the meridional section of the
disk .

The degrees-of-freedom constraints (three DOFsUX, UY, VOLT
for the element PLANE223 with the options of piezoelectric analysis
KEYOPT(1) = 1001) can be set either byD command that de�nes DOF
constraints at nodes or byDL command that de�nes DOF constraints
on lines. It should be noted that all solid boundary conditions will be
transformed into �nite element boundary conditions at the stage of the
solution. The solid boundary conditions on a line have priority over the
�nite element boundary conditions for the nodes on the same line.

The condition of symmetry can be set either byDL command or by
D command. DL command accepts a symmetry options (SYMM, as in
the above exampleDL,8,,SYMM ). Another way is to select all necessary
nodes and useD command. We can select the nodes that lie on the line
L8 by the following commands:

LSEL,S,LINE,,8
NSLL,S,1

where the last command selects the nodes associated with selected lines,
and its second argument contains the key that speci�es whether only
interior line nodes are to be selected (0 { select only nodes interior to
selected lines, 1 { select all nodes associated with selectedlines).

D,ALL,UX,0 command assigns zero UX displacements for all selected
nodes, and this corresponds to the symmetry with respect toOx-axis.
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Figure 3.8. Finite element mesh with boundary conditions

We note that in the considered axisymmetric problem, as it can be easily
checked in ANSYS, the symmetry boundary conditions on the linex = 0
will be satis�ed automatically, and the above commandDL,8,,SYMM is
provided for reliability and is therefore optional.

The condition of a rigidly �xed boundary assumes that for the given
nodes the displacement vector is equal to zero, i. e. in a caseof plane
problem UX=0 and UY=0. The corresponding block of commands will be
written as:

D,ALL,UX,0
D,ALL,UY,0

Note that in our example problem we use only a constraint on
displacements alongOy-axis, i. e. UY=0.

Finite element model of piezoelectric disk with boundary conditions
is shown in Fig. 3.8 (Menu path Plot ! Elements, to show boundary
conditions selectPltCtrls ! Symbols! and tick All applied BC.)

Results

The solution results for the �nite element problem can be accessed
in ANSYS via postprocessor. There are two postprocessors in ANSYS,
General Postprocessor and Time History Postprocessor.

General Postprocessor is used for reviewing results for a speci�cally
de�ned combination of loads at a single time (or frequency).To enter the
ANSYS general postprocessor, issue/POST1 command or use menu path:
Main Menu ! General Postproc. It is the only postprocessor available for
static or steady state analysis.

Time History Postprocessor is used for reviewing results at speci�c
locations in the model as a function of time, frequency, or some other
change in the analysis parameters that can be related to time. Time
History Postprocessor can be used to construct graphics displays, chart
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representations or tabular listings, or to perform math operations on the
data sets. Time History Postprocessor is available for transient, modal
or harmonic analyses. A typical time-history task would be to graph
result items versus time in a transient analysis, or to graphforce versus
de
ection in a nonlinear structural analysis. To enter the ANSYS general
postprocessor, issue/POST26 command or use menu path:Main Menu
! TimeHist PostPro, which will launch the Variable Viewer.

Here we provide menu paths for the results that can be reviewedfor
structural analysis (after enteringMain Menu.

To display the deformed shape of the structure, select
� General Postproc! Plot Results ! Deformed Shape(deformed shape
of the structure).

In order to access the results for Degree of freedom solution(solution in
terms of unknown variables), select:
� General Postproc! Plot Results! Contour Plot ! Nodal Solu. . . !
DOF Solution !

| X-Component of displacement(distribution of the displacementsux);
| Y-Component of displacement(distribution of the displacementsuy);
| Displacement vector sum(distribution of the displacement vector

magnitude);
| Electric potential (distribution of the electric potential);
To display the distribution of vector variables, select Vector Plot in

General Postprocessor:� General Postproc! Plot Results! Vector Plot
! Prede�ned !

| DOF solution ! Translation U (distribution of the displacement
vector);

| Flux & gradient ! Elec �eld EF (distribution of the electric �eld
vector).

The results of distribution of various components of stresses, strains,
electric induction vector, etc. can be also reviewed in General
Postprocessor.

There are several ways to save an image into a graphical �le.
� PlotCtrls ! Capture Image. An image will appear in a new window.
Use menu pathFile ! Save as...to save an image as a bmp graphical �le
without reversing black and white colors.
� Plot Ctrls ! Hard Copy ! To File. Here one can choose a color scale
(Monochrome, Gray Scale, Color) and an extension for the graphical �le
(.bmp, postscript, .ti�, .jpeg, .png), and also specify the�le name and
choose whether or not use a Reverse Video for reversing black and white
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Figure 3.9. Distributions of the displacements UY

colors. There is no option to choose the place where to save the image.
The graphical �le will be saved in the working directory of ANSYS that
was selected at the start.
� Plot Ctrls ! Redirect Plots! To JPEG File ... The program will open
the window Redirect Plots to JPEG, where one can choose various saving
modes for the graphical �le (Color or Monochromatic, Quality, etc.) and
save the �le JPEG format;

| similarly instead of selecting To JPEG File... other formats of saving
modes can also be selected.
� PlotCtrls ! Write Meta�le . It is recommended to tick Invert
White/Black for reversing black and white colors. It is possible to specify
the directory where to save the image. The graphical �le will be saved as
a Windows meta�le with an extension .emf or .wmf.

The program code for solving the example problem in ANSYS ends with
the commandPLNSOL,U,Y which shows the picture of displacement UY
distribution (Fig. 3.9, hereinafter the presented results were obtained in
version ANSYS 11.0).

We note that the example problem is axisymmetric in meridional
section, where OY-axis corresponds toOz-axis in 3D, and Ox-axis
corresponds to Or-axis. Therefore displacement UY is in fact the
displacementuz, displacement UX is the displacementur and so on.
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Figure 3.10. Distribution of the electric �eld vector

In postprocessor, it is also easy to obtain the pictures of distribution for
other mechanical and electric �eld values. For example, Fig. 3.10 shows
the distribution of the electric �eld vector.

Let us analyse the obtained results from both physical and mathematical
viewpoints. The di�erence of potentials � V = '

�
�
Y= � H=2 � '

�
�
Y= H=2 =

� 2Vinp is applied between the electrodes 1 and 2 (i. e. between continuous
electrodes in the zone 0� X � R1) and between the electrodes 3 and
4 (i. e. between ring electrodes in the zoneR2 � X � R). Then we
can expect that in the areas between these electrodes an electric �eld
will be formed E � � V=H = � 2Vinp=H = � 1000 (V/m), as Vinp = 1
(V), H = 0:002 (m). The same values of electric �elds are indeed can
be observed in Fig. 3.10 (yellow vectors). For the zone 0� X � R1

between continuous electrodes the direction of the polarization vector P
is opposite to the direction of the generated electric �eldE. Therefore,
due to the phenomenon of inverse piezoelectric e�ect (see section 1.3),
piezoelectric elements in this area should shrink. On the contrary, in the
zoneR2 � X � R between ring electrodes the direction of the polarization
vector P coincides with the direction of the generated electric �eldE.
Then again, due to the phenomenon of the inverse piezoelectric e�ect,
piezoelectric elements in the areaR2 � X � R should expand. Indeed,
such deformations of the zones under the electrodes can be clearly seen
in Fig. 3.9. Thus, the expected physics of electromechanical processesin
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the considered problem for a piezoceramic transducer with multielectrode
coating is supported by the results presented in Fig.3.9 and 3.10.

It is worth noting that �nite element calculations are approximate.
Therefore it is necessary to address the question on the accuracy of the
obtained results and determine the situations in which it is not worth to
expect the convergence. In the above program code, the characteristics of
the �nite element mesh were de�ned in the following block of commands:

! Parameters of finite element mesh
SM=1.00 ! scaling multiplier
HDIV=8*SM ! Numbers of elements along the disk thickness
! (should be even number!)
R1DIV=16*SM ! Numbers of elements along the radial directio n from 0 to R1
R12DIV=32*SM ! Numbers of elements along the radial directi on from R1 to R2
R23DIV=16*SM ! Numbers of elements along the radial directi on from R2 to R

Therefore in order to analyze the convergence we can perform
computations with di�erent values of the parameterSM. The results of
this computation series are presented in Table3.7. As it can be seen
from the table, the maximum values of the displacements get stabilized
already at SM=0.75 and continue stabilizing further with an increase of
the parameterSM, i. e. when the sizes of �nite elements become smaller
the values of the displacements almost do not change. Thus, based on the
data from Table 3.7 we can conclude that in order to estimate the maximal
displacements for this problem it is enough to takeSM=0.75. However,
already atSM=0.25 the relative error in the determination of displacements
is less than 3 %, which is enough for the majority of practical applications.

The value SM=0.25 means that we take two �nite elements (HDIV =
2) along the disk thickness . This rather coarse mesh is satisfactory to
de�ne the displacements, as the considered problem is static and has rather
simple geometry, and the elementsPLANE223 are �nite elements with
quadratic approximation for each canonic variable.

Meanwhile, as it can be seen from Fig. 3.10, the electric �eld vector
changes signi�cantly in the vicinity of the boundaries of the electrode
surfaces (red vectors). Data from Table 3.7 shows that, when the mesh

Table 3.7. Data to analyze the convergence of results

SM 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
maxuy � 10� 12 (m) 255 260 262 262 262 262 262 262

maxjEj (V/m) 1001 1141 262 1293 1564 1685 1798 1904
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density increases, the maximal values of the electric �eld vector magnitude
also increase, and we observe no convergence for this values. This e�ect can
be expected, as in the electroelasticity problems the surface electrodes are
the concentrators for various components of the electromechanical �elds
of stresses, strains, electric �eld intensity and electricinduction (i. e. for
gradient or 
ow values de�ned by the derivatives of displacements and
electric potential). The role of surface electrodes in theseproblems are
similar to the roles of the stamps with non-smooth boundariesin contact
problems. Therefore, as in analogous contact problems, in the vicinity of
the electrode boundaries some components of stresses, strains, electric �eld
intensity and electric induction can have root singularities, such asr =1=2,
wherer is the distance from the electrode boundary. Naturally, when using
conventional isoparametric �nite elements, we will observean increase of
the values of these �elds in the vicinity of the electrode boundaries. In
practice it means that speci�c values of such 
ow variables in a small area
near the electrode boundaries do not have much sense, but faraway from
the electrode boundaries the convergence will take place. Theintegral
values (for example, the total electric charge) will also converge.

The idea stated above can be illustrated by a graph (Fig. 3.11)that
shows the change of the axial component of the electric �eld intensity
Ez (EF, Y in ANSYS) along the radius of the disk on its upper surface
(0 � X � R, Y = H=2 in ANSYS). This graph can be plotted in ANSYS
General Postprocessor by the following commands:

! File FE_Mod_CP_1_Post.inp
! Postprocessor plot of the graphs
\
/PLOPTS,INFO,ON
/COLOR,CURVE,WHIT,1,6 ! color for the graphs - white

! (will be black after inversion)
/COLOR,GRID,WHIT, ! color for mesh - white

! (will be black after inversion)

/PLOPTS,TITLE,OFF ! no title for the graph
/PLOPT,FRAME,OFF ! no frame
/AXLAB,X,r ! label for the X-axis (r-axis)
/AXLAB,Y, E_Z ! label for the Y-axis (z-axis)
/GROPT,DIVX,4 ! Number of divisions along X-axis
/GROPT,DIVY,4 ! Number of divisions along Y-axis
/GROPT,DIG2,1 ! Number of digits after decimal point

! Commands to define a path by a number of points
PATH,XX,4,,120
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Figure 3.11. Behavior of the componentEz on the disk surface

PPATH,1,,0,H/2
PPATH,2,,R1,H/2
PPATH,3,,R2,H/2
PPATH,4,,R,H/2 ! Define a variable E_Z for plotting a graph a long the path
PDEF,E_Z,EF,Y ! Define other variables (if needed)
PDEF,T_ZZ,S,Y $ PDEF,T_RR,S,X
PDEF,D_Z,D,Y $ PDEF,D_R,D,X $ PDEF,E_R,EF,X

PLPATH,E_Z ! Plot a graph of E_Z along the path

The �nite element results presented in Fig.3.11 for the dependence
Ez = Ez(r ) are not accurate in the vicinity of the electrode boundaries
R1 = 0:5� 10� 2 (m) and R2 = 1:5� 10� 2 (m). If, for example, at r < R 1 this
curve is somewhat similar to a function with a root singularityk

p
R2

1 � r 2,
than a jump of the function at r > R 1 is completely determined by the error
of �nite element approximations and the averaging techniques adopted here
for calculation of the �eld gradients. However, far away fromthe electrode
boundaries the �eld is determined with su�cient accuracy.

By analogy we can analyze the behavior of other gradient values of
electromechanical �elds:Er , Dz, D r , � zz, etc.



3.1. Practical assignment No. 1 129

3.1.2 Individual assignments

Write a program code in ANSYS APDL to compute a static deformation
of a piezoelectric transducer with multi-electrode coatingin 2D setting
(axisymmetric or plane strain problem). Analyze the convergence of results
for various density of �nite element mesh. Plot the computation results
(deformed shape, distribution of displacements, electric�eld vector, electric
induction vector, von Mises stresses, graph of characteristic component of
the electric �eld vector along the path with surface electrodes). Analyze
the results and prepare a report.

The report should contain the name of the student, the full description
of the problem and the results obtained in ANSYS.

The variants of individual tasks are presented in the Table3.8. All
sections of piezoelectric transducers are made of piezoceramics PZT-4,
which material properties are provided in the above example problem (see
program code). The electrodized surfaces are shown in thick lines or dots,
the values of electric potential or total electric charge are provided nearby.
The rigidly �xed boundaries are marked by external hatching,the triangles
outside the boundaries denote the �xing conditions in the corresponding
point of the 2D disk section (C or B denotes UX=0, M denotes UY=0).
The boundaries without any labels indicate homogeneous natural boundary
conditions (n � D = 0 and/or n � � = 0). For axisymmetric problems the
axis of rotation Y is shown on the left by a dashed line.

Table 3.8. Variants of individual tasks for the practical assignment No. 1
No. Scheme Input data
1 Plane strain.

a1 = a4 = 8 � 10� 3 m,
a2 = a3 = 7 � 10� 3 m,
H = 3 � 10� 3 m,
V = 10 V

2 Axisymmetric problem.
a2 = a3 = 8 � 10� 3 m,
H = 3 � 10� 3 m,
V = 5 V
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Table 3.8. Variants of individual tasks for the practical assignment No. 1 (continue)
3 Plane strain.

a1 = a4 = 7 � 10� 3 m,
a2 = a3 = 6 � 10� 3 m,
H = 2 � 10� 3 m,
V = 5 V

4 Axisymmetric problem.
a1 = a3 = 0:02 m,
a2 = 0:03 m,
H = 0:005 m,
V = 10 V

5 Plane strain.
a1 = a3 = 0:03 m,
a2 = 0:04 m,
H = 0:004 m,
V = 10 V

6 Axisymmetric problem.
a1 = a3 = 6 � 10� 3 m,
a2 = a4 = 7 � 10� 3 m,
H = 2 � 10� 3 m,
V = 10 V

7 Axisymmetric problem.
a1 = 0:01 m,
a3 = 0:02 m,
a2 = 0:03 m,
H = 0:005 m,
V = 5 V

8 Plane strain.
a1 = a3 = 0:03 m,
a2 = 0:04 m,
H = 0:006 m,
V = 10 V
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Table 3.8. Variants of individual tasks for the practical assignment No. 1 (continue)
9 Plane strain.

a1 = a3 = 7 � 10� 3 m,
a2 = a4 = 8 � 10� 3 m,
H = 3 � 10� 3 m,
V = 10 V

10 Axisymmetric problem.
a1 = a2 = 8 � 10� 3 m,
a3 = a4 = 6 � 10� 3 m,
H = 3 � 10� 3 m,
V = 5 V

11 Axisymmetric problem.
a1 = a3 = 0:01 m,
a2 = 0:02 m,
H = 0:005 m,
V = 5 V

12 Plane strain.
a1 = a3 = 0:02 m,
a2 = 0:04 m,
H = 0:008 m,
V = 10 V

13 Axisymmetric problem.
a1 = a3 = 9 � 10� 3 m,
a2 = a4 = 11 � 10� 3 m,
H = 3 � 10� 3 m,
V = 10 V

14 Plane strain.
a1 = a4 = 11 � 10� 3 m,
a2 = a3 = 9 � 10� 3 m,
H = 2 � 10� 3 m,
V = 5 V
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Table 3.8. Variants of individual tasks for the practical assignment No. 1 (continue)
15 Plane strain.

a1 = a3 = 0:015 m,
a2 = 0:03 m,
H = 0:004 m,
V = 5 V

3.2 Practical assignment No. 2.
Plane problem of heating and cooling of a
thermoelastic body

Objectives of the assignment

1. Study the main features of solving transient problems of thermoelastic-
ity in ANSYS APDL on the interaction of solids with acoustic media
in ANSYS APDL. The example problem is a plane problem of slow
heating and cooling of a body in the shape of letter \R" (input�le
FE Mod CP 2.inp). Estimate the possibilities of solving the problems
where mechanical and temperature �elds are not fully-coupled and dy-
namic terms in the motion equations are neglected.

2. Write a program in ANSYS APDL for an individual assignment problem
(transient problem for a 2D thermoelastic body under the plane strain
conditions).

3. Perform the computations, analyze the results and prepare a report.

3.2.1 Brief information on the solution techniques for the
transient problems of thermoelasticity for isotropic bodie s

The statement of the transient problems of thermoelasticitywas
provided previously in section 1.4. This statement contained �eld
equations (1.110), (1.111), constitutive relations (1.112), (1.113),
formulas (1.114), (1.115), boundary conditions (1.120){( 1.124), and initial
conditions (1.125).

Let us note that many thermoelastic materials are isotropicand their
modules from (1.112), (1.113), (1.115) have the following structure

cijkl = �� ij � kl + � (� ik � jl + � il � jk ); (3.7)
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 ij = 
� ij ; kij = k� ij ; (3.8)

where� , � are Lame's coe�cients (� = G is also called the shear modulus),

 is the coe�cient of thermal stresses, k is the thermal conductivity
coe�cient, � ij is Kronecker delta.

For isotropic materials, constitutive relations (1.112), (1.113) in the
component-wise form can be written as

� ij = �" kk � ij + 2�" ij � 
�� ij ; (3.9)

S = 
" kk +
�c "

T0
�; (3.10)

where"kk = div u = r � u =
P 3

k=1 "kk .
Then, using (1.118), (1.119), (3.7), (3.8), the system of di�erential

equations of linear thermoelasticity with respect to the components of
displacementsui and temperature� for isotropic media can be presented
in the form

�u i;tt � (�u k;k);i � [� (ui;j + uj;i )];j + ( 
� );i = � f i ; i = 1; 2; 3; (3.11)

�c " � ;t � (k� ;j );j + T0
u k;kt = W: (3.12)

In (3.11), (3.12) we have underlined the terms that can be omitted
without signi�cant loss of accuracy. For example, as it was noted in
section 1.4, the underlined term in (3.12) in the majority of thermoelastic
problems appears to be small and can be left out of consideration (theory
of thermal stresses). In such model in (3.12) we can formally setT0 = 0,
which will reduce (3.12)to the classical equation of transient thermal
conductivity. It is clear that Eq. ( 3.12) with T0 = 0 together with
boundary conditions (1.122){( 1.124) and initial conditions (1.125) for the
temperature gives an uncoupled thermoelastic problem wherethe �eld � is
determined independently from the displacement �eldu.

The system (3.11), (3.12) can be additionally simpli�ed if we omit the
underlined summand in (3.11). In this case the motion equation (3.11)
turns into a more simpli�ed equation of statics (more precisely, quasi-
statics). Such simpli�cation is appropriate for many transient problems
when the external heat in
uences change in time much slower compared
to the characteristic times for the elastic waves propagation.

Let us give several comments regarding the material properties of
isotropic media. As it can be seen from (3.11), (3.12), the isotropic
thermoelastic media are characterized by six material modules: the
porosity � ; the Lame's parameters� , � ; the coe�cient of thermal stresses
 ;
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the thermal conductivity coe�cient k and the speci�c heatc" , calculated
at constant strains. However, more often instead of the parameters � ,
� , 
 and c" the following values are used: the Young's modulusE; the
Poisson's ratio � ; the coe�cient of thermal extension � and the speci�c
heat c� , calculated at constant stresses. These modules are presentin the
constitutive relations that connect the pairs (" ij , S) and (� ij , � ):

" ij = �
�
E

� kk � ij +
(1 + � )

E
� ij + ��� ij ; (3.13)

S = �� kk +
�c �

T0
�: (3.14)

From (3.9), (3.10), (3.13), (3.14) it can be obtained that theses modules
can be expressed through one another by formulas:

E =
� (3� + 2� )

� + �
; � =

�
2(� + � )

; � =
(1 � 2� )

E

; c � = c" +

3T0�

�

: (3.15)

In ANSYS APDL the material properties � , E , � , � , k and c� can be
set by the commandsMP , Lab, MAT, C0, whereLab is the name of the
module,MAT is the number of the group of material properties,C0 is the
value of the module with the nameLab. Here Lab = DENS de�nes the
porosity � ; Lab = EX is the Young's modulusE; Lab = NUXY or Lab
= PRXY is the Poisson's ratio (for isotropic mediaNUXY = PRXY );
Lab = ALPX is the coe�cient of thermal extension; Lab = KXX is the
thermal conductivity coe�cient; Lab = C is the speci�c heat, calculated
at constant stresses.

All these modules can also depend on temperature according tothe
polynomial law when using the commandMP , Lab, MAT, C0, C1, C2,
C3, C4. Then the value with the nameLab will be calculated by the
formula C0 + C1� + C2� 2 + C3� 3 + C4� 4, and the problem becomes
nonlinear by � , if any value amongC1, C2, C3, C4will di�er from zero.

The following �nite elements are available in ANSYS for solving coupled
thermoelastic problems: PLANE223 with KEYOPT(1)=11 is a 2D
quadrilateral element with 8 nodes;SOLID226 with KEYOPT(1)=11
is a hexahedron with 20 nodes;SOLID227 with KEYOPT(1)=11 is a
tetrahedron with 10 nodes. These elements enable to solve transient
problems, problems of steady-state oscillations and stationary problems
of thermoelasticity.

Obsolete �nite elements, such asPLANE13 with KEYOPT(1)=4
(2D quadrilateral element with 4 nodes),SOLID5 with KEYOPT(1)=0
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(hexahedron with 8 nodes) and SOLID98 with KEYOPT(1)=0
(tetrahedron with 10 nodes), can be applied for solving transient and
stationary problems of thermal stresses. The use of the elements
PLANE223 , SOLID226 and SOLID227 can also lead to the theory
of thermal stresses, if we setT0 = 0. The latter can be done by applying
the commandTOFFST, 0 .

For simulating the problems of thermal stresses when the dynamic
summand in (3.11) is omitted, but in ( 3.12) with T0 = 0 a transient
equation for temperature is used, we can set small porosity ~� = �� , where
� << 1, and cp can be substituted by ~cp = � � 1cp. Then Eq. (3.12) will
hold as ~� ~cp = �c p, and cp = c" for T0 = 0.

There are other approaches to solving in ANSYS the problems of
thermoelasticity with various degree of coupling which had been developed
before the �nite elementsPLANE223 , SOLID226 and SOLID227 were
introduced. The description of these approaches can be foundin ANSYS
documentation in the sectionCoupled-Field Analyses Guide .

3.2.2 Example problem and solution methods

Problem description

Let us consider a transient problem of thermoelasticity fora plane
domain in the shape of the letter \R". The geometry of the domain in the
Cartesian coordinate systemOxy is shown in Fig.3.12(a). The sizes of the
body are de�ned by the following parameters: the height isHL = 0:14 (m);
the width is WL = 0:08 (m); the width of the walls isWWL = 0:02 (m);
the additional size along the height isHAL = 0:07 (m). Curvilinear parts
of the domain are de�ned by the parts of the ellipses with the ellipticity
parameterPEL = ( HAL= 2)=(WL � WWL), which de�ne the ratio of the
ellipsey-axis radius to the ellipsex-axis.

Let us assume that the material of the domain is steel (isotropic
material) with the Young's modulus E = 2 � 1011 (N/m 2), the Poisson's
ratio � = 0:29, the density � = 7800 (kg/m3), the coe�cient of thermal
conductivity k = K XX = 46:7 (W/(m � K)), the coe�cient of thermal
expansion� = 1:51 � 10� 5 (1/K) and the speci�c heat c� = 462 (J/(kg �
K)), calculated at constant stresses.

It is assumed that the temperature� on the bottom edge always equals
0� C. At the initial time moment t = 0 the body was at rest. Then
starting from the initial time moment till the time t = TES1 = 10 (s) the
temperature on the top edge has been increasing linearly from zero to 90� C.
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(a) (b)

Figure 3.12. Geometry of the domain: (a) scheme of the domain; (b) numbering of
keypoints and lines

After that the top edge was subjected to the conditions of convective heat
transfer with the heat transfer coe�cient hf = 60 (W/(m 2� K)) and the
ambient temperature� b = 0 � C. The rest of the boundary for all considered
time moments is thermally insulated, i. e. the normal component of the
heat 
ux vector is equal to zero:n � q = 0. The bottom edge of the body
is considered to be rigidly �xed all the time.

The aim of the problem is to determine the �elds of temperatures
and displacements in the time intervalt 2 [0; TES2], TES2 = 120 s,
plot the graphs of time dependencies for the temperature� and the
displacementsuy for two control points x1 = [ WWL; HL ] and x2 =
[WWL; HL � HAL= 2� (WL � 2� WWL) � PEL ] (see Fig.3.12(a), where
the points are marked by numbers 1 and 2).

In order to investigate the in
uence of the coupling and dynamic e�ects,
it is necessary to compare results for three di�erent problems:

1) transient thermoelastic problem with full coupling;

2) transient thermoelastic problem with partial coupling when the problem
for the temperature �eld does not depend on mechanical �elds, i. e. it
coincides with transient problem of thermal conductivity;

3) thermoelastic problem with partial coupling when the problem for
the temperature �eld does not depend on mechanical �elds, i.e. it
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coincides with nonstationary problem of thermal conductivity, and the
motion equations are considered in quasi-static statement.

The example of problem solving is provided in the �le FEMod CP 2.inp.

Text of input �le FE Mod CP 2.inp

! File FE_Mod_CP_2.inp
! Test problem No. 2
! TWO-DIMENSIONAL PROBLEM
! THERMOELASTIC BODY
! Transient problem

! Invert background from black to white
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15

/PREP7
! All values in SI system

TES1=10 ! time value at the end of the first step
TES2=120 ! time value at the end of the second step
! substeps for time steps
DT1=1 ! substep value for the step 1
DT2=2 ! substep value for the step 2

! Conditions for thermal analysis
T_INP1=0 ! Temperature on the bottom edge
T_INP2=90 ! Temperature on the right top edge (for time step 1 )

T_EXT=0 ! Ambient temperature for convective heat transfer conditions
H_F=60 ! Coefficient of convective heat transfer

! Temperature difference from zero to absolute zero
TOFFST, 273
! For TOFFST=0 a heat equation is a thermal conductivity equa tion
! TOFFST, 0

! Material properties (steel)
E1=2.1e11 ! Young's modulus
NU1=0.29 ! Poisson's ratio
RHO1=7.8e3 ! Density
K1=46.7 ! Thermal conductivity coefficient
C1=462 ! Specific heat
ALPH1=1.51e-05 ! Coefficient of thermal expansion

MP,EX,1,E1
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MP,DENS,1,RHO1
MP,NUXY,1,NU1
MP,KXX,1,K1
MP,C,1,C1
MP,ALPX,1,ALPH1

! Commands to analyze the capabilities for not taking into ac count
! dynamic terms in the motion equations

! KAPPA=1e-6
! MP,DENS,1,RHO1*KAPPA
! MP,C,1,C1/KAPPA

ET,1,PLANE223,11,,2 ! Quadrilateral finite element with 8 nodes
! Degrees of freedom UX, UY, TEMP, plane strain

! Geometrical sizes of the body in the shape of letter ``R''
HL=0.14 ! Height
WL=0.08 ! Width
WWL=0.02 ! Width of the walls of letter ``R''
HAL=0.07 ! Additional size along the height

! Meshing parameters
DMESH=WWL/4

PEL=(HAL/2)/(WL-WWL) ! Ellipticity parameter for curvili near part
LOCAL,11,1,WWL,HL-HAL/2,,,,,PEL ! Elliptical CS with num ber 11
CSYS,0 ! Change active coordinate system to Cartesian

! Build the geometry of the domain
! External part - area 1
K,1,0,0
K,2,WWL,0
K,3,WWL,HL-HAL-WWL
K,4,WL-WWL,0
K,5,WL,0
K,6,WWL,HL-HAL
K,7,WL,HL-HAL/2
K,8,WWL,HL
K,9,0,HL
L,1,2 $ L,2,3 $ L,3,4 $ L,4,5 $ L,5,6

CSYS,11
L,6,7 $ L,7,8
CSYS,0
L,8,9 $ L,9,1
AL,1,2,3,4,5,6,7,8,9
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! Hole - area 2
K,10,WWL,HL-HAL/2-(WL-2*WWL)*PEL
K,11,WL-WWL,HL-HAL/2
K,12,WWL,HL-HAL/2+(WL-2*WWL)*PEL
CSYS,11
L,10,11 $ L,11,12
CSYS,0
L,12,10
AL,10,11,12
ASBA,1,2 ! Subtract area 2 from area 1

! Set the size of finite elements
ESIZE,DMESH

AMESH,ALL

! Conditions for rigidly fixed boundary
NSEL,S,LOC,Y,0 ! Select the nodes on the bottom (along Y-axi s)
D,ALL,UX,0
D,ALL,UY,0 NSEL,ALL ! Select all nodes of the model

! Select the nodes to monitor the results
! Node N1_MON is in the upper part of the domain
! Y=HL, X=WWL
NSEL,S,LOC,Y,HL,HL
NSEL,R,LOC,X,WWL
*GET,N1_MON,NODE,,NUM,MIN
! Node N2_MON is below at X=WWL

NSEL,S,LOC,Y,HL-HAL/2-(WL-2*WWL)*PEL
NSEL,R,LOC,X,WWL
*GET,N2_MON,NODE,,NUM,MIN
NSEL,ALL

FINISH

! Solution of coupled thermoelastic problem
/SOLU ! Enter the solver
ANTYPE,TRANS ! Select the analysis type: transient analysi s
KBC,0 ! Specify linearly interpolated (ramped) load

! Damping coefficient in time integration scheme
!TINTP,0.005 ! TINTP=0.005 - default value
TIME,TES1 ! Time at the end of step 1
DELTIM,DT1 ! Substep for step 1
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NSEL,S,LOC,Y,0 ! Select the nodes on the bottom (by Y-axis)
D,ALL,TEMP,T_INP1 ! For all selected nodes set TEMP=T_INP1

NSEL,S,LOC,Y,HL,HL ! Select the nodes on the top (by Y-axis)
NSEL,R,LOC,X,0,WWL
D,ALL,TEMP,T_INP2 ! For all selected nodes set TEMP=T_INP2

NSEL,ALL
! Write to the database the results of nodal solution
! for all substeps
OUTRES,BASIC,ALL
SOLVE

! Step 2
TIME,TES2
DELTIM,DT2 KBC,1 ! Constant values of external influences

NSEL,S,LOC,Y,HL,HL ! Select the nodes on the top (by Y-axis)
NSEL,R,LOC,X,0,WWL
DDEL,ALL,TEMP ! Remove the conditions TEMP=T_INP2

SF,ALL,CONV,H_F,T_EXT ! Convective heat transfer in the se lected nodes

NSEL,ALL

SOLVE
SAVE
FINISH

/POST26
/SHOW,WIN32C ! Specify device for graphical output
/TRIAD,OFF ! Do not show the global coordinate triad

/PLOPTS,INFO,2 ! Use Auto-legend format
/PLOPTS,LEG2,OFF
/PLOPTS,LOGO,OFF ! Do not show ANSYS logo
/PLOPTS,FRAME,OFF ! Do not show frame
/PLOPTS,DATE,OFF ! Do not show date
/COLOR,CURVE,WHIT,1,6 ! Curve color for graphs -- white

! (black after inversion)
/COLOR,GRID,WHIT ! Grid color -- white (black after inversi on)
/GMARKER,1,2,3 ! Label 2 for curve 1 -- boxes, for every 3rd va lue
/GMARKER,2,4,3 ! Label 4 for curve 2 -- crosses, for every 3rd value
/GRID,1 ! Grid by X and Y (full grid)

/XRANG,0,TES2
/AXLAB,Y,Temperature (degree) ! Label for Y-axis
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/AXLAB,X,Time (sec) ! Label for X-axis
NSOL,2,N1_MON,TEMP,,TEMP1 ! Variable 2 -- temperature in node N1_MON
NSOL,3,N2_MON,TEMP,,TEMP2

NSOL,4,N1_MON,U,Y,UY1 ! Variable 4 -- displacement UY in node N1_MON
NSOL,5,N2_MON,U,Y,UY2

PLVAR,2,3 ! Plot graphs of variables 2, 3 versus time (variab le 1)

! Remove comments to show UY in control nodes
! /AXLAB,Y,UY (m)
! PLVAR,4,5

This program solves a coupled linear problem of thermoelasticity in
assumption of plane strain whenu = f ux(x; y; t), uy(x; y; t); 0g, � =
� (x; y; t).

As in the example from practical assignment 1, here we begin with
building the solid model and then proceed to the �nite element model.
The solid model is obtained by constructing geometrical objects using
the bottom to top method. Firstly the keypoints are created,then the
keypoints are connected by lines (see Fig.3.12(b), and after that the areas
are generated.

To construct a solid model, we will build two simply connecteddomains.
The �rst domain is bounded by the outer lines of the letter \R", and the
second domain is bounded by the inner lines of the letter \R".Then we
use Boolean operation of subtraction (ASBA command) to obtain the
resulting domain in the shape of the letter \R" with a hole. The curved
lines are de�ned as segments of two ellipses in the corresponding elliptical
coordinate system.

The �nite element model is generated using free meshing in quadrilateral
elementsPLANE223 with appropriate options. The global element size
DMESH de�nes the maximal element edge length and speci�es the density
of the mesh. The structure of the �nite element mesh forDMESH =
WWL=4 is shown in Fig.3.13 (Fig 3.13(a) shows elements, Fig3.13(b)
shows nodes).

Fig. 3.13also shows external in
uences at various time steps. (To show
boundary conditions in the interactive mode execute:Plot ! Elementsor
Plot ! Nodes, PlotCtrls ! Symbols! tick All Applied BCs. To plot the
conditions of convective heat transfer with arrows, in menu path Surface
Load SymbolsspecifyConvect FilmCoefand for Show pres and convect as
selectArrows.)
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(a) (b)

Figure 3.13. Finite element model:
(a) elements and boundary conditions at the �rst time step;
(b) nodes and boundary conditions at the second time step

The solution of transient problem is divided in two time steps
t 2 [0; TES1] and t 2 [TES1; TES2]. At every time step the
�nite element system of ordinary di�erential equations of transient
thermoelasticity (1.165), (1.166) is integrated by time with the substep � t j

(� t1 = 1 s, � t2 = 2 s) by the modi�ed Newmark scheme [1].

We note that di�erent boundary conditions are set at the �rst and at
the second time step on the top edge of the domain. At the �rst time
step the temperature (Fig.3.13(a)) is speci�ed with linear change by time
(KBC,1 ), and at the second time step instead of the temperature the
condition of the convective heat transfer (Fig.3.13(a)) is speci�ed, which
ensures the cooling of the body. The parameters of this boundary condition
(the coe�cient of heat transfer and the ambient temperature) are constant
at the second time step, which is de�ned by the commandKBC,0 .

After solving the problem, the program enters the time-history
postprocessorPOST26 to plot the graphs of the temperature dependence
on time in characteristic pointsx1 and x2. These dependences are shown in
Fig. 3.14(a), where the boxes denote the graph for� h(x1; t), and the crosses
denote the graph for� h(x2; t). After executing two commented commands
from the program �le, we can obtain the graphs of the time dependences
for the displacementsuyh(x1; t) and uyh(x2; t). These curves are provided
in Fig. 3.14(b), where by analogy the boxes denote the graph foruyh(x1; t)
and the crosses denote the graph foruyh(x2; t).
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(a) (b)

Figure 3.14. Temperature and displacements in characteristic points:
(a) � h(x j ; t); (b) uyh(x j ; t)

As it can be seen from Fig.3.14, at the stage of cooling the temperature
on the top edge decreases much faster than the displacementsuy decline.
Besides, inside the body the temperature and the displacements are
gradually getting aligned, moreover the temperature and the displacements
inside the body can even increase at the stage of cooling for acertain time
interval.

Then using the interactive mode in General postprocessorPOST1 we
can plot the pictures of various nodal values distribution (NSOL) for every
substep. In order to do this it is necessary to read the data for the selected
substep, for example, by menu pathGeneral PostProc! Read Results!
By Pick ! then select the time substep value! Read! Close. After that
we can plot the distribution of the values of interest NSOL in ausual way.
For example, to plot the contour plot of the temperature �eld, execute
General PostProc! Plot Results ! Contour plot ! Nodal Solution !
DOF Solution ! Nodal Temperature; to plot the vector plot of the heat

ux, execute General Postproc! Plot Results! Vector Plo ! Prede�ned
! Flux & gradient ! Thermal 
ux TF ; etc.

Fig. 3.15 demonstrates some results for the time moment at the end
of the �rst time step t = TES1, i. e. in the end of the heating stage:
Fig. 3.15(a) shows the distribution of the temperature �eld, Fig. 3.15(b)
shows the vector plot for the heat 
ux. Similar results at the �nal
monitoring stage of the cooling processt = TES2 are shown in Fig.3.16.

These and other �gures clearly demonstrate the process of theheat
distribution in the body. It is only necessary to take into account that
the color palette in di�erent pictures every time corresponds to completely
di�erent ranges of values.
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(a) (b)

Figure 3.15. Some results at the end of the heating stage:
(a) temperature; (b) heat 
ux vector

(a) (b)

Figure 3.16. Some results at the end of the monitoring stage:
(a) temperature; (b) heat 
ux vector

If in the �le FE Mod CP 2.inp we remove the comment sign in the
line
! TOFFST, 0

i. e. execute the commandTOFFST, 0 , then ANSYS will calculate
thermal stresses.

If we additionally remove the comments in the lines

! KAPPA=1e-6
! MP,DENS,1,RHO1*KAPPA
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! MP,C,1,C1/KAPPA

then the problem of thermoelasticity with partial coupling will be solved,
when the temperature �eld does not depend on the mechanical �elds, and
for the displacements the quasistatic equation is used. The computations
show that the same results will be obtained for the temperature and the
stresses in the control points, i. e. the resulting curves for � h(x j ; t) and
uyh(x j ; t) will visually coincide.

Finally, we note that here the accuracy of the obtained results depends
on many parameters. The maximal size of the elementsDMESH
determines the errors of discretization by spatial variables and the use
of the �nite elements that are quadratic by canonical coordinates gives
theoretical error of the orderO(DMESH 2). The time tubsteps � t j give
the estimation of the error of discretization by time, which are similar to
the estimation of the error of discretization by spatial variables. These
estimations are valid only when the solution has limited derivatives of the
required degree of smoothness. However, for the areas with corner points
and with the change of the types of the boundary conditions thesolutions
can have local singularities, i. e. they even can have no �rstderivatives
limited in the domain.

Besides, the accuracy of the computations is also sensible to the
parameters of the numerical scheme of the modi�ed Newmark method
of time integration. In the program the default parameters are used that
correspond to the commandTINTP,0.005 . However, for large solution
oscillations the parameter of numerical damping of the scheme can be
increased or other values for the parameters in the commandTINTP
can be changed.

The results of the numerical experiments for various �nite element sizes,
time substeps and modi�ed Newmark scheme parameters show su�cient
accuracy of the temperature and displacement �elds which is acceptable
for the test example with the given values.

3.2.3 Individual assignments

It is required to calculate thermal stresses induced by thermal in
uence
for a 2D construction in the shape of the letter indicated below. Consider
a transient coupled problem of thermoelasticity and its simpli�ed models
similar to the previously provided example. For input data take the values
similar to those from the test example. The geometrical sizesof the areas
can be chosen individually.
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Use ANSYS command mode to create solid and �nite element models,
set the boundary conditions, solve the problem and plot the results using
Time-history postprocessorPOST26 . Use ANSYS interactive mode to
view the results in General postprocessorPOST1 and plot solid and �nite
element models.

Analyze the convergence for various values of �nite element mesh
density, time substeps and modi�ed Newmark scheme parameters. Provide
a valid version of the �nite element mesh with boundary conditions for
various time steps. Analyze the results (graphs of the temperature and
displacement dependences on time in the characteristic points, vector plot
for the heat 
ux �eld) and prepare a report.

The report should contain the name of the student, the full description
of the problem and the results obtained in ANSYS.

The variants of individual tasks are presented in the Table3.9. The
domains have the shapes of Latin and Greek letters.

Table 3.9. Variants of individual tasks for the practical assignment No. 2

No 1 2 3 4 5 6 7 8
Domain shape B C D G J O P Q

No 9 10 11 12 13 14 15
Domain shape S U 
 	 � � �

3.3 Practical assignment No. 3.
Steady-state oscillations of an elastic transmitter
in acoustic medium

Objectives of the assignment

1. Study the main features of solving the problems on the interaction of
solids with acoustic media in ANSYS APDL:
� acoustic �nite elements, including the elements with an option of

interaction with solid elements;
� de�ning non-re
ecting boundary conditions for simulation of

\in�nite" domains;
� selecting the parameters and structure of �nite element meshes;
� choosing the solver options;
� postprocessing features.
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The example problem is a two-dimensional problem of steady-
state oscillations for an elastic transmitter submerged into acoustic
medium (input �les FE Mod CP 3 sm.inp, FE Mod CP 3 ha.inp,
FE Mod CP 3 hi.inp).

2. Write a program in ANSYS APDL for an individual assignment problem
(two-dimensional problem of steady-state oscillations for an elastic
transmitter submerged into acoustic medium).

3. Perform the computations, analyze the results and prepare a report.

3.3.1 Brief information on the solution techniques for the
problems of interaction of solids with acoustic media

Among numerous acoustic problems, the problems of interaction of a
solid deformable transmitter with acoustic media are of great interest.
Transmitters are usually elastic or piezoelectric bodies that make steady-
state oscillations or transient movements under the applied governing
in
uences. If these bodies are submerged into acoustic media than, as
it was mentioned in section 1.6, the boundaries of solid and liquid media
interact with each other. As a result, acoustic waves are spread in acoustic
media, and these waves should be analyzed for the problems ofthis type
(distribution of pressure, pressure gradients, velocity,sound pressure level).

Very often the transmitters have much smaller sizes in comparison with
external acoustic medium, and the phenomena of re
ection ofacoustic
waves from their remote boundaries are not of great interest. In such
cases we can arti�cially \cut" the sizes of acoustic medium and set \non-
re
ecting" boundary conditions on new boundaries. Such conditions ideally
should simulate the processes of propagation of acoustic waves through
these boundaries without re
ection.

The problems of interaction of solids with acoustic media are dynamic
problems (problems of steady-state oscillations or transient problems).
Therefore, in order to ensure appropriate accuracy of the solution, the
�nite element sizes should be selected not only from the error estimations
for static problems of typeO(hp

s=sin' ), where hs is the maximal element
size,' is the minimal angle at the element vertex, but should also berelated
to the lengths of characteristic waves. For example, ifc0 is the velocity of
acoustic waves, and the transmitter oscillates with the frequency f , then
the characteristic wave lengths� can be found by the formula:� = c0=f .
Then, depending on the �nite element type, its recommended size hd for
the correct account for oscillation of the acoustic �eld values can be taken
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as hd = �= 10 (for the elements with middle nodes) orhd = �= 20 (for
the elements without middle nodes). For small values of the frequencies
f the sizehd can considerably exceedhs, and therefore cannot be taken
into account. However, for large frequencies there can be situations when
hd << h s, i. e. the element size related to the oscillations of the acoustic
�eld values for the oscillation period is the de�ning value.

Therefore in the considered problems it is required to determine the
boundaries of the interaction of solids and acoustic media,non-re
ecting
boundaries (if there is a necessity) and set reasonable parameters of �nite
element meshes.

It should be noted that the capabilities of ANSYS software in solving
acoustic problems expanded signi�cantly in the recent years. For this book
ANSYS 11.0 is used, and therefore main attention is paid to the acoustic
analysis implemented in this version of ANSYS. However, the facilities of
newer ANSYS versions will be brie
y discussed as well.

In ANSYS 11.0 there are two main types of 
uid elements:FLUID29
and FLUID30 , of the dimension 2-D and 3-D, respectively.FLUID29
is a quadrilateral element with four nodes and has a triangular version.
FLUID30 is an 8-node hexahedral element and has versions with prismatic
and tetrahedral forms. The elementsFLUID29 and FLUID30 can be in
contact with similar solid elements (both with elastic and piezoelectric),
for example, with PLANE13 , PLANE42 , SOLID5 , SOLID45 , etc.
Naturally, in order to ensure consistency of �nite element meshes here the
elements of the same shape should be selected.

For acoustic elements, that are in contact with solid elements, it
is necessary to use the option KEYOPT(2)=0 (interaction permission).
This leads to a non-symmetric �nite element matrix. For all other
acoustic elements we can set KEYOPT(2)=1, which will permit to
obtain symmetric �nite element matrices. As the solution of algebraic
systems with symmetric matrices requires much less memory space and
computation time, it is recommended to use symmetric matrices wherever
possible.

For acoustic elements in ANSYS it is necessary to set the values for
the material parameters (MP ), which areDENS (the 
uid density � 0) and
SONC (the speed of soundc0).

If there is a sound absorption at the media interface (the boundary � ai

with the impedanceZ), then we use additional material parameterMU
to set the absorption coe�cient � = Z=Z0, Z0 = � 0c0. The value � is
usually determined from experimental measurements. The absorption is
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greater when the value of� is close to one. For one-dimensional problems
the value � = 1 ensures total absorption of plane acoustic waves at the
impedance boundary �ai .

More modern approaches are related to unconventional acoustic
\in�nite" elements FLUID129 and FLUID130 , that can be used
together with FLUID29 and FLUID30 to simulate in�nitely extended
domains. These elements implement non-re
ecting boundary conditions of
the second kind that give more accurate results compared to conventional
impedance boundaries �ai . The development of numerical methods for
simulating in�nitely extended domains is a topic for special research
[15]. The approach presented in [16] is implemented in �nite elements
FLUID129 and FLUID130 .

The elements FLUID129 and FLUID130 can contact only with
acoustic elementsFLUID29 and FLUID30 , correspondingly, but not
with elastic or piezoelectric solid elements. The external boundary of
the acoustic �nite element mesh, covered by the elementsFLUID129
or FLUID130 , should have the shape of a circumference (for 2D or
axisymmetric elements) or sphere (for 3D). The radius of a circumference
or a spherical boundary of a bounded domain, as well as the coordinates
of a circumference or sphere center, should be set in the element constants
with the command R .

As it is written in ANSYS documentation, the use of in�nite elements
gives good results both for low and high frequencies. It is mentioned
that good solution accuracy is achieved when the in�nite elements are
located approximately at the distance�= 5 outside the domain occupied
by solid. Here � = c0=f is the dominant wave length for the pressure
waves. For example, in the case of a submerged annular ring orspherical
shell of the radiusRs, the radius of the external boundaryRa = RAD
for the in�nite elements can be approximately equal toRs + �= 5. More
accurate estimations can be obtained in numerical experiments for various
values of Ra. Besides, it should be taken into account that in plane
problems at large distances from the point source the acoustic �elds
attenuate in the point � as 1=

p
R, where R =

p
(x1 � � 1)2 + ( x2 � � 2)2,

and in 3D problems the acoustic �elds attenuate as 1=r, where r =p
(x1 � � 1)2 + ( x2 � � 2)2 + ( x3 � � 2)3.
In ANSYS Postprocessor, analyzing the solution results for theproblems

on the interaction of solids with acoustic media has particular features,
which are related to the fact that the �eld functions associated with
solids and acoustic media are de�ned in di�erent domains. Therefore,
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for example, if we need to show the mode shapes of elastic or piezoelectric
body, �rst it is necessary to select only elastic or only piezoelectric elements
and plot the mode shapes only after that. Similarly, if we need to plot the
pressure �eldsPRES in acoustic medium, then it is necessary to select the
acoustic elements and then apply the commands likePLNSOL,PRES .

The higher versions of ANSYS contain a lot of improvements for acoustic
analysis: the models of acoustic 
uids with absorption (MP , VISC , MAT ,
C0); the elementsFLUID220 and FLUID221 with middle nodes for 3D
problems; symmetric solvers for the problems of interaction of solid and

uid media (FSI); new impedance boundary conditions, as, for example,
an ideal absorbing layer \perfectly matched layer" (PML), etc. Moreover,
recently developed Application Customization Toolkit (ACT) now provides
a range of convenient tools for performing acoustic computations in ANSYS
Workbench.

Unfortunately, the documentation on new facilities for acoustic
analysis in ANSYS is poor in details. Therefore for more in-depth
acquaintance with acoustic analysis in ANSYS we recommend to refer
to a voluminous monograph [14] with examples available by the link:
http://www.mecheng.adelaide.edu.au/avc/software.

3.3.2 Example problem and solution methods

Problem description.
Let us consider a pipe immersed in sea water. The domain �lled

with water is so large then it can be considered in�nitely extended in all
directions. The pipe consists of two layers of di�erent materials. The
inner radius of the pipe isR1 = 0:25 (m), the external radius of the
pipe is R3 = 0:27 (m), and the middle radius at the layer interface is
R2 = 0:26 (m). The �rst layer R1 � r � R2 is made of isotropic material
(steel) with the Young's modulus E1 = 2 � 1011 (N/m 2), the Poisson's
ratio � 1 = 0:29 and the density� 1 = 7860 (kg/m3). The second layer
R2 � r � R3 is made of another isotropic material (copper) with the
Young's modulusE2 = 1:2 � 1011 (N/m 2), the Poisson's ratio � 2 = 0:33
and the density � 2 = 8900 (kg/m3). Let us assume that the density of
sea water is� 0 = � a = 1030 (kg/m3), and the sound speed in sea water is
c0 = ca = 1560 (m/s).

As the pipe has rather large length along the axial direction and the
external in
uences are uniformly applied along the axis, wecan consider a
2D plane strain problem for a pipe cross-section (Fig.3.17). The domain
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occupied by 
uid is bounded by the radiusRa. On the boundaryr = Ra we
will use non-re
ecting boundary conditions, which will be simulated either
by impedance boundary conditions or by special acoustic �nite elements
for in�nite domains.

The aim of the problem is to analyze the displacement �elds in the
solid and the pressure �elds in the 
uid in an assumtption of steady-
state oscillations in the vicinity of the smallest resonance frequencyf r ,
the oscillation modes of which can be excited by two concentrated forces
F = ~F exp[i2�f t ] with the amplitudes ~F = 100 N/m, applied in two points
on the inner boundary of the ring (cross-section of the pipe)in the opposite
directions, as it is shown in Fig.3.17.

Example of problem solving using ANSYS

First of all, let us note that the problem is symmetric with respect to
the axesX and Y. Therefore it is enough to consider a quarter of the
model, for example, atX � 0, Y � 0. It is necessary to take into account
that as the forceF acts on both halves of the modelY � 0 and Y � 0,
therefore for the considered part we need to take a half of theforce value
F=2.

Figure 3.17. Geometry of the problem
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We will begin with the calculation of the natural frequencies
of the transmitter without account for 
uid, by executing the �le
FE Mod CP 3 sm.inp .

Text of input �le FE Mod CP 3 sm.inp

! File FE_Mod_CP_3_sm.inp
! Test problem No.~3
! PLANE PROBLEM
! OSCILLATIONS OF A COMPOUND RING (CYLINDER)
!
! Calculation of natural frequencies of the body without flu id

! Invert background from black to white
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15

/PREP7
F_R='FE_Mod_CP_3_sm' ! file name for results

! Parameters for geometrical sizes (all in SI system)

R1=0.25 ! inner radius of the ring
R2=0.26 ! middle radius of the ring
R3=0.27 ! outer radius of the ring

NFREQ=4 ! number of output frequencies
FBEG=0.1 ! start value for the frequency range
FEND=1e10 ! end value for the frequency range

! Material properties of the body
! Material constants of steel
RO1=7.86e3 ! density
E1=2e11 ! Young's modulus
NU1=0.29 ! Poisson's ratio
! Material constants of copper
RO2=8.9e3
E2=1.2e11
NU2=0.33

MP,DENS,1,RO1 ! density of the medium 1
MP,EX,1,E1 ! Young's modulus of the medium 1
MP,NUXY,1,NU1 ! Poisson's ratio of the medium 1
MP,DENS,2,RO2 ! density of the medium 2
MP,EX,2,E2 ! Young's modulus of the medium 2
MP,NUXY,2,NU2 ! Poisson's ratio of the medium 2
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ET,1,PLANE42,,,2 ! Elastic finite element with 4 nodes, pla ne strain

! Parameters of finite element mesh
SM=1.00 ! Scaling multiplier
HDIV=2*SM ! Number of elements along the thickness (for one material)

TDIV=32*SM ! Number of elements along the circumferential d irection

/OUTPUT,F_R,res
*VWRITE
(1X,' MODAL ANALYSIS (Block Lanczos, Plane42)')
*VWRITE,NFREQ
(1X,' NFREQ= ',F4.0)
*VWRITE,HDIV,TDIV
(1X,' HDIV= ',F4.0,' TDIV= ',F4.0)
/OUTPUT
*DIM,FR,ARRAY,NFREQ ! Array for natural frequencies

! Geometry of the model
CSYS,1 ! Change active coordinate system to cylindrical
K,1,R1 $ K,2,R2 $ K,3,R3
K,4,R3,90 $ K,5,R2,90 $ K,6,R1,90
L,6,1 $ L,1,2 $ L,2,5 $ L,5,6 $ L,2,3 $ L,3,4 $ L,4,5
A,1,2,5,6
A,2,3,4,5
CSYS,0 ! Change active coordinate system to Cartesian

! Divide lines
LESIZE,1,,,TDIV $ LESIZE,3,,,TDIV $ LESIZE,6,,,TDIV

LESIZE,2,,,HDIV $ LESIZE,5,,,HDIV
LESIZE,4,,,HDIV $ LESIZE,7,,,HDIV
MSHKEY,1
MSHAPE,0,2D
ASEL,S,AREA,,2 ! Select new set of areas - area 2
AATT,2,,1 ! Associate material 2 and element type 1 (MAT=2, T YPE=1)

! with selected area
ASEL,ALL ! Select all areas
AMESH,ALL ! Mesh all areas
FINISH

/SOLU
ANTYPE,MODA ! Modal analysis
! Block Lanczos method
! Number of frequencies NFREQ in the interval FBEG,FEND
MODOPT,LANB,NFREQ,FBEG,FEND
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! Conditions of symmetry
LSEL,S,LOC,Y,0
LSEL,A,LOC,X,0
DL,ALL,,SYMM
LSEL,ALL

SOLVE
FINISH

/POST1
! Output the table of resonance frequencies into the file
*DO,I,1,NFREQ

SET,,I
*GET,FR(I),MODE,I,FREQ
FRI=FR(I)
/OUTPUT,F_R,res,,append
*VWRITE,I,FRI
(1X,F4.0,' ',E12.5)
/OUTPUT

*ENDDO

! Plot pictures of mode shapes
/PNUM,MAT,1 ! Enumerate elements by material properties

/NUMBER,1 ! Show numbers only by color
/TRIAD,OFF ! Do not show the global coordinate triad
/PLOPTS,LOGO,OFF ! Do not show ANSYS logo
/PLOPTS,DATE,OFF ! Do not show date
/PLOPTS,FRAME,OFF ! Do not show frame
/WINDOW,1,LTOP ! Place Window 1 at the left top of the screen
SET,,1 ! read data for the first mode
PLDISP,2 ! show mode shape together with undeformed shape

/WINDOW,1,OFF ! Make Window 1 passive
/NOERASE ! Don not erase window content
/WINDOW,2,RTOP ! Place Window 2 at the right top of the screen
SET,,2 ! read data for the second mode
PLDISP,2
/WINDOW,2,OFF
/WINDOW,3,LBOT ! Place Window 3 at the left bottom of the scre en
SET,,3 ! read data for the third mode
PLDISP,2
/WINDOW,3,OFF
/WINDOW,4,RBOT ! Place Window 4 at the right bottom of the screen
SET,,4 ! read data for the fourth mode
PLDISP,2
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Figure 3.18. Natural mode shapes of the transmitter without 
uid

! Return to default settings (one window at full screen)
/WINDOW,1,ON
/WINDOW,1,FULL
/WINDOW,4,OFF

! Execute this command to erase the content of the window
! ERASE

After executing this �le in ANSYS we obtain the values of the �rst four natural
frequencies and the mode shapes at these frequencies of the transmitter without account
for 
uid (Fig. 3.18). Here the elements that have di�erent material properties are shown
in di�erent colors: material 1 is shown by turquoise, and material 2 is shown by violet. We
note that the starting value FBEG of the frequency range, in which we search for natural
frequencies, was taken slightly greater than zero in order not to search zero frequencies of
a rigid body motion. (Although in this problem, as we consideronly a quarter of a model
with symmetry boundary conditions, there can be no zero frequencies, and here it is done
only for convenience of using the commands from the provided�le for other problems.)
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It is clear that the concentrated forces shown in Fig.3.17can excite oscillations at all
�rst four natural frequencies under relevant values off . In the presence of 
uid the values
of all resonance frequencies will decrease, and, presumably, the expected value of the real
part of the �rst natural frequency of the transmitter in the 
 uid can be around 130 Hz
(For the transmitter without 
uid the �rst natural frequenc y computed by the program
FE Mod CP 3 sm.inp wasf sr 1 = 164:313 Hz).

Similarly we could have conducted modal analysis (solve an eigenvalue problem) for
the transmitter in 
uid and re�ne the value of the expected �r st natural frequency.
Omitting this step, let us move to solving the problem of steady-state oscillations for
an elastic transmitter in acoustic medium. We choose a computation frequency interval
f beg � f � f end; f beg = 100 Hz; f end = 150 Hz; and the number of values on the interval
nf req = 100. Therefore, the problem of steady-state oscillationsfor the transmitter in 
uid
will be solvednf req = 100 times with the step by frequency � f = ( f end � f beg)=nf req = 0:2
Hz for the frequenciesf k = f beg + k� f , k = 1; 2; :::; nf req .

By the resonance frequencyf r we will call the value of the frequency from an array
f k , k = 1; 2; :::; nf req , which enables to achieve maximal value of the amplitude of the
displacement ~uy or acoustic pressure ~pp (uy = ~uy exp[i2�f t ]; p = ~pexp[i2�f t ]) at the top
point of the transmitter X = 0, Y = Rs. We have to remember that even if �nite element
computations were completely accurate, there would still be an incorporated absolute error
of the frequency determination � f = 0:2 Hz, or a relative error (� f=f beg) � 100 % = 0:2 %.

ANSYS documentation determines the distance, at which in�niteelements should be
located, as no less thanRs+ �= 5, whereRs is the external diameter of the ring,� = c0=f is
the dominant wavelength of the pressure waves. In this problem the external radius of the
ring is Rs = R3 = 0:27 m, the speed of sound in water isc0 = ca = 1560 m/s, the dominant
frequency can be estimated asf = 130 Hz. ThenR3+ �= 5 = 0:27+1560=130=5 = 2:67 (m).
However, in this problem under very low frequency oscillations we can expect that this
distance would be much larger than the allowable distance for the in�nite elements
location. Therefore we will takeRa = 4Rs = 1:08 m as the base value of the radius
Ra for the location of acoustic elementsFLUID129 or impedance acoustic boundaries.
The results obtained for this value will be compared with theresults obtained atRa = 2Rs

and Ra = 8Rs.
Under a very large wavelength value� = c0=f � 12 (m) a restriction on the �nite

element sizehd = �= 20 � 0:6 (m) is larger than the value of the external radius of the
ring Rs = R3 = 0:27 (m). As a basic example for each material of the ring we will
consider the area division along the thicknessHDIV = 2 SM , the line division along the
circumferential direction of the ring and acoustic areaTDIV = 32 SM , and the division
of acoustic areaHADIV = 32 SM , whereSM = 1. The �nite elements in acoustic area
will be built with an increase of their length along the radial directions with the multiplier
SPACE = 3. For the convergence analysis the parameterSM will be changed towards
both larger (SM = 2) and smaller (SM = 0:5) values.

The main program for calculating the steady-state oscillations of the ring in acoustic
medium FE Mod CP 3 ha.inp is used for simulation of non-re
ecting boundaries of
acoustic �nite elementsFLUID129 .

Text of input �le FE Mod CP 3 ha.inp

! File FE_Mod_CP_3_ha.inp
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! Test problem No. 3
! PLANE PROBLEM
! OSCILLATIONS OF A COMPOUND RING (CYLINDER) IN ACOUSTIC MEDIUM
!
! Calculation of natural frequencies of the body with fluid
! Infinite elements FLUID129

! Invert background from black to white
/RGB,INDEX,100,100,100,0
/RGB,INDEX,0,0,0,15

/PREP7
F_R='FE_Mod_CP_3_ha_4_SM1' ! file name for output results

! Parameters for geometrical sizes (all in SI system)

R1=0.25 ! inner radius of the ring
R2=0.26 ! middle radius of the ring
R3=0.27 ! outer radius of the ring
KRA=4 ! coefficient for the computation of the radius RA
RA=KRA*R3 ! radius for external boundary of the fluid

FP=100 ! Force value
NFREQ=100 ! number of output frequencies
FBEG=100 ! start value for the frequency range
FEND=150 ! end value for the frequency range

! Material properties
! Material constants of steel
RO1=7.86e3 ! density
E1=2e11 ! Young's modulus
NU1=0.29 ! Poisson's ratio
! Material constants of copper
RO2=8.9e3
E2=1.2e11
NU2=0.33
! Material constants of fluid
ROA=1030
CA=1560
AD=1

MP,DENS,1,RO1 ! density of medium 1
MP,EX,1,E1 ! Young's modulus of medium 1
MP,NUXY,1,NU1 ! Poisson's ratio of medium 1

MP,DENS,2,RO2 ! density of medium 2
MP,EX,2,E2 ! Young's modulus of medium 2
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MP,NUXY,2,NU2 ! Poisson's ratio of medium 2

MP,DENS,3,ROA ! density of acoustic medium
MP,SONC,3,CA ! speed of sound in acoustic medium
MP,MU,3,AD ! absorbing coefficient at the impedance bounda ry

ET,1,PLANE42,,,2 ! Elastic finite element with 4 nodes, pla ne strain
ET,2,FLUID29,,1 ! Acoustic finite element with 4 nodes, wit hout UX & UY
ET,3,FLUID29 ! Acoustic finite element with 4 nodes, with UX & UY
ET,4,FLUID129 ! Acoustic finite element for infinite bound aries
R,4,RA ! Radius of infinite boundary for finite element FLUI D129

! Parameters of finite element mesh
SM=1.00 ! scaling multiplier
HDIV=2*SM ! Number of FEs along the thickness (for one materi al)

TDIV=32*SM ! Number of FEs along the circumferential direct ion
HADIV=32*SM ! Number of FEs along the radial direction for ac oustic medium
SPACE=3 ! Multiplier to increase the length of acoustic FE

! along the radial direction

/OUTPUT,F_R,res
*VWRITE
(1X,' HARMONIC ANALYSIS (Plane42, Fluid29)')
*VWRITE,KRA
(1X,' RA/R3= ',F4.0)
*VWRITE,NFREQ
(1X,' NFREQ= ',F4.0)
*VWRITE,HDIV,TDIV,HADIV
(1X,' HDIV= ',F4.0,' TDIV= ',F4.0,' HADIV= ',F4.0)
/OUTPUT

! Geometry of the model
CSYS,1 ! Change active coordinate system to cylindrical
K,1,R1 $ K,2,R2 $ K,3,R3
K,4,R3,90 $ K,5,R2,90 $ K,6,R1,90
L,6,1 $ L,1,2 $ L,2,5 $ L,5,6 $ L,2,3 $ L,3,4 $ L,4,5
A,1,2,5,6 $ A,2,3,4,5
K,7,RA $ K,8,RA,90
L,3,7 $ L,7,8 $ L,8,4
A,3,7,8,4
CSYS,0 ! Change active coordinate system to Cartesian

! Line division
LESIZE,1,,,TDIV $ LESIZE,3,,,TDIV $ LESIZE,6,,,TDIV
LESIZE,2,,,HDIV $ LESIZE,5,,,HDIV
LESIZE,4,,,HDIV $ LESIZE,7,,,HDIV
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LESIZE,9,,,TDIV
LESIZE,8,,,HADIV,SPACE
LESIZE,10,,,HADIV,1/SPACE
MSHKEY,1
MSHAPE,0,2D
ASEL,S,AREA,,2 ! Select new set of areas - area 2
AATT,2,,1 ! Associate material 2 and element type 1 (MAT=2, T YPE=1)

! with the selected area
ASEL,S,AREA,,3 ! Select new set of areas - area 3
AATT,3,,2 ! Associate material 3 and element type 2 (MAT=3, T YPE=2)

! with the selected area
ASEL,ALL ! Select all areas
AMESH,ALL ! Mesh all areas

! Change acoustic finite elements on the border of the ring to type 3

LSEL,S,LINE,,6 ! Select line 6 - border of the ring and acoust ic medium
NSLL,S,1 ! Select nodes on the selected lines
ESLN,S,0 ! Select finite elements that are attached to the se lected nodes
ESEL,U,TYPE,,1 ! Unselect elements of type 1 from the select ed set

EMODIF,ALL,TYPE,3 ! Modify all selected elements to type 3
ALLSEL

! Fluid-Structure Interface (FSI)
CSYS,1
NSEL,S,LOC,X,R3 ! Select the nodes at the border of solid and fluid bodies

ESLN ! Select elements attached to the selected nodes
ESEL,R,TYPE,,3 ! Select finite elements that have TYPE=3
SF,ALL,FSI ! Set the flag FSI for the contact nodes
NSEL,ALL
ESEL,ALL
CSYS,0

FINISH

/SOLU
ANTYPE,HARMIC ! Steady-state oscillations
HROPT,FULL
HARFRQ,FBEG,FEND
NSUBST,NFREQ
KBC,1

! Symmetry conditions
LSEL,S,LOC,Y,0
LSEL,A,LOC,X,0
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DL,ALL,,SYMM
LSEL,ALL

CSYS,1
KSEL,S,LOC,X,R1
KSEL,R,LOC,Y,0
FK,ALL,FX,-FP/2 ! Divide FP into 2, as we consider half of the model

KSEL,ALL
CSYS,0

! Define infinite elements FLUID129
CSYS,1
NSEL,S,LOC,X,RA ! Select nodes at the impedance boundary
TYPE,4 $ REAL,4 $ MAT,3
ESURF
ESEL,ALL
NSEL,ALL
CSYS,0

OUTRES,BASIC,ALL
SOLVE
SAVE
FINISH

/POST26
/SHOW,WIN32C
/TRIAD,OFF ! Do not show the global coordinate triad

/PLOPTS,INFO,2 ! Use auto-legend
/PLOPTS,LEG2,OFF
/PLOPTS,LOGO,OFF ! Do not show ANSYS logo
/PLOPTS,DATE,OFF ! Do not show date
/PLOPTS,FRAME,OFF ! Do not show frame

/COLOR,CURVE,WHIT,1,6
/COLOR,GRID,WHIT
/GRID,1

CSYS,1
NSEL,S,LOC,X,R3
NSEL,R,LOC,Y,90 ! Node with number N_RES1 is the point (0,R3) in Cartesian CS
*GET,N_RES1,NODE,,NUM,MIN
NSEL,S,LOC,X,RA
NSEL,R,LOC,Y,90 ! Node with number N_RES2 is the point (0,RA) in Cartesian CS
*GET,N_RES2,NODE,,NUM,MIN
NSEL,ALL
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CSYS,0

/XRANG,FBEG,FEND
/AXLAB,X,Frequency (Hz)
/AXLAB,Y,Displacement UY (m)
NSOL,2,N_RES1,UY
ABS,3,2,,ABSUY
*GET,FRES,VARI,3,EXTREM,TMAX ! Define resonance frequency

/OUTPUT,F_R,res,,append
*VWRITE,FRES
(1X,' FRES= ',E12.5)
PRVAR,2
/OUTPUT PLCPLX,2 ! Real part
PLVAR,2

! PLVAR,3 ! Amplitude UY

! Commands to plot the pressure at the same point
! NSOL,4,N_RES1,PRES
! /AXLAB,Y,Acoustic pressure PRES (Pa)
! PLVAR,4

This program constructs �nite element mesh shown in Fig.3.19 where
on the left (a) the elements colors indicate material properties and on the
right (b) the colors indicate the element types. Besides, Fig. 3.19(b) shows
the boundary with the nodes of acoustic elementsFLUID29,,0 , for which
the 
uid-structure interface 
ag FSI has been set.

(a) (b)

Figure 3.19. Finite element mesh: (a) highlight MAT; (b) highlight TYPE
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Let us recall that in order to plot �nite element mesh in interactive mode
we need to executePlot ! Elements. For showing the material properties
of the elements by colors without showing the material numbersselect
PltCtrls ! Numbering! Elem/Attrib numbering ! Material numbers!
[NUM] Numbering shown with! Colors only ! OK, and for showing the
element types by colors without showing the element type numbers select
PltCtrls ! Numbering! Elem/Attrib numbering ! Element type num!
Material numbers! [NUM] Numbering shown with! Colors only ! OK.

At the end of the program in postprocessor/POST26 the data
on the frequency characteristic of the displacement ~uy in the point
of the transmitter (X = 0, Y = R3) are written in the output
�le FE Mod CP 3 ha 4 SM1.res , and Re~uy is displayed as a graph
(Fig. 3.20(a)). Execution of the commandPLVAR,3 gives the graph of
the frequency dependencej~uyj at the same point (Fig. 3.20(b)). Besides,
the resonance frequency value is written to the variable FRESand also to
the output �le. As a result we get that the resonance frequencyvalue is
equal to f r = 126:5 Hz.

The following �le enables to obtain for the resonance frequency FRES
a graph of the real part of the pressure along theY-axis of the acoustic
domain, i. e. the dependence Re~p(0; y), y 2 [R3; Ra].

Text of input �le FE Mod CP 3 Post.inp

! File FE_Mod_CP_3_Post.inp
! Postprocessor plot of acoustic pressure
! along the path between the nodes N_RES1, N_RES2 at the frequency FRES
! N_RES1, N_RES2, FRES - should be determined earlier
/POST1
/COLOR,CURVE,WHIT,1,6 ! graph color -- white (black after i nvertion)
/COLOR,GRID,WHIT, ! grid color -- white (black after invert ion)
/PLOPTS,TITLE,OFF ! no graph title
/PLOPT,FRAME,OFF ! no frame
/AXLAB,X,Y ! label for X-axis
/AXLAB,Y,Re PRES ! label for Y-axis
/XRANG /DSCALE,,OFF ! Remove displacement scaling (scale displacements by 0)

! Read results for real part at the frequency FRES
SET,NEAR,,,0,FRES

! Commands to determine a path with keypoints
PATH,YY,2,,120
PPATH,1,N_RES1
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(a)

(b)

Figure 3.20. Frequency characteristic ~uy: (a) Re~uy; (b) j~uy j

PPATH,2,N_RES2
! Determine the value of RePRES to plot the graph along the pat h
PDEF,RePRES,PRES

PLPATH,RePRES ! Plot the graph RePRES along the path

! Plot picture of pressure distribution (uncomment)
! ESEL,S,TYPE,,2,4
! PLNSOL,PRES
! Read results for imaginary part at the frequency FRES
! SET,NEAR,,,1,FRES
! PLNSOL,PRES

The resulting graph is shown in Fig.3.21. As expected, the pressure
rather rapidly decreases along the path.
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Figure 3.21. Acoustic pressure Re~p along Y-axis

Figure 3.22. Distribution of the real part of the pressure
at the frequencyf r = 126:5 Hz

Let us plot the distribution of real and imaginary parts of the pressure at
the resonance frequency. According to the last commands of the above �le,
using the commandESEL,S,TYPE,,2,4 we �rstly select only acoustic
elements (type 2{4) and then we executePLNSOL,PRES . As a result,
we obtain the distribution of the real part of the pressure atthe resonance
frequency, which is shown in Fig.3.22.

After executing the commandsSET,NEAR,,,1,FRES andPLNSOL,
PRES , we can obtain similar picture for the imaginary part of the pressure
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Figure 3.23. Deformed shape of the ring at the resonance frequency
f r = 126:5 Hz, (real part)

at the resonance frequency and ensure that the pressure values will be much
smaller.

At last, we plot the picture of the deformed shape at the resonance
frequency. To do this, �rstly it is necessary to select only solid elements
(of element type 1) ESEL,S,TYPE,,1 and set automatic displacement
scaling/DSCALE,,AUTO . Secondly, we need to read the results at this
frequency for the real part of the solutionSET,NEAR,,,0,FRES and
plot the picture of the deformed shape with an undeformed edge(Menu
path: Plot Results! Deformed Shape! Def+undef edg! OK or execute
the commandPLDISP,2 ). In order to achieve more similarities with the
�rst natural mode shape of the transmitter without 
uid that i s shown
in the top left quarter in Fig. 3.18, we can paint the elements according
to the numbers of their material properties without showing the material
numbers: PltCtrls ! Numbering ! Elem/Attrib numbering ! Material
numbers! [NUM] Numbering shown with! Colors only ! OK.

The result of these actions is shown in Fig.3.23. From this �gure it can
be seen that the deformed shape in general repeats the �rst natural mode
shape of the transmitter without 
uid, which is shown in Fig. 3.18 (the
natural mode shape is determined up to an arbitrary factor, therefore the
sign of its displacements is not important).

The numerical experiments with varying the mesh density parameter
SM show that f r = 127 Hz for SM = 0:5, f r = 126:5 Hz for SM = 1,
f r = 126 Hz for SM = 2. As it can be seen, with the decrease of the
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maximal size of �nite elements the frequency decreases. Thisfact also
follows from theoretical conclusions on the convergence character for the
natural frequencies. However, this change in the value of the�rst natural
frequency appears to be less than 1 %, which indicates a satisfactory choice
of the parameters of the �nite element mesh (even more coarsemesh is
acceptable).

If we vary the sizes of acoustic domain atSM = 1 by changing the
parameter KRA = Ra=R3 from 2 to 8, than we can note that the value
f r = 126:5 Hz will not change. Therefore, the selected sizes of acoustic
domain are also quite satisfactory and even smaller sizes are acceptable.
(However, here we do not analyze maximal values of the displacements and
acoustic pressure that are calculated with larger error).

Finally, instead of locating acoustic elementsFLUID129 at the far
boundary of the acoustic domainr = Ra we can set impedance boundary
conditions by changing several commands in the �le FEMod CP 3 ha.inp:
! Define infinite element FLUID129
CSYS,1
NSEL,S,LOC,X,RA ! Select nodes at the impedance boundary
TYPE,4 $ REAL,4 $ MAT,3
ESURF
ESEL,ALL
NSEL,ALL
CSYS,0

! Impedance boundary conditions
CSYS,1
NSEL,S,LOC,X,RA ! Select nodes at the impedance boundary

SF,ALL,IMPD,1 ! Set impedance boundary condition
NSEL,ALL
CSYS,0

The computations show that for the considered problem both variants
are acceptable for simulating a non-re
ecting acoustic boundary. However,
the �rst approach appears to be more accurate.

3.3.3 Individual assignments

Write a program code in ANSYS APDL to compute a problem of
interaction of a solid with an acoustic medium in a steady-state oscillation
mode in a 2D setting (axisymmetric or plane strain problem).

As the �rst step, solve the problem on natural oscillations ofa solid.
Find several �rst natural frequencies and estimate the possibility of their
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excitation by external in
uencesF = ~F exp[i2�f t ] or p� = ~p� exp[i2�f t ].
As a result, select a frequency interval in the vicinity of the�rst (among
the excited frequencies) resonance frequency.

Estimate the value of the radius for locating the acoustic �nite elements
FLUID129 or impedance acoustic boundaries and the �nite element sizes.

Obtain the amplitude-frequency characteristics of the displacements in
the characteristic point. For the resonance frequency get the deformed
shape of the solid, the pressure distribution in the acoustic medium and
the graph of the change of the acoustic pressure along the characteristic
path.

Perform the computations for various densities of the �niteelement
mesh and for several values of the acoustic medium radius. Find optimal
values.

Analyze the results and prepare a report. The report should contain
the name of the student, the full description of the problem and the results
obtained in ANSYS.

For simulation use the following values of the material constants for
isotropic media de�ned in SI system:
{ steel with the Young's modulusE = 2 � 1011 (N/m 2), the Poisson's ratio
� = 0:29 and the density� = 7860 (kg/m3);
{ copper with the Young's modulusE = 1:2 � 1011 (N/m 2), the Poisson's
ratio � = 0:33 and the density� = 8900 (kg/m3);
{ titanium with the Young's modulus E = 1:12�1011 (N/m 2), the Poisson's
ratio � = 0:32 and the density� = 4500 (kg/m3);
{ sea water with the speed of soundca = 1560 (m/s) and the density
� a = 1030 (kg/m3);
{ fresh water with the speed of soundca = 1500 (m/s) and the density
� a = 1000 (kg/m3);
{ air with the speed of soundca = 340 (m/s) and the density � a = 1:2
(kg/m 3).

The variants of individual tasks are presented in Table3.10. (When
possible, use the symmetry of the problem!)

The concentrated forces~F here have the dimension N/m, as in reality
for a plain strain state they are distributed along the line parallel to
the axis z, and for an axisymmetric problem they are distributed along
the circumference with the radiusRf equal to the coordinateX of the
point of the application of the force in meridional section. In ANSYS
for an axisymmetric problem the force value must be multiplied by
the circumference length 2�R f . Therefore, in the case of de�ning the
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concentrated force~F for an axisymmetric problem the value 2�R f
~F should

be used, and for a plane strain state use the value~F . (An exception for
an axisymmetric problem is the case of de�ning the force~F on the axis of
rotation, i. e. at Rf = 0. Here ~F has the dimension N, and precisely this
value of ~F is used.)

Everywhere in Table3.10
 a is an acoustic domain, �ar is the surface of
an acoustic domain with the boundary conditions of a rigid wall (1.204).

Table 3.10. Variants of individual tasks for the practical assignment No. 3
No. Scheme Input data
1 Axisymmetric problem.

The transmitter is made of titanium,
the external dome radius isR1 = 0:2 m,
its thickness ish = 0:01 m, a = 0:3 m.
Acoustic medium (sea water)
�lls the domain from the side of external
normal to the surface of the transmitter
of the radiusR1, ~p � = 50 N/m 2.

2 Axisymmetric problem.
The transmitter is made of steel,
the external dome radius isR1 = 0:2 m,
its thickness ish = 0:01 m, a = 0:3 m.
Acoustic medium (fresh water)
�lls the domain from the side of external
normal to the surface of the transmitter
of the radiusR1 � h, ~p � = 50 N/m 2.

3 Plane strain.
The transmitter is made of titanium,
its thickness ish = 0:02 m, a = 0:4 m,
b= c = 0:3 m.
Acoustic medium (air)
�lls the domain from the side of external
normal to the surface of the transmitter,
~F = 100 N/m.

4 Plane strain.
The transmitter is made of copper,
its thickness ish = 0:01 m, a = 0:2 m,
b= c = 0:15 m.
Acoustic medium (air)
�lls the domain from the side of external
normal to the upper surface
of the transmitter, ~F = 150 N/m.
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Table 3.10. Variants of individual tasks for the practical assignment No. 3 (continue)
5 Plane strain.

The cross section of the transmitter is
a two-layer hollow ellipse.
The boundary of the interaction of
the transmitter with an acoustic medium:
(x=a)2 + ( y=b)2 = 1,
wherea = 0:4 m, b= 0:2 m.
External layer 2 is steel,
its thickness ish2 = 0:02 m.
Internal layer 1 is copper,
its thickness ish1 = h2.
Acoustic medium (fresh water)
�lls the domain ( x=a)2 + ( y=b)2 � 1,
~F = 100 N/m.

6 Axisymmetric problem.
The cross section of the transmitter is
a two-layer hollow ellipse.
The boundary of the interaction of
the transmitter with an acoustic medium:
(x=a)2 + ( y=b)2 = 1,
wherea = 0:5 m, b= 0:25 ml
External layer 2 is titanium,
its thickness ish2 = 0:02 m.
Internal layer 1 is copper,
its thickness ish1 = h2.
Acoustic medium (sea water)
�lls the domain ( x=a)2 + ( y=b)2 � 1,
~F = 80 N/m.

7 Axisymmetric problem.
The cross-section of the transmitter is
a two-layer body.
External layer 2 is titanium,
its thickness ish2 = 0:02 m.
Internal layer 1 is copper,
its thickness ish1 = h2.
a = 0:3 m, b= 0:2 m, c = 0:5 m.
Acoustic medium (fresh water)
�lls the domain from the side of external
surface of the transmitter, ~p � = 75 N/m 2.
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Table 3.10. Variants of individual tasks for the practical assignment No. 3 (continue)
8 Axisymmetric problem.

The cross section of the transmitter is
a two-layer body.
External layer 2 is steel,
its thickness ish2 = 0:02 m.
Internal layer 1 is copper,
its thickness ish1 = h2.
a = 0:6 m, b= 0:5 m, c = 0:3 m.
Acoustic medium (sea water)
�lls the domain from the side of external
surface of the transmitter, ~p � = 50 N/m 2.

9 Axisymmetric problem.
The cross section of the transmitter is
a three-layer body.
Leg 1 is steel, the radius isr1 = 0:02 m,
b= 0:5 m.
The lower hat 2 is copper,
its thickness ish2 = 0:01 m, a = 0:4 m.
The upper hat 3 is titanium,
its thickness ish3 = h2,
Acoustic medium (fresh water)
�lls the domain from the side of external
surface of the transmitter, ~p � = 70 N/m 2.

10 Axisymmetric problem.
The cross section of the transmitter is
a two-layer body.
External layer 2 is titanium,
its thickness ish2 = 0:05 m.
Internal layer 1 is steel, its thickness is
h1 = 0:04 m, a = 0:3 m, b= 0:5 m.
Acoustic medium (sea water)
�lls the domain from the side of external
surface of the transmitter, ~p � = 120 N/m 2.

11 Plane strain.
The cross section of the transmitter is
a three-layer body.
Leg 1 is steel, its thickness ish1 = 0:04 m,
b= 0:2 m,
The lower hat 2 is copper,
its thickness ish2 = 0:02 m, a = 0:3 m.
The upper hat 3 is titanium,
its thickness ish3 = h1,
Acoustic medium (fresh water)
�lls the domain from the side of external
surface of the transmitter, ~F = 150 N/m.
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Table 3.10. Variants of individual tasks for the practical assignment No. 3 (continue)
12 Plane strain.

The transmitter is made of titanium,
a = 0:3 m, b= 0:1 m,
R1 = 0:5 m, R1 = 0:6 m.
Acoustic medium (air)
surrounds the surface of the transmitter,
~F = 100 N/m.

13 Axisymmetric problem.
The transmitter is made of steel,
a = 0:3 m, b= 0:05 m, c = 0:2 m,
d = 0:05 m, s = 0:35 m.
Acoustic medium (sea water)
surrounds the surface of the transmitter,
~p � = 100 N/m 2.

14 Axisymmetric problem.
The cross-section of the transmitter is
a two-layer body.
External layer 2 is titanium,
its thickness ish2 = 0:05 m.
Internal layer 1 is steel, its thickness is
h1 = 0:05 m, a = 0:5 m, � = 45� m.
Acoustic medium (fresh water)
�lls the domain from the side of external
surface of the transmitter, ~F = 100 N/m.

15 Plane strain.
The transmitter is made of steel,
its thickness ish = 0:02 m,
a = 0:4 m, b= 0:2 m, c = 0:5 m, d = 0:2 m.
Acoustic medium (fresh water)
�lls the domain from the side of external
surface of the transmitter, ~p � = 60 N/m 2.
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