Лабораторная работа №1 РАСТЯЖЕНИЕ УПРУГОЙ ПЛАСТИНЫ С КРУГОВЫМ ОТВЕРСТИЕМ

КЛЮЧЕВЫЕ СЛОВА

- 1. Линейная теория упругости
- 2. Статический анализ
- 3. Плоская задача (плоское напряженное состояние)
- 4. Концентрация напряжений

ОПИСАНИЕ ЗАДАЧИ

Тонкая прямоугольная пластина с размерами 2a; a=5 (см) по длине и 2b; b=2 (см) по ширине и толщиной 0.1 (см) имеет в центре отверстие радиуса R=0.25 (см) (Рис. 1). Пластина выполнена из упругого изотропного материала с модулем Юнга $E=2\cdot10^6$ (кГ/см²) и коэффициентом Пуассона v=0,3. Пластина растягивается распределенной нагрузкой интенсивности $p=10^3$ (кГ/см²), действующей на ее левую и правую грани. Требуется определить максимальные напряжения в пластине.

Рис. 1. Схема области

ВВОДНЫЕ ЗАМЕЧАНИЯ

Необходимо отметить, что пользователь должен контролировать согласованность системы единиц измерения для вводимых величин. Здесь выбрана система МКГСС, где для измерения длины выбран сантиметр, а для измерения массы – килограмм. Таким образом, давление, модуль Юнга и напряжение измеряются в кГ/см² (килограмм-сила на квадратный сантиметр), где 1 кГ/см² = 98066,5 Па.

Отверстие вносит возмущение в однородное напряженное состояние одноосно растягиваемой пластины. В зоне, вблизи отверстия, происходит повышение напряжений, называемое концентрацией напряжений. Аналогичная задача для бесконечной пластины, одноосно растягиваемой на бесконечности равномерными нагрузками, называется задачей Кирша и является фундаментальной задачей теории упругости о концентрации напряжений. В задаче Кирша максимальные напряжения, равные 3p, возникают в точке с координатами (0, R) (см. рис.1) и являются тангенциальными напряжениями.

Поскольку поля напряжений, деформаций и перемещений являются существенно неоднородными около отверстия, то для получения приемлемой точности конечно-элементных расчетов при построении конечно-элементных сеток следует задавать параметры, обеспечивающие сгущение разбиений вблизи отверстия.

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

При плоском напряженном состоянии перемещения пластины в области Ω , принадлежащей плоскости *xy*, можно характеризовать вектором перемещений $\underline{U} = \{U_x, U_y\} = \{U, V\}$, где U = U(x, y), V = V(x, y). Компоненты ε_{xx} , $\varepsilon_{xy} = \varepsilon_{yx}$, ε_{yy} тензора деформаций $\underline{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{pmatrix}$, выражаются через поле перемещений \underline{U} по формулам

$$S_{xx} = \varepsilon_{xx} = \frac{\partial U}{\partial x}; \qquad S_{yy} = \varepsilon_{yy} = \frac{\partial V}{\partial y}; \qquad (1)$$
$$S_{xy} = \varepsilon_{xy} = \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}/2$$

Определяющие соотношения, связывающие механические напряжения и деформации в упругой изотропной среде при плоском напряженном состоянии, имеют вид

$$T_{xx} = \sigma_{xx} = \lambda^* (S_{xx} + S_{yy}) + 2\mu S_{xx}$$

$$T_{yy} = \sigma_{yy} = \lambda^* (S_{xx} + S_{yy}) + 2\mu S_{yy}$$

$$T_{xy} = \sigma_{xy} = 2\mu S_{xy}$$
(2)

где

$$\lambda^* = \frac{2\lambda\mu}{\lambda + 2\mu} \tag{3}$$

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}, \qquad \mu = \frac{E}{2(1+\nu)}$$
(4)

 $\underline{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$ – тензор напряжений, σ_{xx} , $\sigma_{xy} = \sigma_{yx}$, σ_{yy} - компоненты тензора напряжений.

Коэффициенты λ и μ из (4) называются коэффициентами Ламе, коэффициент μ часто обозначается также через *G* и имеет смысл модуля сдвига. Модуль *E* из (4) называется модулем Юнга, а ν – коэффициентом Пуассона.

Уравнения равновесия упругой среды в плоской задаче имеют вид

$$\partial T_{xx} / \partial x + \partial T_{xy} / \partial y = 0 \tag{5}$$

$$\partial T_{yy} / \partial x + \partial T_{yy} / \partial y = 0 \tag{6}$$

Подстановка в (5), (6) определяющих соотношений (2) и формул (1) приводит к эллиптической системе дифференциальных уравнений в частных производных второго порядка относительно неизвестных функций перемещений U и V. К этой системе следует добавить граничные условия на границе $\Gamma = \partial \Omega$ области. Основными видами граничных условий в теории упругости являются следующие условия. Пусть граница Γ разбита на два подмножества: Γ_u и Γ_σ . На части границы Γ_u считаются известными компоненты вектора перемещений

$$U = U_*, \qquad V = V_*, \qquad \{x, y\} \in \Gamma_u \tag{7}$$

На участке Γ_{σ} задается вектор напряжений $\mathbf{p} = \{p_x, p_y\}$

$$T_{xx}n_x + T_{xy}n_y = p_x$$
 $T_{xy}n_x + T_{yy}n_y = p_y$, $\{x, y\} \in \Gamma_{\sigma}$ (8)
где $\mathbf{n} = \{n_x, n_y\}$ – вектор внешней единичной нормали к границе Γ .

Граничные условия (7) носят следующие наименования: граничные условия

в перемещениях, граничные условия 1-ого рода, условия типа Дирихле, главные граничные условия. Обычно в (7) $U_* = 0$, $V_* = 0$, что соответствует жесткому закреплению участка границы Γ_{μ} .

Аналогично, граничные условия (8) имеют следующие наименования: граничные условия в напряжениях, граничные условия 2-ого рода, условия типа Неймана, естественные граничные условия. При однородных граничных условиях (8), когда $p_x = 0$, $p_y = 0$, участок Γ_{σ} границы называется участком, свободным от напряжений. Вектор напряжений $\mathbf{p} = \{p_x, p_y\}$, как векторная функция от x, y, может включать сосредоточенные векторы $\mathbf{F} = \{F_x, F_y\}$, которые имеют смысл сосредоточенных сил.

РЕШЕНИЕ ЗАДАЧИ С ИСПОЛЬЗОВАНИЕМ FlexPDE

Входной файл для программы FlexPDE - St2LS_1.pde.

РЕШЕНИЕ ЗАДАЧИ С ИСПОЛЬЗОВАНИЕМ ANSYS

Для решения задачи о растяжении пластины необходимо использовать элементы для структурного анализа (Structural analysis). Такие элементы будут иметь степени свободы (Degrees of Freedom) UX, UY, UZ – перемещения в каждом узле. Конечные элементы для трехмерного моделирования называются Solid (твердотельные). Поскольку упругая пластинка является тонкой, и все воздействия производятся по ее тонким торцевым граням, то можно рассматривать задачу о растяжении пластинки в условиях плоского напряженного состояния, то есть свести задачу к двумерной (см. рис. 2). Для двумерного моделирования тонкой пластины можно рассматривать плоские (Plane) либо оболочечные (Shell) конечные элементы для структурного анализа.

Двумерные элементы могут иметь вид треугольника или четырехугольника. Трехмерные элементы могут иметь такие формы как тетраэдр, призма, гексаэдр. На рис. 3 показаны линейные элементы (без промежуточных узлов) и квадратичные элементы (с промежуточными узлами).

8 noded brick

Рис. 3. Виды линейных и квадратичных двумерных и трехмерных конечных элементов

20 noded brick

В таблице ниже приведены основные элементы для линейного структурного анализа.

Таблица 1. Некоторы	е элементы для структу	рного анализа (степени	свободы – перемещения)

Типы элементов	Название элемента	Вид, количество узлов, степень	Степени свободы,
		аппроксимации	поведение
Двумерные плоские	PLANE42	3	UX, UY
конечные элементы	2-D Structural Solid	Y (or axial) X (or radial) K K, L System (shown for KEYOPT(1) = 1) (Triangular Option - not recommended)	 KEYOPT(3) Element behavior: 0 - Plane stress 1 - Axisymmetric 2 - Plane strain
			3 - Plane stress with
		4 узла	thickness input
		линейный	

	I contraction of the second seco		I
	PLANE82 2-D 8-Node Structural Solid	v (or axial) x (or radial) 8 узлов квадратичный	UX, UY KEYOPT(3) Element behavior: 0 - Plane stress 1 - Axisymmetric 2 - Plane strain 3 - Plane stress with thickness input
Оболочечные конечные элементы	SHELL63 Elastic Shell	х х х х х х х х х х х х х х	UX, UY, UZ, ROTX, ROTY, ROTZ KEYOPT(1) Element stiffness: 0 Bending and membrane stiffness 1 Membrane stiffness only 2 Bending stiffness only
	SHELL93 8-Node Structural Shell	х х х х х х х х х х х х х х	ROTX, ROTY, ROTY, ROTZ
Трехмерные конечные элементы	SOLID45 3-D Structural Solid	Element coordinate system (shown for KEYOPT(4) = 1)	UX, UY, UZ
	SOLID95 3-D 20-Node Structural Solid	имо.р. U.V.W.X	UX, UY, UZ

SOLID923-D10-NodeTetrahedralStructuralSolid		UX, UY, UZ
	10 узлов, квадратичный	

Решение задачи в плоской постановке с использованием элемента PLANE и результаты расчетов

Пример решения задачи с использованием программы ANSYS содержится в файлах St2LS_1(GUI ANSYS 2020 R1).pdf и St2LS_1.inp. В файле St2LS_1(GUI ANSYS 2020 R1).pdf описана работа в интерактивном режиме.

В файле St2LS_1.inp содержатся команды. После выполнения этого файла в ANSYS (File \rightarrow Read Input from...) требуется провести постпроцессорную обработку полученных результатов.

Пример решения задачи, близкой к описанной выше, содержится также в файле Vm142.dat из набора фирменных примеров, предоставляемых ANSYS.

Построение твердотельной и конечно-элементной модели

Заметим, что геометрия пластины и граничные условия обладают свойствами симметрии относительно центральных осей пластинки х и у (см. Puc.1), поэтому можно решать задачу для четверти области с заданием условий симметрии на соответствующих гранях.

Следующий фрагмент файла St2LS_ plane.inp демонстрирует технику решения задачи о растяжении упругой пластинки в условиях плоского напряженного состояния в APDL ANSYS. Здесь можно использовать линейных 4-узловой элемент PLANE182 или квадратичный 8-узловой четырехугольный элемент PLANE183 (с промежуточными узлами).

Сначала строится твердотельная модель пластины – плоская область. Затем команда **AMESH** строит конечно-элементное разбиение полученной области.

```
/ТІТLE, Plane Stress tension of an elastic plate with a hole
/PREP7
! В силу симметрии задачи рассматривается четверть пластинки
A=5 ! Длина четверти пластинки
B=2 ! Ширины четверти пластинки
R=0.25 ! Радиус отверстия
H=0.1 ! Толщина пластинки
P=1e3 ! Величина растягивающей нагрузки (кГ/см^2)
MP,EX,1,2e6 ! Модуль Юга EX=2*10+6 (кГ/см^2)
MP,NUXY,1,0.3 ! Коэфициент Пуассона NUXY=0.3
```

. ET,1,PLANE183 ! Восьмиузловой плоский КЭ PLANE183 для структурного анализа (четырехугольник с промежуточными узлами) !Степени свободы: UX, UY, по умолчанию – плоское напряж. состояние)

K,1,0,0	!	Определение	граничных	точек	четверти	пластинки
K,2,A,0						
К,З,А,В						
К,4,0,В						
A,1,2,3,4	!	Определение	площади 1	по то	чкам	
APLOT,1	!	Показ площал	ци 1			

PCIRC, R ! Определение круга радиуса R с центром в центре рабочей плоскости

```
ASBA,1,2 ! Вычитание из площади 1 площади 2 (круга)
APLOT,ALL ! Показ четверти пластины с отверстием
```

```
! Задание параметров для построения сетки конечных элементов

KESIZE, ALL, B/4

KESIZE, 5, R/5

KESIZE, 6, R/5

AMESH, ALL ! Построение сетки КЭ для площади 3

FINISH
```

На рис. 4 показаны построенная область A3 с нанесенными номерами областей и опорных точек. (Пункты меню Plot->Areas, для нумерации областей и точек PlotCtrls->Numbering->отметить Area numbers, Keypoint numbers).

На рис. 5 показаны линии, составляющие построенную область. Изображены номера линий и опорных точек. (Пункты меню Plot->Lines, для нумерации областей и точек PlotCtrls->Numbering->отметить Line numbers, Keypoint numbers).

На рис. 6 показаны полученные в результате конечно-элементного разбиения элементы и узлы. (Пункты меню Plot->Elements, Plot->Nodes).

AREAS	ANSYS 2020 R1
AREA NUM	Build 20.1

Рис. 4. Область с номерами опорных точек

LINES LINE NUM

Рис. 6. Элементы PLANE183 и их узлы

Задание граничных условий для плоской задачи

По условию задачи пластина растягивается распределенной нагрузкой интенсивности $p=1\cdot10^3$ (кГ/см²), действующей на ее левую и правую грани, а остальные грани считаются свободными от напряжений. Поскольку моделируется правая верхняя четверть пластины, то требуется поставить условия симметрии на

линиях разреза и условие растягивающей распределенной нагрузки на правой грани. На оставшихся частях границы ничего задавать не нужно, т.к. это границы, свободные от механических напряжений. Это условие в Ansys действует по умолчанию.

Заметим, что граничные условия можно задать либо на сущности конечноэлементной модели (узлы и элементы), либо на сущности твердотельной модели (линии, области). Следует иметь в виду, что все «твердотельные» граничные условия будут преобразованы в «конечно-элементные» граничные условия на этапе решения задачи. При этом «твердотельные» граничные условия на заданной линии имеют приоритет над «конечно-элементными» граничными условиями на узлах той же линии.

Приведем фрагмент кода из файла St2LS_1.inp. Здесь растягивающая поверхностная нагрузка задается на узлы (сущности кэ-модели), а условие симметрии – на линии (сущности твердотельной модели). Закомментированные команды позволяют задать те же условия симметрии на узлы.

В примере правая грань лежит на прямой х=а, поэтому растягивающая поверхностная нагрузка задается на узлах с координатой х=а (PRES = -P, сжимающая будет с плюсом: PRES = P). В примере (см. рис. 1) условия симметрии нужно задать на левой границе (лежит на прямой х=0, ось OY - вертикальная) и нижней границе (лежит на прямой у=0, ось OX - горизонатальная). Условие симметрии на вертикальной оси OY (x=0) означает запрет перемещений по горизонтали, т.е. UX=0. Условие симметрии на горизонтальной оси OX (y=0) означает запрет перемещений по вертикали, т.е. UY=0.

```
/SOLU
ANTYPE, STAT
                     ! Решение статической задачи.
NSEL, S, LOC, X, A ! Выбор всех узлов с координатой X=A
SF, ALL, PRES, - P ! Для всех выбранных узлов растягивающая поверхностная
нагрузка PRES = -P
NSEL,ALL! Вернуться к выбору всех узлов моделиDL,9,,SYMM! Условие симметрии на линии 9 (линии с Y=0)DL,10,,SYMM! Условие симметрии на линии 10 (линии с X=0)
! Для плоского КЭ со степенями свободы UX, UY условия симметрии на линиях 9
и 10 здесь
! эквиваленты следующим командам
! УСЛОВИЯ СИММЕТРИИ НА ЛИНИЯХ 1/4 ПЛАСТИНЫ
!NSEL, S, LOC, X, 0
!D,ALL,UX,0
!NSEL, S, LOC, Y, 0
!D,ALL,UY,0
!NSEL,ALL
SOLVE
                ! Решить систему МКЭ
FINISH
```

Команды D и DL задают ограничения на степени свободы: команда D – на узлах, команда DL – на линиях. Команды SF и SFL задают поверхностную нагрузку: команда SF – на узлах, команда SFL – на линиях.

Заметим, что узлы можно выбирать как по координатам, так и по линиям, на которых они находятся. Например, в модельной задаче правая грань – это линия L2 (см. рис. 3). Тогда поверхностную нагрузку можно задать следующим образом:

LSEL,S,LINE,,2 ! Выбор линии 2 NSSL,S,1 ! Выбор узлов, лежащих на выбранной линии ! 2й аргумент команды NSSL - ключ выбора узлов на линии (здесь 1 - выбор внутренних и внешних узлов (концов линии); 0 - выбор только внутренних узлов) SF,ALL,PRES,-P ! Для всех выбранных узлов поверхностная нагрузка PRES = -P

Получающаяся конечно-элементная модель вместе с принятыми граничными условиями показана на рис. 7. (Пункты меню Plot->Elements, для отображения граничных условий PltCtrls->Symbols->отметить All applied BC, выбрать изображение условий распределенной нагрузки: Surface Load Symbols->Pressures)

Рис. 7. Конечно-элементная сетка с граничными условиями

Анализ результатов расчетов для плоской задачи

Выведем деформированную форму пластины (рис. 8): пункты меню General Postproc \rightarrow Plot Results \rightarrow Deformed shape \rightarrow Def + undef edge (деформированная сетка в сравнении с недеформированным краем).

Рис. 8. Деформированная форма пластины (деформированная сетка в сравнении с недеформированным краем)

В качестве результатов расчетов можно привести картины распределения осевых перемещений U_x (рис. 9), осевых напряжений T_{yy} (рис. 10) и окружных (тангенциальных) напряжений $T_{\theta\theta}$ (рис. 11).

Пункты меню для изображения картины распределения перемещений U_x : General Postproc \rightarrow Plot Results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow DOF Solution \rightarrow X-Component of displacement.

Пункты меню для изображения картины распределения напряжений T_{yy} : General Postproc \rightarrow Plot Results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow Stress \rightarrow Y-Component of stress.

Важное замечание: в современных версиях ANSYS вывод результатов для производных решения, таких как напряжения и деформации, может быть не доступен сразу в меню Plot Results. В этом случае следует в интерактивном режиме сначала открыть (выполнить вход в) Results Viewer либо считать результаты последнего сета General Postproc \rightarrow Read Results \rightarrow Last Set, а в командном файле для доступа к этим результатам выполнить команду считывания результатов последнего сета: SET, LAST

Пункты меню для изображения картины распределения тангенциальных напряжений $T_{\theta\theta}$ (координата *y* соответствует координате θ в глобальной цилиндрической системе координат): General Postproc \rightarrow Options for Outp \rightarrow Results coordinate system \rightarrow Global Cylindrical; Plot Results \rightarrow Contour Plot \rightarrow Nodal Solu \rightarrow Stess \rightarrow Y-Component of stress.

Рис. 10. Распределение осевых напряжений *Т*_{уу}

Рис. 11. Распределение тангенциальных напряжений *Т*_{*θθ*}

Как видно из рис. 10 и 11, отверстие является концентратором напряжений.

Для сравнения численного решения с аналитическим построим график тангенциальных напряжений вдоль пути (рис. 12), проходящего через точку максимума, а именно вдоль оси ординат от точки с координатами (0,R) до точки с координатами (0,b).

Для построения графика вдоль пути в интерактивном режиме нужно:

1) Задать точки, определяющие путь: вывести конечно-элементную сетку или узлы (в верхнем меню Plot \rightarrow Elements или Plot \rightarrow Nodes), затем в Main Menu выбрать General Postproc \rightarrow Path Operations \rightarrow Define Path \rightarrow By Nodes и мышкой указать узлы в точках с координатами (0,R) и (0,b). В открывшемся окне ввести имя пути, например mypath:

By Nodes	\times
[PATH] Define Path specifications	
Name Define Path Name :	mypath
nSets Number of data sets	30
nDiv Number of divisions	20
OK	Help

Переменная по оси абсцисс на графике будет расстоянием вдоль пути (Distance).

2) Определить, какую переменную выводить по оси ординат: General Postproc \rightarrow Path Operations \rightarrow Map onto Path и в открывшемся окне задать имя переменной и выбрать саму переменную. Для тангенциальных

напряжений $T_{\theta\theta}$ зададим имя переменной T_THETA и выберем Stress, Y-direction SY.

Map Result Items onto Path			
[PDEF] Map Result Items onto Path			
Lab User label for item	T_THETA		
Item,Comp Item to be mapped	DOF solution X-direction SX Strain-total Y-direction SY Energy XY-shear SXY Strain-telastic YZ-shear SYZ Strain-plastic Y-direction SY		
[AVPRIN] Eff NU for EQV strain			
Average results across element	✓ Yes		
[/PBC] Show boundary condition symbol			
Show path on display	□ No		
OK	Cancel Help		

3) Нарисовать график: General Postproc \rightarrow Path Operations \rightarrow Plot Path Item \rightarrow On Graph и в открывшемся окне указать введенную ранее переменную:

Рис. 12. График тангенциальных напряжений вдоль пути

Максимум напряжений получается в точке с координатами (0,R) $\sigma_{\theta\theta} = 3032$ (кГ/см²). Таким образом, поскольку растягивающая нагрузка была равна $p=1\cdot10^3$ (кГ/см²), то напряжения в окрестности концентратора возрастают приблизительно в 3 раза.

Рис. 8-11 можно также вывести с помощью следующих команд постпроцессора:

```
/POST1
     /PLOPTS,LOGO,OFF ! Логотип ANSYS не показывать в графическом виде
     /PLOPTS, FRAME, OFF ! Не показывать рамку
     /PLOPTS, DATE, OFF ! Не показывать дату
     SET, last ! Считывание результатов
     PLDISP, 2 ! Деформированная сетка с недеформированным краем
     ! Задержка для просмотра картинки
     *ASK, TMP, ANY NUMBER OR PRESS "ENTER"
     PLNSOL, U, X ! Вывод перемещений по оси X
     *GET,UXMAX,PLNSOL,0,MAX ! UXMAX - максимальные перемещения по оси Х
     ! Задержка для просмотра картинки
     *ASK, TMP, ANY NUMBER OR PRESS "ENTER"
     PLNSOL, S, Y ! Вывод осевых напряжений (в декартовой системе координат)
     ! Задержка для просмотра картинки
     *ASK, TMP, ANY NUMBER OR PRESS "ENTER"
     RSYS,1
             !
                  Переход в цилиндрическую
                                                   систему
                                                             координат
                                                                         для
представления результатов
```

```
PLNSOL, S, Y ! Вывод тангенциальных напряжений (в цилиндрической системе координат)
```

Рис. 12 дают команды постпроцессора:

RSYS,0 ! Возврат в декартовую систему координат для представления результатов

Имеет смысл обратить внимание на следующие команды: команду задержки *ASK, которая позволяет посмотреть одну из картинок перед выводом следующей; команду *GET, которая здесь помещает в параметр UXMAX значение максимального перемещения по оси X; команду RSYS,1, которая дает возможность выводить результаты в цилиндрической системе координат, и, таким образом, получать значения $\sigma_{\theta\theta}$; и команды **РАТН, РРАТН, РДЕF, PLPATH**. Последние команды позволяют получить <u>график поведения какой-либо величины</u> вдоль определенного геометрического пути.