
Chapter 6

FINITE ELEMENT EQUATIONS

Finite element equations capture the characteristics of the field equations.
Their derivation is based on either the governing differential equation or the
global energy balance of the physical problem. The approach involving the
governing differential equation is referred to as the method of weighted
residuals or Galerkin's method. The approach utilizing the global energy
balance is referred to as the variational method or Rayleigh-Ritz method.

6.1 Method of Weighted Residuals

The method of weighted residuals involves the approximation of the func ­
tional behavior of the dependent variable in the governing differential equa­
tion (Finlayson 1972). When substituted into the governing differential
equation, the approximate form of the dependent variable leads to an error
called the "residual." This residual error is required to vanish in a weighted
average sense over the domain. If the weighting functions are chosen to be
the same as the element shape (interpolation) functions used in the element
approximation functions, the method of weighted residuals is referred to as
Galerkin's method.

The governing differential equation for the physical problem in domain D
described in Fig. 6.1 can be expressed in the form

L(¢)- f =0 (6.1)

where ¢ is a dependent variable and f is a known forcing function. The
ordinary or partial differential operator, L whose order is specified by p ,
can be linear or nonlinear. The boundary conditions are given by

(6.2)

and

Ej (¢ ) =hj on C2 (6.3)

in which Bj and Ej are operators, with j =1,2,3, . .. , p . The known func­
tions g j and hj prescribe the boundary conditions on the dependent vari-



188 FEM WITH ANSrS®

¢>(x,y)

C
"

natural
boundary
conditions

x

n

~---""';"----"""'--~-----+y

finite element mesh
of the domain

Fig. 6.1 Variation of the dependent (field) variable over a two­
dimensional domain under specified boundary conditions.

able and its derivatives, respectively. The conditions on the dependent vari­
able over C\ are referred to as essential or forced boundary conditions, and
the ones involving the derivatives of the dependent variable over C2 are
referred to as natural boundary conditions.

The method of weighted residuals requires that

f[L(¢)-f]WkdD=O, with k=1,2,3, ... .n (6.4)
D

where Wk are the weighting functions approximating the dependent variable
as

n

¢:::::¢= IakWk
k=\

(6.5)

while satisfying the essential boundary conditions on C\ . The unknown
coefficients, ak , are determined by solving for the resulting system of
algebraic equations.

Since the governing differential equation is valid for the entire domain, D,
partitioning the domain into subdomains or elements, d e), and applying
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Galerkin's method with weighting functions Wk =N~e) over the element
domain results in

(6.6)

in which E is the number of elements and the superscript "e" denotes a
specific element whose domain is D(e). The approximation to the dependent
variable within the element can be expressed as

or

where

n
¢(e) =LN;(e)¢?)

;=1

¢(e) =N(e)T<p(e)

(6.7)

(6.8)

and

(6.9)

(6.10)

with n representing the number of nodes associated with element e. The
nodal unknowns and shape functions are denoted by ¢;(e) and N;(e), with
i =1,2,...n , respectively. The shape functions need not satisfy the boundary
conditions; however, they satisfy the inter-element continuity conditions
necessary for assembly of the element equations. The essential boundary
conditions are imposed after assembling the global matrix. The natural
boundary conditions are not imposed directly. However, their influence
emerges in the derivation of the element equations.

The required order of the element continuity is equal to one less than the
highest derivative of the dependent variable appearing in the integrand. This
requirement is relaxed by applying integration by parts in the minimization
procedure of the residual error in Galerkin's method.

6.1.1 Example: One-dimensional Differential Equation with
Line Elements

The application of Galerkin's method is introduced by considering the ordi­
nary differential equation given by
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d
2
¢(x ) +¢(x) - !(x) =0

dx2
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(6.11)

in domain D defined by 0:::; x:::; 1. The known forcing function is given by

!(x) =-x (6.12)

The boundary conditions, identified as the essential type, are ¢(O) =0 and
¢(l) =O. As shown in Fig. 6.2, the domain can be discretized with E linear
line elements, each having two nodes (n =2). There are a total of N nodes,
and global coordinates of each node in domain D are specified by xi' with
i =1,2,... ,N. Nodal values of the dependent variable associated with
element e are specified at its first and second nodes by f/1(e) and ¢ie

) ,

respectively.

The linear approximation function for the dependent variable in element e
can be expressed in the form

or

¢ (e) =N(e)T<p(e)

where

in which the shape functions are given by

(e) (e)
N (e) _ x2 - X (e) _ X - XI

I - x(e) _ x(e) and N 2 - (e) (e)
2 I x2 -XI

¢\e) ¢~e)

o 0
x(e) (e)

1 X2

CD @ 0 ®
0-----0----0- - - - - - ---0----0- ....-0----0

(6.13)

(6.14)

(6.15)

(6.16)

x = 0 X
I 2

~X

X
3

X
/1/- 1

X
11/

X x = l
/I - I /I

Fig. 6.2 Domain of the one-dimensional differential equation,
discretized into E elements.
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They are the same as the length coordinates given by Eq. (3.9). Applying
Galerkin 's method by Eq. (6.6) leads to

x (e )
2

f JN(e) (d2¢(e~ (x) +¢ (e)(x) - f (x )J dx =0
e= 1 dx

X (e )
I

Integrating the first term in the integral by parts results in

(6.17)

(6.18)

Substituting for the element approximation function ( ¢(e) =N(e)T<p(e) )
yields

where

and

E E
Ik(e)<p(e) =Ir(e)

e=1 e=l

xie) [ -(e) ]xie
)

r (e) = f N(e)f( x)dx _ N(e) d¢ (x)

X(~ dx ;~
I I

(6.19)

(6.20)

(6.21)

After substituting for the shape functions and their derivatives, as well as the
forcing function, the expressions for the element characteristic matrix , k (e) ,

and the right-hand-side vector, r (e) , become
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xi' )

1 f[1 -1
1]dx

(
x(e) _ x(e»)2 -1

2 1 i t )
I

(6.22)

(6.23)

Evaluation of these integrals leads to the final form of the element
characteristic matrix , keel , and the right-hand-side vector, r (e)

(6.24)

and

or

djJ(e) ( (e»)

{

(e) (e) } --- X

r (e) =-..!-(xie) _ x~e» ) 2x1 + x2 _ dx 1 (6.26)
6 xCe) + 2x(e) d ;h(e) ( )

1 2 _'f'_ x(e)dx 2

The local and global nodes for the domain discretized with three elements,
E = 3 , and four nodes , N = 4 , are numbered as shown in Table 6.1.
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Table 6.1 Element connectivity and nodal coordinates.

Element

Number Node 1 Node 2 x(e) x (e)
1 2

(e)

1 1 2 0 1/3
2 2 3 1/3 2/3
3 3 4 2/3 1

193

With the appropriate value of the nodal coordinates from Eq. (6.24) and
(6.26), the element characteristic matrices and vectors are calculated as

ill ~

k(\) =...!-[ 52 -55] ill
18 -55 52 ~

~ []

k(2) =_1[ 52 -55] ~
18 -55 52 []

[] @]

k(3) =_1[ 52 -55] []
18 -55 52 @]

d¢(I) (0) ill
f(l) =_1f}+ dx

54 2 d¢(\) (Ij3)
~dxIdi/

2
)(!/3) ~

f(2) =_1 4 + dx
54{5} d¢(2) (2/3) []

dx

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)
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C(3) =_1{7} +
54 8

d¢j(3)(2/3) m
dx

d¢j(3) (1) @]
dx
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(6.32)

As reflected by the element connectivity in Table 6.1, the boxed numbers
indicate the rows and columns of the global matrix, K, and global right­
hand-side vector, F, to which the individual coefficients are added. The
global coefficient matrix, K, and the global right-hand-side vector, F , are
obtained from the "expanded" element coefficient matrices, k(e) , and the
element right-hand-side vectors, c(e) , by summation in the form

E E
K =Ik(e) and F =IC(e)

e=l e=l

(6.33)

The "expanded" element matrices are the same size as the global matrix but
have rows and columns of zeros corresponding to the nodes not associated
with element (e). Specifically, the expanded form of the element stiffness
and load vector becomes

ill ~ m@]
52 -55 0 0 ill

k(l) =2- -55 52 0 0 ~ (6.34)

18 0 0 0 0 m
0 0 0 0 @]

d¢j(l)(0)

illI dx

C(l) = _1 2 d¢j(l)(1/3)
+ ~

(6.35)
54 0 dx

0 0 m
0 @]
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(6.37)

(6.36)

rn @]
o 0 m

-55 0 ill
52 0 rn
o 0 @]

m
ill

o
d¢P) (1/3)

dx

d¢P) (2/3) rn
dx
o @]

o
52

-55

o

o
k(2) = _1 0

18 0

o

o
f(2) =_1 4 +

54 5

o

m ill rn @]

[0 0 o 0r(3) _ 1 0 0 o 0 III (6.38)
k --

52 -55 rn18 0 0

o 0 -55 52 @]

0 m
0 0 ill

f(3) =_1 0 d¢(3) (2/3) rn+ (6.39)
54 7 dx

8 d¢(3) (1)
@]

dx

In accordance with Eq. (6.33) and (6.19), the assembly of the element char­
acteristic matrices and vectors results in the global equilibrium equations
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52 -55 0 0 rA = ¢I(I )

1 -55 52+52 -55 0 ¢ - ¢ (I ) - rA(2 ) 1 2+42 - 2 -
- =-
18 0 - 55 52+52 - 55 ¢ _ ¢(2) _ ¢ (3) 54 5+7

3 - 2 - I

0 0 -55 52 ¢ _ ¢(3) 8
4 - 2

d¢(1) (0)

dx (6.40)

+

or

d¢(l)(0)

52 -55 0 0 rA 1 dx

1 -55 104 - 55 0 rh 1 6 0
- - + (6.41)
18 0 -55 104 - 55 ¢J 54 12 0

0 0 -55 52 ¢4 8 d¢(3) (1)

dx

or

K<I>=F (6.42)

After imposing the essential boundary conditions, ¢I = 0 and ¢4 = 0, the
global system of equations is reduced by deleting the row and column
corresponding to ¢I and ¢4, leading to

Its solution yields

1 [104 -55]{¢2} 1 {6}
18 - 55 104 ¢3 =54 12

{
¢2} = {0.05493}
¢3 0.06751

(6.43)

(6.44)
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The exact solution to the differential equation given by

¢(x) =sin(x) - x
sin(l)

provides

{¢2}={0.0555}
¢J 0.0682
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(6.45)

(6.46)

(6.47)

The exact and FEM calculations of ¢ along the x -axis are shown in Fig.
6.3.

6.1.2 Example: Two-dimensional Differential Equation with Linear
Triangular Elements

6.1.2.1 Galerkin's Method

The application of Galerkin's method in solving two-dimensional problems
with linear triangular elements is demonstrated by considering the partial
differential equation given by

a
2¢(x,y) + a

2¢(x,y)
+A=O

ax2 al

in domain D, defined by the intersection of y =0, y =2 - J3x , and y =J3x

(as shown in Fig. 6.4), where A =1.

The boundary conditions are specified as

-ny a¢(Xa;=O) =[¢(x,y=O)-(B=I)] for 05:x5:2/J3 (6.48)

¢(x, y =J3x) =° for 05: x 5: 11J3 (6.49)

¢(x, y =2 - J3x) =° for 11 J3 5: x 5:21J3 (6.50)

When independent of time, these equations provide the temperature field,
¢(x, y), due to heat conduction in a domain having a heat generation of A
with one of its boundaries subjected to a convective heat transfer. The
thermal conductivity and the film (surface) heat transfer coefficient are
equal to unity, and the temperature of the surrounding medium is B.
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Fig. 6.4 The equilateral triangular domain .

The triangular domain can be discretized into four linear triangular ele­
ments, each having three nodes identified as 1, 2, and 3 (local node
numbering), as illustrated in Fig. 6.5.

As shown in Fig. 6.6, the global coordinates of each node in domain Dare
specified by (Xj, Yj ), with i =1, 2, 3, 4, and 5. These coordinates are
presented in Table 6.2.
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Fig. 6.5 Local node numbering for the linear triangular element.

-n.(a¢/ay)=¢-I

Fig. 6.6 Finite element discretization of the domain.

Table 6.2 Nodal coordinates.

Global Node Nodal Nodal
Number Coordinates Unknowns

1 (0,0) (A
2 (2/)3,0) (A
3 (1/)3,1) (A
4 (1/)3,1/3) ¢J4
5 (1/ )3,0) ¢J5
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The nodal values of the dependent variable associated with the global
coordinates are denoted by ¢i (i =1, 2, 3,4, and 5). As shown in Fig. 6.5,
the nodal values of the dependent variable associated with element e are
specified at its first, second, and third nodes by ¢\(e) , ¢ie) , and ~e),

respectively.

The linear element approximation function for the dependent field variable
in a triangular element "e" is written as

or

);(e) _ N(e)A,(e) +N(e)A,(e) +N(e) A,(e)
'fJ -\'fJ\ 2'fJ2 3'fJ3

¢(e) =N(e)T<p(e)

(6.51)

(6.52)

As derived in Chap. 3, the element shape functions in Eq. (3.17) are taken as

(6.53)

where XIIlII = xlIl - XII' YIIlII = YIIl - YII , and /), (e) is the area of the element
computed by

1 1 1

2/), (e) = Xl X2 X3

Y\ Yz Y3

Applying Eq. (6.6), Galerkin's method, leads to

(6.54)

(6.55)

Since the element approximation function is CO continuous, the second­
order derivatives in the integrand must be reduced by one so that the inter­
element continuity is achieved during the assembly of the global matrix.
This reduction is achieved by observing that

( 2); (e) a ( a);(e) J aN(e) a);(e)
N(e)_'fJ_(x,y)=_ N(e)_'fJ_(x,y) 'fJ_(x,y)

ax2 ax ax ax ax
(6.56)
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and

a2);(e) a ( a);(e) ) aN(e) a);(e)
N(e)_'f/_(x,y)=_ N(e)_'f/_(x,y) 'f/_(x,y)

ai ay ay ay ay
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(6.57)

Elf [( -(e)J ( -(e) J]I ~ N(e)~ +~ N(e)~ dxdy
e=1 ax ax ay ay

D (e )

Their substitution into the integrand in Eq. (6.55) and rearrangement of the
terms result in

(6.58)

J[aN( e) ajJ(e) aN( e) ajJ(e) (e)] )
+ ----------+N A dxdy =0

ax ax ay ay
D( e)

Applying the divergence theorem to the first integral renders the domain
integral to the boundary integral, and it yields

(6.59)

J[aN(e) ajJ(e) aN(e) ajJ(e) (e)] }
+ ----------+N A dxdy =0

ax ax ay ay
D (e)

where n~e) and n~e) are, respectively, the x - and y -components of the
outward normal vector along the closed boundary defining the area of the
element, de).

Substituting for the element approximation function yields
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+ f N (e) AdxdY} =0
d e)

This equation can be recast in matrix form as

E
I(-k (e)cp(e) +f(e) +Q(e»)=O

e=l

where

f (e) = f N (e)Adxdy

d e)

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

in which k(e) is the element characteristic matrix, f (e ) is the element right­
hand-side vector, and Q (e) is often referred to as the inter-element vector
that includes the derivative terms along the boundary of the element. The
boundary integral around each element is evaluated in a counterclockwise
direction, i.e., this boundary integral is the sum of three integrals taken
along each side of the element.

Depending on whether the element has an exterior boundary or not, the
inter-element vector is divided into two parts

(6.65)
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in which Q~e ) represents the contribution of the derivative terms specified
along the external boundary of the element c ;e), and Q~e ) represents the
contribution from the internal boundaries of the element shared with other
adjacent elements. Because each of the boundary integrals is evaluated in a
counterclockwise direction, the contributions coming from the vector Q~e )

vanish when the global system of equations are assembled, thus no further
discussion is necessary. However, in the case of specified derivative
boundary conditions, the contribution coming from Q~e) must be included.

In view of the boundary conditions given by Eq. (6.48) and the
discretization of the domain, the 1-5 side of element 1 and the 5-2 side of
element 2 are subjected to derivative boundary conditions.

With n(l) = n(2) = 0 and n(l) = n(2) = -1 the contribution of the derivativex x y y ,

boundary conditions appearing in Eq. (6.64) leads to the inter-element
vectors as

Q~l)= ~N(l)[B-¢c]ds and Q~2)= ~N(2)[B-¢c]ds

ci~1 c~:~

(6.66)

where ¢c is the unknown value of the field variable on the external
boundary of the element C, ' along which the derivative boundary condition
is specified.

Approximating the unknown field variable , ¢c , by ¢ (e) = N (e)T <p(e) in these
equations leads to

(6.67a)

and

(6.67b)

which can be rewritten as

Q~1) = t N(l) Bds

c (l)
1-5

and
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or

where

and

g(l) = ~ N(I) Bds and g(2) = ~ N(2) Bds

cl~~ c~:~

(6.69a)

(6.69b)

(6.70)

(6.71)

With this representation of the inter-element vecto r, the element equilibrium
equations given by Eq. (6.61) can be rewritten in their final form as

(k (I) +h(I ) ) <p (I ) =C (l ) +g(l)

(k (2) +h(2) )<p(2) =c(2) + g (2 )

k (3)<p(3) =C(3)

k (4)<p(4 ) =C(4)

With the derivatives of the shape functions obtained as

(6.72)

oN(e)
__l_

ox
oN(e)
__2_

ox
oN(e)
__3_

ox

1 {Y23}
=2/),. (e ) Y31 and

YI2

oN(e)
__l _

oy
oN(e)
__2 _

OY
oN(e)
__3_

OY

(6.73)

the evaluation of the area integrals in Eq. (6.62) and (6.63) by using Eq.
(3.19) leads to the final form of the element coefficient matrix, k(e) , and
right-hand-side vector, C(e)
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X32XI3 +Y23Y31

2 2
X13 + Y31

X13X21 +Y31Y12

(6.74)

and

(){I}C,, )~ A~ ' :

Their numerical evaluation results in

(6.75)

=~] and f (4 ) = lr,:;- { ~}
12 9,,3 1

~ ~]
~l ~]

~ =~]
-6 12

and

and

and

f(l) =_1{~}
18.[3 1

f (2) =_1{~}
18.[3 1

f(3) =_1{~}
9.[3 1

(6.76)

(6.77)

(6.78)

(6.79)

in which the area of each element is computed as

1

~(l ) =~ 0
2

o

1

1/.[3

o

1

1/.[3 __1_

1/3 6.[3
(6.80)

1

2/.[3

o

1

1/.[3 = lr,:;-
1/3 6,,3

(6.81)
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1 1 1

Li(3) =-!.. 2/J3 1/J3 1/J3
1

(6.82)
2 =3J3

0 1 1/3

1 1

Li (4 ) =-!.. 1/J3 0 1/J3
1

(6.83)
2 =3J3

1 0 1/3

Associated with the inter-element vector, the boundary integrals In Eq,
(6.70) and (6.71) are rewritten as

(6.84a)

(6.84b)

and

(6.85a)

(6.85b)

in which Njl) and Nj2) are zero along side 1-5 (with length ~-5 ) and
along side 5-2 (with length ~-r )' respectively . The remaining shape
functions N}l) , Ni l) , N

I
(2) , and N/ ) reduce to a one-dimensional form as
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N (I ) - ~-5 - s
I -

~-5

N
(2) _ Ls- 2 - S
I -

Ls-2

and N~\) =.L:
~-5

and N~2) .:»:
Ls- 2
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(6.86)

(6.87)

in which s is the local coordinate in the range of ( 0 ~ s ~ ~-5 ) alon~ side I­
S and ( 0 ~ s ~ Ls- 2 ) along side 5-2, ~-a =1/J3 , and Ls-2 =1/..J3. With
these shape functions, the evaluation of h I) , g(l) , h(2) , and g(2) leads to

h(l) =_1_[~ ~ ~] and g(l) =_1_{:} (6.88)
6J3 0 0 0 2J3 0

and

h(2) =_1_[~ ~ ~] and g(2) =_1_{:} (6.89)
6J3 0 0 0 2J3 0

Considering the correspondence between the local and global node
numbering presented in Table 6.3, the element characteristic matrices and
vectors can be rewritten as

Element 1:
ill ~ @]

[k("+h,(l) k (1 ) + ~(I )

kg' +h,(~Jr"Iro

' +8?rII I 12 2 (6.90)
k (1 ) + hil) k (l) + hil) k C\) + hi\) ¢(1 ) - f(1) + g (I) ~21 I 22 2 23 3 2 - 2 2
k (l) + hJ,1 ) k (1 ) + hJ,I) kj~ + hJ,~ ¢jl) 13

CI) + gjl) @]31 I 32 2

Element 2:

~ [l] @]

[k(2) +h,(2) k (2) + ~( 2 )

kg'+h,(~ 'lr'l r' +8?rII I 12 2 (6.91)
k (2) + hi2) k (2) + hi2) k (2) + hi2) ¢(2) - i 2) + g (2) [l]21 I 22 2 23 3 2 - 2 2
k (2) + hJ,2) k (2) + hJ,2) kW + hJ,~) ¢j2) 1P) + gj2) @]31 I 32 2
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Table 6.3 Element connectivity .

Element
Number Node I Node 2 Node 3

(e)

I 1 5 4

2 5 2 4

3 2 3 4

4 3 I 4

FEM WITH ANSYS®

Element 3:

[l] llJ @]

[k(31 k(3)

k\(j' ]r'l r3lr11 12

k(3) k(3) k(3) riP) - j(3) llJ
21 22 23 2 - 2

k(3) k(3) kj~) ¢j3) IP) @]31 32

Element 4:

llJ ill @]

[k(4) k (4)

k.':']t''1 tr11 12

k (4 ) k (4 ) k (4 ) ¢(4) - j (4 ) ill
21 22 23 2 - 2

k (4 ) k (4 ) kjj) ¢j4) 1
3
(4) @]

31 32

(6.92)

(6.93)

In the assembly of the element characteristic matrices and vectors, the boxed
numbers indicate the rows and columns of the global matrix, K , and global
right -hand-side vector, F, to which the individual coefficients are added,
resulting in

where

K<I>= F (6.94)



FINITE ELEMENT EQUATIONS 209

K=

k(1) + [,(1) + k(4)
II ''11 22

o
k(4)

12

k(1 ) + [,(1) + k(4 )
31 "31 32

k(1) + [,(1)
21 "21

o
k(2) + [,(2) +k(3)

22 "22 II

k'3)
21

k(2) + [,(2) +k(3)
32 "32 31

k(2 ) + [,(2)
12 ''12

k(4 )
21

k'3)
12

k(3) + k(4)
22 II

k(3) + k (4)
32 31

o

k(1) + [,(1) + k'4)
13 ''13 23

k'2) + [,(2) + k (3)
23 "23 13

k(3) + k (4)
23 13

k(1) + [,(1) + k(2 ) + [,(2) + k(3) + k (4)
33 "33 33 "33 33 33

k(1) + [,(1) + k'2) + [,(2)
23 " 23 13 ''13

k(1) + [,(1)
12 ''12

k(2) + [,(2)
21 "21

o
k(1 ) + [,(1) + k'2) + [,(2)

32 " 32 31 "31

k(l) + [,(1) + k(2) + [,(2)
22 "22 II ''11

(6.95a)

!I(I) + g~l) + 12(4)

I?) +gi2
) + !I(3)

F = I?) + !I(4)

IP) + g~l) + IP) + g~2) + IP) + 13(4)

I}I) + gil) + !I(2) + gP)

(6.95b)

(6.95c)

After imposing the essential boundary conditions, the global system of
equations are reduced by deleting the rows and columns corresponding to
rA, (h, and ¢J, leading to

[

k (l ) + ,,(1) +k(2) + ,,(2) +k(3) +k(4) k( l) + /,(1) +k(2) + ,,(2) ]{Al }
33 "33 33 " 33 33 33 32 "32 31 ''31 'f'4

k(l) + ,,(1) +k(2) _ h(2) k(l) + ,,(1) +k(2) + h(2) ¢s
23 "23 13 13 22 "22 II II (6.96)

= {AI) + g~l) + A2) + g~2) + IP) + A4)}

1
2
(1) + gil) + !I(2) + g~2)
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With the explicit values of the coefficients, the nodal unknowns, ¢4 and ¢s '
are determined as

4
¢4 = 27 = 0.14815

1
¢s ="3 = 0.33333

(6.97a)

(6.97b)

The express ions for h (l ) and h (2) in Eq. (6.70) are derived based on a
formulation consistent with the derivation of the element coefficient
matrices, k (e). An alternative to the consistent formulation is the use of
lumped diagonal matrices and expressing h(l) and h(2) in the formf[N (1l

0

o ] l3 o 0]
h (l ) = ~ N(l ) 1

3 0 (6.98)o ds=- 02

Njl) 6.[3 00 o 0

CO)
1-5

and f[ N (2) 0 0

] l3 0 0]h (2 ) = ~ N (2) 1
(6.99)o ds=- 0 3 02

N j2 ) 6.[3 0 0 00
C(2)

5-2

Repl acing the components of h(l) and h (2) in Eq. (6.96) with the values

obtained in Eq. (6.98) and (6.99), the nodal unknowns ¢4 and ¢s are
determined as

5
¢4 =- = 0.13889

36

11
¢s = - = 0.30556

36

(6.100a)

(6.100b)

Note that the disc repancy in the value of ¢4 and ¢s obtained from the two
methods is due to the small number of elements in the discretization of the
domain.
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6.1.2.2 ANSYS Solution

2 11

The governing equations for a steady-state heat transfer , described by Eq.
(6.47) through (6.50), also can be solved using ANSYS. The solution pro­
cedure is outlined as follows :

MODEL GENERAnON

• Specify the element type (ET command ) using the following menu path:

Main Menu> Preprocessor> Element Type> Add/Edit/Delete

• Click on Add.
• Select Thermal Solid from the left list and Quad 4node 55 from the

right list; click on OK.
• Click on Close.

• Specify material properties (MP command) using the following menu
path:

Main Menu> Preprocessor> Material Props> Material Models

• In the Define Material Model Behavior dialog box, in the right window,
successi vely double-click on Thermal, Conductivity , and, finally ,
Isotropic , which brings up another dialog box.

• Enter 1 for KXX , and click on OK.
• Close the Define Material Model Behavior dialog box by using the

follo wing menu path:

Material> Exit

• Create nodes (N command) using the following menu path :

Main Menu> Preprocessor> Modeling> Create> Nodes> InActive CS

• A total of 5 nodes are created (Table 6.2).
• Referr ing to Table 6.2, enter x- and y-coordinates of node 1, and click

on Apply. This action keeps the Create Nodes in Active Coordinate
System dialog box open . If the Node number field is left blank, then
ANSYS assigns the lowest available node number to the node that is
be ing created.

• Repeat the same procedure for the nodes 2 through 5.
• After entering the x- and y-coordinates of node 5, click on OK (instead

of Apply).
• The nodes should appear in the Graphics Window, as shown in Fig . 6.7 .
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Fig. 6.7 Generation of nodes .
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• Create elements (E command) using the following menu path:

Main Menu> Preprocessor> Modeling> Create> Elements> Auto Numbered> Thru Nodes

• Pick Menu appears; refer to Fig. 6.8 to create elements by picking three
nodes at a time and clicking on Apply in between .

• Observe the elements created after clicking on Apply in the Pick Menu.
• Repeat until the last element is created.
• Click on OK when the last element is created.

• Review elements:

• Turn on element numbering using the following menu path:

Utility Menu> PlotCtrls >Numbering

• Select Element numbers from the first pull-down menu ; click on OK.
• Plot elements (EPLOT command) using the following menu path :

Utility Menu> Plot>Elements

• Figure 6.8 shows the outcome of this action as it appears III the
Graphics Window.

• Turn off element numbering and turn on node numbering using the
following menu path:

Utility Menu> PlotCtrls >Numbering

• Place a checkmark by clicking on the empty box next to NODE Node
numbers.
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Fig. 6.8 Generation of elements.

• Select No numbering from the first pull-down menu.
• Click on OK.
• Plot nodes (NPLOT command) using the following menu path:

213

UtilityMenu> Plot> Nodes

• Figure 6.7 shows the outcome of this action as it appears III the
Graphics Window.

SOLUTION

• Apply temperature boundary conditions (D command) using the following
menu path:

Main Menu> Solution> Define Loads> Apply>Thermal> Temperature> On Nodes

• Pick Menu appears; pick nodes 1, 2, and 3 (Fig. 6.7); click on OK on
Pick Menu.

• Highlight TEMP and enter 0 for VALUE; click on OK (Fig. 6.9).
• Apply convection boundary conditions (SF command) using the

following menu path:

Main Menu> Solution> Define Loads> Apply>Thermal> Convection> On Nodes

• Pick Menu appears; pick nodes 1, 2 and 5 along the boundary (Fig.
6.7); click on OK on Pick Menu .

• Enter 1 for both VALl Film coefficient and VALlI Bulk temperature;
click on OK (Fig. 6.10).

• Apply body load on elements (BFE command) using the following menu
path:

Main Menu> Solution> Define Loads> Apply>Thermal> Heat Generat > On Elements
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Apply TEMP on Nodes

[D) ApplyTEMP onNodes

L~b2 DOFs to be constr~lned

Applyas

If Constant valuethen:

VALUE Load TEMP value

OK Apply Cancel

IConstant value

1°

Help

Fig. 6.9 Application of temperature boundary conditions on nodes.

- -

~ Apply CONVon nodes

[SF] ApplyFilm CoeF onnodes Iconstant value 3
If Constant valuethen:

VAll Film coefficient 11
[SF]ApplyBulkTemp onnodes Iconstant value 3
If Constant valuethen:

VAL2I Bulktemperature 11

r"-"'OK'''-''!I Apply I Cancel I Help I~ ... ••• ... ••• ..I

Fig. 6.10 Application of convection boundary conditions on nodes.
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• Pick Menu appears; click on Pick All.
• Enter 1 for VALl leave other fields untouched , as shown in Fig. 6.11.
• Click on OK.

• Obtain solution (SOLVE command) using the following menu path:

Main Menu> Solution> Solve> Current LS

• Confirmation Window appears along with Status Report Window .
• Review status. If OK, close the Status Report Window and click on OK

in Confirmation Window.
• Wait until ANSYS responds with Solution is done!

POSTPROCESSING

• Review temperature values (PRNSOL command) using the following
menu path :

Main Menu> General Postproc > ListResults> Nodal Solution

• Highlight DOF solution on the left list and Temperature TEMP on the
right list; click on OK.

• The list appears in a new window, as shown in Fig. 6.12.

1\ Apply HGEN on elems [g]
[BFE]ApplyHGEN on elems asa IConstantvalue i"J
If Constantvaluethen:

STLOC Startinglocation N I
VAll LoadHGEN at locN 11
VAL2 LoadHGEN at locN+1 I
VAL3 LoadHGEN at loeN+Z I
VAL'! LoadHGEN at locN+3 I

Apply Cancel I Help

Fig. 6.11 Application of heat generation condition on elements.
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I
PRINT TEMP NODAL SOLUTI ON PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LI STING *****
LOAD STEP; 0 SUDSTEP; 1

TIME; 1 . 0000 LOAD CASE; 0

NODE TEMP
1 0.0000
2 0.01'101'1
3 0.01'101'1
4 0. 138 89
5 0.30556

MAX I MU M ABSOLUTE UALUES
NODE 5
UALU E 0.30556

Fig. 6.12 Nodal solution for temperature.

6.1.3 Example: Two-dimensional Differential Equation with Linear
Quadrilateral Elements

6.1.3.1 Galerkin's Method

In solving two-dimensional problems with quadrilateral isoparametric
elements, Galerkin's method is demonstrated by considering the partial
differential equation given by

(6.101)

in domain D defined by the intersection of y =-3, x =-4, y =3, and
y =3x -15. The constant, A, is known . As shown in Fig. 6.13, the flux
vanishes along the boundary of the domain specified by y = -3 and x = -4,
and along the remaining part of the boundary specified by y =3 and
y =3x -15 , the dependent variable, ¢(x,y), has a value of unity. These
boundary conditions are expressed as

for -4~ x ~4

¢(x,y) = 1 for 4~x~6, y =3x-15

a
ax ¢(x,y =-3) =0

a
ax¢(x =-4, y) =0

¢(x,y=3)=1 for -4 ~x ~6

(6.102)

(6.103)

(6.104)

(6.105)
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c/J = I .I' .1' =3

217

oc/J
- = 0ox

x= -4

ac/J
- = 0 .1' = - 3
ily

x

Fig. 6.13 Description of domain, and boundary conditions.

The domain is discretized with four linear quadrilateral isoparametric
elements, each having four nodes identified as 1,2,3, and 4, shown in Fig.
6.14. The nodal values of the dependent variable associated with element e
are specified at its first, second, third, and fourth nodes by if1(e), r/JY) , rpje) ,
and r/JY ), respectively. The discretization of the domain with global node
numbering is shown in Fig. 6.14. The global coordinates of the nodal values
of the dependent variable denoted by r/J;( i =1,2,... ,9 ) are presented in Table
6.4.

The linear element approximation function for the dependent field variable
in a quadrilateral isoparametric element "e" is written as

¢(e) =N
1
(e)if1(e) + N~e)r/J~e ) + Nje)rpje) + N~e)r/J~e ) (6.106)

or

7

8

I '
6 5

@

9 x

CD

2 3

Fig. 6.14 FEM discretization of the domain into four quadrilaterals.
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where

Table 6.4 Nodal coordinates.

Global Nodal Nodal
Node Number Coordinates Variables

1 (-4, -3) r/J1
2 (0, -3) r/Jz
3 (4, -3) r/J3
4 (5,0) r/J4
5 (6,3 ) r/Js
6 (0,3) r/J6
7 (-4,3) r/J7
8 (-4,0) r/Js
9 (0,0) r/J9

¢(e) =N (e)T<p(e)

FEM WITHANSY~

(6.107)

and <p(e) =

if1(e )

rfJie)

rpje)

rfJie)

(6.108)

in which the shape functions N} e), Nie), N~e), and Nie) are expressed in
terms of the centroidal or natural coordinates, (~, '1), shown in Fig. 6.15.
For a linear (straight-sided) quadrilateral illustrated in Fig. 6.15, they are of
the form

(6.109)

where ~i and 'Ii represent the coordinates of the corner nodes in the natural
coordinate system, (~l =- 1, 'II =-1), (~2 =1, '12 =-1), (~3 =1, '13 =1) , and
(~4 =-1, '14 =1)•

Applying Eq. (6.6), Galerkin 's method, leads to

(6.110)
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1/

(~= - 1,1/ = I ) (I; = 1,1/ = I )
. (]......>-----ic-----i~ )

(1;= 1,//=-1 )

'----+-+ I;

oJ

(~=- I , 1/=- I )

mapp ing

;~ ¢
(x2 ·YJ )

1/

Fig. 6.15 Local node numbering for a linear isoparametric quadri­
lateral element.

Since the element approximation function is CO continuous, the second­
order derivatives in the integrand must be reduced by one so that inter­
element continuity is achieved during the assembly of the global matrix.
This reduction is achieved by observing that

a2);(e) a ( a);(e) J aN(e) a);(e)
N(e)-",-(x , y)=- N(e)-",-(x,y) ----"'-(x ,y)

ax2 ax ax ax ax
(6.111)

and

a2);(e) a ( a);(e) J aN(e) a);(e)
N(e)-"'-(x, y ) =- N(e)-"'-(x, y) - ---"'-(x, y)

al ay ay ay ay
(6.112)

Their substitution into the integrand in Eq. (6.110) and rearrangement of the
terms result in

I{ f [~[N(e) ajJ(e)J+~[N(e) ajJ(e) J] dxdy
e=\ ax ax ay ay

D (e)

(6.113)

f[ aN(e) ajJ(e) aN(e ) ajJ(e) (e) ] }
+ -----------N A dxdy =0

ax ax ay ay
D ( e)

Applying the divergence theorem to the first integral renders the domain
integral to the boundary integral, and it yields
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(6.114)

f[ aN(e) ajJ(e) aN(e) ajJ(e) (e)] ) =0
+ -----------N A dxdy

ax ax ay ay
D(e )

where n~e) and n~e) are, respectively, the x - and y -components of the
outward normal vector along the closed boundary defining the area of the
element C(e) .

Substituting for the element approximation function yields

(6.115)

- f N(e) AdXdY} =0
o< e)

This equation can be recast in matrix form as

EI (k(e)<p(e) - r(e) +Q(e) ) =0

e=!

where

r(e) = f AN(e)dxdy
D (e )

(6.116)

(6.117)

(6.118)
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(6.119)

in which k(e) is the element characteristic matrix, f(e) is the element right­
hand-side vector, and Q(e) is often referred to as the inter-element vector
that includes the derivative terms along the boundary of the element. The
boundary integral around each element is evaluated in a counterclockwise
direction, i.e., this boundary integral is the sum of four integrals taken along
each side of the element.

Because the specified derivatives have zero values along the element
boundaries, the inter-element vector, Q(e) vanishes, i.e., Q(e) =0, thus
reducing the element equilibrium equations to

EI (k(e)<p(e) _f(e») =0

e=\

(6.120)

The integrals contributing to the characteristic element matrix, k(e) , and the
right-hand-side vector, f(e), are evaluated over a square region in the natural
coordinate system after an appropriate coordinate transformation given by

4 4

X=INi(e)(~,1J)xV) and y =INie)(~,1J) yV)
i=1 i=1

Application of the chain rule of differentiation yields

dN~e)

=[ ;~ oy] dN~e)
__1- __1-

d~ d~ dX
with i =1,2,3,4

dN~e) dX dy dN~e)
__1- __1-

d1J d1J d1J dy

or

where J is called the Jacobian matrix. It can be expressed as

(6.121)

(6.122)

(6.123)
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in which
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(6.124)

i ll = ax =..!.{-(1-rJ)x[e)+ (1 - rJ)xie) +(1+rJ )x~e) - (1 + rJ )xie)} (6.125)
a~ 4

i 12 =~; =±{-(1 -rJ )y[e) + (1-rJ )yie) +(1+rJ)y~e) - (I +rJ )yie)} (6. 126)

i 21 = ax =..!.{-(1_~)x[e ) -(1 +~)xie ) +(1+~)x~e ) +(1-~)xie) } (6.127)
arJ 4

i 22 = ~~ =±{-(1 _ ~) y[e ) - (1 + ~)yie) +(I +~)y~e ) +(I-~)yie) } (6.128)

Also, the Jacobian can be rewritten in the form

aN(e) aN(e) aN(e) aN(e) x(e) y fe)
__1_ _ _2 _ __3 _ __4_ 1

a~ a~ a~ a~
x(e) yie)

J = 2 (6.129)
aN(e) aN(e) aN(e) aN(e) x(e) y~e)__1_ __2 _ __3 _ __4_ 3

arJ arJ arJ arJ x(e) yie)
4

or
x(e) y[e)

I

J =..!.[- (1 - 'I) (1- 'I) (1 + 'I) -(1 + 'I )] i e) yie)
2 (6.130)

4 -(1- ~) - (1 +~) (1 +~) (1- ~) i e) y~e)
3

x(e) yie)4

Because the transformation between the natural and global coordinates has a
one-to-one corres pondence, the inverse of the Jacobian exists, and it can be
expressed as

(6.131)

When the element is degenerated into a triangle by increasing an interna l
angle to 180°, J is singular at that comer. The inverse of the Jacobian matrix
permits the expression for the derivatives in terms of global coordinates
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aN~e)__,_
ax

aN ~e)
--'-

ay

=J- 1

aN~e )__,_
all
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(6.132)

Defining the element shape matrix B (e ) as

aN(e) aN(e) aN(e) aN(e)

~l tiN" "
__1_ 2 __3 _ __4 _

B(e) = ax ax ax ax
aN(e) aN(e) aN(e) aN(e)
__1_ __2_ _ _3 _ __4_

ay ay ay ay

permits the element matrix k (e) be written in the form

1 1

k( e) =- f B(e)TB(e)dxdy =- f fB (e)TB (e)I Jl d~dll

D(e) -1-1

A similar operation is performed for evaluation of r(e)

1 1

r(e) =A f N(e)dxdy=A f fN(e)IJld~dll

D(e) -1-1

(6.133)

(6.134)

(6.135)

Due to the difficulty of obtaining an analytical expression for the determi­
nant and inverse of the Jacobian matrix, these integrals are evaluated numer­
ically by the Gaussian integration technique described in detail in Sec. 3.6.

Prior to the calcu lation of the element characteristic matrices, their Jacobian
matrices are obtained for each element using Eq. (6.130) as

=![8 0]
4 0 6

-4 -3

- (1+17)] 0 -3
(1 -;) 0 0

-4 0
(6.136)



224 FEM WITH ANSYS@

o -3

j(2) =![-(1-17) (1-17) (1+17) -(1+17)] 4 -3
4 -(1 - ~) -(1 + ~) (1 + ~) (1- ~) 5 0

o 0

o 0

j(3) =![-(1-17) (1-17) (1+17) -(1+ 17)] 5 0
4 -(1 - ~) -(1 + ~) (1+ ~) (1- ~) 6 3

o 3

-4 0

j(4) = ![-(1-17) (1-17) (1 + 17) -(1 + 17)] 0 0
4 -(1 - ~) -(1 + ~) (1 + ~) (1- ~) 0 3

-4 3

The inverse of the Jacobian matrices are obtained as

(6.137)

(6.138)

(6.139)

(6.140)

[J(2) J-1 _ 4 [6 0] (6.141)
6(9 + 1]) -(1 + ~) 9 + 1]

[J(3) J-1 _ 4 [6 0] (6.142)
6(11 + 1]) -(1 +~) 11 + 1]

(6.143)
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The element shape matrices B(e) are obtained as

l-~(I-q)
1 1

-~(I+q)]-(1-1]) - (1+ 1])
B(l) = 8 8 8 (6.144)

1 1 1
--(1-;) - -(1+;) -(1+;) -(1-;)

6 6 6 6

[ -(I-q) (1-1]) (1 + 1]) - (l+ q) 1B(2) = _ 1_ 1 5 4 1 (6.145)
9+1] -3(4 -5;+1]) - -(1+;) -(1+;) 3(5 -4; + 1])

3 3

[ -(l -q) (1-1]) (1 + 1]) -(I+q) 1
B(3) =_1_ 1

-2(1 +;)
5 1 (6.146)

11+1] -3(5-6;+1]) -(1+;) 3 (6 -5; + 1])
3

l-~(l-q)
1 1

-~ (l+q)]-(1-1]) - (1 + 1])
B(4) = 8 8 8 (6.147)

1 1 1
--(1-;) - - (1+ ; ) -(1 +;) -(1 -;)

6 6 6 6

Numerical evaluation of the element characteristic matrices results in

25 1 25 23
- -- -- --
36 36 72 72

1 25 23 25-- - -- --
k(l)= 36 36 72 72

25 23 25 1-- - - - --
72 72 36 36
23 25 1 25-- -- -- -
72 72 36 36

0.688943 -0.0222762 -0.282179 - 0.384488

k (2) = -0.0222762 0.85561 -0.384488 -0.448846

-0.282179 -0.384488 0.60759 0.0590766

-0.384488 -0.448846 0.0590766 0.774257

0.753348 0.0799856 -0.316655 -0.516679

k(3) = 0.0799856 0.920014 -0.516679 -0.483321

-0.316655 -0.516679 0.680566 0.152768

-0.516679 - 0.483321 0.152768 0.847232

(6.148)

(6.149)

(6.150)
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25 1 25 23
- - - -- --
36 36 72 72

1 25 23 25- - - -- - -
k (4) = 36 36 72 72

25 23 25 1-- - - - --
72 72 36 36
23 25 1 25- - -- - - -
72 72 36 36

Similarly, the right-hand-side vectors are calcu lated as

3 3.25 4 3

r(1) =A
3

r (2) =A
3.25

r (3) =A
4

r (4) =A
3

3
,

3.5
,

4.25
,

3

3 3.5 4.25 3

(6.151)

(6.152)

The element definitions (or connectivity of elements), as shown in Fig. 6.14,
are presented in Table 6.5.

Cons idering the correspondence between the local and global node num-
bering as shown in Table 6.5, the element equations can be rewritten as

m ~ [ill ~
k (l ) k(l) k(l ) k(l ) tA(1) II(\) mII 12 13 14

Element 1: k(l ) k (l ) k (l ) k(l ) ¢i l ) = IiI) ~ (6.153)21 22 23 24

k(1 ) k (l ) k (l ) k (l ) ¢j l) h (l ) [ill31 32 33 34

k(l ) k(l ) k (l ) k (l) ¢~I) Ill)
~41 42 43 44

Table 6.5 Element connectivity.

Element
Number Node 1 Node 2 Node 3 Node 4

(e)

1 1 2 9 8
2 2 3 4 9
3 9 4 5 6
4 8 9 6 7
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[lJ @] @] [2]
k (2) k (2) k (2) k (2) ¢?) .f.t(2) [lJ

I I 12 13 14

Element 2: k (2) k (2) k(2 ) k(2 ) ¢? ) = IF) @] (6.154)21 22 23 24
k (2) k (2) k ( 2) k (2) ¢j2) IP) @]31 32 33 34
k (2 ) k (2) k(2) k (2) ¢f) IP) [2]41 42 43 44

[2] @] ~ r&I
k (3) k (3) k (3) k (3) ¢1(3) .f.t(3) [2]

I I 12 13 14

Element 3: k (3) k (3) k (3) k (3) ¢i3) = IP) @] (6.155)21 22 23 24
k (3) k (3) k (3) k (3) ¢j3) IP) ~31 32 33 34
k (3) k (3) k (3) k (3) ¢J 3) IP) r&I41 42 43 44

ffil [2] r&I III
k (4 ) k (4 ) k (4 ) k (4 ) ¢1(4) .f.t(4) ffilII 12 13 14

Element 4: k (4 ) k (4 ) k(4 ) k (4 ) ¢i4) = li4
) [2J (6.156)21 22 23 24

k (4 ) k(4 ) k(4 ) k(4) ¢j4) 1
3
(4)

r&I31 32 33 34
k (4 ) e4) k (4) k(4 ) ¢~4) 1j4) III41 42 43 44

In the assembly of the element characteristic matrices and vectors, the boxed
numbers indicate the rows and columns of the global matrix, K, and global
right-hand-side vector, F , to which the individual coefficients are added,
resulting in
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k(l ) k (l ) 0 0 0 0 0II 12
k (l ) k (l ) +k (2 ) k (2) k (2) 0 0 021 22 11 12 13

0 k (2) k (2 ) k (2) 0 0 021 22 23

0 k (2) k (2 ) k (2) +k (3) k (3) k (3) 031 32 33 22 23 24

0 0 0 k (3) k (3) k (3) 032 33 34

0 0 0 k (3) k (3) k (3) +k (4) k (4 )
42 43 44 33 34

0 0 0 0 0 k (4) k (4 )
43 44

k (l ) k( l) 0 0 0 k (4) k (4 )
41 42 13 14

k (l ) k (1) +k (2) k (2) k (2) +k (3) k (3) k (3) +k (4) k (4 )
31 32 41 42 43 12 13 14 23 24

(6.157)
k(l ) k (1) « Jj(l )

14 13
k(l ) k (l ) +k (2) ¢? IiI) +1/2

)24 23 14

0 k(2)
¢J:3 li

2)
24

0 k (2) +k (3)
f/J4 IP)+ IP)34 21

0 k (3)
f/Js I P )31

k (4 ) k (3) +k (4 )
f/J6 1j3)+1

3
(4)31 41 32

k (4) k(4) ¢>7 Ij4)41 42
k(l ) +k (4) k (l ) +k (4 )

~ Ij l) +Jj(4 )44 I I 43 12
k(l ) +k (4) k (l ) +k (2) +k(3) + k(4) rAJ 1

3
(1) +IP) +Jj(3) + l i 4)34 21 33 44 I I 22

or
KcI> = F (6.158)

the global stiffness matrix and right-hand-side vector are numerically
evaluated as
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0.694444

-0.0277778

o
o

K= 0

o
o

-0.319444

-0.347222

-0.0277778

1.38339

-0.0222762

-0.282179

o
o
o

-0.347222

-0.703932

o
-0.0222762

0.85561

-0.384488

o
o
o
o

-0.448846

o
-0.282179

-0.384488

1.5276

-0.516679

-0.483321

o
o

0.139062

o
o
o

-0.516679

0.680566

0.152768

o
o

-0.316655

and

o
o
o

-0.483321

0.152768

1.54168

-0.0277778

-0.347222

-0.836123

o
o
o
o
o

-0.0277778

0.694444

-0.319444

-0.347222

-0.319444

-0.347222

o
o
o

-0.347222

-0.319444

1.38889

-0.0555556

-0.347222

-0.703932

-0.448846

0.139062

-0.316655

-0.836123

-0.347222

-0.0555556

2.91649

(6.159)

3

6.25

3.25

7.5

F= 4.25

7.25

3

6

13.5

(6.160)

After imposing the essential boundary conditions, i.e., ¢:, =¢4 =¢s =¢6 =
¢J =1, the global system of equations is reduced by deleting the rows and
columns corresponding to ¢:" ¢4' ¢s, ¢6' and ¢J , leading to
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k(l)
13

k(l) + k(2)
23 14

k(l) + k(4)
43 12

k(l) + k(2) + k(3) + k(4)
33 44 11 22

=

~(l)

f
(l ) + 1'(2) - k(2) - k(2)

2 Jl 12 13

1'(1) + 1'(4) _ k(4) _ k(4)
J4 Jl 13 14

f (l ) + 1'(2) + 1'(3) + f(4) _ k(2) _ (k(2) + k(3) )
3 J 4 J 1 2 42 43 12

_ k(3) _ (k(3) + k(4») _ k(4)
13 14 23 24

(6.161)

which is numerically evaluated as

and

0.694444

-0.0277778
K=

-0.319444

-0.347222

-0.0277778

1.38339

-0.347222

-0.703932

-0.319444

-0.347222

1.38889

-0.0555556

-0.347222

-0.703932

-0.0555556

2.91649

(6.162)

3

6.55446
F=

6.66667

15.3098

Finally, the solution of the reduced global system yields

(6.163)

15.8119

13.5401
=

12.2471

10.6332

(6.164)

6.1.3.2 ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq.
(6.101) through (6.105), also can be solved using ANSYS. The solution
procedure is outlined as follows:
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• Specify the element type (ET command) using the following menu path:

Main Menu> Preprocessor> Element Type> Add/Edit/Delete

• Click on Add.
• Select Thermal Solid from the left list and Quad 4node 55 from the

right list; click on OK.
• Click on Close.

• Specify material properties (MP command) using the following menu
path:

Main Menu> Preprocessor> Material Props> Material Models

• In the Define Material Model Behavior dialog box, in the right window,
successively double-click on Thermal, Conductivity, and, finally,
Isotropic, which brings up another dialog box.

• Enter 1 for KXX, and click on OK.
• Close the Define Material Model Behavior dialog box by using the

following menu path:

Material> Exit

• Create nodes (N command) using the following menu path:

Main Menu> Preprocessor> Modeling> Create> Nodes> InActive CS

• A total of 9 nodes will be created (Table 6.4).
• Referring to Table 6.4, enter x- and y-coordinates of node 1, and Click

on Apply. This action will keep the Create Nodes in Active Coordinate
System dialog box open. If the Node number field is left blank, then
ANSYS will assign the lowest available node number to the node that
is being created.

• Repeat the same procedure for the nodes 2 through 9.
• After entering the x- and y-coordinates of node 9, click on OK (instead

of Apply).
• The nodes should appear in the Graphics Window, as shown in Fig.

6.16.

• Create elements (E command) using the following menu path:

Main Menu> Preprocessor> Modeling> Create> Elements> Auto Numbered> Thru Nodes

• Pick Menu appears; refer to Fig . 6.17 to create elements by picking
four nodes at a time and clicking on Apply in between.

• Observe the elements created after clicking on Apply in the Pick Menu.
• Repeat until the last element is created.
• Click on OK when the last element is created.
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Fig. 6.16 Generation of nodes.
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Fig. 6.17 Generation of elements.

• Review elements:

• Turn on element numbering using the following menu path:

Utility Menu> PlotCtrls >Numbering

• Select Element numbers from the first pull-down menu; click on OK.
• Plot elements (EPLOT command) using the following menu path :

Utility Menu> Plot>Elements

• Figure 6.17 shows the outcome of this action as it appears in the
Graphics Window.

• Turn off element numbering and turn on node numbering using the
following menu path:

Utility Menu> PlotCtrls >Numbering
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• Place a checkmark by clicking on the empty box next to NODE Node
numbers.

• Select No numbering from the first pull-down menu.
• Click on OK.
• Plot nodes (NPLOT command) using the following menu path:

Utility Menu> Plot>Nodes

• Figure 6.16 shows the outcome of this action as it appears in the
Graphics Window.

SOLUTION

• Apply temperature boundary conditions (D command) using the following
menu path:

Main Menu> Solution> Define Loads> Apply> Thermal> Temperature> On Nodes

• Pick Menu appears; pick nodes 3 through 7 along the boundary (Fig.
6.16) and click on OK on Pick Menu.

• Highlight TEMP and enter] for VALUE; click on OK (Fig. 6.18).

• Apply body load on elements (BFE command) using the following menu
path:

Main Menu> Solution> Define Loads> Apply> Thermal> Heal General> On Elements

• Pick Menu appears; click on Pick All.
• Enter] for VAL] (leave other fields untouched, as shown in Fig. 6.19) .
• Click on OK.

• Obtain solution (SOLVE command) using the following menu path:

Main Menu> Solution> Solve> Currenl LS

• Confirmation Window appears along with Status Report Window.
• Review status/ If OK, close the Status Report Window and click on OK

in the Confirmation Window.
• Wait until ANSYS responds with Solution is done!

POSTPROCESSING

• Review temperature values (PRNSOL command) using the following
menu path:

Main Menu> General Postproc >ListResults> Nodal Solution

• Highlight DOF solution on the left list and Temperature TEMP on the
right list; click on OK.

• The list will appear in a new window, as shown in Fig. 6.20.
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~ Apply TEMP on Nodes ""·.1
[D] ApplyTEMP on Nodes

Lab2 DOFs to be constrained

Applyas

If Constantvaluethen:

I/ALUE Load TEMP value

OK Apply Cancel

F
Iconstant value

Help

Fig. 6.18 Application of temperature boundary conditions on nodes .

1\ Apply HGEN on elems :XJ
[BFE] ApplyHGEN on e1ems as a IConstantvalue ~

If Constantvaluethen:

STLOC StartinglocationN I
I/ALl LoadHGEN at loeN II

I/AL2 LoadHGEN at loeN+I I
I/AL3 LoadHGEN at loeN+2 I
I/AL.. LoadHGEN at loeN+3 I

Apply Cancel Help

Fig. 6.19 Application of heat generation condition on elements.
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/\ PRNSOL Command

File

PRINT TEMP NODAL SOLUTION PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

NODE TEMP
1 15.812
2 13.541
3 1.0000
4 1.0000
5 1.0000
6 1.0000
7 1.0000
B 12.247
9 10.634

MAXIMUM ABSOLUTE UALUES
NODE 1
UALUE 15.812

Fig. 6.20 Nodal solution for temperature.

6.2 Principle of Minimum Potential Energy

Galerkin's method is not always suitable for all structural problems because
of difficulties in mathematically describing the structural geometry and/or
the boundary conditions. An alternative to Galerkin's method is the princi­
ple of minimum potential energy (Washizu 1982; Dym and Shames 1973).

The energy method involves determination of the stationary values of the
global energy. This requires the approximation of the functional behavior of
the dependent variable so that the global energy becomes stationary. The
stationary value can be a maximum, a minimum or a neutral point. With an
understanding of variational calculus, the minimum stationary value leading
to stable equilibrium (Fig. 6.21) is obtained by requiring the first variation
of the global energy to vanish.

Avoiding the details of variational calculus, the concepts of differential
calculus can be used to perform the minimization of the global energy. In
solid mechanics, this is known as the principle of minimum potential
energy, which states that among all compatible displacement fields satis­
fying the boundary conditions (kinematically admissible), the correct
displacement field satisfying the equilibrium equations is the one that ren-
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maximum - unstable
equilibrium

minimum - stable equilibrium

'----------------+ x

Fig. 6.21 Schematics of stable, neutral, and unstable equi­
librium points of the global energy.

ders the potential energy an absolute minimum. A solution satisfying both
equilibrium equations and boundary conditions is, of course, "exact"; how­
ever, such solutions are difficult, if not impossible, to construct for complex
problems. Therefore, approximate solutions are obtained by assuming kine­
matically admissible displacement fields with unknown coefficients. The
values of these coefficients are determined in such a way that the total
potential energy of the system is a minimum.

The principle of virtual work is applicable for any material behavior, where­
as the principle of minimum potential energy is applicable only for elastic
materials . However, both principles yield the same element equations for
elastic materials.

The total potential energy of the structural system shown in Fig. 6.22 is
defined as

1Cp =W +Q (6.165)

in which W is the strain energy and Q is the potential energy arising from
the presence of body forces, surface tractions, and the initial residual
stresses. Strain energy is the capacity of the internal forces (or stresses) to
do work through strains in the structure.

For a linear elastic material, the strain energy of the deformed structure is
given by

W =~ J(E - E*)T (J dV
v

(6.166)
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Fig. 6.22 A 3D body with displacement constraints, body and
concentrated forces, and surface tractions.

where a is the vector of stress components arising from the difference
between the total strains , e , and initial strains , e* . It can be expressed as

a=D(e-e*)

in which

aT ={axx ayy a zz axy a yZ a zx}

and

eT ={cxx Cyy czz Yxy YYZ Yzx }

and the material property matrix

I-v v v 0 0 0

v I-v v 0 0 0

v v I-v 0 0 0

E 0 0 0
(I- 2v)

0 0D =
(l +v)(l- 2v) 2

0 0 0 0
(I-2v)

0
2

0 0 0 0 0
(l -2v)

2

(6.167)

(6.168)

(6.169)

(6.170)

where a ij and cij represent the stress and strain components, with
i, j =x, y , z being the Cartesian coordinates. The elastic modulus and
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Poisson's ratio are denoted by E and v, respectively. In the presence of
temperature change, the initial strains can be expressed as

«" ={~T ~T ~T 0 0 o} (6.171)

where a is the coefficient of thermal expansion and /).T is the temperature
change with respect to a reference state.

The potential energy arising from the presence of body forces, b , surface
tractions, T, and the initial residual stresses, 0 * , is given by

Q =- fuTbdV - f uTTdS + feT0 *dV (6.172)
v Sa V

with

bT ={bx by bz} (6.173)

TT ={Tx Ty Tz} (6.174)

uT ={ux uy uz} (6.175)

in which bx' by, and b, are the components of body force (in units of force
per unit volume), and Tx ' Ty , and T, represent the components of the
applied traction vector (in units of force per unit area) over the surface
defined by Sa' The entire surface of the body having a volume of V is
defined by S, with segments Su and Sa subjected to displacement and
traction conditions, respectively. The displacement components are given by
ux ' " »: and Uz in the x-, y-, and z-directions, respectively. Also,
included in the expression for the total potential is the initial residual
stresses denoted by 0* . The initial stresses could be measured, but their
prediction without full knowledge of the material's history is impossible.

After partitioning the entire domain occupied by volume V into E number
of elements with volume v-. the total potential energy of the system can be
rewritten as

in which

E

IIp (ux' uy,uz) =Ill~)(ux'Uy,uz)
e=l

(6.176)
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7Z'~e) =~ f f? OedV - f eTOe* dV +~ f e*TOe*dV
0~ 0~ 0~

- f uTb dV - f uTT dS + f eTG*dV
v (e) s~) v (e)

where the superscript e denotes a specific element.
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(6.177)

Based on kinematical considerations, the components of the total strain
vector, e , in terms of the displacement components are expressed as

a
0 0-ax

0
a

0Exx
-
ay

Eyy a

t:}
0 0 -

Ezz az
e =L u (6.178)= or

Yxy a a
0- -

YyZ
ay ax

Yzx 0
a a- -
az ay

a
0

a
- -
az ax

in which L is the differential operator matrix .

The finite element process seeks a minimum in the potential energy based
on the approximate form of the dependent variables (displacement compo­
nents) within each element. The greater the number of degrees of freedom
associated with the element (usually means increasing the number of nodes),
the more closely the solution will approximate the true equilibrium position.
Within each element, the approximation to the displacement components
can be expressed as

11

u (e) ::::: i e) ="" N(e)u(e)
x x ~ r ~

r=1

(6.179)
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with n representing the number of nodes associated with element e. The
nodal unknowns and shape funct ions are denoted by u (e), u(e) , u(e), and

( ) x, v, z,N/, respectively. In matrix form , the approximate displacement
components can be expressed as

liCe) =N(e)TU(e)

in which

li (e)T ={u~e) -(e) u~e) }u y

[Nl 0 0 Nz 0 0 Nil 0 :,LN (e)T = ~ N1 0 0 Nz 0 0 Nil

0 N) 0 0 Nz 0 0

(6.180)

(6.181)

(6.182)

u (e) u(e) u (e)} (6.183)
Xn v, Zn

With the approximate form of the displ acement components, the strain
components within each element can be expressed as

(6.184)

where

(6.185)

(6.186)

leading to the expression for the total potential in terms of element nodal
displacements, U (e)

tr(e)=.!.u(e)Tk (e)u(e)_u(e)Tp(e)+.!. f &*TD&*dV

p 2 2 v( e)

in which the element stiffness matrix , k (e) , and the element force vector,
pee) , are defined as

and

k eel = f B(e)TDB (e)dV

vee)
(6.187)

(6.188)
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with p~) , p¥) , pC:) , and pee! representing the element load vectors due to
e a

body forces, surface tractions (forces), initial strains, and initial stresses,
respectively, defined by

p~) = f N(e)bdV
vee )

p¥) = f N(e)T dS

s;:)

pee) = f B(e)T DE*dV
e*

vee )

p~! = f B(e)T (J*dV
ve e)

(6.189)

Evaluation of these integrals results in the statically equivalent nodal forces
in the elements affected by the body force, the surface tractions, and the
initial strains and initial stresses . In the presence of external concentrated
forces acting on various nodes, the potential energy is modified as

", =~UT {~k(')}U -UT {~(p~) +p~) +P~:) -p~! )-p,}
E

+~L f E*TDE*dV
e=1V(e)

(6.190)

where Pc is the vector of nodal forces and V represents the vector of nodal
displacements for the entire structure. Note that each component of the
element nodal displacement vector, V(e) , appears in the global (system)
nodal displacement vector, V . Therefore, the element nodal displacement
vector Vee) can be replaced by V with the appropriate enlargement of the
element matrices and vectors in the expression for the potential energy by
adding the required number of zero elements and rearranging. The summa­
tion in the expression for the potential energy implies the expansion of the
element matrices to the size of the global (system) matrix while collecting
the overlapping terms .

Minimization of the total potential energy requires that

ra~ }=o
leading to the system (global) equilibrium equations in the form

(6.191)
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(6.192)

in which K and P are the assembled (global) stiffness matrix and the
assembled (global) nodal load vector, respectively, defined by

and

E

P =I(p~e) +p~) +p~:) -p~:) - Pc
e=1

(6.193)

(6.194)

This global equilibrium equation cannot be solved unless boundary con­
straints are imposed to suppress the rigid-body motion. Otherwise, the
global stiffness matrix becomes singular .

After obtaining the solution to the nodal displacements of the system equi­
librium equations, the stresses within the element can be determined from

(6.195)

The global stiffness matrix and the load vector require the evaluation of the
integrals associated with the element stiffness matrix and the element nodal
load vector.

6.2.1 Example: One-dimensional Analysis with Line Elements

The application of this approach is demonstrated by computing the displace­
ments and strains in a rod constructed of three concentric sections of differ­
ent materials . As shown in Fig. 6.23, the rod has a uniform cross section and
is subjected to a concentrated horizontal load, P, at the second joint, and the
boundary conditions are specified as ux(x = 0) = 0 and ux(x = L) = O.

The domain is discretized with 3 linear line elements having two nodes, as
shown in Fig. 6.24. The global coordinates of each node in domain Dare
specified by xi ' with i =1,2,3,4 . The nodal values of the dependent variable
associated with element e are specified at its first and second nodes by
u~e) and u~e) , respectively .

I J

For the domain discretized with three elements and four nodes, the local and
global nodes are numbered as shown in Table 6.6.



~ I

FINITE ELEMENT EQUATJONS

~ L I -J~>/414-- L2 ~ 14 L3 -----.j

~ <D (i) p-=+J Q) h
14

Fig. 6.23 A rod constrained at both ends, subjected to a
concentrated force.
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I CD 2 3 4

Fig. 6.24 Finite element discretization of the rod with
three elements.

Table 6.6 Local and global node numbers.

Element
Number Node I Node 2

(e)

I I 2

2 2 3
3 3 4

Within each element, the approximation to the displacement component can
be expressed as

(6.196)

The nodal unknowns and shape functions are denoted by u~e ) and N;e) ,
respectively. In matrix form, the approximate displ acement components can
be expressed as

with

(6.197)

in which the shape functions are

{

u(e)}
N(e)} and U( e) = XI

2 (e)
U

X2

(6.198)
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(e)

N
(e) _ x2 -x, -

x(e) _ X(e)
2 ,

(e)
(e) _ X-X,

and N2 - (e) (e)
x2 -x,

(6.199)

With the approximate form of the displacement components and L =a/ax,
the shape matrix can be obtained from

(6.200)

For a constant cross section, A (e) , and elastic modulus, E(e), in each ele­
ment, the element stiffness matrix is

k(e) = f B(e)TDB(e) dV

v(e)

(6.201)

Substituting for the shape functions, the element stiffness matrix becomes

Ae)
A(e) E(e) f[1k(e) - _=_

(
x (e) _ x(e) )2 -1

2 , x[e)

Integration along the element length results in

(6.202)

A(e) E(e) [1
k(e) -

- ( x~e) _ x~e)) -1

=_a(e) [1 -1]
-1 1

-1]= A(e)E(e)[1 -1]

1 L(e) -1 1
(6.203)

in which L(e) =(x~e) - x~e)) and a(e) =A (e) E(e) / L(e) . The element stiffness

matrices are computed as

(6.204)
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_a(2)]~

a(2) ill

@]

-a(3)] ill
a(3) @]
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(6.205)

(6.206)

The element load vector, p~), due to the unknown nodal forces, Tx and
I

Tx . at nodes i and j, respectively (Fig. 6.25), can be obtained from
)

(6.207)

Evaluating the shape functions results in a load vector of the form

(6.208)

Associated with each element, the load vectors become

(6.209)

The global coefficient matrix, K, and the load vector, PT , are obtained
from the "expanded" element coefficient matrices, k(e), and the element
load vectors, p~) , by summation in the form

-Tx- ..- 0 0 ---+ I;;.
/ • J

i ./
Fig. 6.25 A typical linear line element with two nodes.
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E

and PT =Ip~)
e=\

(6.210)

The "expanded" element matrices are the same size as the global matrix but
have rows and columns of zeros corresponding to the nodes not associated
with element (e). Specifically, the expanded form of the element stiffness
and load vector becomes

(6.213)

(6.212)

(6.211)

o
-T

X2

ill
-T IIIxI W

T
X2

[1J
o []
o @]

ill

o
o

_a(3)

a(3)

o

[]
o

o
o

[1J [] @]
-a(l) 0 0 ill
a(1) 0 0 [1J; (1)_

PT -o 0 []

o 0 @]

@]
o ill

_a(2) 0 [1J; (2)_

PT ­
a(2) 0 []

O@]

@]
o
o

a(3)

-a(3)

o

[1J
o

ill
o
o a(2)

o _a(2)

o

o 0

o 0

ill[1J
o 0

o 0
k(3) =

a(l)

k(l) = -a(1)

o
o

In accordance with Eq. (6.210) and (6.192), the global equilibrium equations
can be written as

a(l) -a(l) 0 0
U

XI
-T

(a(l) +a(2) )

XI

-a(l) _a(2) 0 U
X2

T
X2

-T
X2

= (6.214)
0 _a(2) ( a(2) +a(3) ) _a(3) U

X3
T

X3
+P-T

X3

0 0 _a(3) a(3) )
U

X4
T

X4
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Enforcing the boundary conditions of U
X1

= U
X4

= 0 leads to
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a (l ) -a(l ) 0 0 0 -T
_ a (l ) ( a (l ) + a (2) ) -a(2)

XI

0 U
X2 0= (6.215)

0 _a(2) ( a(2) + a(3) ) _a(3) U
X3

p

_ a (3) a(3) 0 T
X4

0 0

This system of equations can be partitioned in the form

[_:(1)
:]

0
(a(l ) + a (2)) _ a(2)

u x 2

={~} (6.216a)
_ a(2) ( a(2) + a (3) ) u x3

0

or

and

o

[

a o(l ) _a(l ) 0 0 ] UX2 ={-TT
x X41

}

o - a (3) a(3) U
X3

o
or

(6.216b)

(6.217a)

and (6.217b)

Solution to nodal displacements results in

a (2)

U = P
X2 (a(l )a(2) + a(l )a(3) + a (2)a(3))

a(l) + a (2)
U = P

X3 (a(l)a(2 ) + a (l)a(3) + a (2)a(3»)

(6.218)

(6.219)
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With these nodal displacements, the reaction forces are computed as

a (l )a(2)

T = P
XI ( a (1)a (2) +a (l )a (3) +a (2 )a (3) )

a (3) ( a (1) +a (2) )

T = P
X4 ( a(l )a (2) +a (1)a (3) +a (2) a (3) )

Finally, the strains are computed as

(6.220)

(6.221)

(6.222)

(6.223)

(6.224)

6.2.2 Two-dimensional Structural Analysis

The three-dimensional analysis of either "thin" or "long" components sub­
jected to in-plane external loading conditions can be reduced to a two­
dimensional analysis under certain assumptions referred to as "plane stress"
and "plane strain" conditions.

6.2.2.1 Plane Stress Conditions

A state of plane stress exists for thin components subjected only to in-plane
external loading, i.e., no lateral loads (Fig. 6.26). Due to a small thickness­
to-characteristic length ratio and in-plane external loading only, there is no

Fig. 6.26 Thin body with in-plane loading ; suitable for
plane stress idealization.
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out-of-plane displacement component, uz ' and the shear strain components
associated with the thickness direction, Yxz and y yZ' are very small and
assumed to be zero . Therefore, the stress components, azz ' axz ' and a yz '

associated with the thickness direction vanish. Under these assumptions, the
disp lacement, u , stress, a , strain , E , and traction, T, vectors, and material
property matrix , D , reduce to

uT ={ux Uy}

aT ={axx a yy axy}
(6.225)

ET={Cxx Cyy YXy}

TT ={Tx Ty}

and

1 v 0

D =~ v 1 0 (6.226)
I-v2

(I-v)
0 0

2

with

czz =- ~ (axx +a yy ) (6.227)

The initia l strains arising from !i.T , the temperature change with respect to
the reference state, can be expressed as

(6.228)

6.2.2.2 Plane Strain Conditions

A state of plane strain exists for a cylindrical component that is either "long"
or fully constrained in the length directio n under the action of only uniform
lateral external loads (two examples are shown in Fig. 6.27). Because the
ends of the cylindrical component are prevented from deforming in the
thickness direction, it is assumed that the displacement component Uz
vanishes at every cross section of the body. The uniform loading and cross ­
sectional geometry eliminates any variation in the length direction, leading
to o( )/oz=O. Also, planes perpendicular to the thickness directi on before
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<,
z

Fig. 6.27 Long bodies with in-plane loading; suitable for plane
strain idealization.

deformation remain perpendicular to the thickness direction after deforma­
tion . These assumptions result in zero transverse shear strains, Y« =Yyz =O.
Under these assumptions, the displacement, u , stress, a , strain, e , and
traction, T , vectors, and material property matrix, D, reduce to

uT ={ux uy }

a T ={axx ayy axy }
(6.229)

eT ={cxx Cyy Y Xy}

T T ={Tx Ty }

and
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I-v v 0

D=
E

I-v 0 (6.230)v
(1+v)(1- 2v)

(1- 2v)
0 0

2

The initial strain vector due to this temperature change can be expressed as

E*T =[n+v)~T (1+ v)a~T 0] (6.231)

where ~T is the temperature change with respect to a reference state.

The material property matrices for both plane stress and strain conditions
have the same form, and it is convenient to present it in the form

where

1,1 (6.232)

(6.233)

(6.234)

with D, =E/(1-V)z and Dz =V for plane stress, and D, =E(1-v)/
(1+v)(1- 2v) and Dz =v/(I- v) for plane strain.

6.2.2.3 Finite Element Equations with Linear Triangular Elements

The displacement components Ux and u y within a triangular element can be
approximated as

u(e) =ii(e) =N(e)u(e) +N(e)u(e) +N(e)u(e)
x x 'Xl Z Xz 3 x3

u(e) = ii(e) = N(e)u(e) +N(e)u(e) + N(e)u(e)
y y 1 y, Z yz 3 Y3

in which N}e) , N(e) , and Nje) are the linear shape functions and
( u (e) u(e» (u(e) u(eJ) and (u(e) u(e» are the nodal unknowns (degrees of
x'y' x'y' x'y

fre~dom) assocIated
Z

with first, \ecdnd, and third nodes, respectively. An
example of a triangular element with its nodal degrees of freedom and local
nodal numbering is shown in Fig. 6.28. In matrix form, the approximate
displacement components become

(6.235)
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y

l...---- - ------+ x

Fig. 6.28 Typical linear triangular element with nodal
degrees of freedom.

in which

ii(e)T ={u~e ) u~e ) }

and

N (e)T =[~I 0 N2 0 N3

~JNI 0 N2 0

and

U (e)T ={u (e) u (e) u (e) u (e) u (e) u(e) }
Xl Yl Xz Yz X3 Y3

The element shape matrix, B (e) , becomes

aNI
0

aN2 0
aN3 0

ax ax ax

B (e) = 0 aNI
0

aN2 0
aN3

ay ay ay
aNI aNI aN2 aN2 aN3 aN3

ay ax ay ax ay ax

(6.236)

(6.237)

(6.238)

(6.239)

Substituting for the derivatives of the shape functions, this matrix simplifies
to

[y
(e)
23

B(e) =_1_ 0
2~(e )

x(e)
32

o
x(e)

32

Y
(e)
23

Y
(e)
31

o
x(e)

13

o
x (e)

13

Y
(e)
31

Y
(e)
12

o
x (e)

21

(6.240)
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Both the element shape and material property matrices are independent of
the spatial coordinates, x and y, thus leading to the evaluation of the element
stiffness matrix, k(e) , as

(6.241)

where Vee) =t!::'(e), with element area !::.(e) and constant thickness t. The
evaluation of the load vectors, p~e) and p¥) , arising from the body forces
and surface tractions (forces), respectively, involve integrals of the form

fd.x dy, fxd.x dy, fy d.x dy (6.242)

By choosing the centroid of the triangle as the origin of the (x, y) coor­
dinate system, the integrals involving either x or y in the integrand vanish.
The load vector arising from the body forces can be obtained from

N) 0 N) bx

0 N) N1 by

pee) _ Nz 0 {:: }dV ~
Nz s,

dVb -
0 Nz Nz by

N3 0 N3 bx

0 N3 N3 by
v(e) v(e)

reducing to

(6.243)

(6.244)
(e)T _ t!::'(e) [ ]

Pb --3- bx by bx by s, by

in which bx and byare the components of the body force vector.

The evaluation of the element load vector due to the applied traction forces
(distributed loads as shown in Fig. 6.29) requires their explicit variation
along the edges of the element. For an element of constant thickness
subjected to uniform load of Tx in the x-direction along its 1-2 edge, the
vector p¥) can be written as
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2

3

Fig. 6.29 Surface force along side 1-2 of the triangular element.

NI 0 NI r,
0 NI 0

p~) =t NZ 0 {~}dl =t
NZ t; dl (6.245)

0 Nz 0

0 0 0

0 0 0

l-i-i Lt-z

in which N3 =0 along the 1-2 edge and ~-z is the length of the 1-2 edge .
Since NI and Nz vary linearly along the 1-2 edge, they can be expressed
in terms of the natural coordinates, r;1 and r;z' as derived in Chap. 3

i e) -xN -;: - ---=..z__
I - "'I - (e) (e)

Xz -XI

x-ie)

and Nz =r;z =x(e) _ ~(e)
Z I

(6.246)

The integrals in the expression for p~) are evaluated as

,
f N, Txdl =f r;, Tx~-zdr;,

Lt-z 0,
f NzTxdl = f r;z Tx~-zdr;z

Lt-z 0

Thus, the load vector, p~) , takes the form

(6.247)
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(6.248)

as illustrated in Fig. 6.30.

Note that this result corresponds to equivalent point forces acting at the first
and second nodes. The element load vectors arising from the initial strains
and stresses can be written as

p(: ) =B (e)T De* V (e)
e

p (e! =B (e)Ta* V (e)
a

(6.249)

6.2.2.4 Example ofa Plane Stress Analysis with Linear Triangular
Elements

6.2.2.4.1 Derivation ofa System ofEquations and Its Solution

Using linear triangular elements, determine the nodal displacements and the
element stresses in a thin plate subjected to displacement constraints and
surface tractions as shown in Fig. 6.31. Also, the plate is exposed to a
temperature change of 10 °C from the reference temperature. The plate
thickness is 0.5 em and the Young's modulus , E , and the Poisson's ratio,
v, are 15x 106 N/cm2 and 0.25, respectively. The coefficient of thermal
expansion is 6xl0-6 F'C,

In order to illustrate the solution method, the plate is discretized into two
triangular elements, as shown in Fig. 6.32.

The global coordinates of each node are specified by (x p r yp), with
p =1,2,3,4 , and are presented in Table 6.7.

22

3 3

Fig. 6.30 Equivalent nodal forces for the surface force
along side 1-2 of the triangular element.
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y 600 N/cm'

Zcm

3cm

x

Fig. 6.31 Geometry and loading of the problem.

0---02

r

0----0---..1:
I 2 I 2 1

Fig. 6.32 Global and local numbering of nodes and elements.

Table 6.7 Global nodal coordinates.

Global Node Nodal Nodal
Number Coordinates Unknowns

1 (0,0) Ux, ,u
YI

2 (2,0) U
X2

, U
Y2

3 (2,3) »; ,u Y3

4 (1,3) U
X4

,u
Y4
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The global unknown nodal displacement vector is given by

257

(6.250)

Considering the correspondence between the local and global node num­
bering schemes, the elements are defined (connected) as shown in Table 6.8.

The areas of each element are calculated to be

(6.251)

Under plane stress assumptions, the material property matrix becomes

r
16

4 OJD=106 4 16 0 N/cm2

o 0 6

The initial strains arising from the temperature change is written as

The element load vectors arising from the applied tractions are

p~)T = t Tx ~-4 [1 0 0 0 1 0]
2

p~)T = t Ty L:3-4 [0 0 0 1 0 1]
2

(6.252)

(6.253)

(6.254)

(6.255)

With the specified values of the thickness and the distributed loads, these
element load vectors become

and

p~)T = 300vliO[1 0 0 0 1 O]N

p~)T =-150[0 0 0 1 0 I]N

Table 6.8 Element connectivity.

Element
Number Node 1 Node 2 Node 3

(e)

1 1 2 4

2 2 3 4

(6.256)

(6.257)
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For the first element, e =1, the components of the element shape matrix
B(1) are computed as

Y(1) _ y(1) _ y(1) - y - y --3
23 - 2 3 - 2 4 - ,

Y(1) - y(1) _ y(1) - y - y - 3
31 - 3 I - 4 1-'

Y( I ) - y(1) _ y(1) - y - y - 0
12 - I 2 - I 2 - ,

leading to

X(1) -x(1) -x(1) -x -x --1
32 - 3 2 - 4 2 -

X(1) -x(1) -x(l) -x -x --1J3-1 3-\ 4-

X(l ) - x(l) - x(l) - x - x - 2
21 - 2 I - 2 1-

~1 ~ ~1 ~ ~]
-3 -1 3 2 0

(6.258)

(6.259)

For the second element, e =2 , the components of the element shape matrix
B(2) are computed as

Y( 2) _ y(2) _ y(2) - Y _ Y - 0
23-23-34-'

Y(2) _ y(2) _ y(2) - Y _ Y - 3
31 - 3 I - 4 2 - ,

Y(2) _ y(2) _ y(2) - Y _ Y --3
12 - 1 2 - 2 3 - ,

leading to

X(2) - x(2) - x(2) - x - x --1
32 - 3 2 - 4 3 -

x[j) =x[2) - xf) =x2 - x4 =1 (6.260)

X(2) - x(2) - x(2) - X - X - 0
21 - 2 1 - 3 2 -

(6.261)

The evaluation of the stiffness matrices, k(1) and k(2) , requires the products
of B(1)TD and B(2)TD. Also, these products appear in the evaluation of the
element load vectors arising from the temperature change. Therefore,

-48 -12 -6

-4 -16 -18

B(l)TD =10
6 48 12 -6

(6.262)
6 -4 -16 18

0 0 12

8 32 0
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0 0 - 6

- 4 - 16 0

B(2)TO = 10
6 48 12 6

3 4 16 18

-48 - 12 0

0 0 - 18

The element stiffness matrices become

259

(6.263)

Ii =11

75 15

15 35

k (l) =10
6

-69 3
12 -3 -19

- 6 -18

- 12 - 16

and

Ii =21

6 0

o 16

k (2) =106 - 6 - 12
12 - 18 - 16

o 12

18 0

!J=21
- 69 -3

3 -19

75 -15

-15 35

-6 18

12 -16

IJ=31
-6 -18

-12 -16

150 30

30 70

- 144 - 12

-18 -54

Ik = 41

-6 -12

-18 - 16

- 6 12

18 -16

12 0

o 32

Ik=41
o 18

12 0

-144 -18

-12 - 54

144 0

o 54

(6.264)

(6.265)

The boxed numbers above each column pair indicate the nodal order of
degrees of freedom in each element stiffness matrix.

The thermal load vectors associated with each element are obtained as

-900 0

-300 -300

p(l) = 900 p(2) = 900
N and N (6.266)

l/ - 300 eO 300

0 -900

600 0



260 FEM WITH ANSYS®

Rewriting the element stiffness matrices and the load vectors, in the
expanded order and rearranged form according to the increasing nodal
degrees of freedom of the global stiffness matrix , K yields

Associated with the first element:

m III Q] I1l
75 15 -69 - 3 0 0 -6 -12
15 35 3 -19 0 0 -18 -16

-69 3 75 -15 0 0 -6 12

k (l) =10
6 -3 -19 -15 35 0 0 18 -16

12 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
- 6 -18 -6 18 0 0 12 0
-12 -16 12 -16 0 0 0 32

(6.267)

1

o
o

PT(I ) =300M 0 N and p(I) =o c*

o
1

o

-900
- 300
900

- 300
o
o
o

600

N (6.268)

Associated with the second element:

m III Q] I1l
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 6 0 -6 -18 0 18

k (2 ) =10
6 0 0 0 16 - 12 -16 12 0 (6.269)

12 0 0 -6 -12 150 30 -144 -18

0 0 - 18 -16 30 70 -12 - 54

0 0 0 12 -144 -12 144 0

0 0 18 0 -18 -54 0 54
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0 0

0 0

0 0

p!i) =- 150
0 p (2) = - 300

N and N
0 e* 900

1 300

0 -900

1 0

Summation of the element stiffness matrices

and load vectors

£=2

p =I (p~) + p~~»)
e=1

resu lts in the global stiffness matrix and the global load vector as

261

(6.270)

(6.271)

(6.272)

75 15 - 69 -3

15 35 3 - 19

-69 3 (75 + 6) - 15

106 -3 -19 - 15 (35 + 6)
K=-

12 0 0 - 6 -12

0 0 -18 - 16

- 6 -18 - 6 (18+12)

-12 - 16 (12+ 18) - 16

0 0 - 6 -12

0 0 - 18 -16

-6 - 18 -6 (12+ 18)

- 12 -16 (18+ 12) -16

150 30 - 144 -18
6.273)

30 64 -12 -48

-144 -12 (12+ 144) 0

-18 -48 0 (32 + 48)
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and
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p=

(30000 - 900)

-300

900

(-300 - 300) N

900

(-150+300)

(30000 - 900)

-150+600

(6.274)

The final form of the global system of equations becomes

75 15 -69 - 3 0 0 - 6 - 12

15 35 3 -19 0 0 -18 -16

-69 3 (75 + 6) -15 -6 -18 -6 (12+ 18)

106 -3 -19 -15 (35 + 6) -12 -16 (18+ 12) - 16
-
12 0 0 -6 -12 150 30 -144 - 18

0 0 -18 -16 30 70 - 12 -54

-6 -18 - 6 (18+ 12) -144 - 12 (12+144) 0

- 12 -16 (12+ 18) -16 -18 -54 0 (32+54)

U
X1 (30000 - 900)

u
Y1 -300

U
X1 900

u
Y1 (- 300 - 300)

(6.275)x =
U

X3
900

u
Y3

(- 150 +300)

U
X4

(30000 -900)

u
Y4

-150+600

Applying the prescribed values of the displacement components leads to
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75 15 -69 -3 0 0 -6 -12
15 35 3 -19 0 0 -18 -16

-69 3 (75+6) - 15 -6 - 18 -6 (12+18)

106 -3 -19 - 15 (35+6) -12 -16 (18+12) -16
-
12 0 0 -6 -1 2 150 30 -144 -18

0 0 -18 -16 30 70 -1 2 -54
-6 -1 8 -6 (18+12) -144 -12 (12+144) 0
-12 -16 (12+18) -16 -18 -54 0 (32+54)

«, (300M - 900)
0 -300
0 900
0 (- 300- 300)

x
0

(6.276)
900

u
Yl (-150+ 300)

»; (300M - 900)
u

Y4
- 150+600

Eliminating the rows and columns corresponding to zero displacement
components simplifies the global system of equations to

The solution to this system of equations results In the values for the
unknown displacement components as

Ux, 0.0000357839

u
Y3 0.000157003

= cm (6.278 )
UX4

0.00001 71983

u
Y4

0.000166367
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6.2.2.4.2 ANSYS Solution
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The nodal displacements of the plate subjected to uniform temperature can
also be obtained using ANSYS . The solution procedure is outlined as
follows :

MODEL GENERATION

• Specify the element type (ET command) using the following menu path:

Main Menu> Preprocessor> Element Type> Add/Edit/Delete

• Click on Add.
• Select Structural Solid from the left list and Quad 4node 42 from the

right list; click on OK.
• Click on Options.
• In order to specify the 2-D idealization as plane stress with thickness, in

the newly appeared dialog box pull down the menu for Element
behavior K3 and select Plane strs w/thk; click on OK (Fig. 6.33).

• Click on Close.

• Specify real constants (R command) using the following menu path:

Main Menu> Preprocessor> Real Constants> Add/Edit/Delete

• Click on Add.
• Click on OK.
• Enter 5e-3 for Thickness THK; click on OK.
• Click on Close.

• Specify material properties (MP command) using the following menu
path:

Main Menu> Preprocessor> Material Props>Material Models

• In the Define Material Model Behavior dialog box, in the right window,
successively double-click on Structural, Linear, Elastic, and, finally ,
Isotropic, which will bring another dialog box.

• Enter 150e9 for EX, and 0.25 for PRXY; click on OK.
• In the Define Material Model Behavior dialog box, in the right window,

under Structural find Thermal Expansion, Secant Coefficient, and
Isotropic, which will bring another dialog box (Fig . 6.34) .

• Enter 6e-6 for APLX; click on OK.
• Close the Define Material Model Behavior dialog box by using the

following menu path:

Material> Exit
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~ PlANE42 element type options

Optionsfor PLANE42,Element TypeRef. No.1

265

Element coordsystemdefined K1

Extra displacement shapes K2

Element behavior K3

Extra stressoutput KS

Extra surfaceoutput KG

OK Cancel

IParall to Qlobal iJ

IInclude ~

INo extra output

INo extra output

Help

Fig. 6.33 Specification of element options .

~Oefine Mate ria l Mad el Aehaviar Q[g]~

Matcriol ModcI' Avoilable ----------,

Material Edt Falo'Ol1te Help

Mater10l Mode~ Defined ------,

rSMotcriol ModcI f.l.Jmber I

@ Une..-lsolrapic

(i!J Fovorit:cs

~ Slructur~

mLinear

mNonInear

~ Den, t y

~ 1l'ermalExpansm

~ SecantCoefficiert

~ I!l!!lIl
~ Orthotrape

1&1 Insl dfltdl1tDJS c oef liclenl

~ Thermal9c,oU1
0o~'

J
.:::J

~

Fig. 6.34 Specification of material behavior.

• Create nodes (N command) using the following menu path:

Main Menu> Preprocessor> Modeling> Create> Nodes> InActive CS

• A total of 4 nodes will be created (Table 6.7).
• Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to

convert the coordinates to meters) , and Click on Apply. This action will
keep the Create Nodes in Active Coordinate System dialog box open. If
the Node number field is left blank, then ANSYS will assign the
lowest available node number to the node that is being created.

• Repeat the same procedure for the nodes 2 through 4.
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• After entering the x- and y-coordinates of node 4, click on OK (instead
of Apply).

• The nodes should appear in the Graphics Window, as shown in Fig.
6.35 .

• Create elements (E command) using the following menu path:

Main Menu> Preprocessor> Modeling> Create> Elements> Auto Numbered> Thru Nodes

• Pick Menu appears; refer to Fig. 6.36 to create elements by picking
three nodes at a time and clicking on Apply in between.

• Observe the elements created after clicking on Apply in the Pick Menu.
• Repeat until the last element is created .
• Click on OK when the last element is created .

• Review elements:

• Turn on element numbering using the following menu path :

Utility Menu> PlotCtrls >Numbering

• Select Element numbers from the first pull-down menu; click on OK.
• Plot elements (EPLOT command) using the following menu path:

Utility Menu> Plot>Elements

• Figure 6.36 shows the outcome of this action as it appears in the
Graphics Window.

• Turn off element numbering and turn on node numbering using the
following menu path:

Utility Menu> PlotCtrls >Numbering

• Place a checkmark by clicking on the empty box next to NODE Node
numbers.

• Select No numbering from the first pull-down menu.
• Click on OK.
• Plot nodes (NPLOT command) using the following menu path:

Utility Menu> Plot>Nodes

• Figure 6.35 shows the outcome of this action as it appears 10 the
Graphics Window.
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Fig. 6.35 Generation of nodes.

SOLUTION

Fig. 6.36 Generation of elements.

• Apply displacement boundary conditions (D command) using the follow­
ing menu path:

Main Menu> Solution> Define Loads> Apply>Structural> Displacement> On Nodes

• Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal
boundary (Fig. 6.35) and click on OK on Pick Menu.

• Highlight UYand enter 0 for VALUE; click on Apply.
• Pick Menu reappears; pick nodes 2 and 3 along the right vertical

boundary (Fig. 6.35) and click on OK on Pick Menu.
• Highlight UX and remove the highlight on UY; enter 0 for VALUE;

click on OK.

• Apply force boundary conditions on nodes (F command) using the fol­
lowing menu path:

Main Menu> Solution> Define Loads> Apply>Structural> Force/Moment> On Nodes

• Pick Menu appears; pick nodes 1 and 4 along the slanted boundary;
click on OK.

• Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.37).
• Click on Apply .
• Pick Menu reappears; pick nodes 4 and 3 along the top horizontal

boundary; click on OK.
• Pull down the menu for Direction offorce/mom and select FY; Enter

-150 for VALUE; click on OK.

• Apply thermal load (TUNIF command) using the following menu path:

Main Menu> Solution> Define Loads> Apply>Structural> Temperature> Uniform Temp

• Uniform Temperature dialog box appears; Enter 10 for Uniform
temperature .

• Click on OK.
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Apply FlM on Nodes :,~ I
[F] Apply Force/Moment on Nodes

Lab Directionof force/mom

Apply as

If Constant value then:

IIALUE Force/moment value

Apply Cancel

IConstant value

13e3* sqrt(O,I )

Help

Fig. 6.37 Application of external loads.

• Obtain solution (SOLVE command) using the follow ing menu path :

Main Menu> Solution> Solve> Current LS

• Confirmation Window appears along with Status Report Window.
• Review status. If OK, close the Status Report Window and click on OK

in Confirmation Window.
• Wait until ANSYS responds with Solution is done!

POSTPROCESSING

• Review deformed shape (PLDISP command) using the following menu
path:

Main Menu> General Postproc > Plot Results> Deformed Shape

• In the Plot Deformed Shape dialog box, choose the radio-button for Def
+ undef edge; click on OK.

• The deformed shape will appear in the Graphics Window, as shown in
Fig. 6.38.

• Review displacement values (PRNSOL command) using the following
menu path:

Main Menu> General Postproc > ListResults> Nodal Solution

• Highlight DOF solution on the left list and All DOFs DOF on the right
list; click on OK.

• The list will appear in a new window, as shown in Fig. 6.39.
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Fig. 6.38 Deformed configuration.

M PRNSOL Command iRl
Fde

I PRINT DOF NODAL SOLUTI ON PER NODE

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1
TIME- 1.0000 LOAD CASE- ~0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IH GLOBAL COORDINATES

NODE UX UV
1 0.35784E-06 0.0000
2 0.0000 0.0000
3 0.0000 0.15700E-05
4 0.17198E-06 0.16637E-05

MAXIMUM ABSOLUTE UALUES
HODE 1 4
UALUE 0.35784E-06 0.16637E-05

Fig. 6.39 List of nodal displacements.
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(6.279)

6.2.2.5 Finite Element Equations with Linear Quadrilateral
Isoparametric Elements

The displacement components Ux and u y within a quadrilateral element can
be approximated as

u(e) =u(e) =N(e)u(e) + N(e)u(e) + N(e)u(e) + N(e)u(e)
x x 1 4 2 ~ 3 ~ 4 ~

u(e) =u(e) =N(e)u(e) + N(e)u(e) + N(e)u(e) + N(e)u(e)
y y 1 YI 2 Y2 3 Y3 4 Y4

in which N}e) , N~e), Nje) , and N~e) are the linear shape functions and
(u(e) ,u(e») , (u(e) ,u(e»), (u(e) ,u(e»), and (u(e) ,u(e») are the nodal

XI YI X2 Y2 X3 Y3 X4 Y4
unknowns (degrees of freedom) associated with first, second, third, and
fourth nodes, respectively. The shape functions for the linear (straight-sided)
quadrilateral shown in Fig. 6.40 are defined in terms of the centroidal or
natural coordinates, (~,17), as
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IJ

y

L , 11 = -I
(:= 1

Fig. 6.40 Variation of the natural coordinates in a typical
quadrilateral element.

(6.280)

where ~p and 1]p represent the coordinates of the comer nodes in the
natural coordinate system, (~I =-1,1]1 =-1), (~z =1,1]z =-1),
(~3 =1,173 =1) , and (~4 =-1,1]4 =1).

In matrix form , the approximate displacement components become

ii(e) =N (e)T U (e ) (6.281)

in which

ii (e)T ={ii~e ) ii ~e) } (6.282)

and

N(e)T =[~I 0 Nz 0 N3 0 N4

~JN( 0 Nz 0 N3 0
(6.283)

and

u (e)T ={u(e) u (e) u (e) u (e) u (e) u (e) u (e) u
y
(e

4

) } (6.284)
~ ~ ~ h ~ h ~

The element shape matrix B (e) can be expressed as

B (e) =LN(e)T

in which the differential operator matrix is

(6.285)
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a
0-

ax

L= 0
a

-
ay

a a- -
ax ay

The element shape matrix can be rewritten as

aNI
0

aN2 0
aN3 0

aN4 0
ax ax ax ax

B(e) = 0
aNI

0
aN2 0

aN3 0
aN4

ay ay ay ay

aNI aNI aN2 aN2 aN3 aN3 aN4 aN4

ay ax ay ax ay ax ay ax

271

(6.286)

(6.287)

However, the shape functions are defined in terms of the centroidal or
natural coordinates, (~,ll) . Therefore, they cannot be differentiated directly
with respect to the x- and y-coordinates. In order to overcome this difficulty,
the global coordinates are expressed in terms of the shape functions in the
form

4

X =INp (~, ll)xp
p=1

4

and y =INp (~ , ll)Yp
p =1

(6.288)

With this transformation utilizing the same shape funct ions as those used for
the displacement components, the concept of isoparametric element
emerges, and the element is referred to as an isoparametric element.

with p =1,2,3,4

The derivatives of the shape function s can be obtained as

aNp aNp a~ aNp all--=----+----
ax a~ ax all ax

aNp aNp a~ aNpall
- -=-- - - +--- -

ay a~ ay all ay

(6.289)

(6.290)p =1,2,3,4with

Application of the chain rule of differentiation yields

aNp aNp ax aNp ay
- -= - - - - +- - --
a~ ax a~ ay a~

aNp aNp ax aNp ay
--=----+----
all ax all ay all
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In matrix form, it can be expressed as
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(6.291)

where J is called the Jacobian matrix, whose inverse does not exist if there
is excessive distortion of the element leading to the intersection of lines of
constant ~ and 17 inside or on the element boundaries, as illustrated in Fig.
6.41. If the quadrilateral element is degenerated into a triangle by increasing
an internal angle to 1800

, then J is singular at that comer. It is possible to
obtain the element stiffness because J is still unique at the Gaussian inte­
gration points. However, the stresses at that comer are indeterminate. A
similar situation occurs when two adjacent comer nodes are made coinci­
dent to produce a triangular element. Therefore, any internal angle of each
comer node should be less than 1800

, and there is a loss of accuracy as the
internal angle approaches 1800

•

In the absence of excessive distortion, the transformation between the
natural and global coordinates has a one-to-one correspondence and r '
inverse exists . It can be expressed as

- ~;]
ax
a~

(6.292)

where the determinant of the Jacobian matrix is

in which

(6.293)

~= - I -

~ = -t ~=o ~ =+

Fig. 6.41 Internal angle exceeding 180°.
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(6.294 )

Substituting for the derivatives and rearranging the terms permit the
Jacobian to be rewritten in the form

aNI aNz aN3 aN,] xI Yt

J=
a~ a~ a~ a~ Xz Y2
aNI aNz aN3 aN4 x3 Y3
a'7 a'7 a'7 a'7 x4 Y4

or

xI YI
1[ - (1- '7) (1- '7) (1+ '7) - (1+ '7)] Xz Y2J=-
4 - (1-¢') - (1+ ~) (1+ ~) (1 -~) x3 Y3

x4 Y4

Its determinant can be expressed in the form

0 1- '7 -~+'7 -1+~ YI
1

x4]
-1 + '7 0 1+~ -~ - '7 Yz

IJI =-[xi Xz x3
~-'7 -1-~ 0 1+ '78 Y3
1-~ ~+'7 - 1- '7 0 Y4

(6.295)

(6.296)

(6.297)

In a concise form, the determinant can be also rewritten as

where

Xij =xi - Xj and Yij =Yi - Yj (6.299)
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Determination of the inverse of the Jacobian matrix permits the expression
for the derivatives of the natural coordinates in terms of the global coor­
dinates, x and Y

and

- aY11a~)a~ a~

ax a~- -
a~ a1]

-~;]l~;)ax a1]
- -
a~ a1]

(6.300a)

(6.300b)

By substituting for the derivatives of the global coordinates in terms of the
natural coordinates, these expressions can be rewritten as

and

and

(6.301)

with p =1,2,3,4 (6.302)

Finally, the derivatives in the shape matrix becomes

aNp=~{aNp ±aNq _aNp±aNq }
ax IJI a~ q=\ a1] Y

q a1] q=\ a~ Y
q

aNp=~{_ aNp±aNq x + aNp±aNq x }

ay IJI a~ q=\ a1] q on q=\ a~ q

These explicit expressions for the derivatives appearing in the element shape
matrix permit the determination of the element stiffness matrix, k(e),

defined as

k(e) = f B(e)TDB(e) dV

v(e)

(6.303)

in which V(e) =tf!.(e) , with f!. (e) and t representing the element area and
constant element thickness. It can be rewritten in the form
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k(e) =t f B(e)TDB(e) dA

fj,(e )
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(6.304)

The material property matrix D is usually independent of the spatial coor­
dinates, x and y, while the element shape matrix B(e) requires differentiation
of the shape functions with respect to x and y. In order to overcome this
difficulty, the integrals are evaluated over a square region in the natural
coordinate system, with the transformation of coordinates given by

4

X =INp(~,17)xp
p=1

4

and y =INp(~,17)Yp
p=1

(6.305)

With this transformation and utilizing the following relation

1 1

ffdxdY = f fIJld~d17
A -I -I

the element stiffness matrix, k(e) , can be rewritten as

1 1

k(e) =t f fB(e)T DB(e) IJld~d17

-1-1

(6.306)

(6.307)

(6.308)

Due to the difficulty of obtaining analytical expression for the determinant
and inverse of the Jacobian matrix, these integrals are evaluated numerically
by the Gaussian integration technique . The element stiffness matrix can be
evaluated numerically as

p Q
k(e) =tI I WpWqB(e)(~p,17q)T DB(e)(~p'17q)1 J(~p,17q)1

p=1 q=1

in which wp and wq are the weights and ~p and 17q are the integration
points of the Gaussian integration technique explained in Sec. 3.6. For this
quadrilateral isoparametric element, P =2 and Q=2 are sufficient for
accurate integration .

For an element of constant thickness subjected to a uniform load of Tx and
T-x in the x- and y-directions, respectively, along its 1-2 edge, the vector
p¥) , arising from tractions can be written as



276 FEM WITH ANSY~

N1 0 N( r,

0 N1
N( Ty

N 2 0 N 2 t;

p¥ ) = t
0 N 2 {i, }dl zz ]

N 2 Ty
dl (6.309)

NJ 0 NJ t;
0 NJ NJTy

N4 0 N4 t;
0 N4 N4 Ty

~-2
~-2

Referring to Fig . 6.40, along the 1-2 edge whose length is ~-2 ' the
coordinate TJ has a constant value of - 1 and ~ varies between - 1 and 1,
leading to

N1 t;
N1 Ty

N 2 r,

p¥ ) =t ~-2
N2 Ty

d~
2 NJ t;

NJTy

N4 t;
N4 Ty

-(

Along ~ = - 1 to 1 and TJ = -1,

1 1
N( ="4(l-~)(l-TJ)="2(l-~)

1 1
N2 = "4(l +~)(l- TJ) = "2 (l +~)

1
NJ = - (l +~)(l + TJ ) = 0

4
1

N4 = - (l - ~)(1 +TJ) = 0
4

The integrals in the expression for p¥ ) are eva luated as

(6.310)

(6.311)
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1 1

t~-2 fN Td;:=t~-2 fO - ;:)Td;:= t~-2T
2 Ix ':> 4 ':> X':> 2 x

- I - I

and

1 1 .

t ~-2 fN T d~ = t ~-2 fO +~)T d~ = t ~-2 T
2 2 y 4 y 2 Y

- 1 - I

Thus , the load vector, p¥ ) , takes the form

P(e)T =t ~-2 [T T T Ty 0 0 0 OJ
T 2 x y x
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(6.312)

(6.313)

(6.314)

Note that this result implies that the applied load is distributed equally at the
first and second nodes of the 1-2 edge. This is a result of the linear variation
of the shape function along the edges.

As carried out in the derivation of the element stiffness matrix , the load
vectors due to body forces, initial strains , and initial stresses can be
rewritten as

I I

p~e ) =t f f N(e)bIJl d~d1J
-I - I

1 1

p~~) =t f fB(e)TDE* IJld~d1J
- I - I

I I

P~: =t f fB (e)TG*IJld~d1J
- I - I

(6.315)

(6.316)

(6.317)

(6.318)

Application of the Gaussian integration technique leads to the evaluation of
these load vectors in the form

P Q

p~e ) =tI I wp wqN(e) (~p, 1Jq) b l J(~p,1Jq )1
p=1 q=l

P Q

p~~) =tI IWpwqB(e ) (~p ,1Jq lDE* IJ(~p ,1Jq )1
p=1 q=1

P Q
P~: =tI I WpWqB(e)(~p, 1Jql G * IJ (~p '1Jq ) 1

p=1 q=1

(6.319)

(6.320)
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in which wp and wq are the weights and ~p and 1Jq are the integration
points of the Gaussian integration technique .

6.2.2.6 Example ofa Plane Stress Analysis with Linear Quadrilateral
Isoparametric Elements

6.2.2.6. J Derivation ofa System ofEquations and Its Solution

The previous example discussed in Sec. 6.2.2.4 is reconsidered to compute
the nodal displacements and the element stresses. In order to illustrate the
finite element solution method, the plate is discretized into one quadrilateral
isoparametric element, as shown in Fig. 6.42.

The global coordinates of each node are specified by (x p' yp), with
p =1,2,3,4, and are tabulated in Table 6.9.

The global unknown nodal displacement vector is given by

(6.321)

Considering the correspondence between the local and global node
numbering schemes the elements are defined in Table 6.10.

y

3

.r

I 2

Fig. 6.42 Local numbering scheme of the FEM discreti­
zation with a quadrilateral element.

Table 6.9 Global nodal coordinates.

Global
Node

Number

1

2
3

4

Nodal
Coordinates

(XI =O' YI =0)

(x 2 =2, Y2 =0)

(x 3 =2, Y 3 =3)

(x, = l' Y4 = 3)

Nod al

Unknowns

«, ,uy,

ux"uy,

ux) ,uYl

U
X4

,U
Y4
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Table 6.10 Element connectivity.

Element
Number Node 1 Node 2 Node 3 Node 4

(e)

1 1 2 3 4

279

For this element, e =1, the coefficients of the Jacobian matrix are deter­
mined from

ax 1
- = -{-(I-ll)(xi = 0) + (I-ll)(xz = 2) + (I + ll)(x3 = 2)
af 4

1
- (1+ ll)(x4 = I)} = - (3 -ll)

4
ay 1
-=-{-(l-ll)(YI =O)+(l-ll)(Yz =0)+(l+ll)(Y3 =3)
af 4

-(l+ll)(Y4 =3)}=0

ax 1
- = -{-(1- f)(xi = 0) - (I + f)(xz = 2) + (I + f)(x3 = 2)
all 4

1
+(I-f)(x4 =I)}=-(l-f)

4
ay 1
-=-{-(I-f)(YI =O)-(I+f)(Yz =0)+(I+f)(Y3 =3)
all 4

6
+(I-f)(Y4 =3)=­

4

leading to the Jacobian matrix given by

with its determinant

3IJI =-(3-7])
8

The inverse of the Jacobian matrix becomes

(6.322a)

(6.322b)

(6.322c)

(6.322d)

(6.323)

(6.324)
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[_4 0]
-I (3-7])

J = 2(l-~) ~
3(3-7]) 3
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(6.325)

The determinant of the Jacobian matrix can be also determined from

in which

X31 = x3 - xI = 2

Y31 =Y3 - YI =3

Y42 =Y4 - Y2 =3

x42 =x4 - x2 =-1

X43 =X4 - x3 =-1

Y43 =Y4 - Y3 =0

X21 =X2 -XI =2

Y21 =Y2 - YI =0

X32 = x3 - x2 = 0

Y32 =Y3 - Y2 =3

x41 =x4 -xI =1

Y41 =Y4 - YI =3

(6.327)

Substituting for the following derivatives

permits the derivatives of the shape functions as

(6.328)

dNp _ 8 {_~ dNp } 4_ dNp

dX 3(3+7]) 4 d~ (3+7]) d~

dNp 2(1+~) dNp 2 dNp
--= ----

dy 3(3 + 7]) d~ 3 d7]

with p =1,2,3,4 (6.329)

Thus, the components of the element shape matrix, B(l) are computed as
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aNI (1-rJ)
- = --- ,ax (3 -rJ)

aN3 (1+rJ) aN4 (l+rJ)
-=- -, - =---ax (3-rJ) ax (3 -rJ)

aNI 1 (1- ¢) aN2 (2 +~ - rJ)
- =---- , - = ,
ay 3 (3-rJ) ay 3(3-rJ)

aN3 (1 +2~ -rJ) aN4 2(1-~)
-= , -=
ay 3(3- rJ) ay 3(3 - rJ)

(6.330)

(1 - rJ )
0

(1 - rJ )
0--- ---

(3 - rJ) (3 - rJ )

B(l) = 0
1 (1-~)

0
(2+~-rJ)

- - - -
3 (3 -rJ) 3(3 - rJ)

_~ (1-~) (1-rJ) (2+~-rJ) (1-rJ)
--- - - -

3 (3 - rJ) (3 - rJ) 3(3 - rJ) (3 - rJ)
(6.331)

(1 +rJ)
0

_ (1+rJ)
0

(3 - rJ) (3 - rJ )

0
(1+2~-rJ)

0
2(1-~)

3(3 - rJ) 3(3-rJ)

(1+2~-rJ) (1+rJ) 2(1 -~) (1 + rJ)---
3(3- rJ) (3 - rJ) 3(3-rJ) (3 - rJ)

Under plane stress assumptions, the material property matrix, D becomes

[

16 4 01
D = 106 4 16 0 Nlcm 2

o 0 6

The element stiffness matrix, k(l) , is computed as

(6.332)
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4.8666

0.76713

-4.3666

0.23287

-2.7668

-0.96574

2.2668

-0.034264

0.76713

2.3545

0.73287

-1.0211

-0.96574

-1.1244

-0.53426

-0.20891

-4.3666

0.73287

5.3666

-1.7329

2.2668

-0.53426

-3.2668

1.5343

0.23287

-1.0211

-1.7329

3.6878

-0.034264

-0.20891

1.5343

-2.4578
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(6.333)
-2.7668

-0.96574

2.2668

-0.034264

6.9663

0.56853

-6.4663

0.43147

-0.96574

-1.1244

-0.53426

-0.20891

0.56853

3.5845

0.93147

-2.2512

2.2668

-0.53426

-3.2668

1.5343

-6.4663

0.93147

7.4663

-1.9315

-0.034264

-0.20891

1.5343

-2.4578

0.43147

-2.2512

-1.9315

4.9178

The initial strains arising from the temperature change are included in the
vector e* as

(6.334)

The element load vectors, p~)1-4 and p~)3-4' arising from the applied
tractions are

(6.335)

(6.336)

With the specified values of the thickness and the distributed loads, these
element load vectors become

(6.337)

(6.338)
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The element load vector from all the applied tractions is

283

(I) (I)
PT 1-4 +PT 3-4 =

30000

o
o
o
o

-150

30000

-150

N (6.339)

The thermal load vector of the element, p(I} , is obtained as
e

-900

- 300

900

-600

900

300

-900

600

Thus, the total element load vector, P is

N (6.340)

P=

(30000 - 900)

-300

900

(-300 - 300)

900

(-150+300)

(30000 - 900)

-150 + 600

N (6.341)

After applying the boundary conditions, the global stiffness matrix is
reduced to
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4.8666

-0.96574

2.2668

-0.034264

-0.96574

3.5845

0.93147

-2.2512

2.2668

0.93 147

7.4663

-1.9315

-0.034264

-2.2512

-1.9315

4.9 178

(6.342)

and the reduced load vector is

(300M -900)

150
p = N

(300M - 900)

450

The solution is given by

U
XI 0.0000307806

u
Y3 0.000150801

= cm
U

X4
0.0000222016

u
Y4

0.000169468

(6.343)

(6.344)

6.2.2.6.2 ANSYS Solution

The nodal displaceme nts of the plate subjected to uniform temperature can
also be obtained using ANSYS. The solution procedure is outlined as
follows:

MODEL GENERATION

• Specify the element type (ET command) using the following menu path:

Main Menu >Preprocessor> Element Type> Add/Edit/Delete

• Click on Add.
• Select Structural Solid from the left list and Quad 4node 42 from the

right list; click on OK.
• Click on Options.
• In order to specify the 2-D idealization as plane stress with thickness, in

the newly appeared dialog box, pull down the menu for Element
behavior K3 and select Plane strs w/thk; click on OK (Fig. 6.43) .

• Click on Close.
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,...., PLANE42 element type options ~{]

Optionsfor PLANE42, Element Type Ref. No.1

285

Element coordsystemdefined K1

Extra displacement shapes K2

Element behavior K3

Extra stressoutput K5

Extra surfaceoutput K6

OK Cancel I

IInciude iJ

INOextra output

INo extra output

Help

Fig. 6.43 Specification of element options .

• Specify real constants (R command) using the following menu path:

Main Menu> Preprocessor> Real Constants> Add/Edit/Delete

• Click on Add.
• Click on OK.
• Enter 5e-3 for Thickness THK; click on OK.
• Click on Close.

• Specify material properties (MP command) using the following menu
path:

Main Menu> Preprocessor> Material Props> Material Models

• In the Define Material Model Behavior dialog box, in the right window,
successively double-click on Structural, Linear, Elastic, and, finally,
Isotropic, which will bring another dialog box.

• Enter 150e9 for EX, and 0.25 for PRXY; click on OK.
• In the Define Material Model Behavior dialog box, in the right window,

under Structural, find Thermal Expansion, Secant Coefficient, and
Isotropic, which will bring another dialog box (Fig. 6.44).

• Enter 6e-6 for APLX; click on OK.
• Close the Define Material Model Behavior dialog box by using the

following menu path:

Material> Exit
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~ Ilefine Mate.ia l Madelllehavia. GJI"QJ~
Material Eelt Fa"""'. Help

MateI1aI Mode~ DeIIned '~---~--,

rfj MaIm Madel f>I.rnber 1

@ Line... lsotrcoic

(iii Favort es

~-'"
(iil lile or
(iii _or

~ Densty

~ Thermal E>panslan

~ 5ecarll Coefficient

$11II
~ Orthctrape

(iii Instant........" Coefficionl

(ft.ITI"wm.!lI Strar.

Q n~·

J

Fig. 6.44 Specification of material behavior.

• Create nodes (N command) using the following menu path:

Main Menu> Preprocessor> Modeling> Create> Nodes> InActive CS

• A total of 4 nodes will be created (Table 6.7).
• Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to

convert the coordinates to meters), and Click on Apply. This action will
keep the Create Nodes in Active Coordinate System dialog box open. If
the Node number field is left blank, then ANSYS will assign the
lowest available node number to the node that is being created.

• Repeat the same procedure for the nodes 2 through 4 .
• After entering the x- and y-coordinates of node 4, click on OK (instead

of Apply).
• The nodes should appear in the Graphics Window, as shown in Fig .

6.45 .

• Create one element (E command) using the following menu path:

Main Menu> Preprocessor> Modeling> Create> Elements> Auto Numbered> Thru Nodes

• Pick Menu appears; pick four nodes in a clockwise (or counter­
clockwise) order.

• Click on OK.

SOLUTION

• Apply displacement boundary conditions (D command) using the
following menu path:

Main Menu> Solution> Define Loads> Apply> Structural> Displacement> On Nodes
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4 3

2

287

Fig. 6.45 Generation of nodes.

• Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal
boundary (Fig. 6.45) and click on OK on Pick Menu.

• Highlight UY and enter 0 for VALUE; click on Apply.
• Pick Menu reappears ; pick nodes 2 and 3 along the right vertical

boundary (Fig. 6.45); click on OK on Pick Menu.
• Highlight UX and enter 0 for VALUE; click on OK.

• Apply force boundary conditions on nodes (F command) using the fol­
lowing menu path:

Main Menu> Solution> Define Loads> Apply> Structural> Force/Moment> On Nodes

• Pick Menu appears; pick nodes 1 and 4 along the slanted boundary;
click on OK.

• Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.46).
• Click on Apply.
• Pick Menu reappears; pick nodes 4 and 3 along the top horizontal

boundary; click on OK.
• Pull down the menu for Direction ojjorce/mom and select FY; Enter

-150 for VALUE; click on OK.

• Apply thermal load (TUNJ:F command) using the following menu path:

Main Menu> Solution> Define Loads> Apply> Structural> Temperature> Uniform Temp

• Uniform Temperature dialog box appears; Enter 10 for Uniform
temperature.

• Click on OK.
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Apply FJM on Nodes X I

[F] ApplyForce/Moment on Nodes

Lab Direction of force/mom

Apply as

If Constant valuethen:

VALUE Force/moment value

Apply Cancel

Iconstant value

13e3*sqrt(o .1)

Help

Fig. 6.46 Application of external loads.

• Obtain solution (SOLVE command) using the following menu path:

Main Menu> Solution> Solve> Current LS

• Confirmation Window appears along with Status Report Window.
• Review status . If OK, close the Status Report Window and click on OK

in Confirmation Window.
• Wait until ANSYS responds with Solution is done!

POSTPROCESSING

• Review deformed shape (P LDI S P command) using the following menu
path:

Main Menu> General Postproc > Plot Results> Deformed Shape

• In the Plot Deformed Shape dialog box, choose the radio-button for Def
+ undef edge ; click on OK.

• The deformed shape will appear in the Graphics Window, as shown in
Fig. 6.47 .

• Review displacement values (P RNSOL command) using the following
menu path:

Main Menu> General Postproc >ListResults> Nodal Solution

• Highlight DOF solution on the left list and All DOFs DOF on the right
list; click on OK.

• The list will appear in a new window, as shown in Fig. 6.48.
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Fig. 6.47 Deformed configurat ion.

~ PRNSOl Command

Rle

I
PRINT DOF NODAL SOLUTION PER NODE

~ POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SU BSTEP= 1
TIME- 1 .0000 LOAD CASE- 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE I N GLOBAL COORDINATES

NODE UK UV
1 0.29595E-06 0.0000
2 0 .0000 0.0000
3 0.0000 0.14441E-05
4 0.2338?E-06 0.1?266E-05

MAXIMUM ABSOLUTE UALUES
HODE 1 4
UALUE 0.29595E-06 0 .1?266E-05

Fig. 6.48 List of nodal displacements.

6.3 Problems
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6.1. Construct the finite element equations for the solution of the linear
second-order ordinary differential equation given in the form

( ) d 2u(x) dp(x) du(x) () () I ( )p x 2 +----+q x u x = x
dx dx dx

subject to the conditions given as

by using the Galerkin technique within the realm of finite element
method with linear interpolation functions .
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6.2. By using a one-dimensional (line) C1 continuous cubic element,
derive the element coefficient matrix for the solution of the differen­
tial equation given as

d
2
u(x ) =f(x)

dx2

Assume equally spaced nodal points.

6.3. By using quadratic interpolation functions , derive the element coeffi-
cient matrix for the solution of the differential equation given as

d 2u__ =ex

dx2

subject to the conditions

du
u(O)=I and -(4) =0

dx

Also, explicitly assemble both the global coefficient matrix and the
right-hand vector for equally spaced nodal points located at x = 0, 1,
2,3, and 4.

6.4. Without giving any consideration to the boundary conditions, write
down the contribution from the four elements , shown in Fig. 6.49, in
the finite element formulation for the Poisson equation V2rjJ =C .
Denote all entries in the element coefficient matrices symbolically
and write your answer in the form[K] {<p} +{F}={O} .

4

~---------+ X

Fig. 6.49 Four linear triangular elements forming a quad­
rilateral element.
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6.5. In Problem 6.4, note that the interaction of the internal node 5 with all
the adjacent elements is included in forming the equation arising from
the field variable ¢s associated with the 5th node. In the absence of
external loads, the last row of the vector-matrix expression in the
previous problem may be set directly equal to zero. Using the
resulting equation, eliminate ¢s from the remaining four rows of the
vector-matrix expression to obtain the element coefficient matrix and
the contribution to the right-hand-side vector of a quadrilateral
element made up of four simpler triangular elements.

6.6. Suppose a collection of elements (part of some larger collection) has a
total of n interior nodes and m exterior (or boundary) nodes. The
contribution from this collection to the global finite element equations
can be written as

[K]e{(j)}e +{ft

The contributions from the exterior nodes, ¢l (i =1,2,...,m) , and the
interior nodes, ¢/ (i =m + l, ....n +m) , may be partitioned as

where [K E] is an m X m submatrix, [K I] is an n X n submatrix, etc.
Consideration of all of the contributions to the interior nodes results
10

Proceeding from this point, eliminate the quantities rpf from the
remaining equations to express the contribution from this collection
of elements in the form

where [K R] is an m x m matrix. This technique IS called
substructuring.

6.7. For two-dimensional heat transfer in an isotropic body, the governing
equation is

a ( aT) a( aT)- K- +- K- +q(x, y)=O
ax ax ay ay
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where T is temperature, K is thermal conductivity, and q(x,y) is the
heat generation rate over the domain. Suppose the heat flux out of
some portion, Sf' of the boundary is specified to have a constant
value, Q, as shown in Fig. 6.50. Then, the boundary condition over
Sf becomes

where n =< nx,n y > is the unit normal vector to the boundary. Using
the Galerkin technique, show in a general way how this boundary
condition enters the right-hand-side vector.

6.8. Suppose that the heat flux is specified to be Q over the side 4-5 of the
domain as shown in Fig. 6.51. Find explicitly the contribution of the
interpolating function associated with node 4 to the right-hand-side
vector in the system of equations derived in Problem 6.7:

(a.) for the case where element 3 is a linear triangular element.

(b) for the case where element 3 is a quadratic triangular element
with a mid-side node between nodes 4 and 5.

Hint: Use a local coordinate, s, directed along the side of the triangle
from node 4 to node 5. Note that the interpolating funct ion associated
with node 4 is linear in s for linear interpolation and quadratic for
quadratic interpolation.

y

n

Fig. 6.50 Heat generation within the body and flux
boundary condition along Sf'
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2
2 3 5

I2Ve = 2
s

I 4 '-/.

x

5 6

Fig. 6.51 Domain discretized with three triangular elements .

6.9. Explicitly evaluate the element coefficient matrix for the problem

a2
1f1 a2

1f1-+-=G
ax2 ai

using 2 x 2 Gaussian integration for a 4-noded quadrilateral element
whose nodal point locations are given by

Node No. x y

1 6.0 3.0
2 -4.0 3.0
3 -5.0 -3.0
4 4.0 -3.0

6.10. Using quadratic interpolation over a 6-noded triangle (shown in Fig.
6.52), derive explicit expressions for the entries K11 , K44 , and Kl 5 in
the element coefficient matrix for the Poisson equation

6.11. Consider the 3-noded triangular element subjected to traction bound­
ary conditions along the 2-3 side as shown in Fig. 6.53. Assuming
plane stress idealization with thickness t =0.01 m , E =200 GPa ,
and v =0.25 , construct:

(a) the stiffness matrix.

(b) the equivalent nodal force vector.
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3

I I = 0.0 1 III

0.15 III P = 100 MPa

1
y

L ,
14 0.20 III _I 2

Fig. 6.52 Three-noded triangular element under uniform traction.

(x,,y,)

3

Fig. 6.53 A six-noded triangular element.

6.12. Assume that the nodal displacement compon ents of the triangular
element considered in Problem 6.11 are as follows :

UI =0

u 2 =3.30078x lO-4 m

u 3 =1.85937 X 10-4 m

VI =0

V2 =0

V3 =4.6875xl0-6m

Find the stress components ( 0'xx' 0'yy and O'xy ) .

6.13. Assuming that the triangular element considered in Problem 6.11 is
subjected to gravitational acceleration in the negative y-direction with
mass density p =7850 kg/rrr' , find the equivalent nodal force vector.
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6.14. Derive the equivalent nodal force vector for a 3-noded triangular
element when it is subjected to a uniform temperature change of !:i.T .
The coefficient of thermal expansion of the material is a.

6.15. The equations governing the time-dependent motion of an elastic
body are

~[(J"J - p a2Ui =°
ax . IJ at2

J

where p is the mass density of the body. The term pa2u)at2 may
be interpreted as an "inertia" force, which is a special type of body
force.

(a) Identifying the inertia force as a body force with
Fj =- p a2Ui/ at2 , derive the contribution from a single element
to the global finite element formulation for the case of plane
strain.

(b) If no tractions are specified over the surface of the body, write
down the general form of the global finite element equations .
Assuming

{u} ={ii}e iwt

write down an equation for OJ, the natural frequencies of
vibration.

6.16. A two-dimensional situation that is often of theoretical interest
(although less seldom of practical interest) is that of antiplane strain,
in which ul =U2 =0 and u3 =u3 (xI ,x2) ' Hence, the only non-zero
components of strain are c\3 and c23 and those of stress are (J\3 and
(J23' which are related by Hooke's law:

£C23(J -
23 - (l+v)

Find the element coefficient matrix for this problem for the linear
triangle (3-noded) using the integration formulas for area coordinates
given previously.

6.17. Newton's method is a familiar recursive technique for finding the
roots of a transcendental equation. Suppose the roots of n trans­
cendental equations, {8i(a)}=O, in n unknowns are to be found.
Then, Newton's method can be generalized to
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where

agn agn agn

aa\ aa2 aan

and {gd(lIl) and [agijaaj] are evaluated at {ad(lIl) .

The finite element equations resulting from the nonlinear two-point
boundary value problem

d2u
-2+g(u,x) =0
dx

have the form

[Kij ] {a i } +{Ii (a j ) } ={O} (i =1,2, ... , n)

where {ad are the nodal values and {fi(aj)} is some nonlinear
function of the nodal values. Apply Newton's method to this
problem to obtain a recursive formula for the nodal values. What is
the major drawback of this approach?




