Chapter 6

FINITE ELEMENT EQUATIONS

Finite element equations capture the characteristics of the field equations.
Their derivation is based on either the governing differential equation or the
global energy balance of the physical problem. The approach involving the
governing differential equation is referred to as the method of weighted
residuals or Galerkin’s method. The approach utilizing the global energy
balance is referred to as the variational method or Rayleigh-Ritz method.

6.1 Method of Weighted Residuals

The method of weighted residuals involves the approximation of the func-
tional behavior of the dependent variable in the governing differential equa-
tion (Finlayson 1972). When substituted into the governing differential
equation, the approximate form of the dependent variable leads to an error
called the “residual.” This residual error is required to vanish in a weighted
average sense over the domain. If the weighting functions are chosen to be
the same as the element shape (interpolation) functions used in the element
approximation functions, the method of weighted residuals is referred to as
Galerkin’s method.

The governing differential equation for the physical problem in domain D
described in Fig. 6.1 can be expressed in the form

Lg)-f=0 (6.1)

where ¢ is a dependent variable and f is a known forcing function. The
ordinary or partial differential operator, L whose order is specified by p,
can be linear or nonlinear. The boundary conditions are given by

B;(#)=g; on C (62)
and

E;(#)=h; on C, 6.3)

in which B; and E; are operators, with j=1,2,3,..., p. The known func-
tions g; and h; prescribe the boundary conditions on the dependent vari-
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Fig. 6.1 Variation of the dependent (field) variable over a two-
dimensional domain under specified boundary conditions.

able and its derivatives, respectively. The conditions on the dependent vari-
able over C; are referred to as essential or forced boundary conditions, and
the ones involving the derivatives of the dependent variable over C, are
referred to as natural boundary conditions.

The method of weighted residuals requires that
I[L(&)—f]wde=o, with k =1,2,3,...,n (6.4)
D

where W, are the weighting functions approximating the dependent variable
as

p=p=> W, (6.5)

while satisfying the essential boundary conditions on C;. The unknown
coefficients, ¢, are determined by solving for the resulting system of
algebraic equations.

Since the governing differential equation is valid for the entire domain, D,
partitioning the domain into subdomains or elements, D, and applying
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Galerkin’s method with weighting functions W, = N,Ee) over the element
domain results in

E
3 N(”( (69)- f)dD=0 (6.6)
e=1 D(e
in which E is the number of elements and the superscript “e” denotes a

specific element whose domain is D . The approximation to the dependent
variable within the element can be expressed as

¢(e) _ZN(e) (e) 6.7)
i=1

or

3@ =N©OT (@ (6.8)
where

NOT={N© N© N© . N (69)

and
0T = {¢<e> IV I ,ge>} (6.10)

with n representing the number of nodes associated with element e. The
nodal unknowns and shape functions are denoted by ¢/ and N, with
i=1,2,..,n, respectively. The shape functions need not satisfy the boundary
conditions; however, they satisfy the inter-element continuity conditions
necessary for assembly of the element equations. The essential boundary
conditions are imposed after assembling the global matrix. The natural
boundary conditions are not imposed directly. However, their influence
emerges in the derivation of the element equations.

The required order of the element continuity is equal to one less than the
highest derivative of the dependent variable appearing in the integrand. This
requirement is relaxed by applying integration by parts in the minimization
procedure of the residual error in Galerkin’s method.

6.1.1 Example: One-dimensional Differential Equation with
Line Elements

The application of Galerkin’s method is introduced by considering the ordi-
nary differential equation given by



190 FEM WITH ANSYS®

d*¢(x)

x2

+9(x)- f(x)=0 (6.11)

in domain D defined by 0< x <1. The known forcing function is given by
f(x)=-x (6.12)

The boundary conditions, identified as the essential type, are ¢(0)=0 and
¢(1)=0. As shown in Fig. 6.2, the domain can be discretized with E linear
line elements, each having two nodes (n =2 ). There are a total of N nodes,
and global coordinates of each node in domain D are specified by x;, with
i=12,...,N. Nodal values of the dependent variable associated with
element e are specified at its first and second nodes by q)l(e) and ¢§e) ,
respectively.

The linear approximation function for the dependent variable in element e
can be expressed in the form

¢Z(e) - N](e)¢l(€) + Née)¢§e) (6.13)
or
$© =N©T o@© (6.14)
where
N©T = { N1(e) Nge)} and ¢©7 ={¢1(e) ¢§e)} (6.15)

in which the shape functions are given by

(e) _ (e)

e
X X X=X
N9 =—3— and NyY =——— (6.16)
Xy =X Xy =X
(e) (e)
oY ¢y
)
(e ©
O ® NC ®
o——_0—-—~O0—----- —O—O0— - —O0——O
x =0 x by X X X x=1
1 2 3 m-1 m n-1 n

Fig. 6.2 Domain of the one-dimensional differential equation,
discretized into E elements.
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They are the same as the length coordinates given by Eq. (3.9). Applying
Galerkin’s method by Eq. (6.6) leads to

(e)
X

2 3(e) -
D J N L—-—d i)lxz ) , ¢ (x) - f(x)]dx =0 (6.17)

e=1

()
X

Integrating the first term in the integral by parts results in

E OV X © 13
3 No 4P| _ [ dNT d¢
s de o ) odedx
Yox (6.18)
xg") (e)
+ [NOGOax— [N f(xydx |=0
(e) (e)
X X

Substituting for the element approximation function (¢ =N©T¢©)
yields

E E
zk(e)(P(e) — Zf(t’) (6.19)
e=1 e=1
where
£X & T x5
K©=_ [ NZANT j NEONOT gy (6.20)
dx dx
»® xfe)
1
and
NO) - x50
£ = 2f N‘e’f(x)dx{wﬂ M} (6.21)
B L

After substituting for the shape functions and their derivatives, as well as the
forcing function, the expressions for the element characteristic matrix, k@,
and the right-hand-side vector, ¢, become
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xée)
1 -1
K 2” 1 de
(e) _ ,(e) -
(xz xl ) xfe)
po) (6.22)
N Nl(e)Nl(e) N](e)Nge) J
@n© e |
N2 Nl N5S’N
x,(e)
xge) xée)
N(e) N(é’) 7(e)
£&) = B P D R LA €)) (6.23)
N(e) N(e) dx
2 2 e
X !

Evaluation of these integrals leads to the final form of the element
characteristic matrix, k', and the right-hand-side vector, £

(e) _  (e)
ko= L {1 _1]+——————(x2 i )[2 1} (6.24)

(x%e) —xl(e)) -1 1 6 1 2
and
(e) (e)
£© =_l( KO- x9) 27 +xy
62 T ] 40 4 a0
ro. - 6.25
d¢(e) (xée)) Nl(e)(xge)) d¢(e) (xl(e)) Nl(e) (xl(e)) ( )
N (x0) e | NG (x9)
or
dé)'(e) ©
(e) (e) - X
e AR )| AN 8 i (6.26)
6 X9 42450 d¢'® ( x(e))
dx 2

The local and global nodes for the domain discretized with three elements,
E =3, and four nodes, N =4, are numbered as shown in Table 6.1.
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Table 6.1 Element connectivity and nodal coordinates.

Element
Number Node 1 | Node2 x9 x5
(e)
1 1 2 0 13
2 2 3 13 213
3 3 4 23 1

With the appropriate value of the nodal coordinates from Eq. (6.24) and
(6.26), the element characteristic matrices and vectors are calculated as

(L[ 52 =55 (6.27)
18] -55 52
(@ _1[52 -85 (6.28)
18/-55 52
(o152 -5 (6.29)
18[-55 52 | [a]
_490©)
11
(0= e (6.30)
412)140a3)
dx
_d92a/3)
4
¢ = L4 dx (6.31)

54 |5 d&(Z)(z/:;)
< =7 |3
-
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d$*2/3) B
i A Sty
£3 _1 7 dx l

54 |8 d&@)(l) (6.32)
40

As reflected by the element connectivity in Table 6.1, the boxed numbers
indicate the rows and columns of the global matrix, K, and global right-
hand-side vector, F, to which the individual coefficients are added. The
global coefficient matrix, K, and the global right-hand-side vector, F, are
obtained from the “expanded” element coefficient matrices, k®, and the
element right-hand-side vectors, £(©, by summation in the form

E E
K=Y>k® and F=) (6.33)

e=1 e=1

The “expanded” element matrices are the same size as the global matrix but
have rows and columns of zeros corresponding to the nodes not associated

with element (e). Specifically, the expanded form of the element stiffness
and load vector becomes

52 -55 0 o]

(O _L[55 52 00 (6.34)
180 0 0 0
0 0 00
RO
1 B dx
12, )1dgq/3)
O ="t 029 U0 6.35
salo[ )T (12 (6.35)
0 0
. 0
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0 0 0 0

(@_ 1|0 52 =550

T18/0 -55 52 0

0 0 0 0

p 0 w

01 |_d46?up) |
f(z)_—.i 4 +4 dx r
54 |5 d&(2)(2/3)

of | &

o [

00 0 0

(@_1/00 0 0

18/0 0 52 55

0 0 -55 52

0

0 0
1)o dg®(2/3

f(3)=gz7+4_ ¢d§‘/)>
8 d¢7(3)(1)

=2 |a

dx ,

195

(6.36)

(6.37)

(6.38)

(6.39)

In accordance with Eq. (6.33) and (6.19), the assembly of the element char-
acteristic matrices and vectors results in the global equilibrium equations
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1
52 55 o 0 ¢ =4 1
1|-55 52452 =55 0 ||g=¢" =4 | 1 |2+4

18] 0 =55 52452 -55 b, =42 = 4® 54547

0 0 -55 52 4, = ¢ 8
4 =P
_dg® ) 1
. . (6.40)
g0 /3)_df¥ B
X dx
+3 of
d§? 03 _dd )
v dx
dg® (1)
dx
or
_d$P0)
52 =55 0 0 (4 1 e
-55 104 -55 0 6 0
L h|_1])61, L (6.41)
18] 0 55 104 -55||g[ sali2[ ] o
0 0 -55 52||4 8 dé® (1)
dx
or
KO =F (6.42)

After imposing the essential boundary conditions, ¢, =0 and ¢, =0, the
global system of equations is reduced by deleting the row and column
corresponding to ¢, and ¢, , leading to

1[104 -551(g,] 16
KLS 104}{@}_54{12} (643

¢,| _[0.05493 644
# | 10.06751 (6.44)

Its solution yields
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The exact solution to the differential equation given by

¢(")=%II%" (6.45)
provides
{¢2} _ {0.0555} (6.46)
é]  10.0682

The exact and FEM calculations of ¢ along the x-axis are shown in Fig.
6.3.

6.1.2 Example: Two-dimensional Differential Equation with Linear
Triangular Elements

6.1.2.1 Galerkin’s Method

The application of Galerkin’s method in solving two-dimensional problems
with linear triangular elements is demonstrated by considering the partial
differential equation given by

9%p(x,y) . 9%p(x,y)
™ + > +A=

0 (6.47)

in domain D, defined by the intersection of y=0, y=2- J3x, and y= J3x
(as shown in Fig. 6.4), where A=1.

The boundary conditions are specified as

—nyéf’i(xéy—:o):[¢(x,y=0)—(3=1)] for 0Sx<2/+/3 (6.48)
Y

#(x,y=3x)=0 for 0<x<1//3 (6.49)

d(x,y=2-3x)=0 for 1//3<x<2/3 (6.50)

When independent of time, these equations provide the temperature field,
@(x,y), due to heat conduction in a domain having a heat generation of A
with one of its boundaries subjected to a convective heat transfer. The
thermal conductivity and the film (surface) heat transfer coefficient are
equal to unity, and the temperature of the surrounding medium is B.
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Fig. 6.3 Comparison of the exact and FEA (approximate)
solutions to the 1D differential equation.

Fig. 6.4 The equilateral triangular domain.

The triangular domain can be discretized into four linear triangular ele-
ments, each having three nodes identified as 1,2, and 3 (local node
numbering), as illustrated in Fig. 6.5.

As shown in Fig. 6.6, the global coordinates of each node in domain D are
specified by (x;,y;), with i=1, 2, 3, 4, and 5. These coordinates are
presented in Table 6.2.
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Fig. 6.5 Local node numbering for the linear triangular element.
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Fig. 6.6 Finite element discretization of the domain.

Table 6.2 Nodal coordinates.

Global Node Nodal Nodal
Number Coordinates | Unknowns
1 (0,0) @
2 (2/43,0) ¢,
3 (1/+/3.1) ¢,
4 (1/4/3,1/3) 9,
5 (1/+3,0) 2

199
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The nodal values of the dependent variable associated with the global
coordinates are denoted by ¢; (i=1, 2, 3, 4, and 5). As shown in Fig. 6.5,
the nodal values of the dependent variable associated with element e are
specified at its first, second, and third nodes by ¢, (¢, and ¢3(e),
respectively.

The linear element approximation function for the dependent field variable

‘69

in a triangular element “e” is written as
$ = NG + NS § + NSO g® (6.51)
or
(Z(e) — N(e)T(P(e) (6.52)

As derived in Chap. 3, the element shape functions in Eq. (3.17) are taken as

()
Ny (%2¥3=%3y2) Y3 X3 ||1
Ng p= o By —xays) ya Mz )X (6.53)
N§© (Y2 =%y Y2 X1 Y
where x,, =X, =X, Yy =Ym—Yn» and A® is the area of the element
computed by
1 1 1
209 =|x; x, X3 (6.54)
o2 V3

Applying Eq. (6.6), Galerkin’s method, leads to

E 2 %(e) 2 2(e)
> | N@ "¢ gx,y)+8 ¢ gx,y)M dxdy =0 (6.55)
0x dy

e=1
D
Since the element approximation function is C° continuous, the second-
order derivatives in the integrand must be reduced by one so that the inter-
element continuity is achieved during the assembly of the global matrix.
This reduction is achieved by observing that

32(5(8) 9 8(5(") ON®© aé(e)
(e) =— | N©&O X __ - , 6.56
N Y (x,y) ™ N P (x,y) P (x,y) (6.56)
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and

. aZ Z(e) 9 . a"(e) aN(e) b »(e)
N a¢2 (x,y):a—y(N”‘g—y(x,y)j - ¢ (xy)  (6.57)

Their substitution into the integrand in Eq. (6.55) and rearrangement of the
terms result in

E g agl)
(e) (e)
; J {&V[N ox J dy {N dy drdy

(e)
P (6.58)

ON®©@ a¢j(e) ON®©@ aé(e)
+ | |- - N@A | dxdy=0
J { ox Ox dy 9y " Y

D

Applying the divergence theorem to the first integral renders the domain
integral to the boundary integral, and it yields

ZE: % HN@) a.fg__(e) jngp + [Nw) 99 jn(y@ }s
e=1 X ay

c (6.59)

aN(e) aé(e) aN(e) a‘;(e)
Cox ax dy dy

+ N(e)A} dxdy =0
D(l’)

where n(e) and n(ye) are, respectively, the x- and y-components of the
outward normal vector along the closed boundary defining the area of the
element, C©.

Substituting for the element approximation function yields
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E () ()
Z % N [aq} n + o9 n(e)}ds

g ox ay 7
C(t’)
ON©@ oN©T  gN@© oON©T ©
- + dyo
ox  Ox dy dy
D®©

+ J‘N(e)Adxdy =0
D(f)

This equation can be recast in matrix form as

i(_k(e)q’(e) +£© £ Q@ ) -0

e=1

where

© aN(e) aN(e)T aN(t’) aN(e)T
k!¢ = + d
x o oy oy [

D(e)
1€ = [ N©adxdy
D(e)
»(e) 2(e)
©— & NO |92 (), 99 (o)
Q = N |:—'éx—— n, ) +Wny ds
cte

(6.60)

(6.61)

(6.62)

(6.63)

(6.64)

in which k® is the element characteristic matrix, f*) is the element right-
hand-side vector, and Q(e) is often referred to as the inter-element vector
that includes the derivative terms along the boundary of the element. The
boundary integral around each element is evaluated in a counterclockwise
direction, i.e., this boundary integral is the sum of three integrals taken

along each side of the element.

Depending on whether the element has an exterior boundary or not, the

inter-element vector is divided into two parts

Q(e) — Qie) + Qge)

(6.65)
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in which Qge) represents the contribution of the derivative terms specified
along the external boundary of the element C'*, and Q) represents the
contribution from the internal boundaries of the element shared with other
adjacent elements. Because each of the boundary integrals is evaluated in a
counterclockwise direction, the contributions coming from the vector Q,(-e)
vanish when the global system of equations are assembled, thus no further
discussion is necessary. However, in the case of specified derivative
boundary conditions, the contribution coming from Qge) must be included.

In view of the boundary conditions given by Eq. (6.48) and the
discretization of the domain, the 1-5 side of element 1 and the 5-2 side of
element 2 are subjected to derivative boundary conditions.

With n{" =n® =0 and n;l) = n(yz) =-1, the contribution of the derivative
boundary conditions appearing in Eq. (6.64) leads to the inter-element
vectors as

D = (JSN(D [B-¢c]ds and QP = Cj) N?[B-gclds  (6.66)
e, 2

where @c is the unknown value of the field variable on the external
boundary of the element C,, along which the derivative boundary condition
is specified.

Approximating the unknown field variable, @, by ¢ =N©T¢ in these
equations leads to

QW = (]5 NO [ B-NOToM ] ds (6.67a)
C(l)
1-5
and
QY = (ﬁ N® [ B-N®T¢® ] ds (6.67b)
c$®,

which can be rewritten as

QY= PNOBds —{ PNONDTds (o or QP =g® -0V (6.68)
al G

and
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= §NTais | GNONTl4 (o
), 2
or
QY =g@ _pPp? (6.69b)
where
b= GNONOTas and h® = GNON@as  (6.70)
ch c¥)
and
g = (jSN(l)Bds and g? = qSN(Z)Bds (6.71)
e, ot

With this representation of the inter-element vector, the element equilibrium
equations given by Eq. (6.61) can be rewritten in their final form as

(k“) +h“))<p(‘) =D +g(1)

(k(2> +h<2>)q,(2> —f@ 4@

(6.72)
k@™ =£®
k(4)(P(4) =f@®
With the derivatives of the shape functions obtained as
(e) b N(e)
oN, 1
ox dy
Y23 X32
ONS® 1 NS
P 2 (-~ V31 and 2 L= ; X3 (6.73)
ox | 2A@ dy 20
aN§e> N2 aN§e> 21
ax ay

the evaluation of the area integrals in Eq. (6.62) and (6.63) by using Eq.
(3.19) leads to the final form of the element coefficient matrix, k®, and
right-hand-side vector, £(¢)
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2 2
X32 T Y23 X32X3 T Y23Y31 X32%21 1 Y2312
(e) _ 2 2
k™= NG R e R N R TR E eI (6.74)
2 2
X32%1 t Y23Y12 X13%21 T V31012 X1+ 2
and

1
f(e) B AA(e)

1 6.75
3 (6.75)
1
Their numerical evaluation results in
[1 -1 0] 1
k“’:? -1 4 -3| and f“’:l—lTl (6.76)
LO -3 3 83 1
(4 -1 -3] 1
k‘”:% -1 1 0| and f<2>:—i/—§1 (6.77)
3 0 3 B3
(4 2 -6] 1
k(3)=—1\/-§—- 2 4 —6| and f®= \l/—<1> (6.78)
-6 -6 12| N3 1)
(4 2 -6 1
k@ :g 2 4 —6| and W =% 1y (6.79)
-6 6 12] 11,
in which the area of each element is computed as
1 1 1
AD = O 1/\/— 1/\/_ = (6.80)
"2 J_
0 O 1/3
1 1 1
A@ L 1/\/’ 2/\3 1B =—J= (6.81)

0 0 13
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1 1 1
A0 =1b/ 5 1B NE|=—= (6.82)
2% 1 | W3
1 1 1
a® =Ly oo Bl (6.83)
200 0 | M3

Associated with the inter-element vector, the boundary integrals in Eq.
(6.70) and (6.71) are rewritten as

Nl(l)Nl(l) Nl(l)Nél) Nl(l) N:gl)
hO = ¢ | NOND NPNS NPND | ds (6.84a)
OFVIO) M A () A7(D
NOND NPND NN
o)

gV = ¢ {ND bds (6.84b)

and

(2) \7(2) (2 A7(2) (2) A7(2)
NOND  NONPD NN

h® = ¢ | NPNP NPNP NPNP |ds (6.859)
(2) A7(2) (2) A7(2) (2) A7(2)
NPN® NPNP NP NS
ex!
N
g? = ¢ {N? tds (6.85b)
(2)
N3
ex!

in which N§1) and N§2) are zero along side 1-5 (with length L,_5) and
along side 5-2 (with length L, 5), respectively. The remaining shape
functions NV, Nél) , Nl(z), and N22) reduce to a one-dimensional form as
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NOZhsTS g NS (6.86)

-5 L5

NO=b2m8 g Ne o S (6.87)

-2 Ls_,
in which s is the local coordinate in the range of (0<s<L,_s) along side 1-
5 and (0<s<Ls ,) along side 5-2, L_s =1/\/3, and Ls_, =1/</3. With
these shape functions, the evaluation of h'” g(l), h®, and g(z) leads to

| 2 10 | 1
h=——1 2 0| and g®=—2{1 (6.88)
6‘/5_0 0 0 23 0
and
| (2 1 0] | 1
h®=——1 2 0| and g?®=—12A1 (6.89)
6*/_3-_0 0 0 23 0

Considering the correspondence between the local and global node
numbering presented in Table 6.3, the element characteristic matrices and
vectors can be rewritten as

Element 1:
@ ()] 1) )} )] Q) 1) Q)) @
kiy +hy ok thy ki thy |G K7 +eg
@ [Y) 1) 1) ) 1 M _ 1 (Y]
kyi +hy  kyy thy  kyy thyy (302 =407 8
) 1) ) 1) ) Q) 1) Q) 1)
k3p +hy ki thy kgt hyg | |6 f37tes

Element 2:

(6.90)

(2) 2) (2) (2) (2) (2) (2) (2) (2)
kiy Hhy ok Ry k|6 L7 +e
(2) (2) (2) (2) (2) (2) 2)( _ (2) (2)
k' +hyy ky +hy kg +hy 887 =107 18
(2) (2) (2) (2) (2) (2) (2) (2) (2)
k3l kg thy ka3t hy |4 VN

(6.91)
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Table 6.3 Element connectivity.

Element
Number | Node 1 | Node 2 | Node 3
(e)
1 1 5 4
2 5 2 4
3 2 3 4
4 3 1 4
Element 3:
3) (3) 3) 3) 3)
kll k12 k13 ¢1 fl (6 92)
3 3 LG H_J .0 '
k) ky k3305 =4 fY
(3) 3) 3) (3) 3)
ki’ k3 k33 || 4 f
Element 4:
(4) 4) (4) (4) 4)
kll k12 k13 1 fl (693)

(4) (4) (4) (4) (4)
ko k' kg 2 f
(4) (4) (4) (4) (4)
k3 ki ka3t || 4 f
In the assembly of the element characteristic matrices and vectors, the boxed
numbers indicate the rows and columns of the global matrix, K, and global

right-hand-side vector, F, to which the individual coefficients are added,
resulting in

K®=F (6.94)

where
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kY + R+ k) 0 k
0 k2 + B2 + & kS
K= kY ks ky + kS
kyd + itk ks b kY ks k)
k' + hyy ki + Y 0
(6.952)
KD+ Y+ K+
ki + g + ki k' + 1y
k) +ky 0
ki +hy k) b k) Tk kg by k) R
kéé) + (;) + k1(32) + hl(32) k%) + (;) + kl(lz) + ]1)(12)_
P
£+ + 1O
F =j f2(3) + fl(4) > (6.95b)
A+ g0 14 g 4 4 g
FORTNCING
@
)
o={0t (6.95¢)
94
¢s )

After imposing the essential boundary conditions, the global system of
equations are reduced by deleting the rows and columns corresponding to
@, ¢,,and ¢, leading to

) 07 o)
Do @) e er? oD [l

) { FORUFOINCIPON f3<4>}
PONROPOINO

(6.96)
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With the explicit values of the coefficients, the nodal unknowns, ¢, and ¢s,
are determined as

O = 217 =0.14815 (6.97a)
?s =§ =0.33333 (6.97b)

The expressions for h® and h® in Eq. (6.70) are derived based on a
formulation consistent with the derivation of the element coefficient
matrices, k. An alternative to the consistent formulation is the use of
lumped diagonal matrices and expressing h® and h® in the form

N 0 0

300
h® = 0o N 0 ds=m 030 (6.98)
0 0 N§1) 0 00
&
and
NP0 0 300
W2=¢l 0o N2 o dszﬁg— 03 0| (699
0 0 N 00 0
&

Replacing the components of h® and h® in Eq. (6.96) with the values
obtained in Eq. (6.98) and (6.99), the nodal unknowns ¢, and ¢ are
determined as

5

@4 =—?;—6-=0.13889 (6.100a)
11
@s = 36 =0.30556 (6.100b)

Note that the discrepancy in the value of ¢, and ¢ obtained from the two
methods is due to the small number of elements in the discretization of the
domain.
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6.1.2.2 ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq.
(6.47) through (6.50), also can be solved using ANSYS. The solution pro-
cedure is outlined as follows:

MODEL GENERATION

m Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Click on Add.

Select Thermal Solid from the left list and Quad 4node 55 from the
right list; click on OK.

Click on Close.

m Specify material properties (MP command) using the following menu
path:

Main Menu > Preprocessor > Material Props > Material Models

In the Define Material Model Behavior dialog box, in the right window,
successively double-click on Thermal, Conductivity, and, finally,
Isotropic, which brings up another dialog box.

Enter I for KXX, and click on OK.

Close the Define Material Model Behavior dialog box by using the
following menu path:

Material > Exit

m Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

A total of 5 nodes are created (Table 6.2).

Referring to Table 6.2, enter x- and y-coordinates of node 1, and click
on Apply. This action keeps the Create Nodes in Active Coordinate
System dialog box open. If the Node number field is left blank, then
ANSYS assigns the lowest available node number to the node that is
being created.

Repeat the same procedure for the nodes 2 through 5.

After entering the x- and y-coordinates of node 5, click on OK (instead
of Apply).

The nodes should appear in the Graphics Window, as shown in Fig. 6.7.
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Y
X
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Fig. 6.7 Generation of nodes.

m Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > Thru Nodes

Pick Menu appears; refer to Fig. 6.8 to create elements by picking three
nodes at a time and clicking on Apply in between.

Observe the elements created after clicking on Apply in the Pick Menu.
Repeat until the last element is created.

Click on OK when the last element is created.

m Review elements:

Turn on element numbering using the following menu path:

Utility Menu > PlotCtrls > Numbering

Select Element numbers from the first pull-down menu; click on OK.
Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

Figure 6.8 shows the outcome of this action as it appears in the
Graphics Window.

Turn off element numbering and turn on node numbering using the
following menu path:

Utility Menu > PlotCtrls > Numbering

Place a checkmark by clicking on the empty box next to NODE Node
numbers.
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X

Fig. 6.8 Generation of elements.

Select Vo numbering from the first pull-down menu.
Click on OK.
Plot nodes (NPLOT command) using the following menu path:

Utility Menu > Plot > Nodes

Figure 6.7 shows the outcome of this action as it appears in the
Graphics Window.

SOLUTION

®m Apply temperature boundary conditions (D command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature > On Nodes

Pick Menu appears; pick nodes 1, 2, and 3 (Fig. 6.7); click on OK on
Pick Menu.

Highlight TEMP and enter 0 for VALUE; click on OK (Fig. 6.9).
Apply convection boundary conditions (SF command) using the
following menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Convection > On Nodes

Pick Menu appears; pick nodes 1, 2 and 5 along the boundary (Fig.
6.7); click on OK on Pick Menu.

Enter 1 for both VALI Film coefficient and VAL2I Bulk temperature;
click on OK (Fig. 6.10).

m Apply body load on elements (BFE command) using the following menu
path:

Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat > On Elements
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Apply TEMP on Nodes
[D] Apply TEMP on Nodes
Labz DOFs to be constrained All DOF
Apply as |Constant value j
If Constant value then:

OK Apply Cancel

VALUE Load TEMP value | 0
| oo |

Fig. 6.9 Application of temperature boundary conditions on nodes.

m Apply CONV on nodes
[SF] Apply Film Coef on nodes

|C0nstant value _ﬂ
If Constant value then:
VALL Film coefficient : | 1
[SF] Apply Bulk Temp on nodes Iconstart value _':'_I

If Constant value then:

VAL2I Bulk temperature i 1

| ------- -o'-( ------ |i Apply Cancel | L[

Fig. 6.10 Application of convection boundary conditions on nodes.
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 Pick Menu appears; click on Pick All.
« Enter I for VALI leave other fields untouched, as shown in Fig. 6.11.
e Click on OK.

m Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

 Confirmation Window appears along with Status Report Window.

o Review status. If OK, close the Status Report Window and click on OK
in Confirmation Window.

o Wait until ANSYS responds with Solution is done!

POSTPROCESSING

m Review temperature values (PRNSOL command) using the following
menu path:

Main Menu > General Postproc > List Results > Nodal Solution

» Highlight DOF solution on the left list and Temperature TEMP on the
right list; click on OK.
 The list appears in a new window, as shown in Fig. 6.12.

Apply HGEN on elems %

[BFE] Apply HGEN on elems as a |Constant value j

If Constant value then:
STLOC Starting location N

VALl Load HGEN at loc N
¥ALZ Load HGEN at loc N+1
VAL3 Load HGEN at loc N+2

VAL4 Load HGEM at loc N+3

T

s T oply Concdl | b |

Fig. 6.11 Application of heat generation condition on elements.
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File

i
PRINT TEMP NODAL SOLUTION PER NODE
oo POST1 NODAL DEGREE OF FREEDOM LISTING oo

LOAD STEP= @ SUBSTEP= 1
TIME= 1.6000 LOAD CASE= e

NODE TEMP
1 #.8000
2 B8.8000
3 B8.080800
4 ©@.13889
5 0.38556

MAXIMUM ABSOLUTE UALUES
NODE 5
UVALUE 8.38556

Fig. 6.12 Nodal solution for temperature.

6.1.3 Example: Two-dimensional Differential Equation with Linear
Quadrilateral Elements

6.1.3.1 Galerkin’s Method

In solving two-dimensional problems with quadrilateral isoparametric
elements, Galerkin’s method is demonstrated by considering the partial
differential equation given by

2 2
d ¢;iag,y)+ 0 g;,y) _4=0 (6.101)

in domain D defined by the intersection of y=-3, x=-4, y=3, and
y=3x-15. The constant, 4, is known. As shown in Fig. 6.13, the flux
vanishes along the boundary of the domain specified by y=-3 and x=—-4,
and along the remaining part of the boundary specified by y=3 and
y=3x-15, the dependent variable, ¢(x,y), has a value of unity. These
boundary conditions are expressed as

#(x,y)=1 for 4<x<6, y=3x-15 (6.102)
—a—q-¢(x,y=—3)=0 for -4<x<4 (6.103)
X

0

a—¢(x=—4,y)=0 for -3<y<3 (6.104)
x

P(x,y=3)=1 for -4<x<6 (6.105)
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p=1 Ay y=3
/

9¢
Ox

=0
AN
-~

4

X =

=0 y=-3

2 N
dy

Fig. 6.13 Description of domain, and boundary conditions.

The domain is discretized with four linear quadrilateral isoparametric
elements, each having four nodes identified as 1, 2, 3, and 4, shown in Fig.
6.14. The nodal values of the dependent variable associated with element e
are specified at its first, second, third, and fourth nodes by ¢{*, ¢, ¢3(e) ,
and ¢‘§e) , respectively. The discretization of the domain with global node
numbering is shown in Fig. 6.14. The global coordinates of the nodal values
of the dependent variable denoted by ¢,(i=1,2,...,9) are presented in Table
6.4.

The linear element approximation function for the dependent field variable

(el

in a quadrilateral isoparametric element “e” is written as

$ = NP + NSO + NSO @ + N gl (6.106)
or

A4
oY
2%
©
A A2

o
N

1(' Tz 3

Fig. 6.14 FEM discretization of the domain into four quadrilaterals.
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Table 6.4 Nodal coordinates.

Global Nodal Nodal
Node Number | Coordinates | Variables
1 (—4,-3) )
2 0, -3) 13
3 4,-3) @,
4 (5,0) @,
5 6,3) o
6 0,3) &
7 (-4,3) 3
8 (—4,0) %
9 (0,0) 1)
p =N©Tg(® (6.107)
where
Nl(e) ¢l(6’)
N(e) (e)
NO M L g 9@ =<¢?e) (6.108)
N; %
) td

in which the shape functions N{©, N9, N§®, and N are expressed in
terms of the centroidal or natural coordinates, (£,7), shown in Fig. 6.15.
For a linear (straight-sided) quadrilateral illustrated in Fig. 6.15, they are of
the form

N =%(1+§§,~)(1+7777,-) with i=1,2,3,4 (6.109)

where & and 7; represent the coordinates of the corner nodes in the natural
coordinate system, (£ =-1, 7 =-1), (§,=Ln,=-1), (=Ln,=1), and
(& =-1, ng=1.

Applying Eq. (6.6), Galerkin’s method, leads to

E 23(e) 250
MRS 09y 97N _ 4l grdy=0 (6.110)
ox* dy”

e=]
D(e)
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n

T3 E=-lp=1) 4 (@E=1Ln=1
X3, )3 . =1) ¢E=Ln=1

(x4 %)
mapping
> ¢
()
Y2
“ E==lLn==1)  (¢=1Ln=-1)

Fig. 6.15 Local node numbering for a linear isoparametric quadri-
lateral element.

Since the element approximation function is C° continuous, the second-
order derivatives in the integrand must be reduced by one so that inter-
element continuity is achieved during the assembly of the global matrix.
This reduction is achieved by observing that

~(e) (e) (e) n3(e)
N 920 (x, )—a(N“)a‘p (x,y))—QN—agx (xy)  (6.111)

ox? 0x ox
and
az¢(e) b a¢"(e) aN(e) a¢(e)
NOZEZ ,y)=—| N© 2 , 6.112
P ——(x,y) % % (x,y) |- o xy) )

Their substitution into the integrand in Eq. (6.110) and rearrangement of the
terms result in

E 3 (0369 (o 3d®
—|NOZ— |4+ —| N —Z— || dxd
Z; ”ax x ) oy oy y

D (6.113)

(e) n3(e) (e) 73(e)

ox  Ox dy dy
D(t')

Applying the divergence theorem to the first integral renders the domain
integral to the boundary integral, and it yields
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3 I 0¢
(e () (e) (e)
R
(6.114)

oN© aé(e) oN‘© a(;(e) _
+11- - ~N©A |dxdy (=0
H x ox  dy dy ray

D@
where n(e) and n(ye) are, respectively, the x- and y-components of the
outward normal vector along the closed boundary defining the area of the

element C©.

Substituting for the element approximation function yields

ZE: % N© {345(6) 2 4 90 n(ye)}ds

pr ox dy
C(E)

IN@ oN@T  gN© N ]
ox ox dy dy dy(p() (©.115)

D(E)

- j N© Adxdy t =0
D(f)

This equation can be recast in matrix form as

E
Z(k(e) (e)_f(e>+Q(e)) (6.116)

e=1

where
(e) an(e)T (&) any(eT

O {BN ab;x +31;y al\;y }xdy 6.117)

D(")
£ - IAN(”)dxdy (6.118)

D®
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Z(e) 3(€)
Q(e) — N© I:ag_ nie) + _a'g—ng:e) ds (6.119)
X Y

c®

in which k' is the element characteristic matrix, £*) is the element right-
hand-side vector, and Q(e) is often referred to as the inter-element vector
that includes the derivative terms along the boundary of the element. The
boundary integral around each element is evaluated in a counterclockwise
direction, i.e., this boundary integral is the sum of four integrals taken along
each side of the element.

Because the specified derivatives have zero values along the element
boundaries, the inter-element vector, Q(e) vanishes, i.e., Q“ =0, thus
reducing the element equilibrium equations to

i(k%“’ ~-£9)=0 (6.120)

e=l

The integrals contributing to the characteristic element matrix, k), and the
right-hand-side vector, f ) are evaluated over a square region in the natural
coordinate system after an appropriate coordinate transformation given by

4 4
x=Y NOEMK and y=) NOEmMYO  (©6.121)

i=1 i=1

Application of the chain rule of differentiation yields

aNl.(e) % Q, aN,-(e)
aife) - ?}f gf 3 1?/)(2) with i=1,2,3,4  (6.122)
i = =2 i

on an  on dy

or
B )
1 N -
5 (N =115 (6.123)
on dy

where J is called the Jacobian matrix. It can be expressed as
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Jo J
J =[ H ‘2} (6.124)
‘121 ‘]22

a 1 e e e e
J“=£=4{( M + A= + U+ -1+ma?]  (6.125)
dy 1
112=5§ H=my +A=mys? +a+mys? ~a+mf?}) - 6.126)
le—gj; %{ (1=Oxf? -+ HR + A+ OHX +1-9H0]  (6.127)
==L 40y P v+ ey +1-05P)  (6.128)
an 4

Also, the Jacobian can be rewritten in the form

[ @ @]
N©  aN®  aNe®  aN© ||\ n’

& AE AL ||

T oN©  an© av© av© || eo|  ©)
NG NP IN® N [ £
on on on on Oy |
or
xl(e) yl(e)
1{—(1—77) A-m) (+n) —(1+f7)} 50 5 6
—1-8) —1+8) (+H (-9 [0 4
x‘ge) y‘(te)-

Because the transformation between the natural and global coordinates has a
one-to-one correspondence, the inverse of the Jacobian exists, and it can be
expressed as

PR Rt (6.131)
|J| =Ju Ju .

When the element is degenerated into a triangle by increasing an internal
angle to 180°, J is singular at that corner. The inverse of the Jacobian matrix
permits the expression for the derivatives in terms of global coordinates
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N N
ox =J 1 a ‘f

ON ON®
dy on

Defining the element shape matrix B as

NS AN ONS® ON© | (9
BO = ox ox ox ox ox

_ N©'

NG N N N© | |9
dy ~dy dy  dy 9

permits the element matrix k® be written in the form

11
K I BOTBO gy = — J‘ J'B(e)TB(e) ||déan
D© -1-1

A similar operation is performed for evaluation of £

£ =4 [ NOdxdy=4 lj lj N©|J|dédn

D -1-1

223

(6.132)

(6.133)

(6.134)

(6.135)

Due to the difficulty of obtaining an analytical expression for the determi-
nant and inverse of the Jacobian matrix, these integrals are evaluated numer-
ically by the Gaussian integration technique described in detail in Sec. 3.6.

Prior to the calculation of the element characteristic matrices, their Jacobian

matrices are obtained for each element using Eq. (6.130) as

-4 -3

Jm:g[—(l—m A1) (+n) —(1+77)} 0 -3
4-(1-¢) -1+ d+5) d-&H o o

4 0

=1[8 0} with [JO|=3

(6.136)
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0 -3
J@ - 1{—(1—77) A=) (1+7) —(1+77)}4 -3
4l-1-¢) -@ 1 1- 5 0
1-$) -1+$) A+ ad-9) oY 6137
-1 ith |y =3
_4{ 1+& 6} WIthlJ | g0t
00
JO = 1[ -n) (A-n) A+ —(1+77)}5 0
4 -1-¢& -1+ a+oH a-94) |6 3
0 3 (6.138)
lll-&-?] . 3|_3
4{1+§ 6} with 9|2 at+7)
-4 0
3@ - 1[ -m) (A=) (1+7) —(1+77)} 0 0
1-& -a 1 1- 0 3
H -U+5 a+5H -9 0 6.1
_18 0 ith 7@ =
‘Z{o 6} with [§9] =3
The inverse of the Jacobian matrices are obtained as
e
(0] =4 8 1 (6.140)
0 —
6
) ‘1= 4 6 0
[J ] 6(9+n)[—(1+§) 9+;J (6.141)
T4 6 0
[J ] —6(11+n)[—(1+§) 11+7J (6.142)
Lo
[19] =4/ 1 (6.143)
0o -
6
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The element shape matrices B are obtained as

1 1 1 1
-——-n =-U-n =A+n) -<-10+n)
g | 8 8 8 8 (6.144)
1 1 1 1
-—(1- ——(1+ —(1+ —(1-
p 1-% e 1+%) p 1+$) p (1-%)
) 1 —(1-n) /)] (I+n) -(1+n)
B® = 1 5 4 1 (6.145)
9+n|-=(@4-5+n) -=(1+&) -1+ =(5-4L+m)
3 3 3 3
5 1 ) d-n d+n) -(1+n)
BY =—| 1 5 1 (6.146)
1l+7n —5(5—6§+f7) -2(1+&) 5(1+é") 5(6—5§+77)
1 1 1 1
-——-n =UA-n =0A+n) --0+n)
g® | 8 8 8 8 (6.147)
1 1 1 1
-——(1- -1+ —(1+ —(1-
p 1-95 6 (1+% G 1+&) p (1-%
Numerical evaluation of the element characteristic matrices results in
(25 1 25 23]
36 36 72 72
_ 125 23 2%
kO = 36 36 72 72 (6.148)
22 2302 1
72 72 36 36
B 25 12
L 72 72 36 36 |
0.688943  —0.0222762 —0.282179 —0.384488
@ _|—0.0222762  0.85561 -0.384488 —0.448846
k@ = (6.149)
-0.282179 -0.384488  0.60759  0.0590766
-0.384488 -0.448846 0.0590766 0.774257
0.753348 0.0799856 -0.316655 -0.516679
@ _| 00799856  0.920014 -0.516679 —-0.483321
k" = (6.150)
-0.316655 -0.516679 0.680566 0.152768
-0.516679 -0.483321 0.152768 0.847232
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[ 25 1 25 23]

36 36 12 72
1 25 23 25
K@ = 36 36 72 72

(6.151)
25 3251
72 72 36 36
2B 25 125
L 72 72 36 36 |
Similarly, the right-hand-side vectors are calculated as
3 3.25 4 3
3 3.25 4 3
fO =40 tP =4 Y ,f@ =4 (6.152)
3 3.5 4.25 3
3 3.5 4.25 3

The element definitions (or connectivity of elements), as shown in Fig. 6.14,
are presented in Table 6.5.

Considering the correspondence between the local and global node num-
bering as shown in Table 6.5, the element equations can be rewritten as

Wk K[ (5
Element 1:| k) k55 kY kY ) 51)>=ﬁf2(1) L
w0 |0

1 Q)] o)) ) O 0]
Lkai kgz kys k44_\¢4 /4

(6.153)

Table 6.5 Element connectivity.

Element
Number | Node 1 | Node 2 | Node 3 | Node 4
(e)
1 1 2 9 8
2 2 3 4 9
3 9 4 5 6
4 8 9 6 7
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2 B [ [

kP kD D k<2>"¢1<2> £®
Element2:  [k? 1@ k2 k@ ||¢? | =2 t (6.154)
v3
k(2) k(2) k(2) k(2) ¢(2) f(2)
k(2) k(z) k(2) kﬁ) 22) f(2)
[e]
PIRA KD k9| (£®
Element3: |k kD k@ Q||| =] (6.155)
»
k(3) k(3) k(3) k(3) ¢(3) f3(3)
k(3) k(3) k(3) kc(ti)J ¢(3) f4(3) B]
[s]
(k@ kD k@ @ [g®] (@
Blement4: | k" k& kO kD ||| =] £ (6.156)
k(4) k(4) k(4) k(4) ¢(4) f(4) IEI
k(4) k(4) k(4) k‘(é) £4) f(4)

In the assembly of the element characteristic matrices and vectors, the boxed
numbers indicate the rows and columns of the global matrix, K, and global
right-hand-side vector, F, to which the individual coefficients are added,
resulting in



228 FEM WITH ANSYS®

IS SO R 0 0 0 0
CECI I
o K2 kD kR 0 0 0
I N T I
0 0 0 kY Ky kY 0
000 kg K kg ek kY
0 0 0 0 VI S S 9%
WO 0 00 kP
Rt R T
. (6.157)

K2 @ e A

I B

: G 2

o e la| | A0

0 @ et

40 e ] | e

A 4l o

ek? ey lal | A0
T R R S CY R RS AR P
or
K®=F (6.158)

the global stiffness matrix and right-hand-side vector are numerically
evaluated as
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[ 0.694444  —0.0277778 0 0 0
-0.0277778 1.38339 -0.0222762 -0.282179 0
0 -0.0222762 0.85561 —-0.384488 0
0 -0.282179  —0.384488 1.5276 -0.516679
K= 0 0 0 -0.516679 0.680566
0 0 0 -0.483321 0.152768
0 0 0 0 0
-0.319444  -0.347222 0 0 0
| -0.347222  -0.703932  -0.448846  0.139062 —0.316655
(6.159)
0 0 -0.319444  -0.347222 ]
0 0 -0.347222  -0.703932
0 0 0 —-0.448846
-0.483321 0 0 0.139062
0.152768 0 0 -0.316655
1.54168 -0.0277778 -0.347222  -0.836123
-0.0277778 0.694444 -0.319444  -0.347222
-0.347222  -0.319444 1.38889 —-0.0555556
-0.836123 -0.347222 -0.0555556 291649 |
and
3
6.25
3.25
7.5
F=:4.25 (6.160)
7.25
3
6
[13.5]

After imposing the essential boundary conditions, i.e., ¢ =@, =¢s =¢; =
¢, =1, the global system of equations is reduced by deleting the rows and
columns corresponding to @, ¢, &, ¢, and @, , leading to
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Kk k) K 1]
Y kKD k) ks + k) 10|
ko kg ki) kY kid +kiy) %
L O S v N R SR e S I
£ (6.161)

1) (2) (2) (2)
L+ ATk —kg

(QY) 4) (4) 4)

4 T kg —ky

1 2 3 4 2 2 3
R N C R

=Y

3) 3) (4) (4)
—hy - (k14 + ka3 )“ ko
which is numerically evaluated as

0.694444  -0.0277778 -0.319444  -0.347222
K= -0.0277778  1.38339 -0.347222  -0.703932

(6.162)
-0.319444  -0.347222  1.38889  -0.0555556
-0.347222  -0.703932  -0.0555556  2.91649
and
3
6.55446
F= (6.163)
6.66667
15.3098
Finally, the solution of the reduced global system yields
) 15.8119
13.5401
2l (6.164)
& 12.2471
) 10.6332

6.1.3.2 ANSYS Solution

The governing equations for a steady-state heat transfer, described by Eq.
(6.101) through (6.105), also can be solved using ANSYS. The solution
procedure is outlined as follows:
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MODEL GENERATION

m Specify the element type (ET command) using the following menu path:
Main Menu > Preprocessor > Element Type > Add/Edit/Delete

e Click on Add.

o Select Thermal Solid from the left list and Quad 4node 55 from the
right list; click on OK.

¢ Click on Close.

m Specify material properties (MP command) using the following menu
path:

Main Menu > Preprocessor > Material Props > Material Models

o In the Define Material Model Behavior dialog box, in the right window,
successively double-click on Thermal, Conductivity, and, finally,
Isotropic, which brings up another dialog box.

o Enter I for KXX, and click on OK.

o Close the Define Material Model Behavior dialog box by using the
following menu path:

Material > Exit

m Create nodes (N command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

e A total of 9 nodes will be created (Table 6.4).

» Referring to Table 6.4, enter x- and y-coordinates of node 1, and Click
on Apply. This action will keep the Create Nodes in Active Coordinate
System dialog box open. If the Node number field is left blank, then
ANSYS will assign the lowest available node number to the node that
is being created.

o Repeat the same procedure for the nodes 2 through 9.

o After entering the x- and y-coordinates of node 9, click on OK (instead
of Apply).

o The nodes should appear in the Graphics Window, as shown in Fig.
6.16.

m Create elements (E command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > Thru Nodes

o Pick Menu appears; refer to Fig. 6.17 to create elements by picking
Sfour nodes at a time and clicking on Apply in between.

o Observe the elements created after clicking on Apply in the Pick Menu.

o Repeat until the last element is created.

o Click on OK when the last element is created.
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Fig. 6.16 Generation of nodes.
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Fig. 6.17 Generation of elements.

m Review elements:

Turn on element numbering using the following menu path:
Utility Menu > PlotCtrls > Numbering

Select Element numbers from the first pull-down menu; click on OK.
Plot elements (EPLOT command) using the following menu path:

Utility Menu > Plot > Elements

Figure 6.17 shows the outcome of this action as it appears in the
Graphics Window.

Turn off element numbering and turn on node numbering using the
following menu path:

Utility Menu > PlotCtrls > Numbering
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 Place a checkmark by clicking on the empty box next to NODE Node
numbers.

 Select No numbering from the first pull-down menu.

 Click on OK.

« Plot nodes (NPLOT command) using the following menu path:
Utility Menu > Plot > Nodes
o Figure 6.16 shows the outcome of this action as it appears in the
Graphics Window.
SOLUTION

m Apply temperature boundary conditions (D command) using the following
menu path:

Main Menu > Solution > Define Loads > Apply > Thermal > Temperature > On Nodes

o Pick Menu appears; pick nodes 3 through 7 along the boundary (Fig.
6.16) and click on OK on Pick Menu.
 Highlight TEMP and enter 1 for VALUE; click on OK (Fig. 6.18).

m Apply body load on elements (BFE command) using the following menu
path:
Main Menu > Solution > Define Loads > Apply > Thermal > Heat Generat > On Elements

e Pick Menu appears; click on Pick All.
o Enter 1 for VALI (leave other fields untouched, as shown in Fig. 6.19).
¢ Click on OK.

m Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

o Confirmation Window appears along with Status Report Window.

» Review status/ If OK, close the Status Report Window and click on OK
in the Confirmation Window.

o Wait until ANSYS responds with Solution is done!

POSTPROCESSING

m Review temperature values (PRNSOL command) using the following
menu path:

Main Menu > General Postproc > List Results > Nodal Solution

« Highlight DOF solution on the left list and Temperature TEMP on the
right list; click on OK.
o The list will appear in a new window, as shown in Fig. 6.20.
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N Apply TEMP on Nodes
[D] Apply TEMP on Nodes

Lab2 DOFs to be constrained ‘AI DOF

Apply as IConstant value
If Constant value then:

VALUE Load TEMP value I 1
Help |

Fig. 6.18 Application of temperature boundary conditions on nodes.

oK Apply J Cancel

N Apply HGEN on elems
[BFE] Apply HGEN on elems as a |Constant value :]

If Constant value then:
STLOC Starting location N

VALl Load HGEN at loc N I 1

YAL2 Load HGEN at loc N+1

VAL3 Load HGEN at loc N+2 I

YAL4 Load HGEN at loc N+3

| Apply Cancel J Help |

Fig. 6.19 Application of heat generation condition on elements.
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I PRNSOL Command
File

PRINT TEMP NODAL SOLUTION PER NODE
e POST1 NODAL DEGREE OF FREEDOM LISTING e

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.806680 LOAD CASE= @

TEMP
15.812
13.541
1.08068
1.680608
1.08068
1.06808
1.080608
12.247
10.634

| MAXIMUM ABSOLUTE UALUES
| NODE 1
UALUE 15.812

b
(=]
=
o]

M~ AWM

Fig. 6.20 Nodal solution for temperature.

6.2 Principle of Minimum Potential Energy

Galerkin’s method is not always suitable for all structural problems because
of difficulties in mathematically describing the structural geometry and/or
the boundary conditions. An alternative to Galerkin’s method is the princi-
ple of minimum potential energy (Washizu 1982; Dym and Shames 1973).

The energy method involves determination of the stationary values of the
global energy. This requires the approximation of the functional behavior of
the dependent variable so that the global energy becomes stationary. The
stationary value can be a maximum, a minimum or a neutral point. With an
understanding of variational calculus, the minimum stationary value leading
to stable equilibrium (Fig. 6.21) is obtained by requiring the first variation
of the global energy to vanish.

Avoiding the details of variational calculus, the concepts of differential
calculus can be used to perform the minimization of the global energy. In
solid mechanics, this is known as the principle of minimum potential
energy, which states that among all compatible displacement fields satis-
fying the boundary conditions (kinematically admissible), the correct
displacement field satisfying the equilibrium equations is the one that ren-
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7, (x)

maximum ~ unstable
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neutral

minimum ~ stable equilibrium

> X

Fig. 6.21 Schematics of stable, neutral, and unstable equi-
librium points of the global energy.

ders the potential energy an absolute minimum. A solution satisfying both
equilibrium equations and boundary conditions is, of course, “exact”; how-
ever, such solutions are difficult, if not impossible, to construct for complex
problems. Therefore, approximate solutions are obtained by assuming kine-
matically admissible displacement fields with unknown coefficients. The
values of these coefficients are determined in such a way that the total
potential energy of the system is a minimum.

The principle of virtual work is applicable for any material behavior, where-
as the principle of minimum potential energy is applicable only for elastic
materials. However, both principles yield the same element equations for
elastic materials.

The total potential energy of the structural system shown in Fig. 6.22 is
defined as

T, =W+Q (6.165)

in which W is the strain energy and Q is the potential energy arising from
the presence of body forces, surface tractions, and the initial residual
stresses. Strain energy is the capacity of the internal forces (or stresses) to
do work through strains in the structure.

For a linear elastic material, the strain energy of the deformed structure is
given by

% =%‘;[(8—8* )Tch (6.166)
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element

ry

X

Fig. 6.22 A 3D body with displacement constraints, body and
concentrated forces, and surface tractions.

where ¢ is the vector of stress components arising from the difference
between the total strains, €, and initial strains, €. It can be expressed as

o=D(e-¢") (6.167)
in which
"T:{Uxx Oy Oy Oy Oy au} (6.168)
and
e ={en €y € Ty ¥y Ve (6.169)
and the material property matrix
[1-v v 0 0 0 ]
1-v 0 0 0
v 1-v 0 0 0
L _Jo o 0 &2 o0 0 (6.170)
A+v)(1-2v) 2
o 0 0 o U=m
2
o 0 0 0 0 (_1_‘52&

where o; and ¢; represent the stress and strain components, with
i,j=x,y,z being the Cartesian coordinates. The elastic modulus and
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Poisson’s ratio are denoted by E and v, respectively. In the presence of
temperature change, the initial strains can be expressed as

e’ ={aAT oAT AT 0 0 0} (6.171)

where « is the coefficient of thermal expansion and AT is the temperature
change with respect to a reference state.

The potential energy arising from the presence of body forces, b, surface
tractions, T, and the initial residual stresses, 6" , is given by

Q=-[u"bav - [u'Tds + [e"e"av (6.172)
14 S, 14
with
b’ ={b, b, b} (6.173)
T ={r, 7, T} (6.174)
u ={u, u, u) (6.175)

in which b, , by, and b, are the components of body force (in units of force
per unit volume), and 7, T,, and T, represent the components of the
applied traction vector (in units of force per unit area) over the surface
defined by S, . The entire surface of the body having a volume of V is
defined by S, with segments S, and S, subjected to displacement and
traction conditions, respectively. The displacement components are given by
uy, u,, and u, in the x-, y-, and z-directions, respectively. Also,
included in the expression for the total potential is the initial residual
stresses denoted by o". The initial stresses could be measured, but their
prediction without full knowledge of the material’s history is impossible.

After partitioning the entire domain occupied by volume V into E number
of elements with volume V¢, the total potential energy of the system can be
rewritten as

E
7y (gothytty) = Y 7 (ot ) (6.176)

e=1

in which
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”;e) =% IaTDadV— ISTDs*dV +% IS*TDS*dV

ve ve Ve (6.177)
- judeV— j u'Tds + j ele*dV
V(e) St(ye) V(e)

where the superscript e denotes a specific element.

Based on kinematical considerations, the components of the total strain
vector, €, in terms of the displacement components are expressed as

d
— 0 0
ox
)
0 — 0
Ex PN
£
8yy 0 0 ai u,
2| _ Z _
Y = _a— _a_ . u,r or g¢=Lu (6.178)
Yye dy Ox Uz
0 0
/4 0 — —
L2 ) %z oy
d )
- 0 —=
L 0z ox

in which L is the differential operator matrix.

The finite element process seeks a minimum in the potential energy based
on the approximate form of the dependent variables (displacement compo-
nents) within each element. The greater the number of degrees of freedom
associated with the element (usually means increasing the number of nodes),
the more closely the solution will approximate the true equilibrium position.
Within each element, the approximation to the displacement components
can be expressed as

n
u® ==Y Nfe)uif)

r=l1

n
ugle) = ﬁg]e) = ZN,(‘e)u;e) (6 179)

r=1

hn
(€) - e _ (), (&)
u, =u, —ZN, U,

r=1
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with n representing the number of nodes associated with element e. The
nodal unknowns and shape functions are denoted by u'” u;e), uie), and
Nﬁe) , respectively. In matrix form, the approximate displacement

components can be expressed as

i@ =N@Ty® (6.180)
in which
i ={a @? @) (6.181)
NN O 0 N, 0 0 N, 0 0

NOT=lo N O O N, O 0O N, O (6.182)

0 0 N, O 0 N, 0 0 Nyl

@r _[,& @ (@ @O (@ @ © @ (@

Ut = {“xl o M S } (6.183)

With the approximate form of the displacement components, the strain
components within each element can be expressed as
e=~BYU® (6.184)
where
B =LN©T (6.185)

leading to the expression for the total potential in terms of element nodal
displacements, U

n;ﬂ%U(“)Tk@u‘”-U“)Tp‘e)+% j e’ De’dV  (6.186)
V(l’)

in which the element stiffness matrix, k(e), and the element force vector,
p'©, are defined as
k© = j BOTDB@qy (6.187)
V(e)

and

p(e) - p{:’) + p'(lf) + p(e) - p:"? (6 188)

8*
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with pff) , pfl‘f ), p(;,) , and p:) representing the element load vectors due to
body forces, surface tractions (forces), initial strains, and initial stresses,
respectively, defined by

V(e)
py’ = [ N“Tds

S5 (6.189)
p(ﬁ) = | BOTDpeg*av

V(e)
p(e) B(é’)T G*dv

V(L’)

Evaluation of these integrals results in the statically equivalent nodal forces
in the elements affected by the body force, the surface tractions, and the
initial strains and initial stresses. In the presence of external concentrated
forces acting on various nodes, the potential energy is modified as

R S R T I (€ 4 @) (&) ()
7p=30 {Zl"e U=UT (0 0 +r? -p2) R
e= e=

£ (6.190)
1 *T ®
+EZ Js DedVv

e=1{0)

where P, is the vector of nodal forces and U represents the vector of nodal
displacements for the entire structure. Note that each component of the
element nodal displacement vector, U@, appears in the global (system)
nodal displacement vector, U. Therefore, the element nodal displacement
vector U can be replaced by U with the appropriate enlargement of the
element matrices and vectors in the expression for the potential energy by
adding the required number of zero elements and rearranging. The summa-
tion in the expression for the potential energy implies the expansion of the
element matrices to the size of the global (system) matrix while collecting
the overlapping terms.

Minimization of the total potential energy requires that

o, =0 (6.191)
U | '

leading to the system (global) equilibrium equations in the form
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KU=P (6.192)

in which K and P are the assembled (global) stiffness matrix and the
assembled (global) nodal load vector, respectively, defined by

E
K= Zk“’ (6.193)
e=1
and
E
P=Y(py) +pf +p¢ -p )P (6.194)

e=1

This global equilibrium equation cannot be solved unless boundary con-
straints are imposed to suppress the rigid-body motion. Otherwise, the
global stiffness matrix becomes singular.

After obtaining the solution to the nodal displacements of the system equi-
librium equations, the stresses within the element can be determined from

¢ =DBYU® -D¢* + ¢ (6.195)

The global stiffness matrix and the load vector require the evaluation of the
integrals associated with the element stiffness matrix and the element nodal
load vector.

6.2.1 Example: One-dimensional Analysis with Line Elements

The application of this approach is demonstrated by computing the displace-
ments and strains in a rod constructed of three concentric sections of differ-
ent materials. As shown in Fig. 6.23, the rod has a uniform cross section and
is subjected to a concentrated horizontal load, P, at the second joint, and the
boundary conditions are specified as u,(x=0)=0 and u,(x=L)=0.

The domain is discretized with 3 linear line elements having two nodes, as
shown in Fig. 6.24. The global coordinates of each node in domain D are
specified by x;, with i=1,2,3,4. The nodal values of the dependent variable
associated with element e are specified at its first and second nodes by

u@and u'®, respectively.

X; x;

For the domain discretized with three elements and four nodes, the local and
global nodes are numbered as shown in Table 6.6.
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=Ly e—— L, —fe—L; —»
o T 8 P=I 0 ¢

ks i
" L =
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Fig. 6.23 A rod constrained at both ends, subjected to a
concentrated force.

| 0) 2 3 4
O O 2 O O O
x,=0 X X3 X,

Fig. 6.24 Finite element discretization of the rod with
three elements.

Table 6.6 Local and global node numbers.

Element
Number Node 1 Node 2
(e)
1 1 2
2 2 3
3 3 4

Within each element, the approximation to the displacement component can
be expressed as

2
u? =il =Y N (6.196)

r=1

The nodal unknowns and shape functions are denoted by u ) and N, @,
respectively. In matrix form, the approximate displacement components can
be expressed as

i@ =N@Ty©@ (6.197)
with
(e)

X

u(e)

X2

u

NOT = {N(") N§e>} and U = (6.198)

in which the shape functions are
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(e) (e)
x50 —x X—X
Nl(e)z_(%——(’T and N3 = T (6.199)
x5 = x° x5 —x°

With the approximate form of the displacement components and L =d/dx,
the shape matrix can be obtained from

e a e
B == (MO N ] (6.200)

X
For a constant cross section, A(e), and elastic modulus, E(e), in each ele-
ment, the element stiffness matrix is

k(e) — J‘ B(e)TDB(e) dv
V(e)

x50

(6.201)
9 | N© 0
— 7Ale) 1 E(e) (e) (e)
=A Jax[Née)j| -—ax[Nl N2 }aix

e

Substituting for the shape functions, the element stiffness matrix becomes

K0

RCT. il S [ PR (6.202)
@ _ @\ ) [-1 1 '
(37 -57)

(e)
X

Integration along the element length results in

K A©E© [ 1 —1}__A(8)E(e)[ 1 -1

(xge)-xl(e) -1 1 © | -1 1

-1 1

in which L9 = (x{ = x{) and o' = A©OE®/[©  The element stiffness
matrices are computed as

(6.203)

KO { o —a‘“} (6204)

oV g0
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) [ 2?  —a@ 2 (6.205)
-2® a® |3

O _ a®  —a® (6.206)
2@ a® |4

The element load vector, p(Te) , due to the unknown nodal forces, Tx‘, and
ij atnodes i and j, respectively (Fig. 6.25), can be obtained from

o I T N (x = xl(e))
T i Née) (x _ xl(e)) X

(6.207)
N© ( = x(e>)
Nge) (x — xge)) X,
Evaluating the shape functions results in a load vector of the form
-1 0
(6.208)

(o le e ]

Associated with each element, the load vectors become

-T, -T, -T,
a1 _ ! (2) _ % 3) _ 1 6.209
pT {Tx } H pT {Tx +P} H pT { Tx } ( . )
2 3 4

The global coefficient matrix, K, and the load vector, Py, are obtained

from the “expanded” element coefficient matrices, k®, and the element

load vectors, p(Te) , by summation in the form

fe— 00—
i j '

Fig. 6.25 A typical linear line element with two nodes.
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E E
K=>k© and Pp=> p{ (6.210)
e=1 e=l1

The “expanded” element matrices are the same size as the global matrix but
have rows and columns of zeros corresponding to the nodes not associated

with element (e). Specifically, the expanded form of the element stiffness
and load vector becomes

O —a® 0o o -T,
Ko _|2® o 0 o]2l: o = T, (6.211)
0 0 00 "o
0 0 00 0
0 0 0 0 0
K@ = 0 o2 —ao® o : p(z) ) T, (6.212)
0 -a® o? o0 T, +p
0 0 0 0 0
00 0 0 0
Kk® = 00 0 0 ’ p® = 0 (6.213)
00 a? -a® T T,
00 - o T,

In accordance with Eq. (6.210) and (6.192), the global equilibrium equations
can be written as

PO ) ]
o a 0 0 U, T,
1 1 2 2
_a® (a( ) 1 of >) e 0 u, T, T,
= (6.214)
0 e ( a® +o® ) —a® | |u,, T, +P-T,
0 0 —g® @) Ux, T,
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Enforcing the boundary conditions of u, =u, =0 leads to

a® —a® 0 0 0 _
o (oD rg®)  —g® 0 "
al )0 (6.215)
0 —a® (a(z) +a<3>) O (| [ ] P
L0 0 —a¥ a® | 0 T
This system of equations can be partitioned in the form
O (0, @ @) 0
-a (a +a ) -a 0 Uy 0 62163)
9 = . a
0 -a? (a(z) +a(3)) 0||%x3 P
L 0
or
m, @ @
o’ t+ta 24 0
( ) ezl (6.216b)
_g® (aa) + ao)) us| | P
and
0
a® a® 00 jju,| [Ty (6.217a)
= . a
0
or

T, =05(1)ux2 and T, =—a®y

. (6.217b)

Solution to nodal displacements results in

@ )
Uy, = P (6.218
2 (a(‘)a<2) +aWa® +a(z)a(s))

M 4 4@
a’'t+ta
u, = P (6.219)
% (ama(z) +aDa® 4 a(z)a(s))
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With these nodal displacements, the reaction forces are computed as

T = aVa'? P (6.220)
i (aVa® + gV +ad®a®) '
a® (aa) + a(z))
T =- (6.221)

X,
4 (a(l)am +a0a® + a(Z)a(3>)

Finally, the strains are computed as

oL _y= a® (6.222)
T (006 4 08 4 gPa®) (O

1
@__L d (6.223)

= Uy, —Uy )= P
R S OB B (a“)a(2)+a“)a‘3)+a(2)a(3)) i)

(a(” + a(z))

Ex = Uy —U, )=— P 6.224
o = (Tl (a<1)a<2)+a(1)a(3>+a(2>a(3))L(3) ( )

6.2.2 Two-dimensional Structural Analysis

The three-dimensional analysis of either “thin” or “long” components sub-
jected to in-plane external loading conditions can be reduced to a two-
dimensional analysis under certain assumptions referred to as “plane stress”
and “plane strain” conditions.

6.2.2.1 Plane Stress Conditions

A state of plane stress exists for thin components subjected only to in-plane
external loading, i.e., no lateral loads (Fig. 6.26). Due to a small thickness-
to-characteristic length ratio and in-plane external loading only, there is no

Fig. 6.26 Thin body with in-plane loading; suitable for
plane stress idealization.
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out-of-plane displacement component, u,, and the shear strain components
associated with the thickness direction, y,, and Yy, » are very small and
assumed to be zero. Therefore, the stress components, o,,, 0,,, and 0,,
associated with the thickness direction vanish. Under these assumptions, the
displacement, u, stress, ¢, strain, €, and traction, T, vectors, and material

property matrix, D, reduce to

u’ ={ux uy}
6: ~low oy oo} (6.225)
& ={gxx Eyy 7xy}
T ={T, T,}
and
1 v 0
D= E 5|V 1 0 (6.226)
1-v (1-v)
00
L 2
with
£, = —%(axx +o,) (6.227)

The initial strains arising from AT, the temperature change with respect to
the reference state, can be expressed as

g7 =[aAT AT 0] (6.228)

6.2.2.2 Plane Strain Conditions

A state of plane strain exists for a cylindrical component that is either “long”
or fully constrained in the length direction under the action of only uniform
lateral external loads (two examples are shown in Fig. 6.27). Because the
ends of the cylindrical component are prevented from deforming in the
thickness direction, it is assumed that the displacement component u,
vanishes at every cross section of the body. The uniform loading and cross-
sectional geometry eliminates any variation in the length direction, leading
to d( )/dz=0. Also, planes perpendicular to the thickness direction before
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Fig. 6.27 Long bodies with in-plane loading; suitable for plane
strain idealization.

deformation remain perpendicular to the thickness direction after deforma-
tion. These assumptions result in zero transverse shear strains, y,, =¥,, =0.
Under these assumptions, the displacement, u, stress, ¢, strain, g, and
traction, T, vectors, and material property matrix, D, reduce to

T _
o ={u, u,]

o =l 0y oo} (6.229)
e ={8xx Eyy ny}
TT:{TX Ty}

and
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5 1-v v 0
=y l-v 0 (6.230)
d+wv)1-2v) 1-2v)
0o o < 2"

The initial strain vector due to this temperature change can be expressed as
el = [A+v)eAT (1+v)aAT 0] (6.231)
where AT is the temperature change with respect to a reference state.

The material property matrices for both plane stress and strain conditions
have the same form, and it is convenient to present it in the form

D, DD, 0
D=|DD, D, 0 (6.232)
0 0 D
where
Dy, :M (6.233)

with D, = E/(l—v)2 and D, =v for plane stress, and D, =E(l-v)/
(1+v)(1-2v) and D, =v/(1-v) for plane strain.

6.2.2.3  Finite Element Equations with Linear Triangular Elements

The displacement components u, and u, within a triangular element can be
approximated as

u)(f) =a(e) — N(e) (e) +N(e) (e) + N(e) ie)
? (6.234)
u(ye) ~(e) _ N(e) (e) N(e) (e) N(e) (i)

in which N®, N, and N{® are the linear shape functions and
(u(e) (e)) (u(e) (eg) and (uie),u(ye)) are the nodal unknowns (degrees of
freedoms assoc1ated with first, second, and third nodes, respectively. An
example of a triangular element with its nodal degrees of freedom and local
nodal numbering is shown in Fig. 6.28. In matrix form, the approximate
displacement components become

i®@ =N@Ty© (6.235)
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(6.236)

(6.237)

(6.238)

(6.239)

(6.240)

252
Ay
» X
Fig. 6.28 Typical linear triangular element with nodal
degrees of freedom.
in which
ﬁ<e)T={a§e) ﬁ§“’}
and
NOT _ N 0O N, O N; O
0 N O N, 0 Ny
and
@r _), () (e (e () (e) (e
U v_{uxl u)’l ux2 u)’z uxs u}’3}
The element shape matrix, B, becomes
g]& oN, 0 ON; 0
ox ox ox
BO =| 0 ONy 0 oN, 0 ON;
dy dy dy
| dy dx dy Oox dy Ox |
Substituting for the derivatives of the shape functions, this matrix simplifies
to
1 i 0 w0 ¥y 0
BO=— 0 a0 4 0
24 (e) (e) (e) (e) (e) (e)
X320 Y3 M3 Vi X iz
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Both the element shape and material property matrices are independent of
the spatial coordinates, x and y, thus leading to the evaluation of the element
stiffness matrix, k@, as

K(© —BOTPBOY®© (6.241)

where V© =:A® | with element area A and constant thickness 7. The
evaluation of the load vectors, pff) and p({ ), arising from the body forces
and surface tractions (forces), respectively, involve integrals of the form

jdxdy, jxdxdy, jydxdy (6.242)

By choosing the centroid of the triangle as the origin of the (x,y) coor-
dinate system, the integrals involving either x or y in the integrand vanish.
The load vector arising from the body forces can be obtained from

- - r
( Nl 0 Nl bx
0 Nl Nl by
N, 0 |[b N, b
pl® = 2 { x}dV: 2Ly (6.243)
N3 0 N3 bx
0 N Ny b
‘;)(e) ) > e )
v
reducing to
(e‘)T tA(e)
P =-—3-—[bx b, b, b, b b,] (6.244)

in which b, and b, are the components of the body force vector.

The evaluation of the element load vector due to the applied traction forces
(distributed loads as shown in Fig. 6.29) requires their explicit variation
along the edges of the element. For an element of constant thickness
subjected to uniform load of T, in the x-direction along its 1-2 edge, the
vector p(Te ) can be written as
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3
Fig. 6.29 Surface force along side 1-2 of the triangular element.

rr T r
N, 0 N T,
0 N, 0
T
ps =1 N, 0 { x}dl=t N2 Tl gy (6.245)
0 N, |0 0
0 0 0
0 0 0
L J LY
1:_2 L,

in which N; =0 along the 1-2 edge and L,_, is the length of the 1-2 edge .
Since N; and N, vary linearly along the 1-2 edge, they can be expressed
in terms of the natural coordinates, £, and &,, as derived in Chap. 3

(e) x— xl(e)

- X
é:l '—(e—)——('T and N2 = 4:2 —'T_—x(—e)' (6246)
X *2 1
The integrals in the expression for p(e) are evaluated as
JNlel jfl whadé) = XLIZ
b (6.247)

INszl jszLn 2d§2—
L,

Thus, the load vector, p(e) takes the form
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T
p(If)T=t—-ﬁ%[l 010 0 0] (6.248)
as illustrated in Fig. 6.30.

Note that this result corresponds to equivalent point forces acting at the first
and second nodes. The element load vectors arising from the initial strains
and stresses can be written as

p(i) =B@Tpg*y©
¢ (6.249)
p(ae*) =B Tg*y©

6.2.2.4 Example of a Plane Stress Analysis with Linear Triangular
Elements

6.2.2.4.1 Derivation of a System of Equations and Its Solution

Using linear triangular elements, determine the nodal displacements and the
element stresses in a thin plate subjected to displacement constraints and
surface tractions as shown in Fig. 6.31. Also, the plate is exposed to a
temperature change of 10 °C from the reference temperature. The plate
thickness is 0.5 cm and the Young’s modulus, E, and the Poisson’s ratio,
v, are 15x10% N/em? and 0.25, respectively. The coefficient of thermal
expansion is 6x107%/°C.

In order to illustrate the solution method, the plate is discretized into two
triangular elements, as shown in Fig. 6.32.

The global coordinates of each node are specified by (x
p=1,2,3,4, and are presented in Table 6.7.

50 ¥p), Wwith

3

Fig. 6.30 Equivalent nodal forces for the surface force
along side 1-2 of the triangular element.
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vt 600 N/em®
KB
1 cm
1200 N/cm) KB | 3cm
KB
» —Xp X
R ®
2 cm

Fig. 6.31 Geometry and loading of the problem.

3
40 O3 30 32
1 2 1 2 1

Fig. 6.32 Global and local numbering of nodes and elements.

Table 6.7 Global nodal coordinates.

Global Node Nodal Nodal
Number Coordinates | Unknowns

1 0,0) u,u,

2 2,0) Uy U,

3 (2,3) Uy Uy,

4 (1,3) Uy, i,
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The global unknown nodal displacement vector is given by
T _
U —{uxl Uy Uy Uy, Uy Uy Uy, u}’4} (6.250)

Considering the correspondence between the local and global node num-
bering schemes, the elements are defined (connected) as shown in Table 6.8.

The areas of each element are calculated to be

AD =3cm? and A® =32cm? (6.251)

Under plane stress assumptions, the material property matrix becomes

16 4 0
D=10°| 4 16 0|N/cm? (6.252)
0 0 6

The initial strains arising from the temperature change is written as

g7 =10"°[60 60 0] (6.253)

The element load vectors arising from the applied tractions are

PP =254 0 0 0 1 0] (6.254)
T, L;_
PP =240 0 0 1 0 1] (6.255)

With the specified values of the thickness and the distributed loads, these
element load vectors become

pP7 =300V10[1 0 0 0 1 O]N (6.256)
and
)T _
py' =-150[0 0 0 1 O 1N (6.257)

Table 6.8 Element connectivity.

Element
Number | Node 1 | Node 2 | Node 3
(e)
1 1 2 4
2 2 3 4
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For the first element, e =1, the components of the element shape matrix
BY are computed as
1 1 1 1 1 1
yg3)=y§)—y§)=y2—y4=—3, x§2)=xg)—x§)=x4—x2=—l
1 1 1 1 1 1
Y=y oy =y =3, D=0 oy k=1 (6.258)

1) a1 _ @ _ (D
2 = Xy~

1 1
)’1(2:)’1()_)’ n=y=0, xj= xl()=x2—x1=2

leading to

1—3 0 3 0 00
B“’:g 0 -1 0 -1 0 2 (6.259)
-1 -3 -1 3 20

For the second element, e =2, the components of the element shape matrix
B® are computed as
2 2 2 2 2 2
)’§3) :)é ) —y§ ) =y3-94=0, xgz) :x§ )—xg ) =x4—x3=-1

2 2 2 2 2 2
Y=y D=y —y,=3, AP =x® Doy _x =1 (6260)

2

2 2 2 2 2
9D =3P 3 =y =y =3, 4D =P —x? =y, =0

leading to

: 0 0 30 -3 0
B<2>=5 0 -101 0 0 (6.261)
-1 0 1 3 0 -3
The evaluation of the stiffness matrices, k” and k®, requires the products

of BUTD and B®TD. Also, these products appear in the evaluation of the
element load vectors arising from the temperature change. Therefore,

[—48 -12 -6 ]

4 -16 -18
B“”D:lQE 8 12 -6 (6.262)

6|-4 -16 18

0 0 12

'8 32 0
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B p=—o

The element stiffness matrices become

0 10
12
and
@ _10°
12

75
15

)
-18
0
18

15
35

16
-12
-16

12

0

0 0 -6

-4 -16 0

48 12 6

4 16 18

48 -12 0

0 0 -18

-69 -3 -6 -12]
3 -19 -18 -16
75 -15 -6 12
-15 35 18 -16
-6 18 12 0
12 -16 0 32|
j=3 k=4
-6 -18 0 18]

-12 -16 12 0
150 30 -144 -18
30 70 -12 54

-144 -12 144 0O

-18 54 0 54

259

(6.263)

(6.264)

(6.265)

The boxed numbers above each column pair indicate the nodal order of
degrees of freedom in each element stiffness matrix.

The thermal load vectors associated with each element are obtained as

M _

*

-

=900
=300
900
=300
0

| 600

N and p(;)=<

-

0
=300
900
300
=900

rN

(6.266)
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Rewriting the element stiffness matrices and the load vectors, in the
expanded order and rearranged form according to the increasing nodal
degrees of freedom of the global stiffness matrix, K yields

Associated with the first element:

(75 15 -69 -3 0 0 -6 -12]
15 35 3 -19 0 0 -18 -16
69 3 75 =150 0 -6 12
kﬂ):E -3 -19 -15 35 0 0 18 ~-16| (6.267)
200 0 0 0 00 0 0
0 0 0O 0 00 O O
-6 -18 -6 18 0 0 12 0
-12 -16 12 -16 0 0 0O 32|
1 -900
0 -300
0 900
P(T1)=300\/I6<S>N and p% = _3OOOLN (6.268)
0 0
1 0
0 600

~

Associated with the second element:

16 -12 -16 12 0 | (6.269)
150 30 -144 -18
-18 -16 30 70 -12 -54
0 12 -144 -12 144 O
18 0 -18 -54 O 54

12

k@ =

SO O O O O O O O

O O O O O O O O
|
@)}
|
—
\S]




FINITE ELEMENT EQUATIONS

pfrz) =-1505

r

= 0o = 0O O O o <o

Summation of the element stiffness matrices

and load vectors

*N and p

& 900
300
=900

E
K=>k®

e=1

P=Y (pf +p?)

results in the global stiffness matrix and the global load vector as

(75 15
15 35
69 3
K=£9i -3 -19
1200 0
0 0

-6 -18
-12 -16
0 0

0 0

-6 -18
12 -16
150 30
30 64
-144 -12
-18 48

e=1

—69
3

(75+6)

-15

-6

-18

)
(12+18)

(18+12)
~144
-12
(12 +144)
0

-3
-19
-15
(35+6)
-12
-16
(18+12)
-16
-12
-16
(12+18)
-16
-18
-48
0
(32+48)

-

261

(6.270)

(6.271)

(6.272)

6.273)
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and

(3004/10 —900)
~300
900
(~300 - 300)
900
(~150+300)
(300410 —900)
~150 + 600

FEM WITH ANSYS®

The final form of the global system of equations becomes

(75 15 -69 -3 0
15 35 3 -19 0
-69 3 (75+6) -15 -6
1000 -3 -19 -15 (35+6) -12
12l 0 o0 -6 -12 150
0 o0 -18 -16 30
-6 -18 -6  (18+12) -144
-12 -16 (12+18) ~-16  -I8
“a 1 (300410 - 900)
“ ~300
U, 900
S| ) (-300-300)
™ 900
u,, (=150 +300)
y, (3004/10 —900)
~150+ 600

\uy4 )

)
-18
-6
(18+12)
-144
-12
(12+144)
0

(6.274)

-12
~16
(12+18)
~16
-18
~54
0
(32+54)

(6.275)

Applying the prescribed values of the displacement components leads to
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75 15 -69 -3 0 0 -6 -12 ]
15 35 3 -19 0 0 -18 -16
-69 3 (75+6) -15 -6 -18 -6 (12 +18)
100 -3 -19 -15  (35+6) -12 -16 (18+12) -16
1210 o0 -6 -12 150 30 @ -144 -18
0 0 -18 -16 30 70 -12 -54
-6 -18 -6  (18+12) -144 -12 (12+144) 0
-12 -16 (12+18) -16  -18 -54 0 (32+54) |

uy | (300410 —900)
0 -300
0 900
0 (=300-300)
X310 (= 900 (6.276)
u,, (-150+300)
u, | (300310 -=900)
u, -150+600 |

Eliminating the rows and columns corresponding to zero displacement
components simplifies the global system of equations to

75 0 -6 -12 Uy
10°0 0 70  -12 —54 | |uy,
12| -6 -12 (12+144) 0

~12 -54 0 (32 +54)

<

X4

<

Y4 (6.277)
(300410 — 900)

(=150 + 300)
(3004/10 - 900)
(=150 + 600)

The solution to this system of equations results in the values for the
unknown displacement components as

U, 0.0000357839
Uy, | | 0.000157003

= cm
u,, | ]0.0000171983
" 0.000166367

(6.278)
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6.2.2.4.2 ANSYS Solution

The nodal displacements of the plate subjected to uniform temperature can
also be obtained using ANSYS. The solution procedure is outlined as
follows:

MODEL GENERATION

m Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Click on Add.

Select Structural Solid from the left list and Quad 4node 42 from the
right list; click on OK.

Click on Options.

In order to specify the 2-D idealization as plane stress with thickness, in
the newly appeared dialog box pull down the menu for Element
behavior K3 and select Plane strs w/thk; click on OK (Fig. 6.33).

Click on Close.

m Specify real constants (R command) using the following menu path:

Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

Click on Add.

Click on OK.

Enter 5e-3 for Thickness THK; click on OK.
Click on Close.

m Specify material properties (MP command) using the following menu
path:

Main Menu > Preprocessor > Material Props > Material Models

In the Define Material Model Behavior dialog box, in the right window,
successively double-click on Structural, Linear, Elastic, and, finally,
Isotropic, which will bring another dialog box.

Enter 150e9 for EX, and 0.25 for PRXY; click on OK.

In the Define Material Model Behavior dialog box, in the right window,
under Structural find Thermal Expansion, Secant Coefficient, and
Isotropic, which will bring another dialog box (Fig. 6.34).

Enter 6e-6 for APLX; click on OK.

Close the Define Material Model Behavior dialog box by using the
following menu path:

Material > Exit
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I PLANE42 element type options

Options For PLANE42, Element Type Ref, No, 1

Element coord system defined K1 |Parall to global LI
Extra displacement shapes K2 Include v

Element behavior K3 Plans strs withk

Extra stress output KS [No extra output |
Extra surface output K6 ]No extra output _'J

OK | Cancel Help l

Fig. 6.33 Specification of element options.

T\ Define Material Model Behavios I:Hlex_I

I~ Material Models Defined . = Material Models Avallable
&8 Material Model Number 1 - | & Favorkes
& Linear lsotropic | @ Structural
5 Linear
‘i Noninear
€ Densty

@& Thermal Expansion
@8 Secant Coefficient
o ZiEE
© Orthotropic
gy Instantaneous Coefficient

(53 Thermal Strain
_'.j 6 Pasmnlnn

L | | £ | X

Fig. 6.34 Specification of material behavior.

m Create nodes (N command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

¢ A total of 4 nodes will be created (Table 6.7).

265

» Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to
convert the coordinates to meters), and Click on Apply. This action will
keep the Create Nodes in Active Coordinate System dialog box open. If
the Node number field is left blank, then ANSYS will assign the

lowest available node number to the node that is being created.
» Repeat the same procedure for the nodes 2 through 4.
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 After entering the x- and y-coordinates of node 4, click on OK (instead
of Apply).

o The nodes should appear in the Graphics Window, as shown in Fig.
6.35.

m Create elements (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > Thru Nodes

o Pick Menu appears; refer to Fig. 6.36 to create elements by picking
three nodes at a time and clicking on Apply in between.

o Observe the elements created after clicking on Apply in the Pick Menu.

o Repeat until the last element is created.

e Click on OK when the last element is created.

m Review elements:

e Turn on element numbering using the following menu path:
Utility Menu > PlotCtrls > Numbering

o Select Element numbers from the first pull-down menu; click on OK.

o Plot elements (EPLOT command) using the following menu path:
Utility Menu > Plot > Elements

o Figure 6.36 shows the outcome of this action as it appears in the
Graphics Window.

e Turn off element numbering and turn on node numbering using the
following menu path:

Utility Menu > PlotCtrls > Numbering

o Place a checkmark by clicking on the empty box next to NODE Node
numbers.

« Select No numbering from the first pull-down menu.

e Click on OK.

« Plot nodes (NPLOT command) using the following menu path:
Utility Menu > Plot > Nodes

o Figure 6.35 shows the outcome of this action as it appears in the
Graphics Window.
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4 3
4 3
2
1
g_X 2
Eox z
Fig. 6.35 Generation of nodes. Fig. 6.36 Generation of elements.

SOLUTION

m Apply displacement boundary conditions (D command) using the follow-
ing menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement > On Nodes

Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal
boundary (Fig. 6.35) and click on OK on Pick Menu.

Highlight UY and enter 0 for VALUE; click on Apply.

Pick Menu reappears; pick nodes 2 and 3 along the right vertical
boundary (Fig. 6.35) and click on OK on Pick Menu.

Highlight UX and remove the highlight on UY; enter 0 for VALUE;
click on OK.

m Apply force boundary conditions on nodes (F command) using the fol-
lowing menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment > On Nodes

Pick Menu appears; pick nodes 1 and 4 along the slanted boundary;
click on OK.

Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.37).

Click on Apply.

Pick Menu reappears; pick nodes 4 and 3 along the top horizontal
boundary; click on OK.

Pull down the menu for Direction of force/mom and select FY; Enter
—150 for VALUE; click on OK.

m Apply thermal load (TUNIF command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature > Uniform Temp

Uniform Temperature dialog box appears; Enter 10 for Uniform
temperature.
Click on OK.
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n Apply F/M on Nodes

[F]1 Apply Force/Moment on Nodes

Lab Direction of force/mom |FX ,.l
Apply as ICunstant value :_I
If Constant value then:

VALUE Force/moment value |Se3“sqrt(0‘1)
ok Y aoply | cancel | Help |

Fig. 6.37 Application of external loads.

m Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Current LS

o Confirmation Window appears along with Status Report Window.

o Review status. If OK, close the Status Report Window and click on OK
in Confirmation Window.

o Wait until ANSYS responds with Solution is done!

POSTPROCESSING

m Review deformed shape (PLDISP command) using the following menu
path:

Main Menu > General Postproc > Plot Results > Deformed Shape

o In the Plot Deformed Shape dialog box, choose the radio-button for Def
+ undef edge; click on OK.

o The deformed shape will appear in the Graphics Window, as shown in
Fig. 6.38.

m Review displacement values (PRNSOL command) using the following
menu path:

Main Menu > General Postproc > List Results > Nodal Solution

o Highlight DOF solution on the left list and All DOFs DOF on the right
list; click on OK.
o The list will appear in a new window, as shown in Fig. 6.39.
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Fig. 6.38 Deformed configuration.

FA\PRNSOL Command
File

|
PRINT DOF NODAL SOLUTION PER NODE
#wxu% POST1 NODAL DEGREE OF FREEDOM LISTING wwx

LOAD STEP= 1 SUBSTEP=
TIME= 1.8008 LOAD GFISE- hﬂ

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES
NODE UX uy
% B 35?84E—BE B BBGE
3 B BBBB B 157035 85
4 B.17198E-86 8.16637E-085
MAXIMUM ABSOLUTE UALUES
NODE 1

4
UALUE ©.35784E-86 B8.16637E-0@5

Fig. 6.39 List of nodal displacements.

6.2.2.5 Finite Element Equations with Linear Quadrilateral
Isoparametric Elements

The displacement components u, and u, within a quadrilateral element can
be approximated as
uie) (e) _N(e) (e) N(e) (e) N(e) (e) N(e) )(fj)

(6.279)
(e) — ~(e) _N(e) (e) +N(e) (e) +N(e) (e) +N(e) (4)

in which N, N§?', N§©, and N are the linear shape functions and
(u)(f),u(e)) (uie),u(ye) ), (uie),u(y?) and (u(j) ;i)) are the nodal
unknowns (degrees of freedom) associated with first, second, third, and
fourth nodes, respectively. The shape functions for the linear (straight-sided)
quadrilateral shown in Fig. 6.40 are defined in terms of the centroidal or
natural coordinates, (£,7), as
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Fig. 6.40 Variation of the natural coordinates in a typical
quadrilateral element.

1 .
Ny =7 (+&6,)A+nm,) with p=1234 (6.280)

where g‘p and 77, represent the coordinates of the corner nodes in the
natural  coordinate  system, (§=-lLn=-1), (&=Ln,=-1),
(53 =1,773 -_-1) ) and (64 =_1,774 =1) .

In matrix form, the approximate displacement components become

i©® = NOTy© (6.281)
in which
ﬁ<e>r={ﬁ§e> g(;)} (6.282)
and
Nnor _|M 0 Ny 0 Ny 0 N, 0 (6.283)
0O NN 0 N, O Ny O N,
and

y©r ={u<e) WO L@ L@ @ @ L@ ”(y?} (6.284)

X1 N X2 Y2 X3 Y3 X4
The element shape matrix B can be expressed as
B =LN©T (6.285)

in which the differential operator matrix is
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0
— 0
ox
)
L={0 — (6.286)
dy
9 9
| 0x 0y |
The element shape matrix can be rewritten as
B N, N, N, |
- 0 —= 0 — 0 — 0
ox ox ox ox
oN oN oN. oN
B9=f 0 — 0 —%* o0 —= o — 6.287
dy dy dy dy ¢ )
ON, ON; ON, ON, ON; ON; ON, ON,
| dy ox dy ox dy ox dy  Ox |

However, the shape functions are defined in terms of the centroidal or
natural coordinates, (£,7). Therefore, they cannot be differentiated directly
with respect to the x- and y-coordinates. In order to overcome this difficulty,

the global coordinates are expressed in terms of the shape functions in the
form

4 4
x=) N,(&mx, and y=> N,(my, (6.288)
p=1 p=1

With this transformation utilizing the same shape functions as those used for
the displacement components, the concept of isoparametric element
emerges, and the element is referred to as an isoparametric element.

The derivatives of the shape functions can be obtained as
oN,, _aNp_aé_i_aNp@_;l

ox 9f ox dIn ox

oN, _aNp%+apr_

dy 95 dy 9n Oy

Application of the chain rule of differentiation yields
oN,, _aNp§+aNpa_y

of  ox £ 9y 9o

oN,, _aNpix_JraNpiy-

on  dx dn dy 97

with p=1,2,3,4 (6.289)

with p=1,234 (6.290)
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In matrix form, it can be expressed as

o) [a w]a) (2] [
A& | | 9& Of ||ox o ox

= = 291
[T wllaf "o [Ta[ PV
on on on |9y on dy

where J is called the Jacobian matrix, whose inverse does not exist if there
is excessive distortion of the element leading to the intersection of lines of
constant £ and # inside or on the element boundaries, as illustrated in Fig.
6.41. If the quadrilateral element is degenerated into a triangle by increasing
an internal angle to 180°, then J is singular at that corner. It is possible to
obtain the element stiffness because J is still unique at the Gaussian inte-
gration points. However, the stresses at that corner are indeterminate. A
similar situation occurs when two adjacent corner nodes are made coinci-
dent to produce a triangular element. Therefore, any internal angle of each
corner node should be less than 180°, and there is a loss of accuracy as the
internal angle approaches 180°.

In the absence of excessive distortion, the transformation between the
natural and global coordinates has a one-to-one correspondence and J™!
inverse exists. It can be expressed as

9 9y
4 1| on o&
=— 6.292
A €2
an 9
where the determinant of the Jacobian matrix is
ox dy Ox dy
=—— 6.293
V1=3z3n anac €299

in which

é=-% =0 £=4

Fig. 6.41 Internal angle exceeding 180°.
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4 ON

%‘— Za—”p=4 —(U=m)x + A= 17)x + A+ 1)x3 — L+ 17)xg}
pl
Z ag Yp —{ A=m)y +A=1)y, + A+ 7)ys =+ 1) 74}
P (6.294)

o —Z——— =§{—(1—§)x1 U+ + (14 O + (- O)xy)
p=1
4 1
Z——— =100 -0+ Oy + A+ Hys +U-O)ya}
p=l

Substituting for the derivatives and rearranging the terms permit the
Jacobian to be rewritten in the form

aN 1 aN 2 aN 3 aN 4 x] y]

0 0 ] )

aN 1 aN 2 aN 3 aN 4 X3 Y3

on  dn  On 0N ||x, y,

or

XN
j- [(1 m d-n) 1+ —(Hn)] X ¥
-1-¢§) -1+&) A+H (1-9 3

X4 V4

(6.296)

Its determinant can be expressed in the form

0 I-n —g+n -1+ ||(»n

1 “l+n 0 1+ -
W==lx % x x] . " § Il 6a07)
8 §-n -1-& 0 l+7m ||

1-& ¢+n -1-n 0 Y4

In a concise form, the determinant can be also rewritten as

1
|J| = g[(x31}’42 = X42Y31) +E(X12Y23 ~ Xp3012) + 1(X41 Y32 — X¥32¥41)) (6.298)

where

Xj=x—x; and y; =y, ~y; (6.299)
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Determination of the inverse of the Jacobian matrix permits the expression
for the derivatives of the natural coordinates in terms of the global coor-

dinates, x and y

9¢ oy _oy|[o
ox 1| 9n of || 9&

_1 6.300
8[| _ax ax |oc (6300
dy | on 9f ||9n]

and
o7 dy  _dy|[on
ox 1| 97 of 'S

- [ 6.300b
on W[ _ax o ||on (6300
dy | on  9& ||on

By substituting for the derivatives of the global coordinates in terms of the
natural coordinates, these expressions can be rewritten as

9 _ & 0N,
d =
o |J|p ~ 877 }’p an ay IJIZ

i

Finally, the derivatives in the shape matrix becomes
oN, oN, &N, ON, &N,

ox |J|{8§qla77yq anqlaf }

N, L{_azvp 0N, 0N, &N, }

- q
oy | & & om KNP T

(6.301)

ay |J|Z P

with p=1,2,3,4 (6.302)

These explicit expressions for the derivatives appearing in the element shape
matrix permit the determination of the element stiffness matrix, k ¢,
defined as

K© = j BOTDB® gy (6.303)

v

in which V© =tA® | with A and ¢ representing the element area and
constant element thickness. It can be rewritten in the form
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k© =¢ j B@TDB® dA (6.304)
A(t’)

The material property matrix D is usually independent of the spatial coor-
dinates, x and y, while the element shape matrix B requires differentiation
of the shape functions with respect to x and y. In order to overcome this
difficulty, the integrals are evaluated over a square region in the natural
coordinate system, with the transformation of coordinates given by

4 4
x=) N,(mx, and y=> N,(&my, (6.305)
p=l1 p=1

With this transformation and utilizing the following relation

dedy= lj lﬂJ]dgdn (6.306)

A -1 -1

the element stiffness matrix, k© , can be rewritten as

11
k@ =1 [ [B" DB®|3|dgdn (6.307)
-1-1

Due to the difficulty of obtaining analytical expression for the determinant
and inverse of the Jacobian matrix, these integrals are evaluated numerically
by the Gaussian integration technique. The element stiffness matrix can be
evaluated numerically as

P Q
K© = tZ; z:,WquB(e)( £, DB® (gp,”q)| I, )] (6.308)
p=1 g=

in which w, and w, are the weights and fp and 7, are the integration
points of the Gaussian integration technique explained in Sec. 3.6. For this
quadrilateral isoparametric element, P=2 and Q=2 are sufficient for
accurate integration.

For an element of constant thickness subjected to a uniform load of T, and
T, in the x- and y-directions, respectively, along its 1-2 edge, the vector
p(f) , arising from tractions can be written as
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- - [
([§, 0 N T,
N2 0 N2 Tx
0 N,|[T N, T,
p{ =1 2 { x}dl=t 1Y 6309
Ny o [T N5 T,
0 N, N, T,
Ny O N, T,
JLO Ny JRUAS
b L,

Referring to Fig. 6.40, along the 1-2 edge whose length is L,_,, the
coordinate 77 has a constant value of -1 and £ varies between —1 and 1,

leading to

Nl Tx
N, T,
N, T,
N, T
S AT

2 N3 Tx
N, T,
N, T,
N, T,

Along £=-1to1 and n=-1,

1 1
=—(]l— — =—(1-

N = -8-m)=20-¢)
1 1

Ny =0+ O-m=—(1+8)

Ny =5 +&)1+ 1) =0

No ==+ =0

The integrals in the expression for p(Te ) are evaluated as

(6.310)

(6.311)



FINITE ELEMENT EQUATIONS 277

1 1
[17 ™ Txdé‘:t% I(l—f)Tﬁfﬂ%Tx (6.312)
-1 -1
and
1 1 .
t% sz Tydfzti‘:—z j(1+§)Tyd§=t%Ty (6.313)
- -1

Thus, the load vector, p$’, takes the form
@r _ Lo
P : 2207, T, T, T, 0 0 0 0] (6.314)

Note that this result implies that the applied load is distributed equally at the
first and second nodes of the 1-2 edge. This is a result of the linear variation
of the shape function along the edges.

As carried out in the derivation of the element stiffness matrix, the load
vectors due to body forces, initial strains, and initial stresses can be
rewritten as

<e>—tj jN‘e)b|J|d§dn (6.315)
-1 -1
1 1
p = [ [BOTDE"|J|acdn (6.316)
-1 -1
(”—tj jBW o*|J|ddn (6.317)

-1 -1

Application of the Gaussian integration technique leads to the evaluation of
these load vectors in the form

(e)"z ZW NOE,nb|IE,n,) (6.318)

p=l g=1
P
=1, Y wwBO,n,) DI,y (6319)
p=l g=1
P
=1y, > wpwBOC, ) o G, )| (6320

—

p=l g=1
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in which w, and w, are the weights and fp and 7, are the integration
points of the Gaussian integration technique.

6.2.2.6 Example of a Plane Stress Analysis with Linear Quadrilateral
Isoparametric Elements

6.2.2.6.1 Derivation of a System of Equations and Its Solution

The previous example discussed in Sec. 6.2.2.4 is reconsidered to compute
the nodal displacements and the element stresses. In order to illustrate the
finite element solution method, the plate is discretized into one quadrilateral
isoparametric element, as shown in Fig. 6.42.

The global coordinates of each node are specified by (x,,y,), with
p=1,2,3,4, and are tabulated in Table 6.9.
The global unknown nodal displacement vector is given by
T
U :{uxl Uy Uy, Uy Up Uy Uy ”y4} (6.321)

Considering the correspondence between the local and global node
numbering schemes the elements are defined in Table 6.10.

4V
4 3

X
0 >
1 2

Fig. 6.42 Local numbering scheme of the FEM discreti-
zation with a quadrilateral element.

Table 6.9 Global nodal coordinates.

i}ggzl No@al Nodal
Number Coordinates Unknowns
1 (x,=0,y,=0) Uy Uy,
2 (x,=2,y,=0) Uy sl
3 (x,=2,y,=3) Uy Uy,
4 (x,=1Ly,=3) Uy, U,
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Table 6.10 Element connectivity.

Element
Number | Node 1 | Node 2 | Node 3 | Node 4
(e)
1 1 2 3 4

For this element, e=1, the coefficients of the Jacobian matrix are deter-
mined from

2—2 ) ﬂ-mmm = 0)+1-Mxz =2+ L+7)(x3 =2)
1 (6.322a)
(475 =D} =2 G-1)
o _1

—(1- =0)+(1- =0)+( =3
Y 4{( My =0)+A-m(y, =0)+1+7)(y3 =3) (6.3225)

~(1+1)(y4 =3)}=0

g_x = %{—(1 —.f)(xl =0)-(1+ f)(xz =2)+(1+ f)(x3 =2)
g 1 (6.322¢)
+(1-&)(x4 =D} =Z(l—f)
0
- %{—(1 ~O( = 0= (1+E)(yy =0+ 1+ O3 =3)
" ; (6.322d)
+(1=&)(y4 =3) =Z
leading to the Jacobian matrix given by
1
2(3 -m 0
J= (6.323)
la-p 8
4 4
with its determinant
3
NERER) (6.324)

The inverse of the Jacobian matrix becomes
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_4
3_.
_| G- (6.325)
_2d-9) 2
33-n) 3

The determinant of the Jacobian matrix can be also determined from

1
NE g[(x31)’42 — X42Y31) + E(X1223 ~ X93V12) + 141 V32 — X¥32Y41)] (6.326)

in which

X31 = X3 — X =2

X43 = X4 — X3 =-1

X32=X3—XZ=O

= —_— = 3 = — = O = — = 3
Y31=Y3~™ N Ya3=Ya— Y3 Y32=Y3 ™ )2 (6.327)
Yar = Y4 = Y2 =3 Xy =Xy =X =2 X4 =Xy =X =
Xgp =Xy =Xy =~1 Y2 =y2=n=0 Yar=Ysa— V=3
Substituting for the following derivatives '
4 ON
_pr =2’f_=l(3_77)
P ¢ o 4
4
el )3
i 9N el (6.328)
X
FrRArrariad
p=1 97 n
SNy, 3
p on on 2
permits the derivatives of the shape functions as
oN,, __ 8 {_EaNP}z_ 4 ON,
0. 33+ 4 9 3+7n) 0
x o 3G+ s ) GEm O po1234  (6329)
ON, _201+£) N, 20N,
dy 3(3B+n) o& 3 aJp

Thus, the components of the element shape matrix, B® are computed as
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oN, __d-m 9N, _(-n)
x  GB-m  ox @B-p’
ON; (1+nm) ON, __(+m
x G-nm ox  (3-7)
(6.330)
N, __1(-§€ N, _ @+&-p)
dy 33-m 33-n)
ON; _(1+2&-1) ON, 2(1-¢)
dy  33-m  dy 33-n
_d-m 0 _d-n 0
3-m G-m)
BO _ 0 _1a-9 0 _@2+&-m)
33-m 33-m)
1a=-8 d-n @+E-m  _d-np
L 3B-m G-m 33-m) B-m 633D
d+m) 0 _{d+m)
G-n) G-m
a+2-m  ,  21-9
33-mn) 33-m)
(1+2£-n) (1+n) 210-¢4) d+n)
33-m G-m 33-n  G-m) ]

Under plane stress assumptions, the material property matrix, D becomes

16 4 0
D=10° 4 16 0|N/cm? (6.332)
0 0 6

The element stiffness matrix, k', is computed as
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[ 4.8666
0.76713
-4.3666
0.23287
-2.7668
-0.96574
2.2668
| -0.034264

k® =10°

0.76713
2.3545
0.73287
-1.0211
-0.96574
-1.1244
-0.53426
-0.20891

-4.3666
0.73287
5.3666
-1.7329
2.2668

-0.53426

-3.2668
1.5343

FEM WITH ANSYS®

0.23287
-1.0211
-1.7329
3.6878
-0.034264
-0.20891
1.5343
-2.4578

-2.7668
-0.96574
2.2668
-0.034264
6.9663
0.56853
-6.4663
0.43147

-0.96574
-1.1244
-0.53426
-0.20891
0.56853
3.5845
0.93147
-2.2512

2.2668
-0.53426
-3.2668
1.5343
-6.4663
0.93147
7.4663
-1.9315

-0.034264 |

-0.20891
1.5343
-2.4578
0.43147
-2.2512
-1.9315
49178

(6.333)

The initial strains arising from the temperature change are included in the

*
vector £ as

e =10°[60 60 0]

(6.334)

The element load vectors, p¥)1_4 and p$)3_4, arising from the applied

tractions are

T.
nT
P(T)1—4 =t

L4

[l 00 0O0O 1 0]

< =20 00 001 01

(6.335)

(6.336)

With the specified values of the thickness and the distributed loads, these

element load vectors become

pPT, =300J10[1 0 0 0 0 0 1 O]N

T
P1'3-4

=-150[0 0 0 0 0 1 O 1N

(6.337)

(6.338)
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The element load vector from all the applied tractions is

) )

PT'1-4 TP1'3-4 =

300410

3004/10

0

0

0

0
-150

150 |

The thermal load vector of the element, pf:) , is obtained as

o _
pg" =1

Thus, the total element load vector, P

-900
=300
900
-600
900
300
-900

600

J

is

(300310 —900)

-300

900

(=300 — 300)

900
(~150 + 300)

(3004/10 — 900)
~150 + 600

After applying the boundary conditions, the global stiffness

reduced to

283

(6.339)

(6.340)

(6.341)

matrix is
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4.8666 -0.96574 22668 -0.034264
-0.96574  3.5845 0.93147 -2.2512

K=10° (6.342)
2.2668 0.93147 7.4663 -1.9315
-0.034264 -2.2512 -1.9315 4.9178
and the reduced load vector is
(300+/10 — 900)
150
P= N (6.343)
(300+/10 — 900)
450
The solution is given by
Uy 0.0000307806
Uy, 0.000150801
= cm (6.344)
iy, 0.0000222016
u 0.000169468

6.2.2.6.2 ANSYS Solution

The nodal displacements of the plate subjected to uniform temperature can
also be obtained using ANSYS. The solution procedure is outlined as
follows:

MODEL GENERATION

m Specify the element type (ET command) using the following menu path:

Main Menu > Preprocessor > Element Type > Add/Edit/Delete

Click on Add.

Select Structural Solid from the left list and Quad 4node 42 from the
right list; click on OK.

Click on Options.

In order to specify the 2-D idealization as plane stress with thickness, in
the newly appeared dialog box, pull down the menu for Element
behavior K3 and select Plane strs w/thk; click on OK (Fig. 6.43).

Click on Close.
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FA\ PLANE42 element type options
Options for PLANE42, Element Type Ref, No. 1

Element coord system defined Ki [Parall to global _'_J
Extra displacement shapes K2 m

Element behavior K3

Extra stress output K5 ]No extra output ﬂ
Extra surface output K6 | No extra output j

oK Cancel Help l

Fig. 6.43 Specification of element options.

m Specify real constants (R command) using the following menu path:
Main Menu > Preprocessor > Real Constants > Add/Edit/Delete

Click on Add.

Click on OK.

Enter Se-3 for Thickness THK; click on OK.
Click on Close.

m Specify material properties (MP command) using the following menu
path:

Main Menu > Preprocessor > Material Props > Material Models

e In the Define Material Model Behavior dialog box, in the right window,
successively double-click on Structural, Linear, Elastic, and, finally,
Isotropic, which will bring another dialog box.

o Enter 150e9 for EX, and 0.25 for PRXY; click on OK.

o In the Define Material Model Behavior dialog box, in the right window,
under Structural, find Thermal Expansion, Secant Coefficient, and
Isotropic, which will bring another dialog box (Fig. 6.44).

o Enter 6e-6 for APLX; click on OK.

o Close the Define Material Model Behavior dialog box by using the
following menu path:

Material > Exit
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m Define Material Model Behaviar

! (85 Instantaneous Coefficient

| (3 Thermal Strain

d i B Mssnine ;I
| k| L/

I 2

Fig. 6.44 Specification of material behavior.

m Create nodes (N command) using the following menu path:
Main Menu > Preprocessor > Modeling > Create > Nodes > In Active CS

o A total of 4 nodes will be created (Table 6.7).

o Referring to Table 6.7, enter x- and y-coordinates of node 1 (be sure to
convert the coordinates to meters), and Click on Apply. This action will
keep the Create Nodes in Active Coordinate System dialog box open. If
the Node number field is left blank, then ANSYS will assign the
lowest available node number to the node that is being created.

o Repeat the same procedure for the nodes 2 through 4 .

o After entering the x- and y-coordinates of node 4, click on OK (instead
of Apply).

o The nodes should appear in the Graphics Window, as shown in Fig.
6.45.

m Create one element (E command) using the following menu path:

Main Menu > Preprocessor > Modeling > Create > Elements > Auto Numbered > Thru Nodes

e Pick Menu appears; pick four nodes in a clockwise (or counter-
clockwise) order.
e Click on OK.

SOLUTION

m Apply displacement boundary conditions (D command) using the
following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Displacement > On Nodes
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Fig. 6.45 Generation of nodes.

Pick Menu appears; pick nodes 1 and 2 along the bottom horizontal
boundary (Fig. 6.45) and click on OK on Pick Menu.

Highlight UY and enter 0 for VALUE; click on Apply.

Pick Menu reappears; pick nodes 2 and 3 along the right vertical
boundary (Fig. 6.45); click on OK on Pick Menu.

Highlight UX and enter 0 for VALUE; click on OK.

m Apply force boundary conditions on nodes (F command) using the fol-
lowing menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Force/Moment > On Nodes

Pick Menu appears; pick nodes 1 and 4 along the slanted boundary;
click on OK.

Enter 3e3*sqrt(0.1) for VALUE (Fig. 6.46).

Click on Apply.

Pick Menu reappears; pick nodes 4 and 3 along the top horizontal
boundary; click on OK.

Pull down the menu for Direction of force/mom and select FY; Enter
-150 for VALUE; click on OK.

m Apply thermal load (TUNIF command) using the following menu path:

Main Menu > Solution > Define Loads > Apply > Structural > Temperature > Uniform Temp

Uniform Temperature dialog box appears; Enter 10 for Uniform
temperature.
Click on OK.
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A\ Apply F/M on Nodes

[F] Apply Force{Moment on Nodes

Lab  Direction of force/mom
Apply as

If Constant value then:
VALUE Force/moment value

FEM WITH ANSYS®

[Fx -]

lCor‘start value

|3e3*9qrt(0.1:|
Help |

Cancel |

Apply

=

Fig. 6.46

Application of external loads.

® Obtain solution (SOLVE command) using the following menu path:

Main Menu > Solution > Solve > Cul

rrent LS

o Confirmation Window appears along with Status Report Window.

» Review status. If OK, close the Status Report Window and click on OK
in Confirmation Window.

o Wait until ANSYS responds with Solution is done!

POSTPROCESSING

m Review deformed shape (PLDISP command) using the following menu

path:

Main Menu > General Postproc > Plot Results > Deformed Shape

o In the Plot Deformed Shape dialog box, choose the radio-button for Def
+ undef edge; click on OK.
o The deformed shape will appear in the Graphics Window, as shown in

Fig. 6.47.

m Review displacement values (PRNSOL command) using the following

menu path:

Main Menu > General Postproc > Li

st Results > Nodal Solution

 Highlight DOF solution on the left list and All DOFs DOF on the right

list; click on OK.
o The list will appear in a

new window, as shown in Fig. 6.48.
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|': X

Fig. 6.47 Deformed configuration.

I PRNSOL  Command
File

PRINT DOF HNODAL SOLUTION PER NODE
suuxx POST1 NODAL DEGREE OF FREEDOM LISTING s

LOAD STEP= 1 SUBSTEP= i
TIME= 1.0000 LOAD CASE= a
THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINARTES
NODE UR uy
1 ©0.29595E-86 0.8080
2 8.P008 8.8888

3 0.0008 0.14441E-B5
4 B.23387E-06 B.17266E-B5

MAXIMUM ABSOLUTE VALUES
NODE b b 9
UALUE 8.29595E-86 B.17266E-85

Fig. 6.48 List of nodal displacements.

6.3 Problems

289

6.1. Construct the finite element equations for the solution of the linear

second-order ordinary differential equation given in the form

dzu(x) dp(x) du(x)
p(x) PR S—

+g(x)u(x)= f(x)

subject to the conditions given as

u(xg)=A, u(x,)=B

by using the Galerkin technique within the realm of finite element

method with linear interpolation functions.
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6.2.

6.3.

6.4.
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By using a one-dimensional (line) C' continuous cubic element,
derive the element coefficient matrix for the solution of the differen-
tial equation given as
d 2u(x)
di2

Assume equally spaced nodal points.

=f(x)

By using quadratic interpolation functions, derive the element coeffi-
cient matrix for the solution of the differential equation given as

du_
dx2

subject to the conditions
u(0)=1and ﬂ(4) =0
dx

Also, explicitly assemble both the global coefficient matrix and the

right-hand vector for equally spaced nodal points located at x = 0, 1,
2,3, and 4.

Without giving any consideration to the boundary conditions, write
down the contribution from the four elements, shown in Fig. 6.49, in
the finite element formulation for the Poisson equation Vig=C.
Denote all entries in the element coefficient matrices symbolically
and write your answer in the form[K]{¢} +{F} ={0}.

Vv

» X

Fig. 6.49 Four linear triangular elements forming a quad-
rilateral element.
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6.5.

6.6.

6.7.

In Problem 6.4, note that the interaction of the internal node 5 with all
the adjacent elements is included in forming the equation arising from
the field variable ¢ associated with the 5" node. In the absence of
external loads, the last row of the vector-matrix expression in the
previous problem may be set directly equal to zero. Using the
resulting equation, eliminate ¢ from the remaining four rows of the
vector-matrix expression to obtain the element coefficient matrix and
the contribution to the right-hand-side vector of a quadrilateral
element made up of four simpler triangular elements.

Suppose a collection of elements (part of some larger collection) has a
total of » interior nodes and m exterior (or boundary) nodes. The
contribution from this collection to the global finite element equations
can be written as

[KI{o}* +{f}*

The contributions from the exterior nodes, ¢* (i =1,2,...,m), and the
interior nodes, ¢i1 (i=m+1,...,n+m), may be partitioned as

K*T KI (PI + fI

where [KZ] is an mxm submatrix, K’ ]is an nXn submatrix, etc.
Consideration of all of the contributions to the interior nodes results
in

K1 {@f}+[K 1{o'} +{f} ={0}

Proceeding from this point, eliminate the quantities (01-1 from the
remaining equations to express the contribution from this collection
of elements in the form

KR 1o} +(£5)

where [KR] is an mxm matrix. This technique is called
substructuring.

For two-dimensional heat transfer in an isotropic body, the governing

equation is
d aT) o aT
—| K— |[+—| K— ,y)=0
ax( axJ+ay[ ayJHI(xy)
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where T is temperature, K is thermal conductivity, and g(x,y) is the
heat generation rate over the domain. Suppose the heat flux out of
some portion, S, of the boundary is specified to have a constant
value, Q, as shown in Fig. 6.50. Then, the boundary condition over
S becomes

MYy o=k| (3 ) (2T _
K(a—vj+Q-KKax)nﬁ(aany}Q—O

where n=<n,,n, > is the unit normal vector to the boundary. Using
the Galerkin technique, show in a general way how this boundary
condition enters the right-hand-side vector.

Suppose that the heat flux is specified to be Q over the side 4-5 of the
domain as shown in Fig. 6.51. Find explicitly the contribution of the
interpolating function associated with node 4 to the right-hand-side
vector in the system of equations derived in Problem 6.7:

(a.) for the case where element 3 is a linear triangular element.

(b) for the case where element 3 is a quadratic triangular element
with a mid-side node between nodes 4 and 5.

Hint: Use a local coordinate, s, directed along the side of the triangle
from node 4 to node 5. Note that the interpolating function associated
with node 4 is linear in s for linear interpolation and quadratic for
quadratic interpolation.

S,

Fig. 6.50 Heat generation within the body and flux
boundary condition along S .
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6.9.

6.10.

6.11.

Fig. 6.51 Domain discretized with three triangular elements.

Explicitly evaluate the element coefficient matrix for the problem
aZl// 82
ox? ay

=G

using 2x2 Gaussian integration for a 4-noded quadrilateral element
whose nodal point locations are given by

Node No. X y
1 6.0 | 3.0
2 —4.0 | 3.0
3 -5.0 | -3.0
4 40 |[-3.0

Using quadratic interpolation over a 6-noded triangle (shown in Fig.
6.52), derive explicit expressions for the entries K}, K4, and K5 in
the element coefficient matrix for the Poisson equation

29

ax2 3_ =f(x)

Consider the 3-noded triangular element subjected to traction bound-
ary conditions along the 2-3 side as shown in Fig. 6.53. Assuming
plane stress idealization with thickness #=0.01 m, E =200 GPa,
andv =0.25, construct:

(a) the stiffness matrix.

(b) the equivalent nodal force vector.
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t=001lm

p = 100 MPa

>

X > X
2
j———— 020m ———|

Fig. 6.52 Three-noded triangular element under uniform traction.

(x,1)

(xyy)

(002) (%52'5) (%303)

Fig. 6.53 A six-noded triangular element.

6.12. Assume that the nodal displacement components of the triangular
element considered in Problem 6.11 are as follows:

u =0 v =0
u, =3.30078x10™*m vy =0
u; =1.85937x10*m v, =4.6875x10°m

Find the stress components (o, » Oy and Oy ).

6.13. Assuming that the triangular element considered in Problem 6.11 is
subjected to gravitational acceleration in the negative y-direction with
mass density p = 7850 kg/m3 , find the equivalent nodal force vector.
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6.14.

6.15.

6.16.

6.17.

Derive the equivalent nodal force vector for a 3-noded triangular
element when it is subjected to a uniform temperature change of AT .
The coefficient of thermal expansion of the material is « .

The equations governing the time-dependent motion of an elastic
body are

a azul‘

—| oy |[—mp—=0

ox j I: U:I ot 2

where o is the mass density of the body. The term pazu,- / 02 may
be interpreted as an “inertia” force, which is a special type of body
force.

(a) Identifying the inertia force as a body force with
F; =—pd°u;/dt* , derive the contribution from a single element
to the global finite element formulation for the case of plane
strain.

(b) If no tractions are specified over the surface of the body, write
down the general form of the global finite element equations.

Assuming

(u}={aje'"
write down an equation for @, the natural frequencies of
vibration.

A two-dimensional situation that is often of theoretical interest
(although less seldom of practical interest) is that of antiplane strain,
in which u; =u, =0 and u; =u3(x;,x,). Hence, the only non-zero
components of strain are &3 and &,; and those of stress are 073 and
0,3, which are related by Hooke’s law:

_ Eey _ Eey
A+v). B (1+v)

013

Find the element coefficient matrix for this problem for the linear
triangle (3-noded) using the integration formulas for area coordinates
given previously.

Newton’s method is a familiar recursive technique for finding the
roots of a transcendental equation. Suppose the roots of »n trans-
cendental equations, {g;(a;)}=0, in n unknowns are to be found.
Then, Newton’s method can be generalized to
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-1 (m)

m m ai m
{xi}( +I):{xi}( ) _ i:i} {gi}( )

0x;
where
TR
da; Oda, da,
3 m) |0gy 08y 08
[_&_} =| da; da, da,
axj : : . :
08, 98, . 98
| 9a,  0a, da, |

and {g;}" and [dg;/da;] are evaluated at {q,}" .

The finite element equations resulting from the nonlinear two-point
boundary value problem

d*u
—+gu,x)=0
dx?

have the form
[Kyla}+(fi@)h=10}  (=L2....n)

where {q;} are the nodal values and {f;(a j)} is some nonlinear
function of the nodal values. Apply Newton’s method to this
problem to obtain a recursive formula for the nodal values. What is
the major drawback of this approach?





