Chapter 3

FUNDAMENTALS OF DISCRETIZATION

3.1 Local and Global Numbering

In solving an engineering problem with the finite element method (FEM),
the domain is discretized by employing elements. The characteristics of the
problem dictate the dimensionality of the problem, i.e., one, two, or three
dimensional. A brief summary of the common element types utilized in a
finite element analysis (FEA) is presented in Fig. 3.1. Once the domain of
the problem is discretized by elements, a unique element number identifies
each element and a unique node number identifies each node in the domain.
As illustrated in Fig. 3.2, nodes are also numbered within each element, and
are called local node numbers. The unique node numbering within the entire
domain is called global node numbering. This is part of the computational
procedure in FEA.

3.2 Approximation Functions

The variation of the field variable, ¢*) , over an element is approximated by
an appropriate choice of functions, as illustrated in Fig. 3.3. The selection of
these functions is the core of the finite element method. The approximation
functions should be reliable in the sense that as the mesh becomes more
refined, the approximate solution should converge to the exact solution
monotonically. Oscillatory convergence is unreliable because it is possible
to observe an increase in error with the refined mesh. Oscillatory and mono-
tonic convergences are demonstrated in Fig. 3.4. Common approximation
functions are usually polynomials since their differentiation and integration
are rather straightforward compared to other functions.

In order to achieve a monotonically convergent solution, the polynomials
chosen as approximation functions must satisfy four requirements:
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Requirement 1. Continuous behavior of the approximation function within
the element—no kinks or jumps.

Requirement 2. Compatibility along the common nodes, boundaries or
surfaces between adjacent elements—no gaps between elements

The elements satisfying the continuity and compatibility requirements are
called conformal elements (Fig. 3.5).

Requirement 3. Completeness, permitting rigid body motion of the element
and ensuring (constant) variation of ¢ and its derivatives within the
element.

The reason for this requirement is best illustrated by considering a cantilever
beam under a concentrated load in the middle (Fig. 3.6). As a result of this
loading, deformation occurs only to the left of the load. The section of the
beam to the right of the load experiences only rigid-body translations and
rotations (constant displacements and zero strain), i.e., no stresses and
strains occur. Therefore, the element approximation functions must permit
such behavior. Complete polynomials satisfy these requirements.

A complete polynomial of order n in one dimension can be written in
compact form as

n+l

P(x)=) g x*"! (3.1)

k=1
leading to complete polynomials of order O, 1, and 2 (constant, linear, and
quadratic) as
R(x)=a
Pl (x) = a] + OhHXx (3.2)
Pz(X) =0 + ahx + C¥3x2
In two dimensions, the compact form for a complete polynomial of order n

can be written as
(n+1)(n+2)

2 o
P(x)= D axy  i+jsn (3.3)
k=1
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Fig. 3.6 A cantilever beam loaded at the middle and its FEA model.

Constant, linear, and quadratic complete polynomials in two dimensions can
be written as

B(xy)=¢
F(x,y)=0q tax+azy (3.4)
B(x,y)=0 +0hx+agy +a'4x2 +asxy + y2

The Pascal triangle shown in Fig. 3.7 is useful for including the appropriate
terms to obtain complete approximating functions in any order.
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Fig. 3.7 Pascal’s triangle for complete polynomials.

The order of the polynomial as an approximation function is dictated by the
total number of nodes in an element, i.e., the number of coefficients, ¢;, in
the approximation function must be the same as the number of nodes in the
element.

Requirement 4. Geometric isotropy for the same behavior in each direc-
tion.

Using complete polynomials satisfies this requirement of translation and
rotation of the coordinate system. If the required degree of completeness
does not provide a number of terms equal to the number of nodes, then this
requirement can be satisfied by disregarding the non-symmetrical terms. In
the case of a 4-noded rectangular element, the first-order complete poly-
nomial has 3 coefficients, one less than the number of nodes. In order to
circumvent this deficiency, the order of the polynomial can be increased to
“complete” in the second degree, having 6 coefficients, two more than the
number of nodes. As a result, two of the additional higher-order terms,
which are a4x2, asxy, and oy yz, must be removed from the approxi-
mation function.

In order to satisfy the condition of geometric isotropy, only the term asxy is
retained in the approximation function, leading to

P2(x,y)=0(1 +C¥2x+a3y+a4xy (3.5)

Approximation functions satisfying these four requirements ensure mono-
tonic convergence of the solution as the element sizes decrease.

The element is referred to as C° continuous when only the field variable
(none of its derivatives) maintains continuity along its boundary. If the field
variable and its r™ derivative maintain continuity, the element is C”
continuous. A more extensive discussion is given by Huebner et al. (2001).
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3.3 Coordinate Systems

3.3.1 Generalized Coordinates

The coefficients of the approximation functions, ¢;, are referred to as the
generalized coordinates. They are not identified with particular nodes. The
generalized coordinates are independent parameters that specify the magni-
tude of the prescribed distribution of the field variable. They have no direct
physical interpretation, but rather are linear combinations of the physical
nodal degrees of freedom.

3.3.2 Global Coordinates

Global coordinates are convenient for specifying the location of each node,
the orientation of each element, and the boundary conditions and loads for
the entire domain. Also, the solution to the field variable is generally
represented with respect to the global coordinates. However, approximation
functions described in terms of the global coordinates are not convenient to
use in the evaluation of integrals necessary for the construction of the
element matrix.

3.3.3 Local Coordinates

A local coordinate system whose origin is located within the element is
introduced in order to simplify the algebraic manipulations in the derivation
of the element matrix. The use of natural coordinates in expressing the
approximation functions is particularly advantageous because special
integration formulas can often be employed to evaluate the integrals in the
element matrix. Natural coordinates also play a crucial role in the
development of elements with curved boundaries (discussed under isopara-
metric elements, Sec. 6.2.2.5).

3.3.4 Natural Coordinates

A local coordinate system that permits the specification of a point within the
element by a dimensionless parameter whose absolute magnitude never
exceeds unity is referred to as a natural coordinate system. Natural coordi-
nates are dimensionless. They are defined with respect to the element rather
than with reference to the global coordinates. Also, the natural coordinates
are functions of the global coordinates in which the element is defined. As
illustrated in Fig. 3.8, the basic purpose of the natural coordinate system is
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to describe the location of a point inside an element in terms of coordinates
associated with the nodes of the element.

3.3.4.1 Natural Coordinates in One Dimension

As shown in Fig. 3.9, within a one-dimensional element (line segment),
defined by two nodes (one at each end), the location of a point P denoted by
x (global coordinate) on the element can be expressed in terms of length or
centroidal coordinates.

3.34.1.1 Length Coordinates

The location of point P, x, is expressed as a linear combination of the global
nodal coordinates, x; and x,, and the length coordinates, & and &, , as

x=&x + &%,y (3.6)

As shown in Fig. 3.9, & and &, are defined as the ratios of lengths
&=L/L and &, =L, /L, with L representing the length of the line seg-
ment, L=x,-x,. Since L=L +L,, &, and &, are not independent of
each other and must satisfy the constraint relation

G+ =1 3.7

Solving for & and &, via these equations written in matrix form as
1 11
x) g x]l%

Xy —

results in

X=X

g =

and &, =
Xy =X Xy =X

(3.9)

Such coordinates, whose behavior is shown in Fig. 3.10, have the property
that one particular coordinate has a unit value at one node of the element
and a zero value at the other node(s), i.e.,, &(x)=1 and &(x,)=0, and

$(%)=0 and &,(x,)=1.
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Fig. 3.10 Variation of length coordinates within the element.
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3.3.4.1.2 Centroidal Coordinates
As shown in Fig. 3.11, x (the location of point P) with respect to a local
coordinate system, r, located at the centroid of the line element becomes

x:r+x1+—;—' (3.10)

The local coordinate r is normalized in the form &=r/(L/2) in order to
achieve a dimensionless coordinate, £, and to ensure that its range never
exceeds unity. Thus, the location of the point P becomes

L L
ey T 3.11
X 25 X > (3.11)

Substituting for L ( L = x, — x; ) and rearranging terms leads to

1 1
x=—(=Om + -1+ Ox, (3.12)

or

x=Y N, (3.13)

with Ny =(1-¢£)/2 and N, =(1+&)/2. As shown in Fig. 3.12, N;(-1)=1
and N;(1)=0,and N,(-1)=0 and N,(1)=1.

3.3.4.2  Natural Coordinates in Two Dimensions

3.3.4.2.1 Area Coordinates

As shown in Fig. 3.13, within a two-dimensional element (triangular area)
defined by three nodes, one at each apex, the location of a point P, denoted
by (x,y) (global coordinates), on the element can be expressed as linear
combinations of the global nodal coordinates, (x;,y;), (x;,y,), and
(x3,y3) , and the area coordinates, &, &,, and &5, as

x=8x + &%) + 5313

(3.14)
y=&n +&y + 53
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Fig. 3.13 Definition of area coordinates in a triangular element.



48 FEM WITH ANSYS®

As illustrated in Fig. 3.13, &, &,, and &; are defined as the ratios of areas
&=A4]A4, & =4,/A4, and & = 43/ A, with A4 representing the area of the
triangle. Since 4, + 4, + 4, =1, &, &,, and &; are not independent of each
other and must satisfy the constraint relation

S+&+8=1 (3.15)

Solving for &, &,, and &; via Eq. (3.14) and (3.15) written in matrix form
as

1 1 1 114
Xr= xl x2 X3 f 2 (3 . 1 6)
Yy n » »nllé

results in

& . ()3 =X%3y2) Yoz X3 || 1
& =34 () —=%y3)  ya1 X3 |9X (3.17)
& (Y, =xy1) Yio X ||y

where Xyn =Xm = Xps Ymn =Ym — Yn»and

1 1 1
24=\x Xy X3 (3.18)
nh Y2

As shown in Fig. 3.14, one particular area coordinate has a unit value at one
node of the element and a zero value at the other node(s); & (x )=0,
where §; =1 for i=j and 6; =0 for i=j.

The exact evaluation of the area integrals over a triangle can be obtained by
employing the expression

m!n!0!

T mn+l+2)! 3.19)

I= [grgpeiaxdy
A

3.3.4.2.2 Centroidal Coordinates

In the case of a two-dimensional element with a quadrilateral shape defined
by four nodes, one at each corner, the location of a point P, denoted by
(x,y), on the element can be expressed with respect to the centroidal coor-
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dinate system (&,7) whose origin coincides with the centroid of the
quadrilateral area, as shown in Fig. 3.15. The relationship between (x,y)
and (£,7n) can be expressed as

x=a,+bl+en+d.én

(3.20)
y=a,+b,S+cyn+d,gn

Also, these relations map a quadrilateral shape in global coordinates to a
unit square in natural (centroidal) coordinates. Evaluation of these equations
along 7 =-1 leads to

x=a,+b.l—-c. —d
rthdemdd (3.21)
y=ay,+bS—c,-d¢

Eliminating the coordinate £ from the resulting equations yields the linear
relationship between the global coordinates

y=A+Bx 3.22)

in which A and B are known explicitly. Considering the remaining sides of
the square in the centroidal coordinates defined by the lines =1, £=1,
and & =-1 results in a straight-sided quadrilateral.
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Evaluation of x at £ =+1 and # =zl (four corners) leads to

X =a,-b,—c, +d,
Xy=a,+b,—c,—d, (3.23)
xy=a,+b, +c, +d, ’

Xy=a,-b,+c,—d,

Solving for the coefficients a,, b,, c¢,, and d,, substituting back into Eq.
(3.20), and collecting the terms multiplying x; gives

x=i—<l—§><l—n)x1 +i—(l+§><l—mx2

) i (3.24)
+Z(1+§)(1+77)x3 +:1-(1—§)(1+77)x4
A similar operation performed on y in Eq. (3.20) yields
1 1
y =Z(1—f)(1—77)}’1 +Z(1+§)(1—77))’2
FL AUy = -E A+ 1)y,
4 4 (3.25)
Defining
M=30-O-m)  Ny=(+HU-1)
(3.26)

N3=§(1+§><1+n> N4=§(1—§>(1+n>



FUNDAMENTALS OF DISCRETIZATION 51

allows Eq. (3.24) and (3.25) to be rewritten as

4 4
x=) Ni(&mx and y=) N(&n)y, (3.27)

i=1 i=1

Note that N; can be written in compact form as

1
N; =Z(1+§§,-)(1+7777,-) (3.28)
with & and 7; representing the coordinates of the corner nodes in the
natural coordinate system. It is worth noting that N;(§;,77;) =0, where
6;=1 for i=j and ;=0 for i# j. The variations of N, within a
quadrilateral element are given schematically in Fig. 3.16.

3.4 Shape Functions

Shape functions constitute the subset of element approximation functions.
They cannot be chosen arbitrarily. As discussed in the previous section, the
element approximation functions are chosen to be complete polynomials
with unknown generalized coordinates. For a one-dimensional element with
m nodes as shown in Fig. 3.17, the element approximation function for the
field variable, ¢(x), is assumed as a polynomial of order (m—1)

0O (xX) =0y + opx+ ax* + X’ +o o X"+, x™ (3.29)

or
90 =¢"a (3.30)
where
g’ ={1 x X x”"‘} (3.31)
and
d={a & & - a, (3.32)

Note that the number of generalized coordinates (¢;, i=1,2,...,m) is equal
to the number of nodes within the element.
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The field variable, ¢(e)(x), can also be expressed within the
through the use of its nodal values, ¢; (i=1,m), in the form

or

where

and

N =(1-6)(1-n)/4

FEM WITH ANSYS®
Ny=(1-&)(1=m)/4

O—O0—O0—---- —0——0
(pl ¢2 ¢3 m—1 m

Fig. 3.17 A one-dimensional element with m nodes.

POxX)=Ny @+ Ny + Ny + Ny gy +--

+ Nm—l ¢m—l + Nm ¢m

#'x)=N"g

o' ={p & ¢

Nm }

B}

element

(3.33)

(3.34)

(3.35)

(3.36)
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in which N; (i =1, m) are referred to as shape functions. These functions are
associated with node i and must have a unit value at node i and a zero value
at all other nodes. Furthermore, they must have the same degree of
polynomial variation as in the element approximation function.

The explicit form of the shape functions can be determined by solving for
the generalized coordinates, ¢;, in terms of the nodal coordinates, x;, and
nodal values, ¢ (i=1,2,...,m), through Eq. (3.29), and rearranging the
resulting expressions in the form of Eq. (3.34). At each node, the field
variable ¢ (x) is evaluated as

B =0+ X +OpxE X+t i+ !

_ 2 3 m-2 m—1
P =0+ 00Xy + 03Xy +OX + Q1 Xy T O (3.37)

_ 2 3 m-2 m—1
¢m =0 T 0x, tOgxy, tOX, Tt G Xy, T Xy,

or in matrix form

i 2 m-1"]
¢l 1 xl xl v xl al
2 m-1
Hl |1 »m x - x (2%}
$=l1 x x32 xgl-l T3¢ or @=Aaq (3.38)
1) 2 m-1 || &,
" _1 Xm Xm0 Xm | "

Solving for the generalized coordinates in terms of nodal coordinates and
nodal values of the field variable yields

a=A"lg (3.39)

Substituting for the generalized coordinates in Eq. (3.30) results in

Comparison of Eq. (3.40) and (3.34) leads to the explicit form of the shape
functions N; as

NI =gl A™! (3.41)
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This formulation illustrates the determination of the shape functions for a
one-dimensional element; its extension to two dimensions is straight-
forward. The properties of shape functions are:

1. N;=1 atnode i and N; =0 at all other nodes.

m

2. )N, =1.
i=1

3.4.1 Linear Line Element with Two Nodes

3.4.1.1 Global Coordinate

For a line element with two nodes, the field variable, ¢(e) , is approximated
by a linear function (refer to Fig. 3.18) in terms of the global coordinate, x,
as

¢ (x) = +apx (3.42)

This element approximation function ensures the inter-element continuity of
only the field variable. The nodal values of the function are identified by ¢
and ¢, .

Evaluation of the function at each node with coordinates x; and x, leads to
¢| = al + ale and ¢2 = al + 0!2)62 (343)

Solving for ¢; and @, and substituting for them in the element approxi-
mation function results in

¢ (x) = Ny (x)¢ + N (x)¢, (3.44)

where N, =(x, —x)/(x, —x;) and N, =(x—x)/(x, —x). These functions,
referred to as interpolation or shape functions, are the same as the length
coordinates, & and &,, and they also vary linearly with x (Fig. 3.19), as
does the element approximation function. Because N;(x;)=0;, where
6;=1fori=j and 6; =0 for i#j,

1=)"N, (3.45)
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3.4.1.2 Centroidal Coordinate

For a line element with two nodes, the field variable, ¢ | is approximated

by a linear function in terms of the natural (centroidal) coordinate, £, as
06 =0 +ad (3.46)

This element approximation function ensures the inter-element continuity of
the field variable. The nodal values of the function are identified by ¢ and
¢, . Evaluation of the function at each node with coordinates & =-1 and
£ =1 leads to

¢l = al - 6&’2 and ¢2 = 0{1 + az (3.47)
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Solving for ¢ and a, and substituting for them in the element approxim-
ation function results in

#9 (&) = Ny(E)d + N, (E)4, (3.48)

where Nj(£)=(1-¢£)/2 and N,(£)=(1+¢&)/2. These functions, referred
to as interpolation or shape functions, vary linearly with & (Fig. 3.20), as in
the case of the element approximation function.

Also, they have the property
2
1=D'N, (3.49)
i=1

because N;(&;) =3y

jj» where J; =1 for i=j and 6; =0 for i= .

3.4.2 Quadratic Line Element with Three Nodes: Centroidal
Coordinate

For a line element with three nodes, the field variable, ¢(e) , 1s approximated
by a quadratic function (schematic given in Fig. 3.21) in terms of the natural
(centroidal) coordinate, &, as

$O&) =y +ayf + af’ (3.50)

in order to ensure the inter-element continuity of the field variable. The
element nodes are identified as 1, 2, and 3, with their nodal values as ¢, ¢,,
and ¢;. The middle node is located at the center of the line element.
Evaluation of the function at each node with coordinates £ =-1, £ =0, and
¢ =1 leads to

¢1=a1 "a2+a3, ¢3=al, ¢2=0!1+a2 +a3 (3.51)

Solving for «;, a,, and «@; and substituting for them in the element
approximation function results in

8 (€)= Ni(E) + Ny (E)dy + N3 (£)ds (3.52)
where N (&) =£/[2E-D], Ny (©)=&/[2(6+D], and  N;(¢)=

—(£+1)(&-1). These functions, referred to as interpolation or shape
functions, vary quadratically with & (Fig. 3.22), as in the case of element
approximation function.
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Also, they have the property

1=)"N, (3.53)

because N;(¢;) =

j» Where 0 =1 for i=j and §; =0 for i#j.

3.4.3 Linear Triangular Element with Three Nodes: Global
Coordinate

Within a two-dimensional element (triangular area) defined by three nodes,
one at each apex, the variation of the field variable, ¢(e)(x, y), can be
approximated by a linear function (as illustrated in Fig. 3.23) of the form

#(x,y) =g+ px+ayy (3.54)

This function ensures the inter-element continuity of the field variable
0, y).

The element nodes are identified as 1, 2, and 3 in a counterclockwise orien-
tation, with their nodal values as @, ¢,, and ¢;. The nodal coordinates are
SpeCiﬁed by (x]:yl) ’ (x2, )’2) ’ and (X3, }’3) .

The nodal values of the field variable must be satisfied as

= tax t oy,
¢2 = al +a2x2 +a3y2 (3.55)
¢3 =a1 +0(2x3 +a3y3

leading to the determination of the generalized coefficients in the form

o | (X y3=x3Y2) gy —xy3) (qY, =) || &

= (¥y2=¥3) (Y3 =) 1 =y) [ (3.56)
% (%3 =) (X — X3) G -x) |4
where
I x xn
24=l x, ¥ (3.57)

1 x3
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Fig. 3.23 Linear approximation for the field variable ¢ within
a triangular element.

Substitution of ¢, @, , and ¢4 into the expression for the element approxi-
mation function results in

0 (x,y) = N, (x, )@ + N, (x,9)$, + N3 (x, ) (3.58)

where the shape functions N, =&, N, =¢&,, and N; =& are the same as
the area coordinates with properties &;(x;,y;)=3J; and Y2, & =1. Their
variation within the element is given in Fig. 3.24.

3.4.4 Quadratic Triangular Element with Six Nodes

The field variable can be approximated by a complete quadratic function

within a triangular element in the form

0 (x,y) = o + X + 05y + 0 x* + asxy + o y? (3.59a)
or
#x=¢"a (3.59b)

where the vectors g and a are defined by

gT={1 Xy x? Xy yz} (3.60)
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Fig. 3.24 Variation of linear shape functions within a triangular element.

and

o ={oy o 4 oo & ) (3.61)

However, this representation requires a triangular element with six nodes, as
shown in Fig. 3.25, in order to determine its six unknown coefficients, ¢; .

At each node, the field variable, ¢‘“)(x;,,), is evaluated as

—~ 2 7
¢1 1 XN XN Ny 12 o
2 2
o L X y x5 Xy, ¥ a,
1 x 2 x 2 o
¢3 _ 3 y3 32 3y3 y32 b 3 > Or (I)=A(l (362)
Ou| |1 x4 vy x5 XYy Yil||%
2 2 ||
zS 1 x5 ys x5 xsys Y5 as
5 2 |6
o) _1 X6 Yo xé X6Y6 Yo |
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Fig. 3.25 Variation of linear shape functions within a trian-
gular element.

Solving for the generalized coordinates in terms of nodal coordinates and
nodal values of the field variable yields

a=A"¢p (3.63)

Substituting for the generalized coordinates in Eq. (3.59) results in

$x,y)=g" Ao (3.64)

However, ¢“)(x,y) can also be expressed within the element through the
use of its nodal values ¢; as

6
$Oxy) =Y Ni(x,y)¢ or ¢x)=N'g (3.65)

i=1
where N is the vector of shape functions, N; (i =1,6). Comparison of the
last two equations results in the explicit form of the shape functions N; as
NT =gl A™! (3.66)

In providing the explicit forms of the shape functions, lengthy expressions
are avoided by utilizing the expressions for the area coordinates of &, &,,
and &, as derived in Eq. (3.17), thus leading to

N'={Q4-D& Q& -D& Q5-D& 468 46& ALE} (B.6T)
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or

N =5 =D&, Ny=(25 -D&,, Ny =& -D&
N, =44, , Ns =488, Ng =486

Variation of these shape functions within the element is shown in Fig. 3.26.

(3.68)

3.4.5 Linear Quadrilateral Element with Four Nodes: Centroidal
Coordinate

For a quadrilateral element with four nodes, the field variable, ¢(e) (x,y),1s
approximated by a linear function (refer to Fig. 3.27) in terms of the natural
(centroidal) coordinates, —1<£<1 and —-1<7 <1, as

PO E M) =+ apf +agn+aén (3.69)

This element approximation function ensures the inter-element continuity of
only the field variable. The nodal values of the function are identified by ¢,
@, ¢;, and ¢,. Evaluation of the function at each node with coordinates

(é:l = _13771 = _1) ) (52 =19772 =—1) > (53 =1’773 = l) ) and (54 =_1v774 =1)
leads to

a) [1 -1 -1 1](q
ol |11 -1 -1|e,

= (3.70)
@ 1 1 1 1]l
A 1 -1 1 -1l
Solving for ¢, &, , 04, and ¢, results in
a I 1 1 1]}[¢
a|_1 -1 1 1 -1||¢, 3.1
| 4l-1 -1 1 1||¢ '
a4 1 "1 1 —‘1 ¢4

and their substitution in the element approximation function yields

4
P EM =D N (&, (3.72)

i=1
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Fig. 3.26 Variation of quadratic shape functions within a triangu-
lar element.

63
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Fig. 3.27 Bi-linear approximation for the field variable ¢
within a quadrilateral element.

in which

N; =%(l+§§,~)(l+m7,-) (3.73)

with & and 7, representing the coordinates of the corner nodes in the
natural coordinate system. The shape functions have the property
N:(&;.n;)=0;, where J; =1 for i=j and ;=0 for i# j. They are
graphically illustrated in Fig. 3.28.

3.5 Isoparametric Elements: Curved Boundaries

The modeling of domains involving curved boundaries by using straight-
sided elements may not provide satisfactory results. However, the family of
elements known as “isoparametric elements” is suitable for such boundaries.
The shape (or geometry) and the field variable of these elements are
described by the same interpolation functions of the same order. The repre-
sentation of geometry (element shape) in terms of linear (or nonlinear) shape
functions can be considered as a mapping procedure that transforms a square
in local coordinates to a regular quadrilateral (or distorted shape) in global
coordinates (Fig. 3.29) (Ergatoudis et al. 1968).
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Fig. 3.28 Variation of bi-linear shape functions within a
quadrilateral element.

Fig. 3.29 Mapping from a unit square to an arbitrary straight-
sided quadrilateral.
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The most widely used elements are triangular or quadrilateral because of
their ability to approximate complex geometries. An arbitrary straight-sided
quadrilateral in global coordinates, (x,y), can be obtained by a point
mapping from the “standard square” defined in natural coordinates, (£,7).
The mapping shown in Fig. 3.29 can be achieved by

1
x=z<1—f>(1—n>x1+i—<1+§)<1—n)x2

+:11—(1+§)(1+77)x3 +%(1—§)(1+77)x4

(3.74)
1
y=3U=E)1-my, +'LII(1+§)(1"77))’2
1
+%<l+§)(l+n>y3 + A=+,
or
4 4
x=) N;&mx and y=) N(&my, (3.75)
i=1 i=1
in which
N; =%(l+<§é)(l+ nn;) (3.76)

with (& =-1 n=-1), (& =1 n,=-1, (& =1 n3=1), and (£, =-1,
ny=1.

In the case of an element with curved boundaries in global coordinates,
quadratic shape functions can be used to map it on to a unit square in local
coordinates, as shown in Fig. 3.30. The mapping can be achieved by

8 8
x=ZNi<¢,n>xi and y=ZN,~(§,f7)yi (3.77)

i=1 i=1

in which
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N
W
—

Fig. 3.30 Mapping from a unit square to a quadrilateral
with curved sides.

1
N, =Z(l+{,")(1+77)—%(N5 + Ng)

1 1
N, =Z(1—§)(1+77)—5(N5 +Ng)

1 1
Ny = 4= X1=1) = (N + Ny)
1
N, =;4-<1+§><1—n)—%(1v7 +Ng)
{ (3.78)
Ns =5<1—§2)(1+n>

N, =%(1—é‘)(1—772)

N, =%(1—§2>(1—n>

Ng=%(1+§)(1—772)

When the elements have curved boundaries, or arbitrary nodal locations
(such as the quadrilaterals), the integrals appearing in the expression for the
element matrix are most easily evaluated by using a natural coordinate
system. Since it is more advantageous to use natural coordinates, the vari-
ables of integration are changed so that the integrals can be evaluated using
natural coordinates. In two dimensions, the integral over an arbitrary
quadrilateral region of dxdy becomes an integral over a square area of
d&dn in a natural coordinate system in the form
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11

[feyxay = [ [g&mla|acdn (3.79)
A -1-1

where |J | is the determinant of the Jacobian matrix relating the term dxdy
to d£dn from advanced calculus as

dxdy =|J|d&dn (3.80)

The Jacobian matrix, J , is given by

o ¥
of of
= .81
! ox Oy N
on dn

whose determinant is always positive, IJ | >0, for a one-to-one mapping.

It is not necessary to use interpolation or shape functions of the same order
for describing both the geometry and field variable of an element. If the
geometry is described by a lower-order model (in comparison to that for the
field variable), the element is called a “subparametric element.” On the other
hand, if the geometry is described by a higher-order interpolation function,
then the element is termed a “superparametric” element.

3.6 Numerical Evaluation of Integrals

The evaluation of line or area integrals appearing in the finite element
equations can be performed numerically by employing the Gaussian integra-
tion method (Stroud and Secrest 1966). This method locates sampling points
(also called Gaussian points) to achieve the greatest accuracy.

3.6.1 Line Integrals

The line integrals encountered commonly are of the form
b
I= j f(x)dx (3.82)
a

The limits of this integral can be changed by introducing a new variable as

x=%[(b-a)§+(b+a)] (3.83)
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Thus, the integral given by Eq. (3.82) can be rewritten as

1
1= [f&Jd¢ (3.84)
-1

in which the variables £ and J are given by

2 _(b+a)
f—b_a[x 5 } (3.85)
and
dx b-a
=" 3.86
/ dé 2 ( )

Integrals expressed in the form of Eq. (3.84) are almost always evaluated
numerically. The most commonly used Gaussian integration technique
approximates the integral in the form

1 n
1= [f©ade=Y wf(&) (3.87)
-1 i=1

The weights of the numerical integration are denoted by w;, and the number
of evaluation points, & (referred to as the Gaussian points), depends on the
order of the polynomial approximation of the integrand.

In general, the integrand f(£) in Eq. (3.87) can be approximated as

f&) = +aé + i + & + ..+ ay £ (3.88)
resulting in
‘ 2 2
1= [f(&)aé=2e POt (3.89)

-1
and

n n n 0
1= wif(&)=m) wi+a) wé+ayy wel +..
i=1 i=1 par P 00

n
2n-1
4'612n:E:MWé}
i=1
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Equating the coefficients of the ¢;'s in Eq. (3.89) and (3.90) leads to
n

n
ZWi =2, Zwié’,- =0
i=1

i=1

Swet=2, Ywerto_ 2 (3.91)
Sy g 2n-1

n
2n-1 _
2w =0
i=1

providing 2n equations in n unknowns for positions &; and n unknowns for
weights w; . Hence, for a polynomial of degree p =2n-1, it is sufficient to
use n sampling points for exact integration, i.e., the exact integration is
obtained if n>(p+1)/2. This means that for “n” sampling points, a
polynomial of degree (2n—1) can be integrated exactly.

Rewriting Eq. (3.84) in its final form as

1

b
1:jf(x)dx:b—ajf[b_a§+b+a:|d§ (3.92)

2 2 2
-1

and assuming a third-order polynomial ( p = 3) approximation for f(£) in
Eq. (3.92), this integral is approximated with two sampling points (n = 2) as

I=w f(§)+w,f (&) (3.93)

where —-1<¢&;, & <1, and w;, w, (Gaussian weights), &, and &, are to be
determined. For each coefficient of the cubic representation of f(£), Eq.
(3.91) yields

1
f§3d«f =0=w& +w,& (3.94a)
-1

1
szdf;'%: W&l +wyé; (3.94b)
.
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1
ffdf =0=w& +wy$,
.

1
jd§=2=W1+W2
-1

71

(3.94c¢)

(3.94d)

Multiplying Eq. (3.94¢) by 512 and subtracting it from Eq. (3.94a) gives

wyby (&2 =) =wyéy (&~ E)(& +£) =0

For this equality to be valid, the possibilities are:

. w;=0 = one-term formula—reject.
2. £5,=0 5 w=0 one-term formula—reject.
3. §=£6 - w=0 one-term formula—reject.
4. & == > ACCEPTED.

Thus, substituting for £, =—¢; in Eq. (3.94) leads to

W =W,
2 1 1
2 2:———) =—, = —
é:l \/3' 51 \/5 52 \/5
Wl =W2=l

The numerical integration, Eq. (3.93) becomes

3l

(3.95)

(3.96a)

(3.96b)

(3.96c¢)

(3.97)

The Gaussian points and weights for polynomials of order up to 5 are
summarized in Table 3.1. The Gaussian points for higher order polynomial

approximation are given by Abramowitz and Stegun (1972).

An example is considered that evaluates the line integral given by

0.25
I= I e*dx
~0.25

(3.98)
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Table 3.1 Positions and weights for Gauss integration.

Gauss Points & w;
n=1 0.00 2.00
n=2 +1/3 1.00
n=3 0.00 8/9

£ f3/5 5/9
n= +0.339981 0.652145
+0.861136 0.347854
n= 0.00 0.568888
1+0.538469 0.478628
10.906179 0.236926

This integral can be rewritten as
Lt e
_L 4
1= 2 _J]'e dé (3.99)

Applying Gauss’s formula with n = 2 integration points, this integral is
approximated as

I= i[e_l/ W3 Y3 } =0.505217 (3.100)
The exact solution is / =2Xsinh(0.25) =0.505224 .

3.6.2 Triangular Area Integrals

The area integrals over a triangular region given in the form

I= jf(x,y)dA (3.101)
A
can be rewritten as
1 1-4,
1= [ r&.&)ldgag, (3.102)
0 O
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in which IJ | is the determinant of the Jacobian matrix expressed as

Py
J= 05 94 _{(xl"%) ()ﬁ‘)@)}

- _ —2A  (3.103)
(X =x3) (¥y2—¥3)

O 9y
95, 9%,

relating the area coordinates (discussed in Sec. 3.3.4.2.1) to Cartesian
coordinates

Kl )
9 | . ]ox
i =[J] i (3.104)
afz dy

The extent of the triangular area of integration is defined by the coordinates
(x;,y;) (with i=1,2,3) of the vertices. The Gaussian approximation to the
integration is expressed as

1 1-§ n

I'= -‘- J‘ f(gl’fz)lJldéldé:Z = ZAZWif(fli,fz,') (3.105)
0 O i=1

in which the weights of the numerical integration are denoted by w;. The
number of evaluation points, &; and &,;, are referred to as the Gaussian
integration points and they depend on the order of the polynomial
approximation of the integrand. Depending on the degree of approximation,
the weights and the evaluation points are given by Huebner et al. (2001).

An example is considered that evaluates the area integral given by
I= jxydA (3.106)
A

in which the area A is defined by a triangle whose vertices are (1,1), (3,2),
and (2,3), as shown in Fig. 3.31. This integral can also be evaluated exactly
by using Eq. (3.19).
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()

mapping

(xy ¥2)

(xl' ."t)

Fig. 3.31 A triangular element and its mapping.

The coordinates (x,y) of a point within a triangular area can be expressed
as linear combinations of the nodal coordinates (x;,y;), (x,,y,), and
(x3,y3) and the area coordinates &, &,, and &; as

x=Ex +Ex +Ex =6 +35+25 =-E +& +2 (3.107a)

y=En &y, + &Yy =6 +26, +38 =25 & +3  (3.107b)

with

Substituting for x and y in the integrand of Eq. (3.106) results in

1 1-¢,
1=24] [QE-8-&6-15+6+6d5d¢,  (3.108)
0 0

Utilizing »n =3 Gaussian points as shown in Fig. 3.32, approximation to the
integration by Eq. (3.105) becomes

I =2Aw f (511,621 + Wao f (§12,62) + w3 f (§13.623)]  (3.109)

in Wthh W] =W2 =W3 =1/6, fl] :1/2v 4:21 =0, 512 =1/2, §22 =1/2,
£3=0, and &3 =1/2. The area of the triangle is obtained from Eq. (3.18)
as 2A =3. Thus, the Gaussian approximation leads to

1=24[w 2EL - &5 - &16y - TE, + &5, +6)
+wy (285 — &y — Einby — 115 + 9y +6)
+ w3 (2805 — 33 — Gy — 113+ Ex3 +6)]
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(xlv yl)

(.fl]’ .62})
& &)

(‘x.l > .,vf))

(xh y?) (‘512’ le)

Fig. 3.32 Three Gaussian points, located at mid-sides, for
approximate integration.

and
Iz3-1— 21—7l+6 + 21~l—l—7l+l+6 + —l+l+6
6|\ 4 2 4 4 4 2 2 4 2

and

Izl{6+£:|=6.125 (3.110)
2 4
For the exact evaluation, substituting for x and y in the integrand results in
I= [ +68 +625 +58 & +135,8 +55 &)dd (3111
A

Utilizing the formula of Eq. (3.19) for exact integration results in

I=24—1:1(2!+ 6x2MH+6x 24+ 5Sx 1113 x 11+ 5x1x 1)

(3.112)
3 49
=—[13x2+23]=—=6.125
24 8
3.6.3 Quadrilateral Area Integrals
The quadrilateral area integrals appearing in the form
b d
1=j £ (x, y)dxdy (3.113)
a ¢
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can be rewritten as
11

1= [ [r&mlaagan (3.114)

-1 -1

in which IJ | is the determinant of the Jacobian matrix expressed as

& 9] (o
J= ; g relating ﬁ =[J] —aéx_ (3.115)
on 97 on dy

These integrals can be evaluated first with respect to one variable and then
with respect to the other leading to

1 1

1= [r&mWdén=3"Y wwf&.npP&.np| G116

-1 -1 i=1 j=1

in which w; represent the weights of-the numerical integration, and ¢&; and
n; are the Gaussian integration points. They are given by Abramowitz and
Stegun (1972) and depend on the order of the polynomial approximation of
the integrand.

An example is considered that evaluates the area integral given by

I= IxydA (3.117)
A

in which the area A is defined by a quadrilateral whose vertices are (1,1),
(3,2), (4,4), and (2,3) as shown in Fig. 3.33.

The coordinates (x, y) of a point within a quadrilateral area can be expressed
as linear combinations of the nodal coordinates (x;,y,), (X3,¥5), (x3,¥3),
and (x4,y,) and the natural coordinates £ and 7 as

x=%[(1—§)(1—77)+3(1+§)(1—77)

(3.118)
+4(+EHA+m+20-EA+n)]
1
y—Z[(l—5)(1—77)+2(1+§)(1—77) (3.119)

H(L+ A+ +3A-E)(A+n)]
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y (,\’.‘, y.x) n 7]=+l

>
>

£=-1

mapping
(.x.’! yz) > f
,l: é=+1

> X n=-1

(e, 7))

Fig. 3.33 A four-noded quadrilateral element and its mapping.

The Jacobian matrix is obtained as
1 12
J= /
/2 1

Utilizing two Gaussian points as shown in Fig. 3.34, the approximation to
the integration becomes

with its determinant |J| =3/4.

3
1 zz[wlwlf(fl,ﬂ1)+W1W2f(§1,772)

+wywy £ (&2,1) + wowy f (&5,

(3.120)

in\/vxihich wo=w,=1, &==1/\3, &=1/\3, 5y=-1//3, and 1, =
1/43 .

The function f(&,7) is expressed as

FEm) =%[(l—éf)(l—n)+3(l+§)(1—n)
+A(+EA+m+20-EA+n)] (3.121)
x [A=EA-nm)+20+EA-1)
+41+EHA+n)+30-EH)1+ 77)0]

Evaluation of the function f(&£,7) at Gaussian integration points results in
their numerical evaluations as
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It
! n=+1

&=-
[ ] [ ]
&1, (&.51,)

(é-.;ri.) (é':;n.) £t

n=-1

Fig. 3.34 Two Gaussian points, in each direction, for
approximate integration.

f(&,m) =11.33012702
f(&,m,) = 6.16666667
f(&,,m) = 6.16666667
f(&.m,) =2.66987298

Finally, the approximation to the integral from Eq. (3. 120) is determined to
be 19.75.

By using Eq. (3.19), the exact evaluation of this integral can be obtained by
integration over two triangular regions defined by the vertices (1,1), (3,2),
and (2,3) and (3,2), (4,4), and (2,3). The exact integration over these two
regions are obtained as 6.125 and 12.125. Their summation provides the
exact integration over a quadrilateral defined by vertices (1,1), (3,2), (4,4),
and (2,3). Thus, the exact integration becomes 19.75.

3.7 Problems

3.1. The completeness criterion for convergence of finite element solu-
tions requires that the interpolating function must be able to
reproduce exactly (that is, interpolate to the exact value at every point
in the element). In particular, the approximation function ¢(x,y) is
specified as

¢(x,y)=a+bx+cy=ZN,-¢,-

where a, b, and c are arbitrary constants, ¢,are the nodal values, and
N;(x,y) are the interpolating functions.
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3.2.

3.3.

(a) Derive a set of three equations that the interpolating functions
N;(x,y) must satisfy for completeness.

(b) Show that the standard and quadratic linear interpolation func-
tions for a triangular domain satisfy these requirements.

Using the coordinate transformation equations given in Sec. 3.5 for an
8-noded quadrilateral element, determine the isoparametric element
shape whose nodal locations are

Node No. X y
1 6.0 3.0
2 —4.0 3.0
3 -5.0 -3.0
4 4.0 -3.0
5 1.0 4.0
6 -3.0 0.5
7 0.0 -2.0
8 5.0 0.0

The isoparametric formulation is useful for triangular, as well as for
quadrilateral, elements. Also, the area coordinates (&, &,, &) are
commonly employed for triangular elements instead of using the local
coordinates (7, s). However, because only two of these are indepen-
dent coordinates, one of them, say &5, can be eliminated in favor of
& and &,. Thus, for a 3-noded triangle, the interpolation functions
are N;=¢; (i=1,2,3) and the coordinate transformations, using

&=1-§-&, are

x=Gx+6H0n +(1-§-8H)x

Y=t &y (-6 -5)y;
As illustrated in Fig. 3.35, this clearly maps a triangle with vertices
(1,0), (0,1), and (0,0) in the & -&, plane into a triangle with vertices

(x> 1) (x3,¥3), and (x3,y3) in the x-y plane. Also, the integrals in
the x-y plane may be related to integrals in the & -&, plane by

1 14
[[Oraxay=[ [ |s|agag
0 0
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3.4.
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(¥202)

Fig. 3.35 A triangular element and its mapping.

Explicitly determine the coordinate transformations and the Jacobian
matrix for the 6-noded triangle having the side nodes located at the
midpoint of each side. Explain how it is possible to obtain a triangular
element in the x-y plane with one or more curved sides. What is the
form of the curve?

For a 4-noded element shown in Fig. 3.36, the mapping is achieved
by

x= iNi(f,n)xi and y= iN,- (&.my;
where — _

N, =%(1—§)(1—77), N2=%(1+§)(1—77)

N3=:11-(1+§)(1+77), N4=%(l—§)(1+77)

(a) For this element explicitly determine the Jacobian determinant,
and show that it is strictly linear in the local coordinates & and
n and that the term proportional to the product £1 vanishes.

(b) Show that the Jacobian determinant becomes

| =%[(x4 —%3)(y2 = ¥3) = (3% = x3) (74 —y3):|

foré=n=1.
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k
1 ()
(=L 4 (L) o

>

('Xl \yl )
;

(=1,-1) (L,=1)

Fig. 3.36 A four-noded quadrilateral element and its mapping.

(c) Using the definition of the cross-product of the vectors v; and
v, shown in Fig. 3.36, show thatat £=7=1

J|>0 if 0<6<x

(d) Based on the results of parts (a) and (c), provide a short argument
to show that |J | >0 throughout the element and, hence, the
coordinate transformation (£,7) — (x,y) is unique and invertible
if the interior angles at all nodes are less than 180°.





