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Laboratory work №1 

PLANE STRESS TENSION OF A PLATE WITH A HOLE 

Test problem 
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PROBLEM DISCRIPTION 

 A thin rectangular plate with the length of 2a; a=5 (cm) and the width of 2b; b=2 (cm) has a 

hole in the center with the radius R=0.25 (см) (Fig. 1). The plate is made of an elastic isotropic materi-

al with the Young’s modulus E=2·106 (kgf/cm2) and the Poisson’s ratio ν=0,3. The plate is being 

stretched by the distributed load p=103 (kgf/cm2), applied to its left and right edges. The objective of 

the problem is to perform plane stress structural analysis and define maximal stresses in the plate. 

 

Figure 1. Scheme of a plate with a hole with boundary conditions 

 

INTRODUCTORY NOTES 

It is necessary to note that the user should control the consistency of the system of units for the 

input values. Here the chosen system of units is cm for measuring length and kg for measuring mass. 

So the pressure load, Young’s modulus and stresses are measured in kgf/cm2 (kilogram force per 

square centimeters), where 1 kgf/cm2 = 98066.5 Pa. 

In this problem, the hole introduces a perturbation into a uniform stress state of the plate loaded 

in uniaxial direction. In the vicinity of the hole there is an increase of the stresses known as the stress 

concentration. An analogous problem for an infinite plate stretched by distributed loads at infinity is 

called a Kirsch problem, and the solution for such problem can be obtained analytically. The Kirsch 

problem is the fundamental problem of the elasticity theory on the stress concentration. In the Kirsch 

problem the maximal stresses arise in the point (0, R) and are equal to 3p. These stresses are tangential 

stresses. 

 In the example problem the stress, strain and displacement fields are inherently inhomogeneous 

around the hole, therefore for accurate computations it is necessary to condense finite element mesh 

around the hole. 

  

THEORETICAL BACKGFROUND 

 In an assumption of a plane stress state the displacements of the plate in the region , in the xy-

plane are characterized by the displacement vector U={Ux, Uy}={U, V}, where U=U(x, y), V=V(x, y). 
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  is the stress tensor, xx , yxxy  = , yy  are the components of the stress tensor. 

The coefficients  and  from (4) are known as Lame’s coefficients. Often the coefficient  is denoted 

by G and has the meaning of the shear modulus. The module E from (4) is called the Young’s modu-

lus, and ν is called the Poisson’s ratio. 

 The equilibrium equations for an elastic medium in a plane problem have the form 

 0// =yT+xT xyxx      (5) 

 0// =yT+xT yyxy      (6) 

 Substituting (2) and (1) into (5), (6) gives an elliptic system of partial differential equations of 

the second order for unknown functions of displacements U and V. 

This system should be supplemented by the boundary conditions on the boundary Ω=Γ  . 

Together with boundary conditions, this system constitutes a boundary-value problem. 

Let the boundary  be divided into two subsets uΓ  and σΓ . At the part of the boundary uΓ  

the components of the displacement vector are considered to be known: 

 U=U , V=V ,   uΓyx,     (7) 

At the part of the boundary σΓ  the pressure (stress vector)  yx p,p=p  is defined 

   xyxyxxx p=nT+nT  yyyyxxy p=nT+nT ,   σΓyx,     (8) 

where  yx n,n=n  is the outward unit normal vector to the boundary . 

In elasticity theory, there are two main types of boundary conditions. In notation of the finite 

element method these two types of boundary conditions are known as essential and natural. Essential 

boundary conditions are the conditions that are imposed explicitly on the unknown function (a primary 

variable); they correspond to Dirichlet boundary conditions in a boundary value problem. Natural 

boundary conditions are given in terms of the derivatives of unknown functions (secondary variables, 

for example, stresses in linear elasticity), they correspond to Neumann boundary conditions. Natural 

boundary conditions will be satisfied automatically after the problem is solved. 

 Boundary conditions (7) in terms of displacements are essential boundary conditions, also 

known as Dirichlet boundary conditions, or boundary condition of the first kind. Values 0=U , 0=V  

in (7) usually correspond to a rigidly fixed part of the boundary uΓ . 
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 Boundary conditions (8) in terms of stresses are natural boundary conditions, also known as 

Neumann boundary conditions, or boundary condition of the second kind. When 0=px , 0=py , the 

part of the boundary σΓ  is considered to be a free boundary. As a vector-function of x, y, the stress 

vector  yx p,p=p  can include concentrated force vectors  yx F,F=F . 

 

USING FLEXPDE TO SOLVE THE PROBLEM 

Input file for solving the problem in FlexPDE is called St2LS_1.pde. 

 

USING ANSYS TO SOLVE THE PROBLEM 

 The problem can be simulated and solved in ANSYS using either interactive mode, or com-

mand mode, or a combination of both. An interactive mode of solving the problem step by step in GUI 

is described in file St2LS_1(GUI ANSYS).doc. File St2LS_1.inp contains input listing of commands 

in ANSYS APDL (ANSYS Parametric Design Language). This file can be executed in ANSYS from 

menu File → Read Input from… After that, the results can be viewed in General Postprocessor in an 

interactive mode. 

 An example similar to the considered problem is included in ANSYS Verification Manual, see 

VM142 for details. 

 To solve the problem about the plate tension, we need to use the finite elements for Structural 

analysis. Such elements will have degrees of freedom (DOF) UX, UY, UZ, which are displacements in 

the nodes. The finite elements for 3D simulation are called Solid. As the plate has small thickness 

compared to its width and length, and all the loads are applied to its lateral edges, we can consider 2D 

model of the plate and simulate plane stress behavior (see Fig. 2). For two-dimensional case we can 

use plane or shell finite elements (which have thickness). 

 2D finite elements can have the shapes of triangle or quadrilateral. 3D finite elements have 

broader range of shapes, including tetrahedron, prism, hexahedron. Fig. 3 shows linear elements (with 

nodes only in the element vertices) and quadratic elements (with internal nodes on the element edges). 

 

 
Figure. 2 2D problem setting 
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Figure. 3. Types of linear and quadratic 2D and 3D finite elements 

 

The table below contains the elements which can be used for linear structural analysis. 

 
Table 1. Elements available for linear structural analysis in Ansys (old and new versions) 

Element type Element name  Element shape, number of nodes, oder of 

approximation 

Degrees of freedom 

and element behav-

ior 

2D plane finite ele-

ments  

PLANE42, 182 

2-D Structural Solid 

 

4 node linear quadrilateral 

UX, UY 

 

KEYOPT(3)  

Element behavior: 

0 -  Plane stress  

1 -  Axisymmetric 

2 - Plane strain  

3 -  Plane stress with 

thickness input 

PLANE82, 183 

2-D 8-Node Structural 

Solid 

 

8 node quadratic quadrilateral 

UX, UY 

 

KEYOPT(3)  

Element behavior: 

0 -  Plane stress  

1 -  Axisymmetric 

2 - Plane strain  

3 -  Plane stress with 

thickness input 

Shell finite elements SHELL63, 181 

Elastic Shell 

 

4 node linear quadrilateral shell 

UX, UY, UZ, 

ROTX, ROTY, 

ROTZ 

 

KEYOPT(1)  

Element stiffness: 

0 --  Bending and 

membrane stiffness 

1 --  Membrane stiff-

ness only 

2 --  Bending stiff-

ness only 
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SHELL93, 281 

8-Node Structural Shell 

 

 

8 node quadratic quadrilateral shell 

UX, UY, UZ, 

ROTX, ROTY, 

ROTZ 

3D solid finite ele-

ments 

SOLID45, 185 

3-D Structural Solid 

8 node linear hexahedron 

UX, UY, UZ 

SOLID95, 186 

3-D 20-Node Structural 

Solid 

 

 

20 node quadratic hexahedron 

UX, UY, UZ 

SOLID92, 187 

3-D 10-Node Tetrahe-

dral Structural Solid 

 

 
20 node quadratic hexahedron 

UX, UY, UZ 

 

Solid and finite element model 

Note that the plate geometry and boundary condition are symmetric with respect to the central 

axes of the plate (see Fig. 1). Therefore, we can consider a quarter of the plate and set symmetry 

boundary conditions on the respective lines or edges of symmetry. 

The following fragment of the file St2LS_1.inp shows how to solve the plane stress problem 

of the plate tension APDL ANSYS. Here all necessary parameters are set first, and then the materi-

alproperties are defined. The finite element type for is an 8-node quadrilateral quadratic element 

PLANE82 (with the nodes on the element edges). 

The solid model of the plate is built using keypoints to describe the main domain, from which 

the circular are is subtracted. AMESH commend builds the finite element mesh of the resulting area.  

 
/TITLE, Plane Stress tension of an elastic plate with a hole 

/PREP7 

! Due to the symmetry of the problem we consider a quarter of the plate 

A=5 ! length of the plate quarter 

B=2 ! width of the plate quarter 
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R=0.25 ! radius of the hole 

H=0.1  ! thickness of the plate 

P=1e3  ! magnitude of tensile load(kG/cm^2) 

!1kG = 9.8 N/m^2 

MP,EX,1,2e6  ! Young's moduus EX=2*10+6  (kG/cm^2) 

MP,NUXY,1,0.3 ! Poisson's ratio NUXY=0.3 

 

ET,1,PLANE183 ! Eight-node finite element PLANE183 (plane stress) 

! ****************************************************** 

! For stress analysis of the plate we can also choose shell element SHELL63, in 

this case uncomment the following commands 

!ET,1,SHELL63 

!R,1,H 

!P=P*H         ! pressure for a length unit (kG/cm)  

! ****************************************************** 

 

K,1,0,0 ! Keypoints of the plate boundary: point number and coordinates 

K,2,A,0 

K,3,A,B 

K,4,0,B 

A,1,2,3,4 ! Define area 1 using four keypoints 

! Command A defines an area by connecting keypoints (max 18 points). Keypoints 

must be input in a clockwise or counterclockwise order around the area. 

APLOT,1 ! Show area 1 

 

PCIRC,R ! Define area 2 - a cirlce with radius R and center in (0,0)  

 

ASBA,1,2 ! Substract area 2 from area 1 

APLOT,ALL ! Show resulting area 3 

 

! Define parameters for finite element mesh 

! KESIZE Specifies the edge lengths of the elements nearest a keypoint 

KESIZE,ALL,B/4 

KESIZE,5,R/6 ! set element edge length near keypoint 5 

KESIZE,6,R/6 ! set element edge length near keypoint 6 

 

AMESH,ALL  ! mesh area all areas (area 3) 

FINISH 

 

Fig. 4 illustrates the resulting area А3 with the keypoint and area numbers. (Menu path: Plot-

>Areas, for showing numbers of the entities go to PlotCtrls->Numbering->tick Area numbers, Key-

point numbers). 
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Figure 4. Problem domain (area with keypoint and line numbers) 

 

Fig. 5 shows the lines which constitute the resulting are with the line and keypoint numbers. 

(Menu path: Plot->Lines, for showing numbers of the entities go to PlotCtrls->Numbering->tick Line 

numbers, Keypoint numbers).  

Fig. 6 shows the resulting finite element mesh with elements and their nodes показаны полу-

ченные в результате конечно-элементного разбиения элементы и узлы. . (Menu path: Plot-

>Elements, Plot->Nodes). 

 

 
Figure 5. Lines with their numbers and keypoint numbers 
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Figure 6. Elements PLANE183 and their nodes 

 

Setting boundary conditions 
The plate is being stretched by its lateral edges by the distributed load (pressure) p=1·103 

(кГ/см2), applied to its left and right edges. The remaining part of the boundary is free from stress. We 

simulate only one quarter of the plate in 2D case, therefore we need to put symmetry boundary condi-

tions on the lines of symmetry (the lines where we mentally cut the plate) and the load on the right 

edge of the plate quarter. The rest of the boundary is assumed to be free, and this is the default bounda-

ry condition, which is not necessary to specify. 

The boundary conditions can be set either for finite element model entities (nodes and ele-

ments) or for solid model entities (keypoints, lines and areas). At the stage of solving the problem all 

boundary conditions set on solid entities are transferred to finite element model. The boundary condi-

tiones set on solid entities have priorities over the boundary conditions set on finite element entities. If 

the user specifies boundary conditions both on solid and finite element entities, a warning will be 

shown calling user’s attention to the possibility of overwriting finite element boundary conditions by 

solid ones set at the same place. 

Let us consider the code fragment from the file St2LS_1.inp. Here the distributed load (pres-

sure) is set on nodes (finite element model entities), and both symmetry conditions are set on lines 

(solid model entities). The commented commands enable us to set the same symmetry conditions di-

rectly on the nodes. 

In the example problem, the right edge of the plate lies on the line x=a, therefore the stretching 

surface load is set on the nodes with coordinates x=a with negative sign for pressure: PRES = -P (for a 

compressive load, we set positive pressure with a positive sign: PRES = P). For our example problem 

(see Fig. 1) the symmetry boundary conditions should be set on the left edge of the plate (which lies on 

the line x=0, axis OY is vertical) and on the bottom edge of the plate (which lies on the line y=0, axis 

OX is horizontal). The symmetry condition on the vertical axis OY (x=0) indicates no horizonal dis-

placements: UX=0. Similarly, the symmetry condition on the horizontal axis OX (y=0) indicates no 

vertical displacements: UY=0. 

 
/SOLU 

ANTYPE,STAT          ! set analysis type: static 

NSEL,S,LOC,X,A ! select all nodes with coordinate X=A 

SF,ALL,PRES,-P ! for all selected nodes set surface load PRES = -P 

NSEL,ALL  ! select all nodes 

DL,9,,SYMM  ! symmetry condition on line 9 (all lines with Y=0) 

DL,10,,SYMM ! symmetry condition on line 10 (all lines with X=0) 

 

! ******************************************************** 

! For finite element with degrees of freedom UX, UY the previous symmetry 

conditions on lines 9 and 10 are equivalent to the following commands  

!NSEL,S,LOC,X,0 !Select all nodes with coordinate x=0 

!D,ALL,UX,0 ! for all selected nodes set displacement ux=0 

!NSEL,S,LOC,Y,0 !Select all nodes with coordinate y=0 

!D,ALL,UY,0 ! for all selected nodes set displacement uy=0 

!NSEL,ALL ! select all nodes 

! ******************************************************** 

 

SOLVE   ! Solve finite element system of equations 

FINISH 
 

D and DL commands set constraints on the degrees of freedom (DOF). D command sets con-

straints on the nodes, and DL command sets constraints on the lines. SF and SFL commands set sur-

face load. SF command sets surface load on the nodes, and SFL command sets surface load on the 

lines. 
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Note that the nodes can be selected both by coordinates and by lines, on which the nodes are 

located. For example, in the test problem the right edge is the line L2 (see Fig. 3). Hence, the surface 

load can be set in the following way: 
 

LSEL,S,LINE,,2 ! Select line 2 

NSLL,S,1 ! Select the nodes located on the selected line 

! 2nd argument is the key to select the nodes: 1 – internal and key points 

(line ends); 0 – select only nodes interior to selected line 

SF,ALL,PRES,-P ! Set load pressure for all selected nodes 

 

The resulting finite element model of the problem with applied boundary conditions is shown 

in Fig. 5 (Menu path: Plot->Elements, for showing boundary conditions go to PltCtrls->Symbols->tick 

All applied BC, select showing distributed loads (pressures): Surface Load Symbols->Pressures) 

 

 
Figure 7. Finite element mesh with boundary conditions 

 

The area is meshed with quadrilateral eight-node finite elements PLANE82 suitable for 2D 

structural analysis. The finite element PLANE82 has two degrees of freedom (Ux and Uy) in 

each node. 

 

REVIEWING AND ANALYZING RESULTS 

Let us plot several computation results. For instance, we can start with the deformed shape 

(Fig. 8). Menu path: General Postproc → Plot Results → Deformed shape → Def + undef edge. 
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Fig. 8. Deformed mesh with undeformed edge 

 

Then we can plot the distribution of the displacements Ux (Fig. 9), the distribution of axial 

stresses Tyy (Fig. 10) and the distribution of tangential stresse Tθθ (Fig. 11).  

Menu path for plotting the picture of Ux distribution: General Postproc → Plot Results → Con-

tour Plot → Nodal Solu → DOF Solution → X-Component of displacement. 

 

Important note: in all modern versions of ANSYS the display of the results for the solution deriva-

tives, such as stresses and stresses, may not be available Plot Results immediately. In this case when 

working in interactive mode one can open Results Viewer first or read the results of the last set Gen-

eral Postproc → Read Results → Last Set. In a command moder or for an input file, just add a com-

mand to read the results of the last set to get access to these results: SET, LAST 

 

Menu path for plotting the picture of Tyy distribution: General Postproc → Plot Results → Con-

tour Plot → Nodal Solu → Stress → Y-Component of stress. 

Menu path for plotting the picture of Tθθ distribution: General Postproc → Options for Outp → 

Results coordinate system → Global Cylindrical; Plot Results → Contour Plot → Nodal Solu → Stess 

→Y-Component of stress (when we set results coordinate system to global cylindrical, the y-axis will 

correspond to coordinate θ in global cylindrical system). 
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Fig. 9. Distribution of the displacements Ux 

 

 
Fig. 10. Distribution of axial stresses Tyy 
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Fig. 11. Distribution of tangential stresses Tθθ 

 

As can be seen from Fig. 10 and 11, the hole is the stress concentrator.  

 

This test problem has analytical solution. Let us compare this analytical solution with our nu-

merical solution. In order to do this, let us plot a graph of tangential stresses along the path (Fig. 12) 

through the point (0,R) to point (0,B). 

 

In interactive mode, you should follow the steps below:  

1) Define the points for the path. Plot Elements or Nodes (Utility Menu: Plot → Elements or 

Plot → Nodes), then in Main Menu select General Postproc → Path Operations → Define 

Path → By Nodes and pick two points with coordinates (0,R) and (0,b). The window will 

open where you can define the name of path, for example mypath: 

 
 

2) The variable in x-axis is the distance by default. Next you should define the variable to be 

plot for y-axis: General Postproc → Path Operations → Map onto Path where you define 

the variable name and choose the variable. For tangential stresses Tθθ let us define the name 

T_THETA and select: Stress, Y-direction SY (provided that the current result system is 

global cylindrical system RSYS 1). 
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3) Plot the path on graph: General Postproc → Path Operations → Plot Path Item → On 

Graph and select the variable T_THETA: 

 

 
Fig. 12. Graph of tangential stresses along the path through the point (0,R) to point (0,B) 

 

From Fig. 12 we can see that the maximum stress is in the point (0,R) and equals  = 3032 

(kgf/cm2). Thus, as the applied pressure load was p=1·103 (kgf/cm2), our computations confirm the an-

alytical result that the stresses around concentrator point increase approximately 3 times. 

 

The following commands give Fig. 8-10: 
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/POST1 

/PLOPTS,LOGO,OFF   ! Don’t show ANSYS logo 

/PLOPTS,FRAME,OFF  ! Don’t show frame 

/PLOPTS,DATE,OFF   ! Don’t show date 

 

SET,last ! Read the last step 

PLDISP,2 ! Plot deformed mesh with undeformed edge 

! Delay for viewing the picture 

*ASK,TMP,ANY NUMBER OR PRESS "ENTER" 

PLNSOL,U,X !  Plot displacements ux 

*GET,UXMAX,PLNSOL,0,MAX ! Get maximal value of displacements ux 

! Delay for viewing the picture 

*ASK,TMP,ANY NUMBER OR PRESS "ENTER" 

 

RSYS,1 ! Set results coordinate system to global cylindrical 

PLNSOL,S,Y ! Plot tangential stresses (in global cylindrical system) 

 

Fig. 12 can be obtained using the following commands: 
 

/POST1 

! ******************************************************** 

! Graph of tangential stresses T_Theta  

! along the path on OX-axis from point (0,R) to point (0,B) 

! Delay for viewing the previous picture 

*ASK,TMP,ANY NUMBER OR PRESS "ENTER" 

PATH,XX,2 

PPATH,1,,0,R 

PPATH,2,,0,B 

PDEF,T_Theta,S,Y 

PLPATH,T_Theta 

!******************************************************* 

 

RSYS,0 ! Set results coordinate system back to global cartesian 

 

Note several new commands used the script. *ASK command enables us to make a pause to 

view the previous picture before plotting the next picture. *GET command sets a user-defined parame-

ter UXMAX with the value of maximal displacement UX. Command RSYS,1 sets the current coordi-

nate results coordinate system to global cylindrical (default is cartesian system) and enables us to view 

results, such as tangential stresses , in cylindrical system. The commands PATH, PPATH, 

PDEF, PLPATH give the graph of a variable along the defined geometric path.  

 




