Лабораторная работа №3 РАСЧЕТ СОБСТВЕННЫХ И УСТАНОВИВШИХСЯ КОЛЕБАНИЙ с использованием конечно-элементного пакета ANSYS и программы FlexPDE

КЛЮЧЕВЫЕ СЛОВА

- 1. Теория упругости структурный анализ
- 2. Плоская задача
- 3. Модальный анализ
- 4. Гармонический анализ

<u>Часть 1. Пример расчета собственных колебаний составного упругого профиля.</u> Описание задачи

Пусть тонкая прямоугольная пластина имеет форму двутаврового профиля. Верхняя часть 1 выполнена из стального материала с модулем Юнга $E=2\cdot10^{11}$ (H/м²); коэффициентом Пуассона v=0,29 и плотностью $\rho=7.8\cdot10^3$ (кг/м³). Нижняя часть 2 выполнена из меди с модулем Юнга $E=1.2\cdot10^{11}$ (H/м²); коэффициентом Пуассона v=0,33 и плотностью $\rho=8.9\cdot10^3$ (кг/м³). Обе части имеют одинаковую форму в виде буквы «Т». Размеры букв (Рис. 1) следующие: l=0.05 (м); b=0.16 (м), h=0.02 (м). Нижняя грань профиля жестко закреплена. Требуется определить первые четыре собственных частоты профиля в условиях плоского напряженного состояния и вывести картины соответствующих форм колебаний.

Рис. 1 Схема двутаврового профиля

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ (часть 1)

Пусть рассматриваемая пластина занимает объем Ω , тогда в предположении плоского напряженного состояния перемещения в плоскости *xy* характеризуются вектором перемещений $\underline{U} = \{U_x, U_y\} = \{U, V\}$, где U = U(x, y), V = V(x, y). Компоненты ε_{xx} , $\varepsilon_{xy} = \varepsilon_{yx}$, ε_{yy} тензора деформаций $\underline{\varepsilon}$ связаны с компонентами вектора перемещений U по формулам:

$$S_{xx} = \varepsilon_{xx} = \partial U / \partial x ; \ S_{yy} = \varepsilon_{yy} = \partial V / \partial y ; \tag{1}$$

$$S_{xy} = \varepsilon_{xy} = (\partial U / \partial y + \partial V / \partial x) / 2$$

Определяющие соотношения между механическими напряжениями и деформациями для упругой изотропной среды имеют вид

$$T_{xx} = \sigma_{xx} = \lambda * (S_{xx} + S_{yy}) + 2\mu S_{xx}$$

$$T_{yy} = \sigma_{yy} = \lambda * (S_{xx} + S_{yy}) + 2\mu S_{yy}$$

$$T_{xy} = \sigma_{xy} = 2\mu S_{xy}$$
(2)

где $\underline{\sigma}$ - тензор напряжений, σ_{xx} , $\sigma_{xy} = \sigma_{yx}$, σ_{yy} - компоненты тензора напряжений и

$$\lambda^* = \frac{2\lambda\mu}{\lambda + 2\mu} \tag{3}$$

$$\lambda' = \frac{\nu E}{(1+\nu)(1-2\nu)}, \ \mu = \frac{E}{2(1+\nu)}$$
(4)

В (4) λ' и μ являются константами Ламе, они могут быть выражены через другую пару констант: модуль Юнга *E* и коэффициент Пуассона v.

Уравнения равновесия для модального анализа имеют вид:

$$\partial T_{xx} / \partial x + \partial T_{xy} / \partial y + \lambda \rho u = 0$$
⁽⁵⁾

$$\partial T_{xy} / \partial x + \partial T_{yy} / \partial y + \lambda \rho v = 0$$
(6)

где ρ - плотность материала, λ - неизвестное собственное значение.

Подстановка (2) и (1) в (5), (6) дает эллиптическую систему дифференциальных уравнений в частных производных второго порядка относительно неизвестных перемещений U и V.

РЕШЕНИЕ ЗАДАЧИ С ИСПОЛЬЗОВАНИЕМ ANSYS (часть 1)

Для определения собственных частот двутаврового профиля предлагается программа St2LM_1.inp.

Во входном файле представлены команды /OUTPUT, осуществляющие вывод результатов в текстовый файл с именем Mod_ANS_1.rez. Данный файл создается в заданной рабочей папке Ansys. Команда ***VWRITE** записывает результаты в указанный файл, используя формат языка (см. соответствующие комментарии в файле St2LM_1.txt).

РЕШЕНИЕ ЗАДАЧИ С ИСПОЛЬЗОВАНИЕМ FlexPDE (часть 1)

Для определения собственных частот и форм колебаний двутаврового профиля предлагается программа St2LM.pde.

АНАЛИЗ РЕЗУЛЬТАТОВ, полученных в ANSYS (часть 1)

Конечно-элементная модель двутавра состоит из элементов PLANE2 - 6узловых треугольных элементов для структурного анализа. В версиях Ansys 11 и выше рекомендуется использовать новые элементы, например элемент PLANE82 с опцией треугольной формы:

ET,1,PLANE82 ! finite element PLANE82: 2D 8-Node Structural Solid mshape,1 ! triangular option for elements

MAT NUM

Элемент PLANE2 также может использоваться во всех версиях Ansys, хотя в версиях 11 и выше он не включен в библиотеку элементов.

Построенная конечно-элементная модель с граничными условиями для модального анализа показана на рис. 2. (Пункты меню Plot->Elements, для отображения граничных условий PltCtrls->Symbols->отметить All applied BC). Для отображения разных материалов цветом: PltCtrls->Symbols->отметить Material numbers в Elem/Attrib numbering. В разделе Numbering shown with выбрать colors only.

Рис. 2 Конечно-элементная модель с граничными условиями для модального анализа с показом материалов

В постпроцессоре (General PostProc->Results Summary) можно посмотреть значения первых четырех собственных частот: ***** INDEX OF DATA SETS ON RESULTS FILE *****

SET	TIME/FREQ	LOAD STEP	SUBSTEP	CUMULATIVE
1	98.218	1	1	1
2	735.42	1	2	2
3	1905.3	1	3	3
4	2619.5	1	4	4

В результате расчетов значения первых четырех собственных частот оказались равными: $f_1 = 98.2$ (Гц); $f_2 = 735.4$ (Гц); $f_3 = 1905.3$ (Гц); $f_4 = 2619.5$ (Гц).

Далее приведем картины форм колебаний (mode shapes) на данных частотах (рис. 3). Для вывода каждой формы колебаний (деформированной формы) в постпроцессоре предварительно следует считать результаты для сета с соответствующей собственной частотой (General PostProc->Read Results->By Pick). Следует отметить, что формы колебаний, соответствующие собственным векторам перемещений, выводятся с точностью до знака.

Как видно из рис. 3, первые три формы колебаний являются колебаниями изгиба, тогда как колебания на четвертой собственной частоте есть колебания растяжения-сжатия.

Рис. 3 Собственные формы колебаний (ANSYS)

АНАЛИЗ РЕЗУЛЬТАТОВ, полученных во FlexPDE (часть 1)

В результате расчетов по этой программе значения первых четырех собственных частот оказались равными: $f_1 = 98.17$ (Гц); $f_2 = 735$ (Гц); $f_3 = 1902.28$ (Гц); $f_4 = 26169.62$ (Гц).

В конце работы программы выводятся формы колебаний (mode shapes) на данных частотах (рис. 4). При сравнении результатов, полученных во FlexPDE, с результатами, полученными в ANSYS, можно заметить, что формы колебаний, соответствующие собственным векторам перемещений, выводятся с точностью до знака. Аналогично, первые три формы колебаний являются колебаниями изгиба, колебания на четвертой собственной частоте – колебания растяжения-сжатия.

Рис. 4 Собственные формы колебаний (FlexPDE)

<u>Часть 2. Пример расчет установившихся колебаний составного упругого про-</u> филя.

Описание задачи

Определив собственные частоты, можно провести расчеты установившихся колебаний в заданном диапазоне частот (гармонический анализ) и построить амплитудно-частотные характеристики. При этом желательно задать такие силовые факторы, которые могли бы возбуждать рассматриваемые моды колебаний.

Рассмотрим ту же тонкую прямоугольную пластину в форме двутаврового профиля, состоящую из двух материалов. Верхняя часть 1 выполнена из стального материала с модулем Юнга $E=2\cdot10^{11}$ (H/м²); коэффициентом Пуассона v=0,29 и плотностью $\rho = 7.8\cdot10^3$ (кг/м³). Нижняя часть 2 выполнена из меди с модулем Юнга $E=1.2\cdot10^{11}$ (H/м²); коэффициентом Пуассона v=0,33 и плотностью $\rho = 8.9\cdot10^3$ (кг/м³). Размеры букв: l=0.05 (м); b=0.16 (м), h=0.02 (м). Нижняя грань профиля жестко закреплена. В точках с координатами (-l, b) и (l, b) заданы векторы сосредоточенной силы (рис. 5): $f_1 = \{f_0, f_0\}, f_2 = \{-f_0, -f_0\}$, где f=1000 Н. Векторы внешних воздействий

изменяются по гармоническому закону $f = f_0 e^{i\omega t}$, где $\omega = 2\pi f$.

Рис. 5 Схема двутаврового профиля с приложенной нагрузкой

Гармонический анализ предназначен для решения уравнений движения в случае установившихся колебательных процессов (вынужденных колебаний). Для формулировки проблемы вынужденных колебаний используются комплексные обозначения. Вектор перемещений, векторы внешних воздействий, а также деформации и напряжения изменяются по гармоническому закону: $\underline{u} = u_0 e^{i\omega t}$, где $\omega = 2\pi f$.

Коэффициенты демпфирования (затухания) при расчете установившихся колебаний (гармонического анализа) рассчитываются на основе заданной добротности материала Q и частотного интервала (либо значений собственных частот на этом частотном интервале). Будем использовать следующие формулы для расчета коэффициентов демпфирования на интервале $[f_b, f_e]$:

$$\alpha = \frac{2\pi f_b f_e}{(f_b + f_e)Q}, \ \beta = \frac{1}{2\pi (f_b + f_e)Q}.$$

Требуется построить амплитудно-частотную характеристику двутавра, посмотреть формы колебаний на резонансных частотах и сравнить их с соответствующими собственными формами колебаний.

РЕШЕНИЕ ЗАДАЧИ С ИСПОЛЬЗОВАНИЕМ ANSYS (часть 2)

Для расчета установившихся колебаний в ANSYS требуется задать частотный диапазон для расчета и количество частот на интервале. Рассмотрим частотный диапазон от 50 до 900 Гц, включающий первые две собственные частоты, и зададим число рассчитываемых частот на интервале равным 250. Количество рассчитываемых на интервале значений можно увеличить для повышения точности расчетов (уменьшения шага по частоте).

Пример расчета установившихся колебаний для двутаврового профиля <u>в</u> окрестности первых двух частот в интервале от 50 до 900 Гц дается в файле S12LH_AFC_1.inp, использующего базу данных предыдущего расчета собственных частот.

Некоторые результаты выводятся в текстовый файл с именем Harm1.rez с помощью команды /OUTPUT. Данный файл создается в рабочей папке Ansys. Команда*VWRITE записывает данные в файл в формате Фортрана.

Во временном постпроцессоре /POST26 можно посмотреть изменение величин на временном или частотном (в данном случае) интервале. В файле S12LH_AFC_1.inp приводятся команды для построения графика изменения заданной величины в заданном узле в зависимости от частоты. Для графиков по умолчанию первая переменная – это TIME (время для нестационарных задач или частота для гармонического анализа). Эта переменная по умолчанию для оси абсцисс. Переменная для оси ординат выбирается из доступных результатов. Например, с помощью команды NSOL можно выбрать результаты в узлах, указав переменную (например, компоненту их или иу вектора перемещений) и конкретный узел. График амплитудно-частотной характеристики выводится с помощью команды /PLVAR.

РЕШЕНИЕ ЗАДАЧИ С ИСПОЛЬЗОВАНИЕМ FlexPDE (часть 2)

Пример расчета установившихся колебаний для двутаврового профиля <u>в</u> окрестности первых двух частот дается в файле St2LH_AFC.pde. Во FlexPDE не задается частотный интервал, расчет проводится для заданной резонансной частоты. Таким образом, для каждого нового значения частоты требуется новый расчет. В качестве резонансной частоты можно задать соответствующее значение собственной частоты, полученной при модальном анализе.

АНАЛИЗ РЕЗУЛЬТАТОВ, полученных в ANSYS (часть 2)

Построенная конечно-элементная модель с граничными условиями для гармонического анализа показана на рис. 6 (Интерактивный режим: Plot->Elements, для показа граничных условий: PltCtrls->Symbols-> All applied BCs).

Амплитудно-частотную характеристику можно построить в постпроцессоре /**POST26.** Рассмотрим верхний левый угол двутавра - узел с координатами (-*l*, *b*). Выведем для этого узла график зависимости перемещения u_y от частоты (рис. 7), соответствующие команды см. во входном файле.

Рис. 7 Амплитудно-частотная характеристика двутаврового профиля

Точные значения резонансных частот можно определить, просмотрев файл, содержащий значения точек графика (TimeHist PostPro->Variable Viewer, выбрать переменную UY, кнопка List Data). Ниже приведен листинг части этого файла.

***** ANSYS POST26 VARIABLE LISTING *****

FREQ	20 UY		
	UY		
	AMPLITUDE	PHASE	
53.400	0.192111E-04	-0.366623E-01	
56.800	0.201293E-04	-0.415987E-01	
60.200	0.212289E-04	-0.474073E-01	
63.600	0.225622E-04	-0.543564E-01	
67.000	0.242043E-04	-0.628316E-01	
70.400	0.262671E-04	-0.734075E-01	
73.800	0.289249E-04	-0.869796E-01	
77.200	0.324650E-04	-0.105024	
80.600	0.373967E-04	-0.130159	
84.000	0.447163E-04	-0.167510	
87.400	0.566731E-04	-0.228648	
90.800	0.796403E-04	-0.346371	
94.200	0.141561E-03	-0.664503	
97.600	0.883173E-03	-4.48547	
101.00	0.188938E-03	-178.962	
104.40	0.816375E-04	-179.513	
107.80	0.505037E-04	-179.673	
111.20	0.356966E-04	-179.748	
114.60	0.270504E-04	-1/9./91	
FREO	20 UY		
~	AMPLITUDE	DUNCE	
699 40		LINDE	
0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.256776E-04	-0.553062	
702.80	0.256776E-04 0.281820E-04	-0.553062 -0.613947	
702.80	0.256776E-04 0.281820E-04 0.312687E-04	-0.553062 -0.613947 -0.689105	
702.80 706.20 709.60	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04	-0.553062 -0.613947 -0.689105 -0.784179	
702.80 706.20 709.60 713.00	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233	
702.80 706.20 709.60 713.00 716.40	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681	
702.80 706.20 709.60 713.00 716.40 719.80	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04 0.570376E-04	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681 -1.31898	
702.80 706.20 709.60 713.00 716.40 719.80 723.20	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04 0.570376E-04 0.724321E-04	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681 -1.31898 -1.69614	
702.80 706.20 709.60 713.00 716.40 719.80 723.20 726.60	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04 0.570376E-04 0.724321E-04 0.996742E-04	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681 -1.31898 -1.69614 -2.36424	
702.80 706.20 709.60 713.00 716.40 719.80 723.20 726.60 730.00	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04 0.570376E-04 0.724321E-04 0.996742E-04 0.160950E-03	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681 -1.31898 -1.69614 -2.36424 -3.86911	
702.80 706.20 709.60 713.00 716.40 719.80 723.20 726.60 730.00 733.40	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04 0.570376E-04 0.724321E-04 0.996742E-04 0.160950E-03 0.423414E-03	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681 -1.31898 -1.69614 -2.36424 -3.86911 -10.3615	
702.80 706.20 709.60 713.00 716.40 719.80 723.20 726.60 730.00 733.40 736.80	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04 0.570376E-04 0.724321E-04 0.996742E-04 0.160950E-03 0.423414E-03 0.602052E-03	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681 -1.31898 -1.69614 -2.36424 -3.86911 -10.3615 -164.979	
702.80 706.20 709.60 713.00 716.40 719.80 723.20 726.60 730.00 733.40 736.80 740.20	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04 0.570376E-04 0.724321E-04 0.996742E-04 0.160950E-03 0.423414E-03 0.602052E-03 0.178516E-03	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681 -1.31898 -1.69614 -2.36424 -3.86911 -10.3615 -164.979 -175.532	
702.80 706.20 709.60 713.00 716.40 719.80 723.20 726.60 730.00 733.40 736.80 740.20 743.60	0.256776E-04 0.281820E-04 0.312687E-04 0.351675E-04 0.402479E-04 0.471431E-04 0.570376E-04 0.724321E-04 0.996742E-04 0.160950E-03 0.423414E-03 0.602052E-03 0.178516E-03 0.103845E-03	-0.553062 -0.613947 -0.689105 -0.784179 -0.908233 -1.07681 -1.31898 -1.69614 -2.36424 -3.86911 -10.3615 -164.979 -175.532 -177.367	

0.559803E-04 -178.540

0.453134E-04 -178.801

0.379738E-04 -178.981

0.326147E-04 -179.111

757.20

760.60

750.40 753.80

Видно, что наибольшие значения амплитуды перемещения наблюдаются на резонансных частотах $f_{r1} = 97.6$ (Гц) и $f_{r2} = 736.8$ (Гц). Данные значения частот резонансов близки к значениям собственных частот $f_1 = 98.2$ (Гц) и $f_2 = 735.4$ (Гц).

В командном режиме определить точку и значение локального экстремума (в данном случае – максимума) можно с помощью команды **GET**:

! общий синтаксис ! ОПРЕДЕЛЕНИЕ ТОЧКИ МАКСИМУМА ! *GET,PAR_NAME,<u>VARI</u>,VAR_NUM,<u>EXTREM,TMAX</u>

! ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЯ МАКСИМУМА ! *GET,PAR_NAME,<u>VARI</u>,VAR_NUM,<u>EXTREM,VMAX</u>

! VAR_NUM - НОМЕР ПЕРЕМЕННОЙ (по умолчанию переменная на оси абсцисс – номер 1)

!PAR_NAME - пользовательское имя параметра

! VARI, EXTREM, TMAX, VMAX – специальные зарезервированные имена для команды GETN

Например, после команд вывода графика /POST26 /XRANG,FBEG,FEND /AXLAB,X,Frequency (Hz) /AXLAB,Y,Displacement (M) NSOL,2,N_RES2,UY PLVAR,2

Можно добавить: *GET,FRES,VARI,2,EXTREM,TMAX ! Определение рез. частоты *GET,DISP_MAX,VARI,2,EXTREM,VMAX ! Определение значения перемещения на резонансной частоте

Для двух предыдущих команд рекомендуется предварительно задать частотный интервал для поиска локального максимума:

!Временной/частотный интервал TIMERANGE,T_MIN,T_MAX ! T_MIN, T_MAX – концы интервала

Далее выведем картины деформированных форм колебаний на резонансных частотах. Для этого нужно предварительно считать результаты для сета с соответствующим значением частоты (General PostProc->Read Results->By Pick). Для каждого рассчитываемого значения частоты имеем два сета, соответствующие <u>вещественной</u> и <u>мнимой</u> части соответствующего вектора перемещений.

Нас рис. 8 представлены деформированные формы для вещественной и мнимой частей вектора перемещений на частоте $f_{r1} = 97.6$ (Гц). Видно, что эти деформированные формы совпадают между собой с точностью до знака. При этом деформированная форма для мнимой части вектора перемещений совпадает с формой колебаний, соответствующей первой собственной частоте $f_1 = 98.17$ (Гц). Нас рис. 9 представлены деформированные формы для вещественной и мнимой частей вектора перемещений на частоте $f_{r2} = 736.8$ (Гц). Видно, что эти деформированные формы совпадают между собой, а также с точностью до знака совпадают с формой колебаний, соответствующей второй собственной частоте $f_2 = 735$ (Гц).

Рис. 8 Формы колебаний на первой резонансной частоте (ANSYS)

Рис. 9 Формы колебаний на второй резонансной частоте (ANSYS)

АНАЛИЗ РЕЗУЛЬТАТОВ, полученных во FlexPDE (часть 2)

На рис. 10 представлены деформированные формы для вещественной и мнимой частей вектора перемещений на частоте $f_1 = 98.17$ (Гц). Видно, что эти деформированные формы совпадают между собой, а также совпадают с формой колебаний, соответствующей первой собственной частоте.

Рис. 10 Формы колебаний на первой резонансной частоте (FlexPDE)

Нас рис. 11 представлены деформированные формы для вещественной и мнимой частей вектора перемещений на частоте f₂ = 735 (Гц). Видно, что деформированная форма для вещественной части вектора перемещений совпадает с формой колебаний, соответствующей второй собственной частоте, с точностью до знака.

Рис. 11 Формы колебаний на второй резонансной частоте (FlexPDE)