УМФ Лекция 1 1-й семестр – осень 2017 г Линейные уравнения с частными производными первого порядка

Моргулис Андрей Борисович KBMиMФ, a. 214 morgulisandrey@gmail.com

14 августа 2018 г.

Общие определения.

Общие определения.

Обозначения

Пусть $D\subset \mathbb{R}^n$ – заданная область, $p\in \mathbb{N}$, и

$$F:D imes \mathbb{C} imes \mathbb{C}^{d_{1,n}} imes \mathbb{C}^{d_{2,n}} imes \ldots imes \mathbb{C}^{d_{p,n}} o \mathbb{C},$$
 где $d_{j,n}=rac{(n+j-1)!}{j!(n-1)!};$

 $d_{j,n}$ – число различных частных производных $\frac{\partial^j f}{\partial x_1^{j_1} \dots \partial x_n^{j_n}}, j_1 + \dots + j_n = j$ функции $f = f(x), \ x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$

Общие определения.

Обозначения

Пусть $D\subset \mathbb{R}^n$ – заданная область, $p\in \mathbb{N}$, и

$$F:D imes \mathbb{C} imes \mathbb{C}^{d_{1,n}} imes \mathbb{C}^{d_{2,n}} imes \ldots imes \mathbb{C}^{d_{p,n}} o \mathbb{C},$$
 где $d_{j,n}=rac{(n+j-1)!}{j!(n-1)!};$

 $d_{j,n}$ – число различных частных производных $\frac{\partial^j f}{\partial x_1^{j_1}...\partial x_n^{j_n}}, j_1+...+j_n=j$ функции $f=f(x), x=(x_1,x_2,...,x_n)\in\mathbb{R}^n$.

Определение.

Уравнением с частными производными порядка p относительно функции $u:D \to \mathbb{C}$ называется уравнение вида

$$F(x, u, \partial u, \partial^2 u,, \partial^p u) = 0, \quad x \in D,$$

где u=u(x), и $\partial^k u,\ k=1,\dots,p$ – множества частных производных порядка k от функции u в точке x.

Решение уравнения с частными производными.

Решение уравнения с частными производными.

Обозначение

Пусть D – область в \mathbb{R}^n ; $\mathrm{C}^m(D)$ – множество функций, m раз непрерывно дифференцируемых в D; $\mathrm{C}^\infty(D)$ – множество функций, любое число раз непрерывно дифференцируемых в D.

Решение уравнения с частными производными.

Обозначение

Пусть D – область в \mathbb{R}^n ; $\mathrm{C}^m(D)$ – множество функций, m раз непрерывно дифференцируемых в D; $\mathrm{C}^\infty(D)$ – множество функций, любое число раз непрерывно дифференцируемых в D.

Определение

Функция $u:D\to\mathbb{C}$ называется классическим решением уравнения с частными производными порядка p, если $u\in\mathrm{C}^p(D)$, и подстановка u в уравнение обращает его в тождество.

Пример. Уравнение: $u_{x_1}=0$; решение: $u(x)=c(x_2,\ldots,x_n),\ c$ — произвольная функция.

Наряду с классическими в литературе рассматриваются обобщённые решения, для которых требование $u \in \mathrm{C}^p(D)$ в том или ином смысле ослабляется. Случается, что уравнение не имеет классического решения, но имеет обобщённое.

Линейные уравнения.

Определение.

Уравнение с частными производными порядка p называется линейным, если определяющая его функция F такова, что $\forall x \in D, \alpha, \beta \in \mathbb{C}, u, v \in \mathrm{C}^p(D)$

$$F(x, \alpha u + \beta v, \partial(\alpha u + \beta v), \partial^{2}(\alpha u + \beta v),, \partial^{p}(\alpha u + \beta v)) =$$

$$\alpha F(x, u, \partial u, \partial^{2}u,, \partial^{p}u) + \beta F(x, v, \partial v, \partial^{2}v,, \partial^{p}v).$$

Уравнение с частными производными называется линейным неоднородным, если определяющая его функция F такова, что $\forall x \in D, u \in \mathrm{C}^p(D)$

$$F(x, u, \partial u, \partial^2 u,, \partial^p u) = F_0(x, u, \partial u, \partial^2 u,, \partial^p u) + f(x)$$

где F_0 определяет линейное уравнение.

Часто линейные неоднородные уравнения в литературе называют просто линейными, а уравнения, линейные в смысле нашего определения называют линейными однородными.

Примеры уравнений 1-го порядка.

Обозначение

 $u=u(x,t),\,(x,t)\in\mathbb{R}^2$; по умолчанию t – временная координата.

Линейные уравнения.

▶ Транспортное уравнение (перенос примеси) $u_t - cu_x = \alpha u + \beta;$ α, β, c — заданные функции, c — скорость несущей среды; $\alpha = \beta = 0$ — нет источников (примеси).

Примеры уравнений 1-го порядка.

Обозначение

 $u=u(x,t),\,(x,t)\in\mathbb{R}^2$; по умолчанию t – временная координата.

Линейные уравнения.

▶ Транспортное уравнение (перенос примеси) $u_t - cu_x = \alpha u + \beta;$ α, β, c — заданные функции, c — скорость несущей среды; $\alpha = \beta = 0$ — нет источников (примеси).

Нелинейные уравнения.

- уравнение Хопфа $u_t uu_x = 0$ нелинейный перенос: скорость несущей среды зависит от неизвестной функции (опрокидывание волн, градиентная катастрофа)
- уравнение Гамильтона-Якоби $u_t^2 + u_x^2 1 = 0$ (t пространственная координата) оптика, образование каустик.

Примеры линейных уравнений 2-го порядка.

- **у**равнение теплопроводности (диффузии): $u_t u_{xx} = 0$;
- ▶ волновое уравнение $u_{tt} u_{xx} = 0$ распространение волн (механических, акустических, электроманитных);
- уравнение Лапласа $u_{tt} + u_{xx} = 0$ (t пространственная координата) стационарные поля без источников (электрические, тепловые, гравитационные;);
- ▶ уравнение Гельмгольца $u_{tt} + u_{xx} + \lambda u = 0$ акустика;
- ▶ уравнение Шредингера $\hbar(iu_t + \hbar u_{xx}) E(x)u = 0$ (функция E задана) квантовая механика, $\hbar \in \mathbb{R}$ числовой параметр;

Примеры нелинейных уравнений 2-го порядка.

- ▶ Уравнение Бюргерса $u_t \nu u_{xx} u u_x = 0$, $(\nu > 0 параметр) влияние трения на нелинейный перенос;$
- ▶ Нелинейное уравнение Клейна-Гордона $u_{tt} u_{xx} + \sin(u) = 0$ нелинейная оптика;
- $u_{tt} + u_{xx} + \alpha e^{\beta u} = 0$ ($\alpha, \beta = \text{const}, t$ пространственная координата)— химическая физика, теория горения;
- уравнение Гинзбурга-Ландау $u_t = u(\alpha + \beta |u|^2) + \gamma u_{xx}$ сверхтекучесть, фазовый переход, возбуждение нелинейных бегущих волн;
- ▶ Нелинейное уравнение Шредингера $iu_t + u|u|^2 + \nu u_{xx} = 0$ нелинейные волновые процессы;
- ▶ Уравнение средней кривизны $\left(\frac{u_t}{\sqrt{1+u_t^2+u_x^2}}\right)_t + \left(\frac{u_x}{\sqrt{1+u_t^2+u_x^2}}\right)_x = h(x)$ (t пространственная координата, функция h задана) тонкие плёнки; мыльные пузыри; дифференциальная геометрия;
- ▶ Уравнение Ампера-Монжа $u_{tt}u_{xx} u_{xt}^2 = f(x)(t пространственная координата, функция <math>f$ задана) дифференциальная геометрия.

Уравнения 3-го и 4-го порядка.

- **у** уравнения Кортевега-де Вриза (КдВ) $u_t + 6uu_x + u_{xxx} = 0$; волновые процессы;
- уравнение пограничного слоя: $u_x u_{xt} u_x u_{tt} = u_{ttt}$ (t пространственная координата) гидроаэродинамика, расчёт летательных аппаратов;
- уравнение Обухова-Чарни $(\Delta \psi \alpha^2 \psi)_t + \psi_x(\Delta \psi)_y \psi_y(\Delta \psi)_x + \beta \psi_x \gamma \psi_y = 0, \ \Delta \psi = \psi_{xx} + \psi_{yy} \ (x, y пространственные координаты, <math>\alpha \equiv \text{const}, \ \beta, \gamma \text{заданные функции})$ циркуляция атмосферы и океана;
- **у** уравнение Соболева: $(\Delta u)_{tt} + u_{zz} = 0$, u = u(x, y, z, t) колебания вращающейся жидкости;
- бигармоническое уравнение $\Delta^2 \psi = u_{xxx} + u_{yyyy} + 2u_{xxyy} = 0$ напряжённо-деформированные состояния упругих пластин; плоское движение очень вязкой жидкости;
- уравнение плоских течений вязкой несжимаемой жидкости $(\Delta\psi)_t + \psi_x(\Delta\psi)_y \psi_y(\Delta\psi)_x = \nu\Delta^2\psi, \nu = \mathrm{const} > 0$

