Лабораторная работа №1 РАСТЯЖЕНИЕ УПРУГОЙ ПЛАСТИНЫ С КРУГОВЫМ ОТВЕРСТИЕМ

Индивидуальные задания – тела в форме букв.

Таблица 1

№ задания	Вид области	ФИО студента
1	A	Демьянов Андрей Васильевич
2	Д	Докторов Илья Витальевич
3	E	Медведев Артем Владиславович
4	Ж	Мовмыга Богдан Илларионович
5	И	Осяк Александр Андреевич
6	M	Прайс Владислав Александрович
7	Ц	Шкетик Анна Александровна

Используя <u>интерактивный и командный режимы</u> программы ANSYS, решите задачу о растяжения тонкой пластинки в форме буквы из таблицы 1 <u>с небольшим отверстием в середине</u>. На верхних границах, задайте растягивающую нагрузку, а нижнюю границу пластинки жестко закрепите. Геометрические размеры области придумайте самостоятельно в диапазонах значений, аналогичных рассмотренному выше примеру. При построении области используйте, где это возможно, свойства симметрии задачи. Материальные параметры возьмите теми же, что и для рассмотренного примера. Проведите расчеты в Ansys и FlexPDE в условиях плоского напряженного состояния. Определите максимальные напряжения в пластине и постройте графики поведения напряжений вдоль пути, проходящего через точку их максимума.

В Ansys <u>проведите расчеты для различных параметров конечно-</u> элементного разбиения и проанализируйте сходимость перемещений их и иу. Определите оптимальные параметры конечно-элементной сетки.

Проанализируйте, сравните результаты, полученные в двух кэ-пакетах, и оформите отчет.

Требования к отчету.

Отчет должен содержать ФИО студента, полное описание задачи со схемой области и нанесенными на ней геометрическими размерами, а также результаты, полученные с помощью конечно-элементного комплекса ANSYS в интерактивном режиме (с описанием основных шагов) и командном режиме (с текстом входного файла), а также с помощью FlexPDE (с текстом входного файла).

В качестве результатов расчетов приведите:

- конечно-элементную сетку с граничными условиями
- картину деформированной формы
- картины распределения перемещений (ux и uy)

- картину распределения вектора перемещений
- картины распределения напряжений (три компоненты $\sigma_{xx}, \sigma_{xy}, \sigma_{yy}$)
- картины распределения деформаций (три компоненты $\varepsilon_{xx},\, \varepsilon_{xy},\, \varepsilon_{yy}$)
- графики поведения осевых напряжений (σ_{xx} или σ_{yy}) вдоль пути, проходящего через точку их максимума
- анализ сходимости перемещений (можно представить в виде таблицы или графиков)
- выводы по полученным результатам