Лабораторная работа №2 РЕШЕНИЕ СТАЦИОНАРНОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ В ПЛОСКОЙ ОБЛАСТИ

Индивидуальные задания – тела в форме букв.

Таблица 1

$\mathcal{N}_{\underline{0}}$	Вид	ФИО студента
задания	области	
1	3	Демьянов Андрей Васильевич
2	C	Докторов Илья Витальевич
3	У	Медведев Артем Владиславович
4	Ф	Мовмыга Богдан Илларионович
5	Ч	Осяк Александр Андреевич
6	Э	Прайс Владислав Александрович
7	Ю	Шкетик Анна Александровна

Требуется рассчитать поле температур, используя аналогичные физические входные данные, что и рассмотренном примере, но для других областей, соответствующих буквам из таблицы 1. Геометрические размеры областей надо придумать самостоятельно в диапазонах значений, аналогичных рассмотренному выше примеру. Геометрия области должна содержать хотя бы одну дугу окружности* и хотя бы одну дугу эллипса. Проведите расчеты в ANSYS и FlexPDE (используйте интерактивный или командный режим ANSYS). На разных границах задайте граничные условия подачи температуры (снизу), теплообмена (сверху), остальные границы теплоизолированы.

В Ansys проверьте сходимость результатов (температура и вектор потока тепла), проведя расчеты для различных размеров конечно-элементного разбиения, конечных элементов разной формы и порядка аппроксимации (треугольные PLANE35, четрырехугольные линейные PLANE55 и квадратичные элементы PLANE77).

Сравните расчеты, полученные с помощью ANSYS и FlexPDE. Проанализируйте результаты и оформите отчет.

Требования к отчету.

Отчет должен содержать ФИО студентов полное описание задачи со схемой области и нанесенными на ней геометрическими размерами, а также результаты, полученные с помощью конечно-элементного комплекса ANSYS в командном режиме (с текстом входного файла), а также с помощью FlexPDE (с текстом входного файла).

^{*}Примечание. В ANSYS дуги окружности строятся с помощью команды LARC (см. примеры в папке «Знакомство с ANSYS – плоская геометрия», дуги эллипса –как линии в локальной эллиптической (пользовательской) системе координат. В FlexPDE оператором ARC строятся как дуги окружности, так и дуги эллипса.

В качестве результатов расчетов приведите:

- Конечно-элементную сетку с граничными условиями
- картину распределения температуры
- картину распределения вектора потока тепла
- картину распределения модуля вектора потока тепла
- выводы по полученным результатам