
Graph representations of sparse matrices. Storage
schemes for sparse matrices

Anna Nasedkina

Department of Mathematical Modeling

Institute of Mathematics, Mechanics and Computer Science

Southern Federal University

Numerical Methods of Linear
Algebra for Sparse Matrices

Structures and graph
representations of sparse matrices

Types of sparse matrices

Graph representations

Permutations and reordering

Definition of a sparse matrix
 A sparse matrix is a matrix which has very few nonzero

elements.

 Example of sparse matrix: 64 elements, 52 zero
elements and 12 nonzero elements (18%)

3

Types of sparse matrices
 Structured: nonzero entries form a regular pattern

 Unstructured: nonzero entries are located irregularly

 Example: final element grid and corresponding sparse
matrix

4

Graph representations of sparse
matrices

 Vertices

 Edges

 Adjacency graph for matrix

V – set of n unknowns, E – set of binary relations

equation i includes unknown j

 Pattern of sparse matrix

},...,,{
21 n

vvvV =

VVEEvv
ji

 ,),(

(V,E)G =

}0),({ = ijA ajiP

5

nmCA 

:),(0 jiaij 

Patterns for undirected and directed graphs

Permutations and reordering

 Permutation of length n

{1,2,…,n} ⇒ π={i1,i2,…,in}

 Row π-permutation

 Column π-permutation

 Interchange matrix Pij : identity matrix with
interchanged rows i and j

 Permutation matrix Pπ : the identity matrix with
its rows (or columns) permuted

6

m1,j ;,1 ; }{),(,* ===  niCAaA mn
ji

m1,j ;,1 ; }{)(,*, ===  niCAaA mn
ji 

Permutations and reordering

 π-permutation

 Pπ and Qπ are unitary matrices

7

),....,{ ;
1111 ,,,,* jijiji PPPPAPA

nnnn −−
== 

m1,j ;,1 ; }{)(,*, ===  niCAaA mn
ji 

),,...,,{ ; ,,,,*, 112211 nnnn jijijiji PPPPQAQA
−−

== 

1
 ;

−
==  PQIQP

Example of permutation

 Columns 2, 3 are permuted  Rows 2, 3 are permuted

 Permutation }4231{ ,,,π =



















=

4442

333231

242322

1311

00

0

0

00

aa

aaa

aaa

aa

A



















=























































=





































4

2

3

1

4

2

3

1

4442

242223

323331

1311

4

3

2

1

4

2

3

1

4442

323331

242223

1311

00

0

0

00

00

0

0

00

b

b

b

b

x

x

x

x

aa

aaa

aaa

aa

b

b

b

b

x

x

x

x

aa

aaa

aaa

aa

8

Relations with adjacency graph

 No fill-ins during
Gaussian
elimination

 A lot of fill-ins
during Gaussian
elimination

9

Examples of reordering:
standard and reverse Cuthill-McKee

10

Storage schemes and algorithms of
matrix-by-vector multiplication for
sparse matrices

Coordinate format

Compressed sparse row format (CRS)

Compressed sparse column format (CRC)

Modified sparse row format (MSR)

Modified sparse column format (MSC)

Diagonal format (DIAG)

Ellpack-Itpack

Coordinate format (COO)

12

Nz – number of nonzero elements, n – number of rows
AA – nonzero entries
JR – row indices
JC – column indices

Nz

Nz

Nz

Compressed Sparse Row (CSR)

13

Nz

nmCA 

R1: 2(1) R2: 3(3) R3: 4(6) R4: 2(10) R5: 1(12)

IA(m+1)=IA(1)+Nz

Nz

m+1

Nz – number of nonzero elements, m – number of rows
AA – nonzero entries by rows,
JA – column indices; IA – pointers to the descriptions of rows
Description of i-th row: from IA(i) to IA(i+1)−1
Number of nonzero elements in i-th row: IA(i+1)−IA(i)

Nz=12

m=5

n=5

Compressed Sparse Column (CSC)

14

Nz

Nz – number of nonzero elements, n – number of columns
AA – nonzero entries by columns,
JA – row indices; IA – pointers to the descriptions of columns
Description of i-th column: from IA(i) to IA(i+1)−1
Number of nonzero elements in i-th column: IA(i+1)−IA(i)

nmCA 

C1: 3(1)
C2:

1(4)
C3: 2(5) C4: 4(7) C5: 2(11)

IA(n+1)=IA(1)+Nz

Nz

n+1

Nz=12

m=5

n=5

Modified Sparse Row (MSR)

15

Nz+1

Nz+1

Diagonal elements

nnCA 

n+1

Nondiagonal elements

R1:

1(7)

R2:

2(8)
R3: 3(10) R4: 1(13)

From 1 to n+1:

pointers to rows

From n+2 to Nz+1:

column indices

Nz – number of nonzero elements, n – size of matrix
AA – nonzero entries: main diagonal and nondiagonal elements by rows
JA – pointers to rows and column indices

Nz=12

n=5

Modified Sparse Column (MSC)

16

Nz+1

Nz+1

Diagonal elements

nnCA 

n+1
Nondiagonal elements

From 1 to n+1:

pointers to columns

From n+2 to Nz+1:

row indices

Nz – number of nonzero elements, n – size of matrix
AA – nonzero entries: main diagonal and nondiagonal elements by columns
JA – pointers to columns and row indices

?

? ?

Nz=12

n=5

Diagonal format (DIAG)

17

nnCA 

Nd – number of diagonals, n – size of matrix
DIAG – 2D array [1..n,1..Nd], its columns contain diagonals of the matrix
IOFF – array [1..Nd], contains offsets of diagonals with respect to the main
diagonal

Nd=3

n=5

DIAG(i,j)←a(i,i+IOFF(j))

Main diagonal

Ellpack-Itpack format

18

Nmax – maximal number of nozero elements per row, n – number of rows
COEFF – 2D array [1..n,1..Nmax], its rows contain nonzero entries by rows
JCOEFF – 2D array [1..n,1..Nmax], its rows contain column positions of
nonzero entries

Nmax=3

n=5

Unused

positions Row numbers

mnCA 

Algorithms for matrix-by-vector
multiplication

 CSR format

N – number of rows, Ax=z

IA – pointers of rows, JA – column indices

for i=1:N

z(i)=0

for j=IA(i):IA(i+1)-1

z(i)=z(i)+x(JA(j))*AA(j)

end

end

19

Algorithms for matrix-by-vector
multiplication (continue)
 CSC format

N – number of rows, M – number of columns, Ax=z
IA – pointers of columns, JA – row indices

for i=1:N

z(i)=0

end

for j=1:M

for i=IA(j):IA(j+1)-1

z(JA(i))=z(JA(i))+x(j)*AA(i)

end

end

20

Summary
 Sparse matrix can be represented by its adjacency graph

 Permutations and reordering are used to reduce fill-ins
in Direct solution methods

 Storage schemes for sparse matrices are aimed at
representing only the nonzero elements

 The matrix-by-vector product is an important operation
required in almost all iterative solution methods

21

