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Definition of a sparse matrix
 A sparse matrix is a matrix which has very few nonzero 

elements.

 Example of sparse matrix: 64 elements, 52 zero 
elements and 12 nonzero elements (18%)
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Types of sparse matrices
 Structured: nonzero entries form a regular pattern

 Unstructured: nonzero entries are located irregularly

 Example: final element grid and corresponding sparse 
matrix
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Graph representations of sparse 
matrices 

 Vertices 

 Edges 

 Adjacency graph                       for matrix

V – set of n unknowns, E – set of binary relations

equation i includes unknown j                    

 Pattern of sparse matrix
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Patterns for undirected and directed graphs



Permutations and reordering

 Permutation of length n

{1,2,…,n} ⇒ π={i1,i2,…,in}

 Row π-permutation

 Column π-permutation

 Interchange matrix Pij : identity matrix with 
interchanged rows i and j

 Permutation matrix Pπ : the identity matrix with 
its rows (or columns) permuted
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Permutations and reordering

 π-permutation 

 Pπ and Qπ are unitary matrices
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Example of permutation

 Columns 2, 3 are permuted  Rows 2, 3 are permuted

 Permutation }4231{ ,,,π =
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Relations with adjacency graph

 No fill-ins during 
Gaussian 
elimination

 A lot of fill-ins 
during Gaussian 
elimination
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Examples of reordering: 
standard and reverse Cuthill-McKee
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Storage schemes and algorithms of 
matrix-by-vector multiplication for 
sparse matrices

Coordinate format

Compressed sparse row format (CRS)

Compressed sparse column format (CRC)

Modified sparse row format (MSR)

Modified sparse column format (MSC)

Diagonal format (DIAG)

Ellpack-Itpack



Coordinate format (COO)
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Nz – number of nonzero elements, n – number of rows
AA – nonzero entries
JR – row indices
JC – column indices

Nz

Nz

Nz



Compressed Sparse Row (CSR)
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Nz

nmCA 

R1: 2(1) R2: 3(3) R3: 4(6) R4: 2(10) R5: 1(12)

IA(m+1)=IA(1)+Nz

Nz

m+1

Nz – number of nonzero elements, m – number of rows
AA – nonzero entries by rows, 
JA – column indices; IA – pointers to the descriptions of rows
Description of i-th row: from IA(i) to IA(i+1)−1
Number of nonzero elements in i-th row: IA(i+1)−IA(i)

Nz=12

m=5

n=5



Compressed Sparse Column (CSC)
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Nz

Nz – number of nonzero elements, n – number of columns
AA – nonzero entries by columns, 
JA – row indices; IA – pointers to the descriptions of columns
Description of i-th column: from IA(i) to IA(i+1)−1
Number of nonzero elements in i-th column: IA(i+1)−IA(i)

nmCA 

C1: 3(1)
C2:

1(4)
C3: 2(5) C4: 4(7) C5: 2(11)

IA(n+1)=IA(1)+Nz

Nz

n+1

Nz=12

m=5

n=5



Modified Sparse Row (MSR)
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Nz+1

Nz+1

Diagonal elements

nnCA 

n+1

Nondiagonal elements

R1:

1(7)

R2:

2(8)
R3: 3(10) R4: 1(13)

From 1 to n+1:

pointers to rows

From n+2 to Nz+1:

column indices

Nz – number of nonzero elements, n – size of matrix
AA – nonzero entries: main diagonal and nondiagonal elements by rows 
JA – pointers to rows and column indices

Nz=12

n=5



Modified Sparse Column (MSC)
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Nz+1

Nz+1

Diagonal elements

nnCA 

n+1
Nondiagonal elements

From 1 to n+1:

pointers to columns

From n+2 to Nz+1:

row indices

Nz – number of nonzero elements, n – size of matrix
AA – nonzero entries: main diagonal and nondiagonal elements by columns 
JA – pointers to columns and row indices

?

? ?

Nz=12

n=5



Diagonal format (DIAG)
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Nd – number of diagonals, n – size of matrix
DIAG – 2D array [1..n,1..Nd], its columns contain diagonals of the matrix
IOFF – array [1..Nd], contains offsets of diagonals with respect to the main 
diagonal

Nd=3

n=5

DIAG(i,j)←a(i,i+IOFF(j))

Main diagonal



Ellpack-Itpack format
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Nmax – maximal number of nozero elements per row, n – number of rows
COEFF – 2D array [1..n,1..Nmax], its rows contain nonzero entries by rows
JCOEFF – 2D array [1..n,1..Nmax], its rows contain column positions of 
nonzero entries

Nmax=3

n=5

Unused 

positions Row numbers

mnCA 



Algorithms for matrix-by-vector 
multiplication

 CSR format

N – number of rows, Ax=z

IA – pointers of rows, JA – column indices

for i=1:N

z(i)=0

for j=IA(i):IA(i+1)-1

z(i)=z(i)+x(JA(j))*AA(j)

end

end

19



Algorithms for matrix-by-vector 
multiplication (continue)
 CSC format

N – number of rows, M – number of columns, Ax=z
IA – pointers of columns, JA – row indices

for i=1:N

z(i)=0

end

for j=1:M

for i=IA(j):IA(j+1)-1

z(JA(i))=z(JA(i))+x(j)*AA(i)

end

end
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Summary
 Sparse matrix can be represented by its adjacency graph

 Permutations and reordering are used to reduce fill-ins 
in Direct solution methods

 Storage schemes for sparse matrices are aimed at 
representing only the nonzero elements

 The matrix-by-vector product is an important operation 
required in almost all iterative solution methods
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