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22. Taylor’s formula

Taylor’s formula for polynomials
and for arbitrary differentiable functions

Taylor’s formula for polynomials 19A/31:02 (09:58)

Consider the polynomial Pn(x) of degree n ∈ N:

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

Let us select some point x0 ∈ R. It is known from the course of algebra
that any polynomial can be expanded in powers of (x−x0); the degree of the
polynomial will not change:

Pn(x) = c0 + c1(x− x0) + c2(x− x0)2 + · · ·+ cn(x− x0)n. (1)

We want to obtain formulas for the coefficients ck, k = 0, . . . , n, using the
differentiation operation.

To find the coefficient c0, it is enough to calculate the value of the poly-
nomial at the point x0:

c0 = Pn(x0).

To find the coefficient c1, we firstly differentiate the polynomial:

P ′n(x) = c1 + 2c2(x− x0) + 3c3(x− x0)2 + · · ·+ ncn(x− x0)n−1.
The coefficient c1 is a free term of the derivative P ′n(x) and, therefore, to

find it, it suffices to calculate the value of the derivative at the point x0:

c1 = P ′n(x0).

Let us find the second derivative of the polynomial:

P ′′n (x) = 2c2 + 2 · 3c3(x− x0) + · · ·+ (n− 1)ncn(x− x0)n−2.
Substituting the value x = x0 into this derivative, we obtain the formula

for the coefficient c2:

c2 =
P ′′n (x0)

2
.

In this case, the formula contains not only the value of the derivative at
the point x0, but also the factor 1

2 .

https://www.youtube.com/watch?v=mh6Kd-O1c-Q&t=31m02s
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A factor of 1
6 will appear in the formula for the coefficient c3. This factor is

more convenient to represent as 1
3! using the factorial function n! = 1·2·3 · · ·n:

c3 =
P ′′′n (x0)

3!
.

Continuing the process of differentiation, we finally obtain a derivative of
order n, which contains a single term:

P
(n)
n (x) = 2 · 3 · · · (n− 1)ncn.

Thus, for the coefficient cn, we obtain the formula

cn =
P

(n)
n (x0)

n!
.

Taking into account that 0! = 1, all the formulas obtained for the coeffi-
cients ck can be written in the following general form:

ck =
P

(k)
n (x0)

k!
, k = 0, 1, . . . , n.

Substituting the representations for the coefficients ck into formula (1), we
obtain Taylor’s formula for the polynomial Pn(x):

Pn(x) =
n∑
k=0

P
(k)
n (x0)

k!
(x− x0)k. (2)

This formula allows us to obtain the expansion of the polynomial Pn(x)
in powers of (x− x0) using the values of the derivatives of the polynomial of
order 0 up to n at the point x0. Note that all derivatives of the polynomial
Pn(x) of higher orders (n+ 1, n+ 2, . . . ) vanish.

The version of Taylor’s formula (2) when x0 = 0 is also called Maclaurin’s
formula.

Deriving the binomial formula using
Taylor’s formula for polynomials 19A/41:00 (06:16)

Let n ∈ N, b ∈ R. Consider a polynomial of the form Pn(x) = (x + b)n

and expand it in powers of x. To do this, we use Taylor’s formula (2) with
x0 = 0.

Let us calculate the derivatives of the polynomial Pn(x) of order 0, 1, 2 at
the point 0:

P
(0)
n (x) = (x+ b)n, P

(0)
n (0) = bn;

P ′n(x) = n(x+ b)n−1, P ′n(0) = nbn−1;

https://www.youtube.com/watch?v=mh6Kd-O1c-Q&t=41m00s
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P ′′n (x) = n(n− 1)(x+ b)n−2, P ′′n (0) = n(n− 1)bn−2.

It is easy to see that the formula for the derivative of the polynomial Pn(x)
of order k at the point 0 can be written in the general form:

P
(k)
n (0) = n(n− 1) · · · (n− k + 1)bn−k, k = 0, . . . , n.

Let us transform the resulting formula by multiplying and dividing it by
the product (n− k) · · · 3 · 2 = (n− k)!:

P (k)
n (0) =

n(n− 1) · · · (n− k + 1)(n− k) · · · 3 · 2
(n− k) · · · 3 · 2

bn−k =

=
n!

(n− k)!
bn−k.

Substitute the found values of the derivatives into formula (2) for x0 = 0:

(x+ b)n =
n∑
k=0

P
(k)
n (0)

k!
xk =

n∑
k=0

n!

(n− k)!k!
bn−kxk.

The expression found can be simplified by using the formula for the number
of combinations Ck

n = n!
(n−k)!k! :

(x+ b)n =
n∑
k=0

Ck
nb

n−kxk.

Replacing x by the value a ∈ R, we obtain the binomial formula:

(a+ b)n =
n∑
k=0

Ck
na

kbn−k.

Taylor’s formula
for arbitrary differentiable functions 19B/00:00 (07:55)

Taylor’s formula found earlier for polynomials (2) is an exact equality:
both left-hand and right-hand sides in this equality contain polynomials of
degree n. This equality holds for all x ∈ R.

Suppose that, instead of the polynomial Pn(x), we consider an arbitrary
function f(x) defined on some interval containing the point x0. Also suppose
that the function f is differentiable at the point x0 up to the order n.

Now we cannot write relation (2) in the form of equality, but we can
introduce into consideration the quantity rn(x0, x), by which the function
f(x) differs from the sum given on the right-hand side of (2):

rn(x0, x)
def
= f(x)−

n∑
k=0

f (k)(x0)

k!
(x− x0)k.

https://www.youtube.com/watch?v=qQsKibWy_Ng&t=00m01s
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The value rn(x0, x) is called the remainder term of Taylor’s formula for
the function f .

Using the remainder term, we can write the Taylor’s formula for an arbi-
trary differentiable function f as follows:

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k + rn(x0, x).

If for some n ∈ N, x0 ∈ R, x ∈ R, the value rn(x0, x) is small, then this
means that the function f can be approximated in the point x by a polynomial
of degree n according to Taylor’s formula, that is, we can obtain an approxi-
mation for the function f in the form of a simpler function (a polynomial).

We have reason to expect that the remainder term rn(x0, x) will be small,
at least in a situation where the point x is close to the point x0. Indeed,
taking n = 1, we obtain

rn(x0, x) = f(x)−
1∑

k=0

f (k)(x0)

k!
(x− x0)k =

= f(x)−
(
f(x0) + f ′(x0)(x− x0)

)
.

Since n = 1 and, therefore, the function f is differentiable at the point x0,
we obtain, by the definition of differentiability, that the right-hand side of the
last equality is o(x− x0) as x→ x0. This means that the remainder term in
this case approaches 0, as x → x0, faster than the linear function (x − x0),
that is, it is small enough for x close to x0.

We can also expect that while increasing n, that is, in a situation where
the function is differentiable more times, the rate of approach to 0 of the
remainder term, as x → x0, will be higher. However, in order to prove this,
we need to study the properties of the remainder term.

Various representations of the remainder term
in Taylor’s formula

General formula for the remainder term
in Taylor’s formula 19B/07:55 (17:45)

Now we derive a remainder term formula, which will include some arbitrary
function ϕ. Choosing various specific functions as this arbitrary function, we
can obtain different representations of the remainder term.

In deriving the general formula, we will assume that for the function f , in
addition to differentiability n times at the point x0, the following conditions

https://www.youtube.com/watch?v=qQsKibWy_Ng&t=07m55s
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are satisfied. We select the point x, assuming for definiteness that x > x0, and
require that the function f is differentiable (n+1) times on the segment [x0, x].
Note that this implies the continuity of the first n derivatives of the function f
on this segment. We do not require continuity of the derivative f (n+1).

Introduce the following auxiliary function F :

F (t) = f(x)−
n∑
k=0

f (k)(t)

k!
(x− t)k =

= f(x)− f(t)− f ′(t)(x− t)− f ′′(t)

2
(x− t)2 −

− f ′′′(t)

3!
(x− t)3 − · · · − f (n)(t)

n!
(x− t)n.

It is easy to see that the function F coincides with the remainder term
rn(x0, x) at x0, and it is equal to zero at x:

F (x0) = rn(x0, x), F (x) = 0. (3)

Let us calculate the derivative of the function F . To do this, we firstly
find the derivatives for the individual summands (recall that differentiation
is performed with respect to the variable t):(

f(x)
)′
= 0,(

−f(t)
)′
= −f ′(t),(

−f ′(t)(x− t)
)′
= f ′(t)− f ′′(t)(x− t),(

−f
′′(t)

2
(x− t)2

)′
= f ′′(t)(x− t)− f ′′′(t)

2
(x− t)2,(

−f
′′′(t)

3!
(x− t)3

)′
=
f ′′′(t)

2
(x− t)2 − f (3)(t)

3!
(x− t)3,

. . .(
−f

(n)(t)

n!
(x− t)n

)′
=

f (n)(t)

(n− 1)!
(x− t)n−1 − f (n+1)(t)

n!
(x− t)n.

We see that as a result of differentiation of each summand (starting from
the third one), a term appears that is opposite to one of the terms of the
previous summand. Thus, after summing and collecting terms, we get the
following formula:

F ′(t) = −f
(n+1)(t)

n!
(x− t)n. (4)

Now we apply the Cauchy’s mean value theorem to the function F (t) and
an arbitrary function ϕ(t) on the segment [x0, x]. The function F satisfies all
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the conditions of this theorem. For the function ϕ, it is necessary to require
that it be continuous on the segment [x0, x], differentiable on the interval
(x0, x), and that ϕ′(t) 6= 0 for t ∈ (x0, x).

By virtue of the Cauchy’s mean value theorem, there exists a point
ξ ∈ (x0, x) such that the following relation holds for the functions F and ϕ:

F (x)− F (x0)
ϕ(x)− ϕ(x0)

=
F ′(ξ)

ϕ′(ξ)
.

Substitute the values of F (x), F (x0) into the resulting relation (see (3))
and use formula (4) for F ′(t):

0− rn(x0, x)
ϕ(x)− ϕ(x0)

=
−f (n+1)(ξ)(x− ξ)n

n!ϕ′(ξ)
.

As a result, we obtain the following formula for the remainder term con-
taining an arbitrary function ϕ(t):

rn(x0, x) =
f (n+1)(ξ)(x− ξ)n

(
ϕ(x)− ϕ(x0)

)
n!ϕ′(ξ)

. (5)

Representation of the remainder term in the form
of Cauchy and in the form of Lagrange 19B/25:40 (12:51)

Based on formula (5), we can obtain various representations of the remain-
der term by choosing specific functions as the function ϕ.

First, put ϕ(t) = ϕ1(t) = x − t. This function satisfies all the necessary
conditions: it is continuous and differentiable on the segment [x0, x], and,
moreover, its derivative ϕ′1(t) is equal to −1, that is, it does not vanish on
interval (x0, x).

Substituting in (5) the values ϕ1(x) = 0, ϕ1(x0) = x−x0, and ϕ′1(ξ) = −1,
we obtain:

rn(x0, x) =
f (n+1)(ξ)(x− ξ)n(x− x0)

n!
. (6)

Let us additionally transform the resulting formula by representing the
value ξ in the form ξ = x0 + θ(x − x0). Since ξ ∈ (x0, x), we obtain that
θ ∈ (0, 1). Note that this expression equals x0 when θ = 0, and it equals x
when θ = 1.

Replacing the value ξ in formula (6) with the expression x0 + θ(x − x0),
we obtain:

rn(x0, x) =

https://www.youtube.com/watch?v=qQsKibWy_Ng&t=25m40s
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=
f (n+1)

(
x0 + θ(x− x0)

)(
x−

(
x0 + θ(x− x0)

))n
(x− x0)

n!
=

=
f (n+1)

(
x0 + θ(x− x0)

)
(1− θ)n

n!
(x− x0)n+1.

The resulting representation of the remainder term is called the Cauchy
form of the remainder term.

Now we choose the following power function ϕ2(t) = (x − t)n+1 as the
function ϕ(t). This function also satisfies all the necessary conditions: it
is continuous and differentiable on the segment [x0, x], and, moreover, its
derivative ϕ′2(t) is equal to −(n+ 1)(x− t)n and, therefore, does not vanish
on the interval (x0, x).

Substituting in (5) the values ϕ2(x) = 0, ϕ2(x0) = (x − x0)
n+1, and

ϕ′2(ξ) = −(n+ 1)(x− ξ)n, we obtain:

rn(x0, x) =
f (n+1)(ξ)(x− ξ)n

(
0− (x− x0)n+1

)
n!
(
−(n+ 1)(x− ξ)n

) =

=
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

The resulting representation of the remainder term is called the Lagrange
form of the remainder term. This representation is interesting in that it is
similar to the term in Taylor’s formula corresponding to k = n + 1, except
that the derivative is found not at the point x0, but at some point ξ from the
interval (x0, x).

Let us write Taylor’s formula with the remainder term in the Lagrange
form:

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1. (7)

Representation of the remainder term
in the Peano form 20A/00:00 (20:31)

We noted earlier that for n = 1 the remainder term of Taylor’s formula
has the form o(x − x0), x → x0. It turns out that similar representations
for the remainder term in the form of little-o can also be obtained for other
values of n.

https://www.youtube.com/watch?v=XM0oD_tjCxs&t=00m01s
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Theorem (on Taylor’s formula with the remainder term in
the Peano form).

Let the function f be n times continuously differentiable on the segment
[x0, x]. Then the following expansion of the function f by Taylor’s formula
takes place:

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k + o

(
(x− x0)n

)
, x→ x0. (8)

The representation of the remainder term rn(x0, x) = o
(
(x − x0)

n
)
,

x → x0, used in this formula is called the remainder term in the Peano
form. Thus, when expanding the function f by Taylor’s formula up to the
derivative of order n, the remainder term decreases, as x → x0, faster than
the function (x− x0)n.

Remark.
The assertion of the theorem remains valid in the case when the deriva-

tive of order n is not continuous. However, the continuity condition for this
derivative allows us to simplify the proof.

Proof.
The conditions of the theorem allow us to expand the function f by Tay-

lor’s formula, taking the n−1 term in it and representing the remainder term
in the Lagrange form (see (7)):

f(x) =
n−1∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n)(ξ)

n!
(x− x0)n. (9)

The value of ξ, which is an argument of the function f (n) in the remainder
term, depends on x0 and x. The point x0 does not change, but we can change
the point x, moving it closer to x0. When the point x changes, the point ξ
will change in some way, so we can consider ξ as a function of x: ξ = ξ(x).
We do not know how exactly ξ(x) will change when x changes, however the
following double estimate will always be valid: x0 < ξ(x) < x. From this
double estimate, by virtue of the second theorem on passing to the limit in
inequalities for functions, it follows that

lim
x→x0

ξ(x) = x0. (10)

Thus, although the properties of the function ξ(x) are unknown to us, it
can be stated that its limit, as x→ x0, exists and is equal to x0.

Now turn to the function f (n)(ξ). It can be considered as a superposition
of the form f (n)

(
ξ(x)

)
= (f (n) ◦ ξ)(x), where the external function is f (n)(t)
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and the internal function is ξ(x). Since, by the condition of the theorem,
the function f (n)(t) is continuous in a neighborhood of x0, we can calculate
the limit of superposition f (n)

(
ξ(x)

)
, as x → x0, using the theorem on the

limit of superposition in the case when the external function is continuous.
By virtue of this theorem, we can move the limit sign under the sign of the
external function, and then use the limit relation (10):

lim
x→x0

f (n)
(
ξ(x)

)
= f (n)

(
lim
x→x0

ξ(x)

)
= f (n)(x0). (11)

Denote α(x) = f (n)
(
ξ(x)

)
− f (n)(x0). Then it follows from the limit

relation (11) that

lim
x→x0

α(x) = lim
x→x0

(
f (n)
(
ξ(x)

)
− f (n)(x0)

)
= f (n)(x0)− f (n)(x0) = 0.

So, we have proved that the function f (n)
(
ξ(x)

)
can be represented as

f (n)
(
ξ(x)

)
= f (n)(x0) + α(x), where α(x)→ 0 as x→ x0.

Substitute the obtained representation of the function f (n)
(
ξ(x)

)
into the

remainder term from the right-hand side of relation (9):

f (n)(ξ)

n!
(x− x0)n =

f (n)(x0)

n!
(x− x0)n +

α(x)

n!
(x− x0)n. (12)

The first term on the right-hand side of equality (12) can be added to the
sum of Taylor’s formula (9) as the term corresponding to k = n. The second
term can be represented as α̃(x)(x−x0)n, where α̃(x) = α(x)

n! → 0 as x→ x0.
Thus, this second term is o

(
(x− x0)n

)
, x→ x0.

After the indicated transformations on the right-hand side of relation (9)
are performed, this relation takes the form (8). �

Expansions of elementary functions
by Taylor’s formula in a neighborhood of zero

Expansions
of functions ex, sinx, cosx, sinhx, coshx 20A/20:31 (19:50)

Function ex.
Since (ex)(n) = ex, n = 0, 1, 2, . . . , we obtain that the derivatives of this

function of any order are equal to 1 at the point 0. Therefore, the expansion
of the function ex by Taylor’s formula at the point x0 = 0 with the remainder
term in the Peano form will be as follows:

https://www.youtube.com/watch?v=XM0oD_tjCxs&t=20m31s
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ex = 1 + x+
x2

2
+
x3

3!
+ · · ·+ xn

n!
+ o(xn) =

=
n∑
k=0

xk

k!
+ o(xn), x→ 0.

From the obtained formula, the previously proved equivalence ex ∼ 1+ x,
x→ 0, follows, since for n = 1 the expansion takes the form ex = 1+x+o(x),
x→ 0.

Remark.
This and all subsequent expansions of elementary functions are valid for

both positive and negative values of x belonging to the domain of definition
of the function.

Function sinx.
Let us sequentially find the derivatives of the function sinx at the point 0.

The function sinx itself vanishes at the point 0. Its first derivative is cosx,
so it equals 1 at the point 0. The second derivative is (− sinx), it vanishes
at the point 0. Finally, the third derivative is (− cosx), it equals −1 at
the point 0. The fourth derivative coincides with the original function sinx,
therefore, starting from it, the set of values at the point 0 will be repeated:
0, 1, 0, −1, . . .

So, we obtain that even-order derivatives vanish at the point 0, and odd-
order derivatives take alternating values of 1 and −1, starting from 1. There-
fore, the expansion of the function sinx by Taylor’s formula at the point
x0 = 0 with the remainder term in the Peano form will be as follows:

sinx = x− x3

3!
+
x5

5!
− · · ·+ (−1)nx2n+1

(2n+ 1)!
+ o(x2n+2) =

=
n∑
k=0

(−1)kx2k+1

(2k + 1)!
+ o(x2n+2), x→ 0.

The remainder term has the form o(x2n+2), since we can take into account
one more (zero-valued) term corresponding to k = 2n+ 2 in the sum.

It should be noted that the expansion of the function sinx contains only
odd powers of x, starting with x in the first power, and their signs alternate.

From the obtained formula, the previously proved equivalence sinx ∼ x,
x→ 0, follows, since for n = 0 the expansion takes the form sinx = x+o(x2),
x→ 0.
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Function cosx.
With successive differentiation of the function cosx, we will obtain the

following functions (starting with the zero derivative): cosx, − sinx, − cosx,
sinx, cosx, − sinx, . . . At the point 0, these functions take the following
values: 1, 0, −1, 0, 1, 0, . . . In this case, the derivatives of odd order vanish
at the point 0, and the derivatives of even order take alternating values of 1
and −1, starting from 1. Therefore, the expansion of the function cosx by
Taylor’s formula at the point x0 = 0 with the remainder term in the Peano
form will be as follows:

cosx = 1− x2

2
+
x4

4!
− · · ·+ (−1)nx2n

(2n)!
+ o(x2n+1) =

=
n∑
k=0

(−1)kx2k

(2k)!
+ o(x2n+1), x→ 0.

The remainder term has the form o(x2n+1), since we can take into account
one more (zero-valued) term corresponding to k = 2n+ 1 in the sum.

It should be noted that the expansion of the function cosx contains only
even powers of x, starting with x0 = 1, and their signs alternate.

From this formula, the previously proved equivalence cosx ∼ 1−x2

2 , x→ 0,
follows, since for n = 1 the expansion takes the form cosx = 1− x2

2 + o(x3),
x→ 0.

Functions sinhx and coshx.
Since (sinhx)′ = coshx, (coshx)′ = sinhx and, in addition, sinh 0 = 0

and cosh 0 = 1, we obtain that the successive differentiation of the hyperbolic
sine and cosine at the point 0 gives alternating values of 1 and 0. Moreover,
for the function sinhx, as for the function sinx, nonzero values correspond
to derivatives of odd order and for the function coshx, as for the function
cosx, nonzero values correspond to derivatives of even order (starting from
order 0). The difference between the expansions of hyperbolic functions and
the expansions of the corresponding trigonometric ones is only that the signs
do not alternate in these expansions:

sinhx = x+
x3

3!
+
x5

5!
− · · ·+ x2n+1

(2n+ 1)!
+ o(x2n+2) =

=
n∑
k=0

x2k+1

(2k + 1)!
+ o(x2n+2), x→ 0;

coshx = 1 +
x2

2
+
x4

4!
− · · ·+ x2n

(2n)!
+ o(x2n+1) =
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=
n∑
k=0

x2k

(2k)!
+ o(x2n+1), x→ 0.

Expansions of the functions ln(1 + x)
and (1 + x)α 20B/00:00 (15:52)

Function ln(1 + x).
In this case, we find the expansion of the logarithm function in a neigh-

borhood of point 1; moreover, the estimate x > −1 must be satisfied for x.
Let us calculate several initial derivatives of the function ln(1 + x) at the

point 0 and substitute them in the corresponding terms of Taylor’s formula:(
ln(1 + x)

)(0)∣∣∣
x=0

= ln 0 = 0, f(0) = 0;

(
ln(1 + x)

)′∣∣∣
x=0

=
1

1 + x

∣∣∣∣
x=0

= 1, f ′(0)x = x;

(
ln(1 + x)

)′′∣∣∣
x=0

= − 1

(1 + x)2

∣∣∣∣
x=0

= −1, f ′′(0)x2

2
= −x

2

2
;

(
ln(1 + x)

)′′′∣∣∣
x=0

=
2

(1 + x)3

∣∣∣∣
x=0

= 2,
f ′′′(0)x3

3!
=
x3

3
;

(
ln(1 + x)

)(4)∣∣∣
x=0

= − 2 · 3
(1 + x)4

∣∣∣∣
x=0

= −3!, f (4)(0)x4

4!
= −x

4

4
.

Thus, the terms have alternating signs in this expansion. In addition,
in the denominator, instead of the factorial, only one factor remains, since
all other factors are cancelled out with the coefficients of the corresponding
derivatives:

ln(1 + x) = x− x2

2
+
x3

3
− · · ·+ (−1)n−1xn

n
+ o(xn) =

=
n∑
k=1

(−1)k−1xk

k
+ o(xn), x→ 0.

The resulting expansion of the function ln(1+x) contains all powers of x,
starting from the first power, and their signs alternate. Moreover, the de-
nominator does not have factorials.

From this formula, the previously proved equivalence ln(1+x) ∼ x, x→ 0,
follows, since for n = 1 the expansion takes the form ln(1 + x) = x + o(x),
x→ 0.

https://www.youtube.com/watch?v=9JOiH_oNZeo&t=00m01s
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Function (1 + x)α, α 6= 0.
In this case, we also find the expansion of the function in a neighborhood

of the point 1; moreover, any real number, except 0, can be taken as α.
Apply the formula for the derivative of a power function of order n:(

(1 + x)α
)(n)

= α(α− 1) · · · (α− n+ 1)(1 + x)α−n, n = 0, 1, 2, . . .

For derivatives at the point 0, we will sequentially obtain the values 1,
α, α(α − 1), α(α − 1)(α − 2), . . . Therefore, the expansion of the function
(1 + x)α by Taylor’s formula at the point x0 = 0 with the remainder term in
the Peano form will be as follows:

(1 + x)α = 1 + αx+
α(α− 1)

2
x2 +

α(α− 1)(α− 2)

3!
x3 + . . . +

+
α(α− 1) · · · (α− n+ 1)

n!
xn + o(xn) =

=
n∑
k=0

α(α− 1) · · · (α− k + 1)

k!
xk + o(xn), x→ 0.

Note that if α ∈ N, then, starting from some order, all derivatives vanish,
and we obtain the version of Taylor’s formula for polynomials in which the
remainder term equals 0.

From this formula, the previously proved equivalence (1 + x)α ∼ 1 + αx,
x → 0, follows, since for n = 1 the expansion takes the form
(1 + x)α = 1 + αx+ o(x), x→ 0.

Example of using expansions
to calculate limits 20B/15:52 (05:34)

Consider the following limit: limx→0
x−sinx
x3 . To calculate this limit, we

cannot use the equivalence sinx ∼ x, x → 0, since equivalences can be
used only in products and quotients. Instead, we apply the expansion of the
function sinx by Taylor’s formula with the remainder term o(x3):

lim
x→0

x− sinx

x3
= lim

x→0

x−
(
x− x3

3! + o(x3)
)

x3
.

When removing the brackets, we can omit the minus sign in front of the
term o(x3), since this term simply denotes some function that decreases faster
than x3 as x→ 0:

lim
x→0

x− x+ x3

3! + o(x3)

x3
= lim

x→0

x3

3!x3
+ lim

x→0

o(x3)

x3
.

https://www.youtube.com/watch?v=9JOiH_oNZeo&t=15m52s
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In the first limit of the right-hand side, we can reduce the factors x3. As
a result, we obtain the limit equal to 1

6 .
The second limit is 0, because, by the definition of the “little-o”, expression

o(x3) can be represented as α(x)x3, where α(x)→ 0 as x→ 0.
Thus, the initial limit is 1

6 .
Note that when using the equivalence sinx ∼ x we would obtain an incor-

rect answer equal to 0.
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