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24. Application of differential calculus
to the study of functions

Local extrema of functions

A necessary condition for the existence
of a local extremum 20B/38:53 (06:18)

The necessary condition for the existence of an interior local extremum
at the point x0 for the function f can be obtained using previously proved
Fermat’s theorem.

Theorem (a necessary condition for the existence of a lo-
cal extremum).

Let the function f be defined and continuous in some neighborhood Ux0
of the point x0 (this, in particular, means that the point x0 is the interior
point of the domain of the function f). Let the point x0 be the point of the
interior local extremum of the function f . Then either the function f is not
differentiable at the point x0, or the function f is differentiable at the given
point and f ′(x0) = 0.

Proof.
The theorem is a reformulation of Fermat’s theorem. �
It follows from this theorem that if the function f is differentiable at the

point x0, but its derivative at this point does not vanish, then this point
cannot be a point of the interior local extremum of the function f .

Interior points at which the function is non-differentiable or the derivative
vanishes are called critical points, or points suspected for a local extremum.
However, a critical point may not be an extremum point.

For example, for the function f(x) = x3, the point 0 is a critical point,
since f ′(0) = 2x|x=0 = 0, but it is not a local extremum point, since the
inequality f(x) < f(0) holds for all x < 0, and the inequality f(x) > f(0)
holds for all x > 0.

Thus, the formulated necessary condition for the existence of a local ex-
tremum is not a sufficient condition.

https://www.youtube.com/watch?v=9JOiH_oNZeo&t=38m53s
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The first sufficient condition for the existence
of a local extremum 21A/17:34 (07:51)

In the sufficient condition considered in this section, the differential prop-
erties of the function are analyzed not at the point of a local extremum, but
in its neighborhood.

Theorem (first sufficient condition for the existence of
a local extremum).

Let the function f be differentiable in some punctured neighborhood
◦
Ux0

of the point x0. Then the presence or absence of a local extremum at the
point x0 is determined by the signs of the derivative f ′(x) in the left-hand
and the right-hand neighborhoods (U−x0 and U+

x0
) of the point x0 as shown in

Table 3.

Table 3
Signs of a derivative and local extrema

U−x0
U+
x0

Local extremum
f ′(x) > 0 f ′(x) > 0 no extremum
f ′(x) > 0 f ′(x) < 0 strict local maximum
f ′(x) < 0 f ′(x) > 0 strict local minimum
f ′(x) < 0 f ′(x) < 0 no extremum

Proof.
This statement follows from the second corollary of Lagrange’s theorem:

a function increases on an interval on which its derivative is positive, and
decreases on an interval on which its derivative is negative. Thus, if the
derivative changes sign when passing through the point x0, then this point is
a point of strict local extremum, and if the sign does not change, then there
is no extremum. �

The second sufficient condition
for the existence of a local extremum 21A/25:25 (15:50)

In a sufficient condition considered in this section, as in the necessary
condition, the differential properties of the function are analyzed at the lo-
cal extremum point. However, unlike the necessary condition, it requires to
analyze higher order derivatives.

Theorem (second sufficient condition for the existence of
a local extremum).

Let the function f be continuously differentiable in some neighborhood of
the point x0 up to the derivative of order n ∈ N, and let the first nonzero
derivative at the point x0 be the derivative of order n:

https://www.youtube.com/watch?v=BBhIKfiuBpk&t=17m34s
https://www.youtube.com/watch?v=BBhIKfiuBpk&t=25m25s
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f ′(x0) = 0, f ′′(x0) = 0, . . . , f (n−1)(x0) = 0, f (n)(x0) 6= 0. (1)

If n is an odd number, then there is no local extremum at the point x0, and
if n is an even number, then in the case f (n)(x0) > 0, the point x0 is a point
of a strict local minimum, and in the case of f (n)(x0) < 0, the point x0 is
a point of a strict local maximum.

Proof.
We use Taylor’s formula with the remainder term in the Peano form and

expand the function f according to this formula at the point x0 up to the
term with the derivative of order n:

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k + o

(
(x− x0)n

)
, x→ x0.

By virtue of conditions (1), all terms corresponding to k = 1, 2, . . . , n− 1
disappear in the sum, and only terms corresponding to the function itself and
its nth derivative remain:

f(x) = f(x0) +
f (n)(x0)

n!
(x− x0)n + o

(
(x− x0)n

)
, x→ x0.

Transfer the term f(x0) to the left-hand side of the equality and rep-
resent the expression o

(
(x − x0)

n
)

in the form α(x)(x − x0)
n, where

α(x)→ 0 as x→ x0:

f(x)− f(x0) =
f (n)(x0)

n!
(x− x0)n + α(x)(x− x0)n =

=
(f (n)(x0)

n!
+ α(x)

)
(x− x0)n. (2)

Since f (n)(x0)
n! 6= 0 and α(x)→ 0, we can choose a neighborhood Ux0 of the

point x0 in which the absolute value of function α(x) will be less than the
absolute value of f (n)(x0)

n! . This means that the behavior of the function α(x)
in the neighborhood Ux0 will not affect the sign of the factor

(f (n)(x0)
n! +α(x)

)
on the right-hand side of (2); this sign will be determined by the sign of the
derivative f (n)(x0). We can also say that the factor

(f (n)(x0)
n! +α(x)

)
preserves

the sign in the neighborhood Ux0.
Consider the possible cases.
Case 1: n is odd. Then the factor (x − x0)

n changes sign in the neigh-
borhood Ux0: if x < x0, then this factor is negative, and if x > x0, then
it is positive. So, the entire right-hand side of (2) also changes sign in the
neighborhood Ux0. Therefore, the left-hand side of (2), that is, f(x)− f(x0),
also changes sign in the neighborhood Ux0. This means that there is no local
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extremum at the point x0, because for some points x from Ux0, the value of
f(x) will be greater than f(x0), and for some points x, the value of f(x) will
be less than f(x0).

Case 2a: n is even and f (n)(x0) > 0. Then both factors on the right-hand

side of (2) are positive for all x ∈
◦
Ux0. Therefore, the difference f(x)− f(x0)

is also positive for all x ∈
◦
Ux0. This means that f(x) > f(x0) for all x ∈

◦
Ux0,

that is, the point x0 is a strict local minimum point.
Case 2b: n is even and f (n)(x0) < 0. Then the right-hand side of (2)

is negative for all x ∈
◦
Ux0. Therefore, the difference f(x) − f(x0) is also

negative for all x ∈
◦
Ux0. This means that f(x) < f(x0) for all x ∈

◦
Ux0, that

is, the point x0 is a strict local maximum point. �
Examples.
Consider the behavior of the function f(x) = xn at the point 0 for values

n of different parity.
If n = 2, then f ′(x) = 2x, f ′′(x) = 2, therefore f ′(0) = 0, f ′′(0) = 2.

Thus, since 2 is an even number and f ′′(0) > 0, the point 0 is a strict local
minimum point for the function x2.

If n = 3, then f ′(x) = 3x2, f ′′(x) = 6x, f ′′′(x) = 6, therefore
f ′(0) = f ′′(0) = 0, f ′′′(0) = 6. Since 3 is an odd number, there is no
local extremum at the point 0 for the function x3.

These results can be generalized as follows: for all even n (= 2, 4, . . . ),
the function xn has a strict local minimum at the point 0, and for all odd n
(= 1, 3, . . . ), the function xn does not have a local extremum at the point 0.

Convex functions

Definitions of convex functions 21B/00:00 (16:10)

Definition 1 of a convex function.
Let the function f be defined on the interval (a, b). A function f is called

convex upwards (or concave) on the interval (a, b) if the graph of the secant
drawn through the points

(
x1, f(x1)

)
and

(
x2, f(x2)

)
lies below the function

graph on the interval (x1, x2) for any points x1, x2 ∈ (a, b), x1 < x2.
Similarly, a function f is called convex downwards (or just convex) on the

interval (a, b) if the graph of the secant drawn through the points
(
x1, f(x1)

)
and

(
x2, f(x2)

)
lies above the function graph in the interval (x1, x2) for any

points x1, x2 ∈ (a, b), x1 < x2.

https://www.youtube.com/watch?v=U-u9AqcvMs0&t=00m01s
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The left-hand part of Fig. 11 shows an example of a function that is convex
upwards, and the right-hand part of Fig. 11 shows an example of a function
that is convex downwards.

Fig. 11. Convex upwards and convex downwards functions

In order to write down convexity conditions in the form of formulas, we
use the equation of a secant passing through the points

(
x1, f(x1)

)
and(

x2, f(x2)
)
, x1 6= x2. First, we write the equation of the secant in the form

that was obtained when studying the geometric sense of the derivative (see
Chapter 19):

y − f(x1) =
f(x2)− f(x1)

x2 − x1
(x− x1).

To write down the convexity condition, it is convenient to transform this
equation, leaving only the variable y on the left-hand side and moving all
other terms to the right-hand side:

y =
f(x2)− f(x1)

x2 − x1
(x− x1) + f(x1).

Let us transform the resulting right-hand side by presenting it in a more
symmetrical form. First, we reduce both terms to a common denominator:

f(x2)− f(x1)
x2 − x1

(x− x1) + f(x1) =

=

(
f(x2)− f(x1)

)
(x− x1) + f(x1)(x2 − x1)
x2 − x1

.

Then we transform the numerator (for brevity, we will not rewrite the
denominator):(

f(x2)− f(x1)
)
(x− x1) + f(x1)(x2 − x1) =

= xf(x2)− xf(x1)− x1f(x2) + x1f(x1) + x2f(x1)− x1f(x1) =
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= xf(x2)− xf(x1)− x1f(x2) + x2f(x1) =

= f(x1)(x2 − x) + f(x2)(x− x1).
Thus, we have obtained the following version of the secant equation:

y =
f(x1)(x2 − x) + f(x2)(x− x1)

x2 − x1
. (3)

Denote the right-hand side of equation (3) by lx1,x2(x):

lx1,x2(x)
def
=
f(x1)(x2 − x) + f(x2)(x− x1)

x2 − x1
. (4)

Then the secant equation takes the form

y = lx1,x2(x).

Since the equation of the graph of the function f has the form y = f(x),
we can now rewrite the definition of convexity in the language of formulas.

Definition 2 of a convex function.
A function f is called convex upwards on the interval (a, b) if for any

points x1, x2 ∈ (a, b), x1 < x2, and for any point x ∈ (x1, x2), the inequality
f(x) > lx1,x2(x) holds.

A function f is called convex downwards on the interval (a, b) if for any
points x1, x2 ∈ (a, b), x1 < x2, and for any point x ∈ (x1, x2), the inequality
f(x) < lx1,x2(x) holds.

Sufficient condition for convexity 21B/16:10 (15:42)

Theorem (a sufficient condition for convexity).
Let a function f be differentiable up to the second order on the interval

(a, b). Then if f ′′(x) > 0 for any x ∈ (a, b), then f is convex downwards
on the interval (a, b), and if f ′′(x) < 0 for any x ∈ (a, b), then f is convex
upwards on the interval (a, b).

Remark.
We have previously established that the positive or negative first derivative

means an increase or, accordingly, a decrease of the function. Thus, the
increase and decrease of the function are associated with the properties of
the first derivative, and its convexity is associated with the properties of the
second derivative.

Proof.
By virtue of definition 2, to prove the theorem, it suffices to study the

difference lx1,x2(x) − f(x) and show that for all x, x1, x2 ∈ (a, b) satisfying
the double inequality x1 < x < x2, this difference is positive in the case of

https://www.youtube.com/watch?v=U-u9AqcvMs0&t=16m10s


24. Application of differential calculus to the study of functions 7

a positive second derivative and negative in the case of a negative second
derivative.

Let us arbitrarily choose the points x, x1, x2 ∈ (a, b) that satisfy the double
inequality x1 < x < x2, and transform the difference lx1,x2(x) − f(x), given
the formula (4):

l(x1, x2)(x)− f(x) =
f(x1)(x2 − x) + f(x2)(x− x1)

x2 − x1
− f(x).

Reduce to a common denominator:
f(x1)(x2 − x) + f(x2)(x− x1)

x2 − x1
− f(x) =

=
f(x1)(x2 − x) + f(x2)(x− x1)− f(x)(x2 − x1)

x2 − x1
.

From now on, we will only transform the numerator, without writing down
the denominator.

Let us represent the difference (x2−x1) in the form (x2−x+x−x1) and
rearrange the terms:

f(x1)(x2 − x) + f(x2)(x− x1)− f(x)(x2 − x+ x− x1) =

= f(x1)(x2 − x) + f(x2)(x− x1)− f(x)(x2 − x)− f(x)(x− x1) =

=
(
f(x1)− f(x)

)
(x2 − x) +

(
f(x2)− f(x)

)
(x− x1) =

=
(
f(x2)− f(x)

)
(x− x1)−

(
f(x)− f(x1)

)
(x2 − x).

At the last stage, we transformed the expression so that the points were in
the same order in the differences of functions and in the differences of points
themselves.

Now for the differences f(x2)−f(x) and f(x)−f(x1) we apply Lagrange’s
theorem, all conditions of which are satisfied. By virtue of this theorem, there
exist points ξ ∈ (x, x2) and η ∈ (x1, x) for which the following relations hold:

f(x2)− f(x) = f ′(ξ)(x2 − x),

f(x)− f(x1) = f ′(η)(x− x1).

We continue the transformation of the numerator using the obtained rela-
tions: (

f(x2)− f(x)
)
(x− x1)−

(
f(x)− f(x1)

)
(x2 − x) =

= f ′(ξ)(x2 − x)(x− x1)− f ′(η)(x− x1)(x2 − x) =

=
(
f ′(ξ)− f ′(η)

)
(x2 − x)(x− x1).
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Apply Lagrange’s theorem again, now for the difference of the derivatives
f ′(ξ) − f ′(η). By virtue of this theorem, there exists a point ζ ∈ (η, ξ) for
which the following relation holds:

f ′(ξ)− f ′(η) = f ′′(ζ)(ξ − η).

We finally get:(
f ′(ξ)− f ′(η)

)
(x2 − x)(x− x1) = f ′′(ζ)(ξ − η)(x2 − x)(x− x1).

Thus, the difference lx1,x2(x)− f(x) can be represented as follows:

lx1,x2(x)− f(x) =
f ′′(ζ)(ξ − η)(x2 − x)(x− x1)

x2 − x1
. (5)

Note that for the points included in the resulting expression, the following
estimates hold: x1 < η < x < ξ < x2. Thus, all the differences of the points
included in the right-hand side of equality (5) are positive. Therefore, the
sign of the difference lx1,x2(x) − f(x) coincides with the sign of the second
derivative f ′′(ζ) at the point ζ ∈ (η, ξ) ⊂ (a, b).

So, if f ′′(x) > 0 for all x ∈ (a, b), then the difference lx1,x2(x) − f(x)
is positive and, therefore, the function is convex downwards on the interval
(a, b), and if f ′′(x) < 0 for all x ∈ (a, b), then the difference lx1,x2(x)− f(x)
is negative and, therefore, the function is convex upwards on the interval
(a, b). �

Inflection points of a function

Definition of an inflection point 22A/00:00 (07:37)

In studying the properties of functions associated with increasing and de-
creasing, we introduced the notion of a local extremum point, that is, a point
located between the intervals of increasing and decreasing of a function.

Similarly, we can introduce a special notion for a point located between
the intervals at which the function is convex downwards and convex upwards.

Definition.
Let the function f be defined in some neighborhood of the point a and

be continuous at this point. The point a is called the inflection point of the
function f if there exist intervals (b, a) and (a, c) such that on one of them
the function f is convex downwards and on the other the function f is convex
upwards (Fig. 12).

https://www.youtube.com/watch?v=NkbARe7z818&t=00m01s
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Fig. 12. Inflection point of a function

A necessary condition for the existence
of an inflection point 22A/07:37 (10:20)

Theorem (a necessary condition for the existence of an in-
flection point).

Let a be the inflection point of the function f and let the function f

be twice differentiable in some neighborhood of the point a and its second
derivative be continuous at the point a. Then f ′′(a) = 0.

Proof.
Let us prove the theorem by contradiction: suppose that f ′′(a) 6= 0. For

definiteness, we can assume that f ′′(a) > 0.
By condition of the theorem, the function f ′′ is continuous at the point a,

and by our assumption f ′′(a) > 0. Then, by virtue of the theorem on the
simplest properties of continuous functions, it can be stated that there exists
a neighborhood Ua of the point a in which the function f ′′ preserves the sign,
that is, in our case, f ′′(x) > 0 for x ∈ Ua.

But if the second derivative of the function is positive in some neighbor-
hood Ua, then this means, by virtue of the previous theorem on a sufficient
condition for convexity, that the function f is convex downwards in this neigh-
borhood, which contradicts the condition that a is an inflection point. Note
that if we considered the case of f ′′(a) < 0, then, by similar reasoning, we
would obtain that the function f is convex upwards in some neighborhood of
the point a. Therefore, our assumption is false and f ′′(a) = 0. �

Points at which the second derivative is continuous and vanishes are called
points suspected for inflection. However, a point suspected for inflection is
not necessarily an inflection point.

https://www.youtube.com/watch?v=NkbARe7z818&t=07m37s
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For example, for the functions f1(x) = x3 and f2(x) = x4, the
point 0 is a point suspected for inflection, since f ′′1 (0) = 6x|x=0 = 0,
f ′′2 (0) = 12x2

∣∣
x=0

= 0. However, the point 0 is an inflection point for the
function x3 and it is not an inflection point for the function x4 (these facts will
be rigorously proved later, by means of sufficient conditions for the existence
of an inflection point).

Thus, the formulated necessary condition for the existence of an inflection
point is not a sufficient condition.

The first sufficient condition
for the existence of an inflection point 22A/17:57 (07:04)

In the sufficient condition considered in this section (as in the first sufficient
condition for the existence of a local extremum), the differential properties of
the function are analyzed not at the inflection point itself, but in its neigh-
borhood.

Theorem (first sufficient condition for the existence of
an inflection point).

Let the function f be continuous at the point a and twice differentiable in
some punctured neighborhood

◦
Ua of the point a. If the second derivative of

the function f has different signs in the left-hand and the right-hand neigh-
borhoods (U−a and U+

a ) of the point a, then the point a is an inflection point,
and if the second derivative has the same signs, then the point a is not an
inflection point.

Proof.
This statement immediately follows from the theorem on a sufficient condi-

tion for convexity. If, for example, the function f ′′ is positive in the left-hand
neighborhood of the point a and negative in the right-hand neighborhood,
then this means that the function f is convex downwards in the left-hand
neighborhood and it is convex upwards in the right-hand neighborhood, there-
fore, the point a is an inflection point. A similar statement is also true if the
function f ′′ is negative in the left-hand neighborhood and positive in the
right-hand neighborhood. If the second derivative has the same signs in the
left-hand and right-hand neighborhood of the point a, then the function f

has the same convexity type to the left and right of the point a, therefore,
the point a is not an inflection point. �

https://www.youtube.com/watch?v=NkbARe7z818&t=17m57s
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Using this sufficient condition, one can easily prove that the point 0 is an
inflection point for the function x3, but it is not an inflection point for the
function x4. Indeed, (x3)′′ = 6x and, therefore, the second derivative takes
values of different signs to the left and right of the point 0, while (x4)′′ = 12x2

takes positive values both to the left and to the right of the point 0.

The second sufficient condition
for the existence of an inflection point 22A/25:01 (12:39)

In the sufficient condition considered in this section, as in the necessary
condition, the differential properties of the function are analyzed at the in-
flection point itself. However, unlike the necessary condition, it is required to
analyze the derivative of both the second and the third order.

Theorem (second sufficient condition for the existence of
an inflection point).

Let the function f be three times differentiable in some neighborhood
of the point a and its third derivative be continuous at the point a. Let
f ′′(a) = 0 and f ′′′(a) 6= 0. Then a is the inflection point of the function f .

Proof.
For definiteness, suppose that f ′′′(a) > 0.
Since the function f ′′′ is continuous at the point a and f ′′′(a) > 0, we

obtain, by the theorem on the simplest properties of continuous functions,
that there exists a neighborhood Ua of the point a, in which the function f ′′′

preserves the sign, that is, in our case, f ′′′(x) > 0 for x ∈ Ua. For the func-
tion f ′′, this means, by virtue of the second corollary of Lagrange’s theorem,
that it increases on the set Ua.

Since, by condition, f ′′(a) = 0, and, in addition, the function f ′′ increases
in a neighborhood Ua, we obtain that the function f ′′ takes only negative
values in the left-hand neighborhood U−a , and it takes only positive values
in the right-hand neighborhood U+

a : f ′′(x) < 0 for x ∈ U−a , f ′′(x) > 0 for
x ∈ U+

a . Thus, the conditions of the theorem on the first sufficient condition
for the existence of an inflection point are satisfied, and the point a is an
inflection point. The situation f ′′′(a) < 0 is analyzed in the same way. �

Now we can prove that the point 0 is the inflection point of the function
f(x) = x3 simply by calculating the values of the second and third derivatives
at this point: f ′′(0) = 6x|x=0 = 0, f ′′′(0) = 6|x=0 = 6 6= 0.

https://www.youtube.com/watch?v=NkbARe7z818&t=25m01s
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Location of the graph of a function
relative to a tangent line

The theorem on the location of a tangent line in the domain
of convexity of a function 22A/37:40 (02:04), 22B/00:00 (10:37)

The convexity properties of a function can also be studied by analyzing
the location of a tangent line relative to the graph of a function.

It is natural to assume that if a tangent at any point x0 of the interval
(a, b) lies above the graph of the function, then the function will be convex
upwards on (a, b) (see the left-hand part of Fig. 13), and if a tangent at any
point x0 ∈ (a, b) will lie below the graph of the function, the function will be
convex downwards on (a, b) (see the right-hand part of Fig. 13).

Fig. 13. Convexity property and location of tangent line

Theorem (on the location of a tangent in the domain of
convexity of a function).

Suppose that on the interval (a, b), the function f has a second derivative
that preserves the sign: either f ′′(x) > 0 for all x ∈ (a, b), or f ′′(x) < 0
for all x ∈ (a, b). Then for any point x0 ∈ (a, b), there exists a punctured

neighborhood
◦
Ux0 such that the tangent at the point x0 lies on one side of

the function graph in this neighborhood.
Proof.
Let us write the required statement in the form of a formula. To do this,

we use the equation of the tangent line to the graph of the function y = f(x)
at the point x0:

y − f(x0) = f ′(x0)(x− x0).
This equation can be written as y = Lx0(x), if we denote

https://www.youtube.com/watch?v=NkbARe7z818&t=37m40s
https://www.youtube.com/watch?v=P8VLjFPLcsI&t=00m01s
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Lx0(x)
def
= f(x0) + f ′(x0)(x− x0). (6)

For definiteness, suppose that f ′′(x) > 0 for all x ∈ (a, b), and prove that

there exists a punctured neighborhood
◦
Ux0 ⊂ (a, b) such that the estimate

f(x) − Lx0(x) > 0 holds for all x ∈
◦
Ux0. This estimate means that in the

case of a function convex downwards on (a, b), the graph of the function lies

above the graph of the tangent in
◦
Ux0.

Let us choose a neighborhood
◦
Ux0 ⊂ (a, b) and write the expansion of the

function f by Taylor’s formula at the point x0 with the remainder term in
the Lagrange form:

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(ξ)

2
(x− x0)2, x ∈

◦
Ux0. (7)

Here ξ is some point lying between x0 and x. If x ∈
◦
Ux0, then the point ξ

will also lie in this neighborhood.
The first two terms on the right-hand side of (7) coincide with Lx0(x)

(see (6)). Replace them with Lx0(x) and move them to the left-hand side. As
a result, relation (7) takes the form

f(x)− Lx0(x) =
f ′′(ξ)

2
(x− x0)2. (8)

The factor (x − x0)
2 is positive for all x ∈

◦
Ux0, the second derivative

f ′′(ξ) is also positive, since, by our assumption, f ′′(x) > 0 for all x ∈
◦
Ux0

and the point ξ belongs to
◦
Ux0. Thus, the right-hand side of (8) is greater

than zero for x ∈
◦
Ux0. Therefore, the left-hand side is also greater than zero:

f(x)− Lx0(x) > 0 for x ∈
◦
Ux0.

If we assume that f ′′(x) < 0 for all x ∈ (a, b), then we can prove in the

same way that f(x)− Lx0(x) < 0 for x ∈
◦
Ux0, which means that in the case

of a function convex upwards in (a, b), the graph of the function lies below

the tangent graph in
◦
Ux0. �

The theorem on the location of the tangent
at an inflection point 22B/10:37 (09:46)

If there is a tangent at the inflection point, then to the left and to the right
of the inflection point this tangent will lie on different sides of the function
graph (Fig. 14). We prove this statement under the same assumptions as for
the second sufficient condition for the existence of an inflection point.

https://www.youtube.com/watch?v=P8VLjFPLcsI&t=10m37s
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Fig. 14. Tangent line at an inflection point

Theorem (on the location of the tangent at an inflection
point).

Let the function f be three times differentiable in some neighborhood of
the point a and its third derivative is continuous at the point a. Let f ′′(a) = 0
and f ′′′(a) 6= 0. Then there exists a neighborhood Ua such that the tangent at
the point a lies on different sides of the graph of the function on the left-hand
and right-hand sides of this neighborhood.

Proof.
As in the proof of the previous theorem, we will use the equation of the

tangent of the form y = La(x), where the expression La(x) is determined by
formula (6). For definiteness, suppose that f ′′′(a) > 0 and show that in this
case there exists a neighborhood Ua such that f(x)− La(x) < 0 for x ∈ U−a
and f(x) − La(x) > 0 for x ∈ U+

a . This means that the tangent lies on
different sides of the function graph in this neighborhood.

Since f ′′′(a) > 0 and, moreover, by condition, the third derivative is con-
tinuous at the point a, we obtain, by the theorem on the simplest properties
of continuous functions, that there exists a neighborhood Ua of the point a,
in which the function f ′′′ preserves the sign, that is, in our case, f ′′′(x) > 0
for x ∈ Ua.

Let us write the expansion of the function f by Taylor’s formula at the
point a with the remainder term in the Lagrange form:

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)

2
(x− a)2 + f ′′′(ξ)

3!
(x− a)3. (9)

Here ξ is some point lying between a and x. In particular, if x ∈ Ua, then
the point ξ will also lie in this neighborhood.

The first two terms on the right-hand side of (9) coincide with La(x)
(see (6)). Replace them with La(x) and move them to the left-hand side. In
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addition, we take into account that, by condition, f ′′(a) = 0. As a result,
relation (9) takes the form:

f(x)− La(x) =
f ′′′(ξ)

3!
(x− a)3. (10)

We have chosen a neighborhood Ua in such a way that f ′′′(x) > 0 for
x ∈ Ua. Since the point ξ also belongs to Ua when x ∈ Ua, we see that the
factor f ′′′(ξ) on the right-hand side of (10) is positive for all x ∈ Ua.

The difference (x − a) on the right-hand side of (10) has an odd power,
therefore the expression (x − a)3 will be negative for x ∈ U−a and it will be
positive for x ∈ U+

a . Therefore, the same estimates will be fulfilled for the
left-hand side of (10): f(x) − La(x) < 0 for x ∈ U−a and f(x) − La(x) > 0
for x ∈ U+

a .
Similar reasonings allow us to prove that signs alternate for the expression

f(x)− La(x) in the case of f ′′′(a) < 0. �

Asymptotes1

Definition.
Let the function f be defined in a punctured neighborhood of the point x0

(the neighborhood can be one-sided). The line x = x0 is called a vertical
asymptote of the graph of the function y = f(x) if at least one of the following
conditions is true:

lim
x→x0−0

f(x) =∞, lim
x→x0+0

f(x) =∞.

Let the function f be defined in a neighborhood of+∞. The line y = kx+b
is called a non-vertical asymptote of the graph of the function y = f(x),
as x→ +∞, if

lim
x→+∞

(
f(x)− (kx+ b)

)
= 0. (11)

The non-vertical asymptote y = kx + b as x → −∞ is defined similarly
(provided that the function f is defined in a neighborhood of the point −∞):

lim
x→−∞

(
f(x)− (kx+ b)

)
= 0.

If k = 0, then the non-vertical asymptote is called a horizontal asymptote,
and if k 6= 0, then it is called an oblique asymptote or slant asymptote.

Examples.
The graph of the function y = 1

x has a vertical asymptote x = 0 and
a horizontal asymptote y = 0 (see the left-hand part of Fig. 15). The graph

1 This section is missing in video lectures.
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of the function y =
√
x2 + 1 has two oblique asymptotes: y = x and y = −x

(see the right-hand part of Fig. 15). Note that both graphs are hyperbole
branches.

Fig. 15. Examples of asymptotes

The graph of the function y = tan x has an infinite number of vertical
asymptotes of the form y = π

2 + πk, where k ∈ Z (see Fig. 4 in the section
“Preliminary information”). The graph of the function y = arctan x has two
horizontal asymptotes y = −π

2 and y = π
2 (see Fig. 7 in Chapter 14), and the

graph of the function y = artanhx has two horizontal asymptotes y = −1
and y = 1 (see Fig. 8 in Chapter 18).

Theorem (criterion for the existence of a non-vertical
asymptote).

For the line y = kx + b to be an asymptote of the graph of the function
y = f(x) as x → +∞, it is necessary and sufficient that there exist finite
limits

lim
x→+∞

f(x)

x
= k, lim

x→+∞

(
f(x)− kx

)
= b. (12)

Remark.
A similar criterion holds for the case x→ −∞.
Proof.
1. Necessity. Given: the line y = kx+ b is the asymptote of the graph of

the function y = f(x) for x→ +∞. Prove: relations (12) holds.
Denote α(x) = f(x) − (kx + b). By the definition of the non-vertical

asymptote (see (11)), we obtain that α(x)→ 0 as x→ +∞.
Then the function f(x) can be represented as

f(x) = kx+ b+ α(x). (13)

Divide both sides of equality (13) by x:
f(x)

x
= k +

b

x
+
α(x)

x
.
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Taking into account the property of the function α(x), we obtain that the
limit of the right-hand side of the last equality, as x → +∞, is k, which
implies the first of relations (12).

Now we transform equality (13) as follows:

f(x)− kx = b+ α(x).

The right-hand side of this equality, as x→ +∞, is b, whence the second
of relations (12) follows. The necessity is proven.

2. Sufficiency. Given: relations (12) holds. Prove: the line y = kx + b is
the asymptote of the graph of the function y = f(x) for x→ +∞.

Taking into account the second of relations (12), we obtain:

lim
x→+∞

(
f(x)− (kx+ b)

)
= lim

x→+∞

(
f(x)− kx

)
− b = b− b = 0.

Thus, for the line y = kx + b, condition (11) from the definition of the
non-vertical asymptote is satisfied. �

Example of a function study2

To illustrate the described methods of functions study, we apply them to
the rational function f(x) = x2−3x−2

x+1 and draw its graph.
1. Vertical asymptotes. The function f(x) is defined for all real

arguments, except for the point x = −1. At the point x = −1, the function
has a discontinuity of the second kind, since

lim
x→−1−1

x2 − 3x− 2

x+ 1
= −∞, lim

x→−1+1

x−3x− 2

x+ 1
= +∞.

Therefore, the graph of the function has one vertical asymptote x = −1.
2. Non-vertical asymptotes. Let us use the criterion for the exis-

tence of non-vertical asymptotes:

k± = lim
x→±∞

f(x)

x
= lim

x→±∞

x2 − 3x− 2

x2 + x
= 1,

b± = lim
x→±∞

(f(x)− k±x = lim
x→±∞

x2 − 3x− 2

x+ 1
− x =

= lim
x→±∞

x2 − 3x− 2− x2 − x
x+ 1

= lim
x→±∞

−4x− 2

x+ 1
= −4.

Thus, the graph of the function f(x) has one non-vertical (more precisely,
oblique) asymptote y = x− 4.

2 This section is missing in video lectures.
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3. Intersection points with coordinate axes. Since f(0) = −2,
the graph intersects theOY axis at a single point (0,−2). To find the intersec-
tion points with the OX axis, we solve the quadratic equation x2−3x−2 = 0:

x1,2 =
3±
√
9 + 8

2
=

3±
√
17

2
.

Using the approximate value of 4.1 for
√
17, we get x1 ≈ 3−4.1

2 = −0.55,
x2 ≈ 3+4.1

2 = 3.55. Thus, the graph intersects the OX axis at points whose
approximate coordinates are (−0.6, 0), (3.6, 0).

4. Critical points. Find the first derivative of this function:

f ′(x) =
(x2 − 3x− 2

x+ 1

)′
=

(2x− 3)(x+ 1)− (x2 − 3x− 2) · 1
(x+ 1)2

=

=
x2 + 2x− 1

(x+ 1)2
.

Now we can find the critical points of the function f , i. e., points at
which the derivative f ′ vanishes. To do this, solve the quadratic equation
x2 + 2x− 1 = 0:

x∗1,2 =
−2±

√
4 + 4

2
= −1±

√
2.

Using the approximate value of 1.4 for
√
2, we get x∗1 ≈ −1− 1.4 = −2.4,

x∗2 ≈ −1 + 1.4 = 0.4.
5. Intervals of monotonicity and local extrema. Since in the

formula for the derivative f ′(x) the denominator (x+1)2 is non-negative, and
the numerator x2+2x− 1 takes positive values for x ∈ (−∞, x∗1)∪ (x∗2,+∞)
and negative values for x ∈ (x∗1, x

∗
2), we obtain, by virtue of the first sufficient

condition for the existence of a local extremum, that the point x∗1 is a local
maximum point (the sign of the derivative changes from “+” to “−” in a
neighborhood of this point), and the point x∗2 is a local minimum point (sign
the derivative changes from “−” to “+” in a neighborhood of this point).

Let us also calculate the values of the function f at the points of local
extrema:

f(x∗1) =
(−1−

√
2)2 − 3(−1−

√
2)− 2

(−1−
√
2) + 1

=

=
1 + 2

√
2 + 2 + 3 + 3

√
2− 2

−
√
2

= −4 + 5
√
2√

2
=

= −2
√
2− 5 ≈ −2 · 1.4− 5 = −7.8,
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f(x∗2) =
(−1 +

√
2)2 − 3(−1 +

√
2)− 2

(−1 +
√
2) + 1

=

=
1− 2

√
2 + 2 + 3− 3

√
2− 2√

2
=

4− 5
√
2√

2
=

= 2
√
2− 5 ≈ 2 · 1.4− 5 = −2.2.

So the coordinates of the local maximum and local minimum of the func-
tion f are approximately equal to (−2.4,−7.8) and (0.4,−2.2).

Fig. 16. Graph of the function f(x) = x2−3x−2
x+1

6. Intervals of convexity and inflection points. To find the
intervals of convexity and inflection points of the function f , we find its second
derivative:
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f ′′(x) =
(
f ′(x)

)′
=
(x2 + 2x− 1

(x+ 1)2

)′
=

=
(2x+ 2)(x+ 1)2 − (x2 + 2x− 1) · 2(x+ 1)

(x+ 1)4
=

=
2(x+ 1)2 − 2(x2 + 2x− 1)

(x+ 1)3
=

4

(x+ 1)3
.

Thus, f ′′(x) < 0 for x ∈ (−∞,−1) and f ′′(x) > 0 for x ∈ (−1,+∞). By
virtue of the sufficient condition for convexity, we obtain that the function
f is convex upward on the interval (−∞,−1) and the function is convex
downward on the interval x ∈ (−1,+∞). The function f does not have
inflection points.

The graph of the function f is shown in Fig. 16. The figure also shows the
asymptotes x = −1, y = x−4 and points of the local extremum (−2.4,−7.8),
(0.4,−2.2).
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