m~dimensional problems

Let €2 be bounded domain in R™ with smooth boundary 02. Functions f and ¢ are

continiously differentiable in {2 and continious up to the boundary:
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7 denotes the outward normal unit vector to 9€2.
Then the integration by parts formula holds:
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1 < k <m, ny — k-th coordinate of normal vector.
Problem 1

Using the integration by parts prove First Green’s identity:

[t g@rde == [(95). Vo) ds + [ ) oy as.
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Prove Second Green’s identity:

Q o0

Prove an important formula:

/ Au(z)dz = / a"“ésjf) ds.
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Problem 2

Let u € C*(D). D is bounded domain in R™, 9D € C*. Let |, = 0. Prove:

/Au-uda:éo.
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When does the equality take place?

Problem 3

Prove that, if

Au+ A u=0,z € D, 0

Uop =
and u is non-trivial solution, then A > 0.
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Problem 4
Prove that, if
ou
Au+ I u=0,z € D; %‘8[):0 (7)
and wu is non-trivial solution, then A > 0.

Problem 5

Deduce first Green’s identity and second Green’s identity for biharmonic operator A2u in
D C R™. Using Green’s second identity find the adjoint differential expression for biharmonic
operator.

Remark.
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Problem 6
Let u € C*(Q), Q is bounded domain in R™, 992 € C!. Suppose that u‘ =
Prove:
/A2u ~udr = 0. (9)
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When does the equality take place?

Definition L* is called the adjoint differential expression with respect to L, if following
identity takes place:

/ Lf(x) - g(z)dz = / f(2)Log(x) dx + / M(f(2), g(x)) dS
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Problem 7

Find the adjoint differential expression for the heat operator

Lu =u; — Au (10)



