
2. Integration of rational functions

Partial fraction decomposition
of a rational function 2.1B/36:15 (11:49)

The rational function R(x) is the ratio of two polynomials:

R(x) =
Pm(x)

Qn(x)
.

In studying the question of integrating rational functions, the following
facts from the course of algebra are used.

Theorem 1 (on the factorization of a real polynomial).
A polynomial Qn(x) of degree n with real coefficients can be decomposed

into the following irreducible factors:

Qn(x) = a0(x−c1)
α1 . . . (x−ck)αk(x2 +p1x+q1)

β1 . . . (x2 +plx+ql)
βl.
(1)

Here a0 is the coefficient of the highest degree of the polynomial Qn(x),
c1, . . . , ck are the real roots of the polynomialQn(x) of multiplicity α1, . . . , αk,
quadratic factors of the form x2 + pix + qi with real coefficients pi, qi have
a negative discriminant: p2

i − 4qi < 0; each factor (x2 + pix + qi)
βi cor-

responds to a pair of complex conjugate roots of the polynomial Qn(x) of
multiplicity βi, i = 1, . . . , l. In addition, the following relation holds:

α1 + · · ·+ αk + 2(β1 + · · ·+ βl) = n.

Theorem 2 (on the partial fraction decomposition of a real
rational function).

Let R(x) be a rational function of the form Pm(x)
Qn(x) and decomposition (1)

takes place for the polynomial Qn(x). Then R(x) can be represented as
follows:

R(x) = P̃ (x) +
k∑
i=1

αi∑
j=1

Aij

(x− ci)j
+

l∑
i=1

βi∑
j=1

Bijx+Dij

(x2 + pix+ qi)j
. (2)

The term P̃ (x) appears if the degree m of the polynomial Pm(x) is greater
than or equal to the degree n of the polynomial Qn(x). This term P̃ (x) is

https://www.youtube.com/watch?v=xzIopk1WCDM&t=36m15s
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a polynomial of degree m− n obtained by dividing the polynomial Pm(x) by
the polynomial Qn(x).

For all remaining terms in formula (2) (called partial fractions), the degree
of the numerator is less than the degree of the denominator.

Methods for finding the decomposition
of a rational function 2.2A/00:00 (09:34)

Consider the following rational function as an example:

R(x) =
5x3 + 3x+ 2

(x− 1)2(x2 + 2x+ 2)
.

The degree of its numerator is less than the degree of the denominator,
therefore, the term P̃ (x) will not be present in the decomposition. The de-
composition will consist of three partial fractions:

R(x) =
A

x− 1
+

B

(x− 1)2
+

Cx+D

x2 + 2x+ 2
.

It remains for us to find the coefficients of these fractions. To do this,
we can use the so-called method of equating coefficients. Let us reduce the
expression on the right-hand side to a common denominator and equate the
resulting numerators:

5x3+3x+2 = A(x−1)(x2+2x+2)+B(x2+2x+2)+(Cx+D)(x−1)2.
(3)

Now we remove parentheses on the right-hand side and group the terms
with the same powers of x:

5x3 + 3x+ 2 = (A+ C)x3 + (A+B − 2C +D)x2 +

+ (2B + C − 2D)x+ (−2A+ 2B +D).

Let us equate the coefficients at the same powers of x:

5 = A+ C,

0 = A+B − 2C +D,

3 = 2B + C − 2D,

2 = −2A+ 2B +D.

As a result, we obtained a system of four linear equations in four unknowns.
According to the theorem on the partial fraction decomposition of a rational
function, this system has a solution. Having solved this system, we will find
the required coefficients: A = 2, B = 2, C = 3, D = 2.

https://www.youtube.com/watch?v=aLuD104G8PI&t=00m01s
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There is another way: we can consider the specific values of x. If we put
x = 1 in equality (3), then two terms will disappear in its right-hand side
and the only term will remain. Using this term, we can immediately find the
coefficient B:

5 ·13 +3+2 = A(1−1)(12 +2+2)+B(12 +2+2)+(C+D)(1−1)2,

10 = 5B,

B = 2.

This method is convenient if there are no quadratic factors in the factor-
ization of a denominator. However, even in our case, this method allows us
to simplify the resulting system by reducing the number of unknowns:

5 = A+ C,

−2 = A− 2C +D,

−1 = C − 2D,

−2 = −2A+D.

Integration of terms in the partial fraction
decomposition of a rational function

Simple cases based on the direct use
of the table of integrals 2.2A/09:34 (06:46)

After finding the partial fraction decomposition of the rational function,
it remains to integrate separately all the obtained terms.

1. The integral of the polynomial P̃ (x).
This integral is a polynomial whose free term is an arbitrary constant C.
2. The integral of a partial fraction of the form A

(x−c)k corresponding to
the real root c of multiplicity k.

For k 6= 1, we have∫
A

(x− c)k
dx =

A

(1− k)(x− c)k−1
+ C.

For k = 1, we have∫
A

x− c
dx = A ln |x− c|+ C.

https://www.youtube.com/watch?v=aLuD104G8PI&t=09m34s
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Using change of variable 2.2A/16:20 (09:56)

3. The integral of a partial fraction of the form Bx+D
(x2+px+q)k

, provided that
the discriminant of the quadratic polynomial is less than zero: p2 − 4q < 0
(this fraction corresponds to complex conjugate roots of multiplicity k).

Let us transform the polynomial in the denominator by complete the
square:

x2 + px+ q = x2 + 2x · p
2

+
(p

2

)2

−
(p

2

)2

+ q =
(
x+

p

2

)2

+ q − p2

4
.

Note that the expression q− p2

4 is greater than zero, since, by assumption,
the discriminant p2 − 4q is less than zero. Denote q − p2

4 = ∆2.
As a result of the transformation, we decrease the number of variables x

in the integral:∫
(Bx+D) dx

(x2 + px+ q)k
=

∫
(Bx+D) dx((
x+ p

2

)2
+ ∆2

)k .
Let us change of variable: t = x+ p

2 . Differentials will not change: dt = dx.
This variable changing will further simplify the denominator:∫

(Bx+D) dx((
x+ p

2

)2
+ ∆2

)k =

∫ (
B
(
t− p

2

)
+D

)
dt

(t2 + ∆2)k
.

Now transform the numerator by grouping the free terms and denoting
the difference D − Bp

2 by D′:∫ (
B
(
t− p

2

)
+D

)
dt

(t2 + ∆2)k
=

∫
(Bt+D′) dt

(t2 + ∆2)k
.

Let us split the resulting integral into two:∫
(Bt+D′) dt

(t2 + ∆2)k
=

∫
Bt dt

(t2 + ∆2)k
+

∫
D′ dt

(t2 + ∆2)k
.

Thus, it remains for us to analyze the integrals of two types:
∫

t dt
(t2+∆2)k

and
∫

dt
(t2+∆2)k

.
3a. Find the integral

∫
t dt

(t2+∆2)k
. We make the following variable change

in it: y = t2 + ∆2. Then dy = 2t dt and as a result we get∫
t dt

(t2 + ∆2)k
=

1

2

∫
dy

yk
.

The integral on the right-hand side can be found using the same formulas
as the integrals considered in subsection 2.

https://www.youtube.com/watch?v=aLuD104G8PI&t=16m20s


2. Integration of rational functions 5

Using recurrence relation 2.2A/26:16 (12:00)

3b. Now let us turn to the last integral:
∫

dt
(t2+∆2)k

.
In this case, we perform integration by parts, setting u = 1

(t2+∆2)k
, dv = dt,

v = t: ∫
dt

(t2 + ∆2)k
=

t

(t2 + ∆2)k
−
∫

2(−k)t2 dt

(t2 + ∆2)k+1
=

=
t

(t2 + ∆2)k
+ 2k

∫
t2 dt

(t2 + ∆2)k+1
.

In the numerator of the last integral, we add and subtract ∆2:
t

(t2 + ∆2)k
+ 2k

∫
(t2 + ∆2 −∆2) dt

(t2 + ∆2)k+1
=

=
t

(t2 + ∆2)k
+ 2k

∫
dt

(t2 + ∆2)k
− 2k∆2

∫
dt

(t2 + ∆2)k+1
.

If we denote Ik =
∫

dt
(t2+∆2)k

, then we can write the resulting relation as
follows:

Ik =
t

(t2 + ∆2)k
+ 2k(Ik −∆2Ik+1).

Express Ik+1 in terms of Ik:

Ik+1 =
1

2k∆2

(
t

(t2 + ∆2)k
+ (2k − 1)Ik

)
.

We have obtained a recurrence relation that allows us to reduce the finding
of the integral Ik+1 to Ik. Applying it the required number of times, we can
reduce the integral Ik to the integral I1, which can be found explicitly:

I1 =

∫
dt

t2 + ∆2
=

1

∆
arctan

t

∆
+ C.

Theorem on the integration
of a rational function 2.2B/00:00 (06:08)

Thus, we have shown that all the integrals arising during the integration
of a rational function are expressed in terms of elementary functions and the
following theorem holds.

Theorem (on the integration of a rational function).
Any rational function can be integrated in elementary functions.

https://www.youtube.com/watch?v=aLuD104G8PI&t=26m16s
https://www.youtube.com/watch?v=pPDP0Lv23fk&t=00m01s


6

This is an important fact, since there are elementary functions whose in-
tegrals are not expressed in terms of elementary functions. Examples of such
functions are ex

x ,
sinx
x , cosx

x .
Having proved the theorem on the integration of a rational function, we

can use it to study the integrability of other types of functions. If we can
reduce (for example, by changing a variable) a certain integrand to a rational
function, then we can state that the original function is also integrated in
elementary functions.

Remark.
When integrating rational functions, we “go beyond” the set of rational

functions, because as a result of integrating rational functions, logarithms
and arctangents can arise.
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