m~dimensional problems. Hometask

Let € be bounded domain in R™ with smooth boundary 02. Functions f and ¢ are
continiously differentiable in {2 and continious up to the boundary:
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7 denotes the outward normal unit vector to 9S2.
Then the integration by parts formula holds:
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dg
(x)de = — [ f(x)==dx + [ f(x)g(x)n;dS. (1)
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1 < k <m, ny — k-th coordinate of normal vector.
Using the integration by parts we prove Green’s first identity
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Using the integration by parts twice we prove Green’s second identity:

Q/ Af(x) - gla) dz = / r@gads + [ (g - 28 p)) as. o
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Problem 3

Prove the following property of eigenvalues of Laplace operator. If

Au+ =0,z € D; u}aD:O (4)
and u is non-trivial solution to (4), then A > 0.
Hint. First step. Rewrite the equation (4):
A = —Au. (5)

Multiply both sides of (5) by u*(x) and integrate over D.
)\/|u(3:)|2dx: —/Au~u*(:c)dx. (6)
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Second step. Simplify right-hand side of the equation (6) using Green’s identity
and boundary conditions. Express A from the obtained equation. You will show that A is
non-negative.

Third step. Suppose that A is equal to zero and prove that it is not possible.



