Эквивалентность и минимизация автоматов

План лекции

- 1. Эквивалентные состояния
- ▶ 2. к-эквивалентность
- > 3. к-эквивалентные разбиения

Эквивалентность состояний

 $M | \sigma$

Определение эквивалентных и различимых состояний.

Лемма 1.

Пусть σ_i и σ_j - состояния автомата М. Если строки σ_i и σ_j в подтаблице z_V автомата М различаются, то $\sigma_i \neq \sigma_i$.

Лемма 2.

Пусть σ_i и σ_j - состояния автомата М. Если строки σ_i и σ_j в полной таблице переходов автомата М одинаковы, то $\sigma_i = \sigma_i$.

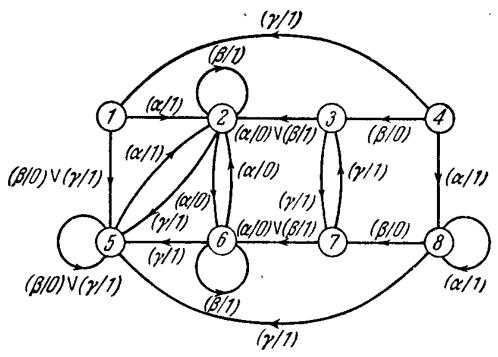
Лемма 3.

Пусть σ_i и σ_j - состояния автомата М. Если строки σ_i и σ_j в полной таблице переходов автомата М становятся одинаковыми при замене каждого обозначения σ_i на σ_i (или наоборот), то $\sigma_i = \sigma_i$.

Эквивалентность состояний

Теорема 1.

Если состояния σ_i и σ_j явно различимы, то $\sigma_i \neq \sigma_j$, а если состояния σ_i и σ_j явно эквивалентны, то $\sigma_i = \sigma_j$.



Автомат А6

	z _v			⁵ ν+1				$z_{_{ m V}}$			⁸ v+1		
s _v	α	β	γ	α	β	γ	s_v	α	β	γ	α	β	γ
1 2 3 4	1 0 0 1	0 1 1 0	1 1 1	2 6 2 8	5 2 2 3	5 7 1	5 6 7 8	1 0 0 1	0 1 1 0	1 1 1	2 2 6 8	5 6 6 7	5535

к- эквивалентность

Определение 3.2. Состояние σ_i автомата M_1 и состояние σ_j автомата M_2 называются k-эквивалентными, если при приложении к $M_1|\sigma_i$ и к $M_2|\sigma_j$ входной последовательности длины k они вырабатывают одинаковые выходные последовательности. Если σ_i и σ_j не являются k-эквивалентными, то они называются k-различимыми. Обозначения M_1 и M_2 могут относиться к одному и тому же автомату.

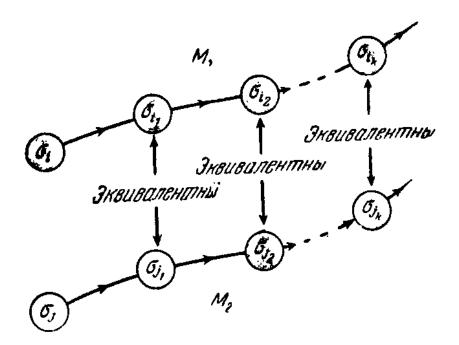
Лемма 4. (а) Если два состояния являются k-эквивалентными, то они являются и l-эквивалентными для каждого $l \leq k$. (б) Если два состояния являются k-различимыми, то они являются и l-различимыми для каждого $l \geq k$.

к- эквивалентность

Теорема 2. Если состояния σ_i и σ_j являются k-эквивалентными и если их k-е преемники по отношению к любой входной последовательности длины k являются эквивалентными, то $\sigma_i = \sigma_j$.

Теорема 3. Если состояния σ_i и σ_j являются эквивалентными, то их k-е преемники по отношению κ любой входной последовательности длины k и для любого k являются эквивалентными.

к- эквивалентность

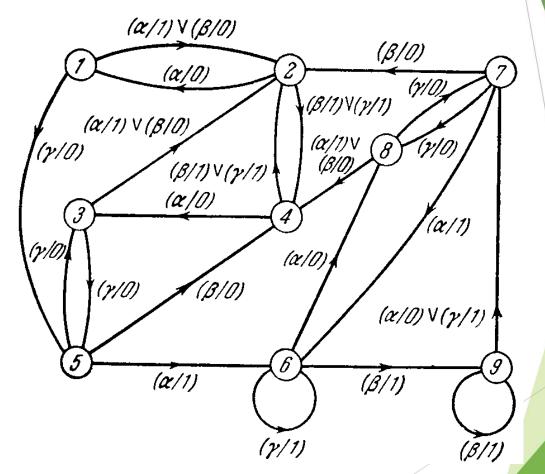


Пример. Обсудить А6

к- эквивалентные разбиения

Понятие. Обозначение.

Пример. Автомат А7



Лемма 5. к-эквивалентное разбиение автомата единственно

