6. Classes of integrable functions.
Properties of a definite integral

Classes of integrable functions

The simplest example of an integrable
function: a constant function \2.5B/OO:OO (02:05)\

Consider the constant function f(x) = ¢ and show that it is integrable on

any segment |a, b].
To do this, we ¢ @qe integral sum for the function f on this segment:

1) s b o e <182

Thus7 for any partition T' and any sample &, the mtegral sum takes thé
same value, therefore, when passing to the limit as [(T") — 0, V&, this value _() .
(~) =

will not change. c N
We have proved that I -
b -
/ cdx = c(b—a).
‘ a

—J

Oscillation of a function and its use
in integrability criterion \2.5B/02:05 (04:12) \

We noted earlier that the condition for integrability criterion in terms of
Darboux sums can be written as follows:

lim (S — S;)=0.
l(Tl)rgO(ST S5r) =0

Using the definition of Darboux sums, we can transform an expression
under the limit sign:

—S; = Z MAxl ZmZA:UZ = Z (M; —m;)Ax;.
=1

Under the sum sign, the expression M; — m; arises, which determines the
maximum difference of the values of the function f on the segment A;. This


https://www.youtube.com/watch?v=OXUliFTV26s&t=00m01s
https://www.youtube.com/watch?v=OXUliFTV26s&t=02m05s

characteristic is called the oscillation of the function f on the segment A;
and is denoted by w;(f): _
A= :t-l]
wz(f) :Mz—mz L =1,
Thus, the condition from the criterion of integrability of the function can
—
be represented as follows:

L

REMARK.

It can be proved that the following form\/ a holds fof/the oscillation of
a function:

wi(f)= sup |f(2))— f(2")]. = C— M 1
(= s 1/ =16 = M- (1)

We will use this formula to prove the integrability of the product of func-
tions.
Integrability of continuous functions \2.5B/ 06:17 (13:33) \

THEOREM (INTEGRABILITY THEOREM FOR CONTINUOUS FUNCTIONS).

If the function is continuous on a segment, then it is integrable on this
segment.

REMARK.

Continuity is not a necessary condition for integrability. An integrable
function may have points of discontinuity.

PROOF.

Let the function f be continuous on [a, b]. Let us prove that the conditions
of the integrability\criterion are satisfied for it.

Condition 1 of thy criterion (boundedness/6t a function on [a, b]) follows
from the first Weierstrags theorem, which states that any function continuous
t.
To prove condition 2 oNthe crterion, we u@antor’s theorem,| which
on an segment is uniformly continuous on

states that a function contin
this segment.
Let us write the defipifion of uhjform continuity for the function f on the

Ve>0 736>0 Va',2" €la,b
£

1) = fa")] < . §)



https://www.youtube.com/watch?v=OXUliFTV26s&t=06m17s
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We choose the value € > 0, select the value § > 0 from (2) and show that
condition 2 of the integrability criterion will be satisfied for the given value 9,
. e., that, for all partitions T" such that {(T') < 4, the estimate S5 — S7 < &
holds.

So, let us choose syme partition 7" satisfying the condition [(T") < 4.

Let o/, 2" € AZ, where A; is some segment deﬁned hy”the partition T,

2" — 2| < Az <UT) < 6.

Therefore, if 2/,2"” € A;, then
for these points. Then, by th
f (@) = f(@")] <55

Since the points 2’ and z” ted on the segment A;, we
choose them so that the meximum value of the function f on the segment A;
is reached at the point £, and the minimum value of
segment is reached af’the point 2”. Such points exist by
Weierstrass theorem, which states that a function continugfis on the segment

inequality |z' — 2| < 0 holds
Mjon of uniform continuity (2),

n be arbitrarily se

7

takes its maximum and minimum value:

f(@) =max f( = M;, f(2") = min f(z)= m;.

TEN; TEAN;
Since the estimate |2’ — 24 < 0 is also valigAfor these points, which means
that the estimate |f(2) — f(2")R< 75 holds, we obtain
£

In this estimate it is not necesspfy to usy the absolute value sign, since the
difference M; — m; is always peh-negative.

So, we have proved thpt"if for a given € > 0\ye, choose the value § > 0 y,
from condition (2), ther] for any partition 7" for whieh\(T") < 6, the following Y %

relation holds:

€ :
Mi—m¢<b = 1=1,...,n.

Then, for the difference\S; — S#7 we get

3
3
3

=1 1=1 1=1




We got the estimate S €. Thus, condition 2 of !he integrability
criterion is also satisfied, a virtue of this-criterion, the function f is

a,b|. O 1:" -

.

integrable on the segme

’

Integrability of monotone functions 2.5B/19:50 (10:18) \

THEOREM (INTEGRABILITY THEOREM FOR MONOTONE FUNCTIONS).

If the function is monotone on the segment, then it is integrable on this
segment.

REMARK.

This fact does not follow from the previous theorem, since a monotone
function can have a finite or even infinite number of discontinuity points (of
the first kind).

PROOF. B

Let the function f be monotone on the segment [a, b]. For definiteness, we
assume that f is non-decreasing on [a, b]. Let us prove its integrability using

-
-

the integrability criterion in terms of Darboux sums.
First, we prove the validity of condition 1 of the criterion, i. e., let us prove
the boundedness of the function f.

Since the function f is non- decreasmg, we have &J 0,(
Va €la,b] fla) < f(x) < f

The resulting double inequalify means that the function f is bounded
on [a, b].
Now we prove the validity of condition 2 of the criterion. Lhfs condition

can be represented as Pt TL‘(
lim (Sf —S;)=0. T /
i (5 - 57) el 7

Choose some partition 7T'. Since the function f is non-decreasing, we have
for any segment A;, 1 =1,...,n,

mi = min f(z) = f(zi1), M =max f(z) = f(x).

TEA,; — TEA,
Then the difference S;I — S; can be transformed as follows: L—
St —Sp = (My—mi)Az; =Y (f(x:) — f(wim1)) Az,
i=1 i=1

By the definition of the mesh of the partition, we get Ax; < (7). Since
all factors are non-negative, the following estimate holds:™ ——


https://www.youtube.com/watch?v=OXUliFTV26s&t=19m50s
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n M
> (fla) = flzio) Aa:l<z ~ flai)UT) =

— D) (F(r) ~ i) fﬁ) () - (ﬂ}

1=1
We write out the terms of the last sum in the reverse order and reduce

similar terms: L= e . V14
Z(": AN QEQL)LM) + (o) - Tw)) -

+ (nag) — L))+ + (Mag) — L)) + (L) — f(wo) =

= f(xn) - f(ZU()) /

Thus, we obtained the following dﬁmble inequality (in which we took into

account that xy = a, l’n—/m‘_//—\ O < g S <
0<5F =57 < (f(b) = fla))UT).7° v . = \
If we pass to the limit in the resulting double inequality as {(T) — 0, thé}t\}
the left-hand and right-hand sides of the inequality will be 0; therefore, by o
virtue of the theorem on passing to the limit in inequalities, the difference
St — Sz will also be 0.
So, we have proved that condition 2 of the integrability criterion also holds.
By virtue of this criterion, the function f is integrable on the segment [a

Integral properties associated with integrands g &)(

Linearity of a definite integral \2 5B/30:08 (09: 46)

THEOREM 1 (ON LINEARITY OF A DEFINITE INTEGRAL WITH RESPECT
TO THE INTEGRAND).,
Let the functions f and g be integrable on the segment [a,b], o, 8 € R.

Then the function a.f+ ¢ is also integrable on [a, b] and the following equality
holds:

/ab(ozf(x) + By(z)) dz = a/abf(x) dz + 5/abg(x) do. (3)

PROOF.
Let us prove this fact using the definition of a definite integral. We write
down the integral sum for the function af + S¢ and transform it:


https://www.youtube.com/watch?v=OXUliFTV26s&t=30m08s

n

“or(af+Bg.8) =D _(af(&) + Bg(&)) Az

=« Z f(&)Az; + 5 Zg(&)ﬁxi
i=1 i=1

We have obtained the following relation, which is valid for any partition 7'
and any sample &:

or(af + Bg,§) = aor(f, &) + Bor(g,§). (4)

Since, by condition, the functions f and g are integrable on [a, b], the limits
limy () 0ve or(f, §) and limyry 0 ve o7(g, §) exist and are equal to f; f(x)dx
and fj g(x) dz, respectively.

Then the limit on the right-hand side of equality (4), as {(T') — 0, V¢,
exists and equals « fab flz)dx + B fabg(x) dx. Therefore, for the left-hand
side of equality (4), there also exists a limit with the same value. Thus,
we simultaneously proved the integrability of the function af + S¢g and the
validity of formula (3). O

Integrability of the product 2.64/00:00 (16:44)]]

THEOREM 2 (ON INTEGRABILITY OF THE PRODUCT OF INTEGRABLE
FUNCTIONS).

Let the functions f and ¢ be integrable on the segment [a,b]. Then the
function fg is also integrable on [a, b].

REMARK.

In this case, we can only establish the fact of integrability, since there is
no formula expressing the integral of the product of functions in terms of the
integrals of the factors.

PROOF.

Let us use the integrability criterion in terms of the oscillation of a function,

which can be formulated as follows: the fupedtion f is integrable if and only
if it is bounded and >}

of the function, we applg/ t
First, we note that if the fafctions f and g are integrable, then they are

bounded on [a, b] due tg
3C >0 Vzelab |[flx)]<

lg(2)] < C. (5)
Therefore, the product fg is also bounded.


https://www.youtube.com/watch?v=VkS-AcA9njQ&t=00m01s
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Taking into account (5), we transform the absolute value of the differ-

ence f(z")g(x") — f(2")

oscillation of the product
£ (@")g(a") = f(z")g(
= |f(@")g(2') = fe)9\) + f(2")g(a') — f(a")g(2")| <
< |g( ')Hf( ) («1’")\ + f(ﬂ?")l\g(l"') —g(a")| <
C(1( - 9(z")])- (6)

z”) in such a way that it allows us to estimate the
through theGscillations of the factors f and g:

obtain
|f(z') — f(2")]

Similarly,

|g(")

—g(z")] < wilg



Consequently, the quantity jmdicated on the left side of the inequality also
approaches 0 by virtue of Y€ theorem on passing to the limit in inequalities.
Therefore, by virtue of cient condition for the integrability criterion,
the function fg is infegrable on [a, b]. O

Properties associated with integration segments

Integrability on a nested segment \2.6A/16 ;44 (07:03) \

THEOREM 3 (ON INTEGRABILITY ON A NESTED SEGMENT).
If the function f is integrable on the segment [a,b], then it is integrable

on any segment [c,d] C [a, b].
PROOF. //’—:“‘ﬁm;\‘

It is enough for us to prove, by virtue of the integrability criterion in terms
of the oscillation okthe function, that

the resulting partition ofAhe segment [a, b] by Tand we will use the index k
to indicate the segments obtained for this partitigh: Ay (such a notation
allows us to distinguisiNthese segments from tHe segments connected with
the partition 7" and markethwith the index”i). We require that the mesh
of the constructed partition 7" deincidgg”with ((T): {(T") = I(T"). This can
be satisfied by choosing new points hat neighboring points are located at

a distance not exceeding [(7T').
If we consider all possible/artitions T” congtructed on the basis of parti-

tions T" and pass to the limit as [(T") approacheXN, then the mesh of parti-

tions 1" will also approatch

ction/ f is integrable on [a, b], we obtain, by
integrability criterion in terms of the os-

Since, by condition, the f
virtue of the necessary part of t
cillation of the function, that

> wi(f)Azy =0, UT') — 0. (8)
=


https://www.youtube.com/watch?v=VkS-AcA9njQ&t=16m44s
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Note that the integrability criterion gssumes that the indicated limit rela-
tion is valid for all possible paxtitions #f the interval [a, b]. But if this relation
is valid for all partitions, then ains valid for a part of these partitions,
namely, a part that is construck®d on the basis of partitions 7" of segment
[, d] as described above.

Since the sum > (f)Axp coftains all terms from the sum
Y o rwil f)Ax;, as well 4s songe additiondl non-negative terms, corresponding
to the segments Ay not lying\on [, d)/ the estimate holds:

Tk (9)

o~

[t follows from (8) and (9)that
by construction, [(T") = (

rwi(f)Az; — 0 as [(T") — 0. Sjce,

The first theorem on the additivity of a definite integral o
with respect to the integration segment \2 6A/23:47 (06: 27)

THEOREM 4 (THE FIRST THEOREM ON THE ADDITIVITY OF A DEFI-
NITE INTEGRAL WITH RESPECT TO THE INTEGRATION SEGMENT).

Let the function f be integrable on [a, b], ¢ € (a,b) (note that, by virtue of
Theorem 3, this function is integrable on the segments [a, ¢] and [c, b]). Then

the following equality holds:
N\
b c b N\
f(x)dx:/ f(cc)dx+/ f(z)dx. ettt (10)
/a a c X C g
PROOF.

Let T" be some partitjon of the segment |a, |,
the segment [c,b]. Then 'K = T" U T” is a partitfon of the segment |[a,b].
The partition 1" necessarily and, in addition, we have
(T) = 0as I(T") — 0 and (T — 0.

" be some partition of

Mg to the partitions 77 and T”.
union of ¢ and &”; this sample

ing to the constructed partitions

") —0,VE". By virtue of
the already proved integrability of&he function f on [a, c] and [c, b], we obtain
that the right-hand side of the gqualyy approaches [ f(z)dx + fcb f(x)dx

— o

btain that relat 7) also holds. [ -
, we obtain that relation (7) also holds S(Q*‘S\a‘l'

b
= py

o


https://www.youtube.com/watch?v=VkS-AcA9njQ&t=23m47s
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On the other hand, sine the functiof f is integrable on [a, b], we get that

equal to f; f(z) dx) for any partitions
samples related to these partitions. But
part of the possible partitions T that are
artitions 7", T” such that ((T") — 0, V&,

the limit of integral sums exXists (and i
whose mesh approaches 0 and\ for a
then the same will be true for\t
constructed on the basis of t
and [(T") — 0, V¢".

Passing to the limit in both side
proved relation (10). O

REMARK.

The converse statement, which we accept without proof, is also true: if the
function is integrable on the segments [a, c] and [c, b], then it is integrable on
the segment [a, b] and equality (10) holds. This fact implies that any function
that has a finite number of discontinuities of the first kind on the segment
la, b] is integrable on this segment.

f the previous equality, we obtain the

The second theorem on the additivity of a definite integral
with respect to the integration segment 12.6A/30:14 (11:39)]

DEFINITION. EQ, KIB, o< @ @r@

We assume that the integral of any function defined at a over a segment
of zero length |[a, a] is 0:

[ae) /aaf(x) do £ 0.

In addition, we define the integral from b to a for a < b as follows:

0<h /baf(x)dxd:ef—/abf(x)da:.

G,Qo 0 This is a quite natural definition, which follows from the initial definition
/)f a definite integral if we allow the situation x; ; > x; (for which Az; < 0).
So, we can say that if we swap the limits of integration, then the sign of
the integral changes to the opposite.
THEOREM 5 (THE SECOND THEOREM ON THE ADDITIVITY OF A DEF-
INITE INTEGRAL WITH RESPECT TO THE INTEGRATION SEGMENT).
Let the function f be integrable on [a,b], c1,co,c3 € [a,b]. Then the



https://www.youtube.com/watch?v=VkS-AcA9njQ&t=30m14s
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PROOF.

Let us prove equality (11) for one of the cases of the location of the points
c1, 2, cg that is different from the case ¢; < co < c3, which is already consid-
ered in Theorem 4.

Let, for example, cs < ¢; < ¢3. By virtue of Theorem 4, we have

/6263f(x) dr = /: f(x)dz + /Clcgf(x) .

In the obtained relation, we transform the integrals so that their limits
correspond to the limits indicated in (11). In this case, we only need to
transform the integral from ¢y to ¢q, changing its sign:

+/c:3f(ac) dr = —/(:Qf(a:) d:v+/03f(a:) dx.
[

al
cgral preceded by a minus sign to another part of the
equality and swap the left-hand and right-hand sides of this equality, then we
obtain (11).
Any other arrangement of points ¢y, ¢9, ¢3 can be analyzed in a similar
way. For example, for the case c3 < ca < ¢, we have

/ f(z)dr = / f(z)d + / f(x)d,
-/ fydr=- [ flayda— [ f(x)de,

Multiplying the resulting equality by —1, we obtain (11). It is even easier
to analyze situations in which some points coincide. [
\

Estimates for integrals

Simple estimates
of integrals 2.6A/41:53 (01:17), 2.6B/00:00 (06:47)

THEOREM 6 (ON THE NON-NEGATIVITY OF THE INTEGRAL OF A NON-
NEGATIVE FUNCTION).
If the function f is integrable on [a,b] and V& € [a,b] f(z) > 0, then

/bf(a:) dx > 0. (12)

PROOF.
Consider the integral sum for some partition 7" and a sample &:


https://www.youtube.com/watch?v=VkS-AcA9njQ&t=41m53s
https://www.youtube.com/watch?v=tygGvPGHTps&t=00m01s

12

(o4 o
-7, Vs
n ’-j
or(f,§) = E f&)Ax; > O

Since Az; > 0 and, by (mﬁ'{ion, f(&) > 0, all terms of this sum are
non-negative, therefore the integral sum itself 15&1’1 n-negative too:

JT(f,S)ZO.‘ —'=7 g {Y) '.l’/()

When passing to the limit as I[(T) — 0, V& the sign of the non-strict
inequality is preserved, therefore estimate (12) holds. [

THEOREM 7 (ON THE COMPARISON OF INTEGRALS).

If the functions f and g are integrable on [a, b] and V& € [a,b] f(z) < g(x),
then

/abf(x) dr < /abg(x) dr. :f (- & ﬁ(a) (13)

PROOF.

We use the previom{-y};gg/ed Theorems 1 and 6. Let us introduce the
auxiliary function h(z) = g(x) — f(x). Obviously, this function is non-

negative. In addition, by corem 1, this function is integrable;

moreover,

/ab h(z) dx

According to The , side of the resulting equality is
non-negative:

/ab h(z)dz > 0.

Therefore, the right-hand side is also non-negative, therefore estimate (13)
holds. [J

COROLLARY.
If the function f is integrable on [a,b] and Vz € [a, b m < M for

some m, M € R, then

m(b— a) < / F)de < M(b—a). (14)
“PROOF.

Earlier, we established that the constant function f(x) = c¢ is integrable
on any interval and

/abcd:z: =c(b—a).
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We apply Theorem 7 to the double inequality m < f(z) < M:

b b b
/mdxg/ f(x)dxg/ M dzx.
(A E— e —

Given the formula for the integral of the constant, we obtain rela-
tion (14). O

Integral of a positive continuous function \2.6B/06:47 (11:25) \

THEOREM & (ON THE INTEGRAL OF A POSITIVE) CQNTINUOUS FUNC-
TION). vxcele *) (f)«) >,0
Let the function f be integrable and non-negative on [a,b]. Also sup-
pose that the function f is continuous at the point ¢ € [, b] and, moreover,
-_———

f(c) > 0. Then :

b
/ f(z)dx > 0.
PROOF. Cr 'é

We use the simplest, property of a continuous function: if the function is
continuous at the point ¢ and takes a positive value a# it, then there exists
a neighborhood of this poing at which the function r¢gmains positive.

If we denote f(¢) = D
a neighborhood U? such that t
x e Ul

We assume that the neighborhood
also that the estimate f(z) > £ is sat

0, then it can be/argued that there exists
estimate f(z) > % holds for any point

les inside the segment [a, b, and
t the boundary of the neighbor-

The first and third integrals on th re non-negative
by virtue of Theorem rn to the second integral. Since
Vo € [c—d,¢c+ 0] f(z) plying the corollary of Theorem 7, we
obtain

c+o
f(x)dx > d)) = Dé > 0.
c—6

Therefore, the sum of the three
integrals is also positive. [


https://www.youtube.com/watch?v=tygGvPGHTps&t=06m47s
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COROLLARY.
If the function f is continuous on [a, b] and V%E a,b] f xk< M, then

z)dr < M(b— a). W
[ s < 6w ﬂw >g{{(\lx

PROOF.

Consider the function h(x) = M — f(x). This fun(m:m:nu—
ous and positive on [a,b]. Therefore, by the previous theorem, we obtain
fab h(z)dx > 0. To get the required estimate, it remains to use the linearity
—of the Infegral and the formula for the integral of a constant function. [

Properties of the integral
of the absolute value of a function \2.6B/18:12 (16:20) \

THEOREM 9 (ON THE INTEGRAL OF THE ABSOLUTE VALUE OF A FUNC-
TION). @
If the function | [ is integrable on [a, b], then its absolute value |f] is also

mtegrable on [a, b] and the estimate holds:
le+d| <\ al +1€1

dfv‘ </ |f(z)] da. la+bact ¢ (ale el 1d(1d)
PROOF. (ZQ;\ Q_Z l Qll

First, we prove the integrability of the function |f|. Let us use the lower
bound for the difference [t' — ¢"|:
‘t/ _t/ll Z ‘ /| . |t//H

We choose the par®gion T" of the segment [a, Bf; choose some segment A;
defined by this partition,\ynd write the estimatef16) for f(z') and f(z") when
', 2" € A;, swapping the and sides of the estimate:

f @] = 1f @) < |
We will argue in the same

of the product (see Theorem 2),
hand side of the resulting inequ#li

SUp,/ (") — f(2")], whi
on the segment A;. Therefgre,
[1f (@) = £

Further, since thigestimate is valid for all 2/, " € A;, we find that a similar
estimate holds for the least upper boundary of the left-hand side:

(16)

s in the proof of the integrability
First, it is obvious that the right-
}_bounded from above by the value
the oscillation of the function f



https://www.youtube.com/watch?v=tygGvPGHTps&t=18m12s

D\ inequahties for y@&@:‘ /
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sup || (") = |f(a")]] < wilf).

x x"eN;

The left-hand side of the last estimate is the oscillation of the function | f|:

wi(lf1) < wi(f). A(ﬂt

So, we have proved that the oscillation of the absolute value of a function
does not exceed the oscillation of the function itself. It remains for us to mul-
tiply both sides of the resulting estimate bﬁxi and summarize the resplting

(\"U-QAB‘H"} Prl— ex o-l&ﬁb.)
3 i)-=o

imate is valid for an ‘arbitrary partition 7'. Passing to the limit
(T') — 0 and taking into account that, by condition, the function f is
rable on [a, b], we obtain, by virtue of the integrability criterion, that the
right-hand side of the inequality approaches 0. Then, by virtue of the theorem
on passing to the limit in inequalities, the left-hand side also approaches 0;

therefore, due to the same integrability criterion, the function |f| is also
integrable on [a, b]. The first part of the theorem is proved.

Now let us turp to the proof of estimate (15). We choose an arbitrary
partition 71" of th ment la, b] and a sample & consider the absolute value
of the integral Su Xafunctlon f, and gransform it ust generalization

of the triangle ine t"] < [t'| ¥ for the case Ofgh (E"S3 \0‘
| X
> Z |f(&)|A;.
C-

=1

|an£|—\Zf§sz

On the rlght—hand side, we get the integral sum for thg f | ove
the same partition 7" and the sample £&. Therefore, k
—_—
) <orl716) . |
72(£.)] < or(1£1,€) doerlle 7

Since we have already proved that the function | fﬁs integrable, the &im—
its of the integral sums as_[(T) — 0_Y ¢, exist both on the left-hand side
and on the right-hand side. These limits are equal to the integrals of the
corresponding functions and the same estimate holds for them. []

REMARK.

The integrability of the absolute value of a function does not imply the
integrability of the function itself. To prove this statement, it suffices to give
an example. Consider the following function (which can be obtained from the
Dirichlet function by stretching and shifting along the OY axis):




16 &%%]
w-{trg, [ol=4 e

This function, like the Dirichlet function, is not integrable on any segment

of positive length, because for any segment [a, b], its upper Darboux integral
is (b — a), and it differs from the lower Darboux integral equal to —(b — a).
At the same time, the absolute value of this function is a constant: |f(z)| =1,
and the constant is integrable on any interval.

Mean value theorems for definite integrals

The first mean value theorem \2.6B/34:32 (10:39) \

THEOREM 10 (THE FIRST MEAN VALUE THEOREM).
Suppose that the functions f and g are integrable on [a, b] and the following

conditions are satisfied for them: ~
1) for the function f, a double estimate hold& m < f(z) < M v € [a, b); n

2) the function g preserves the sign on [a,b], i. e., either g(x) > 0 for

x € [a,b] or g(x) <0 for x € [a, ] —_
Then there exists a valu € [m, M] such that the following equality
holds:

/ f(x)g(x)dx = /abg(x) dx. & (17)

e

PROOF. g %l‘\ l\z > o

First, we consider the case when g(z) >0 for z € [a,b]. =

We multiply all the terms of the estimate from condition 1 by g(z). The
sign nequah will not fifgnge, since, by our assumption, the function g
is npn atlve

wirtue of fheorem 2,¢each of the obtained products is an integrable
functlon. We integrate all the terms of the double inequality from a to b.
By virtue of Theorem 7, the signs of inequality will not change. In addition,
the constants m and M can be taken out of the si the integrals:

b
®</f ®<M/()m

l a a
Thus, we obtain th Tﬁ-tegraﬂj—gfzj‘daz on the

sides of the resulting double inequality.

and right-hand


https://www.youtube.com/watch?v=tygGvPGHTps&t=34m32s
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If fab g(x)dr = 0, then the last double inequality takes the form
0 < fab f(x)g(z)dx < 0, which implies that fab f(x)g(z)dx = 0. In this
case, equality (17) is satisfied and any value from the interval [m, M] can be
taken as p.

If fab g(x) dx # 0, then we can divide all parts of the double inequality by
this nonzero value. As a result, we get

_Rt@ewdr

b
_— [, g(x)dx N
Denote the obtained quotient of integrals by u:
b
L @) o

f; g(x)dx

Thus, the dou equality m < pu < M holds for p and, in addition,
relation (18) can be transformed to (17) by multiplying both sides of the
equality by fabg(x) dzx.

So, we have proved the theorem for the case g(z) > 0.

Now suppose that g(x) < 0 for x € [a,b]. Consider the auxiliary function
g(z) = —g(z). The function g(x) is non-negative: g(x) > 0 for = € [a, b] and
the theorem has already been proved for the case of non-negative functions.
Therefore, there exists a value p € [m, M] such that

[ rwiae = [ o) as

Let’s get back to the function g(z):
b b
| 1@ (o)) do = [ (19(2) do
To obtain equality (17), it suffices to put the signs “minus” behind the signs

of the integrals and multiply both sides of the resulting equality by (—1).
Thus, equality (17) is valid for the function g(x) also in the case g(x) < 0. [J
C9\r) =Y.

(18)

The second and the third
mean value theorems \2.7A/OO:OO (12:56) \

THEOREM 11 (THE SECOND MEAN VALUE THEOREM).

Suppose that the functions f and g are defined on [a, b] and the following
conditions are satisfied for them:

1) the function f is continuous on [a, b] (this condition immediately implies

the integrability of the function f on [a, b]);


https://www.youtube.com/watch?v=h77yheGoE1I&t=00m01s
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2) the function ¢ is integrable on [a,b] and preserves the sign on this
segment, i. e., either g(x) > 0 for x € [a,b] or g(x) < 0 for x € [a,b].
Then there exists a point ¢ € [a, b] such that the following equality holds:

/ f(@)g(z) di = f(c) / o(z) da. (19)

PROOF.
We use the already proved Theorem 10, for which all conditions are sat-
isfied. In particular, since the function f is continuous on a segment, for it,
by virtue of the first Weierstrass theorem, there exist numbers m, M € R
( < C 2 such that m < f(z) < M for = € [a,b] (note that the boundedness of the
1 function f follows not only from the first Weierstrass theorem, but also from
the necessary integrability condition).
W < V SN\ As m and M, we can take the values inf,c,y f(:z@ and sup,epqp (),

respectively:
B4 &{u\ m= inf f(@), M= suwp f() J()(v\asm&u -ﬂbgg&\lx
# L= €lab x€la,b]
. sepy- By virtue of Theorem 10, there exists a value(j [m, M ] for which equahty
f : (17) holds. =
wi ; ince the function f is continuous on the segment [a,b], we obtain, by

irtue of the second Weierstrass theorem, that the values of m and M are
Cy dched at s'(-)me\pomﬁl ¢, there exist points c1, ¢y € [a,b] for which the
equalities f(c1) = m, f(c2) = M hold.

By virtue of the corollary of the intermediate value theorem, for the func-

’7L‘> tion f, there exists a point_c lying on a segment with endpommts ¢; and ¢,

¢ in which the function f takes the value pu: f(c) = p. Since c1,¢; € [a,b], we
obtain that the point ¢ also belongs to the segment |[a, b].

Substituting the value f(c) into (17) instead of u, we get equality (19). O
THEOREM 12 (THE THIRD MEAN VALUE THEOREM).

Let the function f be continuous on [a,b]. Then there exists a point
¢ € [a, b] such that the following equality holds:

/ f(z)dz = f(e)(b - a). (20)

REMARK GEOMETRIC SENSE OF THE THIRD MEAN VALUE THEOREM)

Assume that f(z) > 0 for z € [a,b]. We noted earlier that the value of
a definite integral f; f(x) dx can be interpreted as the area of a curvilinear
trapezoid bounded by the graph y = f(z), the segment of the axis OX,
and the lines x = a and x = b (this fact will be proved later when we give
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a rigorous definition of area). Formula (20) means that there exists a point
¢ € [a,b] for which a rectangle with the base [a, b] and the height f(c) has
an area equal to the area of this curvilinear trapezoid (F% 6).

- ak

0 a C b X

Fig. 6. Geometric sense of the third mean value theorem

PROOF-.
[t is enough to use the second mean value theorem (Theorem 11) by putting
g(x) = 1 in it. Obviously, in this case the function g(x) preserves the sign.

~ Then
b b
/g(x)d:v: dx =b— a.

—_————————

Substituting the function g( ) =
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