
7. Integral with a variable upper limit.
Newton–Leibniz formula

Integral with a variable upper limit

Definition of an integral
with a variable upper limit 2.7A/12:56 (04:01)

Definition.
Let the function f be integrable on the segment [a, b]. Then, by the inte-

grability theorem on the embedded segment, it is integrable on the segment
[a, x] for any x ∈ [a, b]. Therefore, for any x ∈ [a, b], there exists an integral∫ x
a f(t) dt. Denote this integral by F (x):

F (x)
def
=

∫ x

a

f(t) dt.

The function F (x) is called an integral with a variable upper limit. Obvi-
ously, F (a) = 0 as an integral over a segment of zero length.

Theorem on the continuity of an integral
with a variable upper limit 2.7A/16:57 (16:48)

Theorem 1 (on the continuity of an integral with a variable
upper limit).

For any function f integrable on the segment [a, b], its integral with a vari-
able upper limit F is a continuous function on this segment.

Proof.
We choose an arbitrary point x0 ∈ [a, b] and prove that the function F (x)

is continuous at this point. For definiteness, we assume that x0 ∈ (a, b).
We want to prove that the limit of the function F (x) as x → x0 is equal

to the value of the function at the point x0:

lim
∆x→0

(
F (x0 + ∆x)− F (x0)

)
= 0.

We assume that x0 + ∆x ∈ [a, b]; the increment ∆x can be both positive
and negative.

https://www.youtube.com/watch?v=h77yheGoE1I&t=12m56s
https://www.youtube.com/watch?v=h77yheGoE1I&t=16m57s
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Consider the difference |F (x0 + ∆x)− F (x0)| and transform it using the
definition of an integral with a variable upper limit and the additivity theorem
for the integral with respect to the integration segment:

|F (x0 + ∆x)− F (x0)| =
∣∣∣∫ x0+∆x

a

f(t) dt−
∫ x0

a

f(t) dt
∣∣∣ =

=
∣∣∣∫ x0

a

f(t) dt+

∫ x0+∆x

x0

f(t) dt−
∫ x0

a

f(t) dt
∣∣∣ =

∣∣∣∫ x0+∆x

x0

f(t) dt
∣∣∣.

If ∆x > 0, then the right-hand side of the resulting equality can be esti-
mated using the property of the integral of the absolute value of a function:∣∣∣∫ x0+∆x

x0

f(t) dt
∣∣∣ ≤ ∫ x0+∆x

x0

|f(t)| dt.

A similar estimate can be obtained for the case ∆x < 0; in this case, we
must use the integral

∫ x0
x0+∆x |f(t)| dt on the right-hand side of the estimate.

If we do not impose additional conditions on ∆x, then we can write the
following version of the estimate, which is valid for both positive and negative
values of ∆x:∣∣∣∫ x0+∆x

x0

f(t) dt
∣∣∣ ≤ ∣∣∣∫ x0+∆x

x0

|f(t)| dt
∣∣∣.

Since the function f is integrable, it is bounded:

∃C > 0 ∀x ∈ [a, b] |f(x)| ≤ C.

If we assume that ∆x > 0, then from the estimate |f(x)| ≤ C, using the
theorem on the comparison of integrals, we obtain the following estimate:∫ x0+∆x

x0

|f(t)| dt ≤
∫ x0+∆x

x0

C dt = C∆x .

If we do not impose additional conditions on ∆x, then we have a similar
estimate containing the absolute value of the integral and the absolute value
of ∆x: ∣∣∣∫ x0+∆x

x0

|f(t)| dt
∣∣∣ ≤ C|∆x|.

Indeed, in the case ∆x < 0 we get∣∣∣∫ x0+∆x

x0

|f(t)| dt
∣∣∣ =

∫ x0

x0+∆x

|f(t)| dt ≤ C(−∆x) = C|∆x|.

So, we started with the expression |F (x0 + ∆x)−F (x0)| and, as a result,
evaluated it from above with the expression C|∆x|:
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|F (x0 + ∆x)− F (x0)| ≤ C|∆x|.
If ∆x approaches 0, then the right-hand side of the resulting estimate also

approaches 0; therefore, by virtue of the theorem on passing to the limit in
inequalities, the left-hand side also approaches 0. We have proved that the
function F is continuous at an arbitrary point x0 ∈ (a, b).

The case when x0 coincides with one of the endpoints of the initial segment
is considered similarly, taking into account the fact that in this case the limit
at the endpoints of the segment should be understood as one-sided limit (and
it suffices to consider the positive increment ∆x for the point a and negative
increment for the point b). �

Theorem on the differentiability of an integral with a variable
upper limit and a continuous integrand

2.7A/33:45 (13:39), 2.7B/00:00 (04:04)

Theorem 2 (on the differentiability of an integral with
a variable upper limit and a continuous integrand).

If the function f is integrable on the segment [a, b] and continuous at the
point x0 ∈ (a, b), then its integral with a variable upper limit F is a differen-
tiable function at the point x0 and the formula holds:

F ′(x0) = f(x0).

Remarks.
1. It can be proved that the integral with a variable upper limit and an

integrand continuous on [a, b] is a differentiable function also at the endpoints
of the segment [a, b] if, in this case, we consider the one-sided derivative, that
is, one-sided limit of the ratio of the increment of the function to the increment
of the argument. However, we will not need this fact.

2. Theorems 1 and 2 indicate that the integration operation “improves” the
properties of functions: if the original function is integrable, then its integral
with a variable upper limit is a continuous function and if the original function
is continuous, then its integral with a variable upper limit is a differentiable
function.

Proof.
We need to prove that there exists a limit lim∆x→0

F (x0+∆x)−F (x0)
∆x and the

limit value is f(x0). In other words, we need to prove that the following
equality holds:

lim
∆x→0

(F (x0 + ∆x)− F (x0)

∆x
− f(x0)

)
= 0 .

https://www.youtube.com/watch?v=h77yheGoE1I&t=33m45s
https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=00m01s
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Let us write down what the last equality means in the language ε–δ:

∀ ε > 0 ∃ δ > 0 ∀∆x, |∆x| < δ,∣∣∣F (x0 + ∆x)− F (x0)

∆x
− f(x0)

∣∣∣ < ε. (1)

We select some value of ε > 0. By condition, the function f is continuous
at the point x0. This means that the following condition is true for the
selected ε:

∃ δ > 0 ∀∆x, |∆x| < δ, |f(x0 + ∆x)− f(x0)| <
ε

2
. (2)

Let us show that the value δ from condition (2) also ensures that condi-
tion (1) is satisfied, i. e., that the estimate |f(x0 + ∆x)− f(x0)| < ε

2 implies
the validity of the estimate

∣∣F (x0+∆x)−F (x0)
∆x − f(x0)

∣∣ < ε.
Transform the difference

∣∣F (x0+∆x)−F (x0)
∆x − f(x0)

∣∣ by taking out the factor
1

∆x and then use the definition of an integral with a variable upper limit:∣∣∣ 1

∆x

(∫ x0+∆x

a

f(t) dt−
∫ x0

a

f(t) dt− f(x0)∆x
)∣∣∣. (3)

In the proof of Theorem 1, we have already established that the difference∫ x0+∆x

a f(t) dt −
∫ x0
a f(t) dt is an integral from x0 to x0 + ∆x. Further, the

factor ∆x in the last term f(x0)∆x of expression (3) can be represented as
the integral

∫ x0+∆x

x0
dt. Thus, expression (3) takes the form

1

|∆x|

∣∣∣∫ x0+∆x

x0

f(t) dt− f(x0)

∫ x0+∆x

x0

dt
∣∣∣.

Since the obtained integrals have the same integration limits, we can write
the last expression as a single integral of the difference of functions:

1

|∆x|

∣∣∣∫ x0+∆x

x0

(
f(t)− f(x0)

)
dt
∣∣∣.

This expression can be estimated from above by an expression containing
the integral of the absolute value of the difference of functions:

1

|∆x|

∣∣∣∫ x0+∆x

x0

(
f(t) − f(x0)

)
dt
∣∣∣ ≤ 1

|∆x|

∣∣∣∫ x0+∆x

x0

|f(t) − f(x0)| dt
∣∣∣.

(4)

We did not remove the absolute value sign for the integral, since the value
of ∆x can be either positive or negative.

Now let us turn to the estimate |f(x0 + ∆x) − f(x0)| < ε
2 from (2).

The points x0 and x0 + ∆x appearing in this estimate are the limits of the
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integral on the right-hand side of (4). Any point t located between x0 and
x0 + ∆x can be represented as x0 + δ′, where |δ′| < |∆x|. Since it is assumed
in condition (2) that |∆x| < δ, we see that the same estimate holds for
|δ′|: |δ′| < δ. This means that, for the point t = x0 + δ′, the estimate
|f(t)− f(x0)| < ε

2 is also valid.
Thus, the integrand on the right-hand side of (4) is estimated by ε

2 for all
points t:

|f(t)− f(x0)| <
ε

2
.

In this estimate, the “<” sign can be replaced with the “≤” sign. Using
the theorem on the comparison of integrals, we obtain

1

|∆x|

∣∣∣∫ x0+∆x

x0

|f(t)− f(x0)| dt
∣∣∣ ≤ 1

|∆x|

∣∣∣∫ x0+∆x

x0

ε

2
dt
∣∣∣ =

=
1

|∆x|
· ε

2

∣∣∣∫ x0+∆x

x0

dt
∣∣∣ =

1

|∆x|
· ε

2
|∆x| = ε

2
< ε.

So, we have proved that, for any values of ∆x satisfying the condition
|∆x| < δ, the estimate holds:∣∣∣F (x0 + ∆x)− F (x0)

∆x
− f(x0)

∣∣∣ < ε.

This means that condition (1) is satisfied. Therefore, the function F (x)
has a derivative at the point x0 and this derivative is equal to f(x0). �

Newton–Leibniz formula

Theorems on antiderivatives
for continuous functions 2.7B/04:04 (06:23)

Theorem 3 (on the existence of an antiderivative for a con-
tinuous function).

Any function f continuous on [a, b] has an antiderivative on (a, b), which
is an integral with a variable upper limit: F (x) =

∫ x
a f(t) dt.

Proof.
Since f is continuous on [a, b], it follows from Theorem 2 that its integral

with a variable upper limit F is a differentiable function on (a, b) and, for
any point x ∈ (a, b), the equality F ′(x) = f(x) is true. We have obtained
that F (x) satisfies the definition of the antiderivative of the function f(x) for
x ∈ (a, b). �

https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=04m04s
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Corollary.
If f is a continuous function on [a, b] and Φ(x) is its antiderivative on (a, b),

then this antiderivative can be represented in the following form, where C is
some constant:

Φ(x) =

∫ x

a

f(t) dt+ C. (5)

Proof.
By Theorem 3, we obtain that the integral with a variable upper limit∫ x

a f(t) dt is an antiderivative of the function f . The theorem on antideriva-
tives of a given function states that any two antiderivatives of the function f
are different by some constant term C. �

Newton–Leibniz formula 2.7B/10:27 (05:55)

Theorem 4 (the fundamental theorem of calculus).
If the function f is continuous on [a, b], Φ(x) is a continuous function on

[a, b], and Φ is the antiderivative of the function f on (a, b) (a function Φ
with the indicated properties exists by virtue of Theorem 3), then∫ b

a

f(x) dx = Φ(b)− Φ(a). (6)

Formula (6) is called the Newton–Leibniz formula.
Remarks.
1. The antiderivative (and the indefinite integral) is defined by means of

the differentiation operation, but the definite integral is defined by means
of the limit of integral sums and therefore its definition is not related with
the differentiation operation. Nevertheless, there is a relation between the
operations of differentiation (that is, finding the derivative) and integration
(that is, finding the definite integral), which is established by the Newton–
Leibniz formula. That is why Theorem 4 is called the fundamental theorem
of calculus.

2. The Newton–Leibniz formula (6) allows us to reduce the problem of
finding a definite integral to the problem of finding the antiderivative of an
integrand over a given interval.

3. Formula (6) remains valid for the case a ≥ b.
4. Formula (6) is often written in the following form:∫ b

a

f(x) dx = Φ(x)
∣∣∣b
a
.

https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=10m27s
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Proof.
By the corollary of Theorem 3, there exists a constant C ∈ R such that

the antiderivative Φ(x) of the function f(x) is representable in the form (5).
Given this form, we find the values of the antiderivative Φ(x) at the endpoints
of the segment [a, b]:

Φ(a) =

∫ a

a

f(t) dt+ C = C, Φ(b) =

∫ b

a

f(t) dt+ C.

The difference Φ(b)− Φ(a) is
∫ b
a f(t) dt + C − C =

∫ b
a f(t) dt. Thus, the

Newton–Leibniz formula is proved, since the value of the integral does not
depend on the choice of a letter for the integration parameter (in this case, x
or t). �

Additional techniques for calculating definite integrals

Change of variables in a definite integral 2.7B/16:22 (11:37)

Theorem 5 (on the change of variables in a definite inte-
gral).

Let the function f(x) be continuous on [a0, b0], the function ϕ(t) act from
(α0, β0) to (a0, b0) and be continuously differentiable on (α0, β0) (this means
that the derivative ϕ′(t) is defined and continuous on (α0, β0)). Let, in addi-
tion, α, β ∈ (α0, β0) and ϕ(α) = a, ϕ(β) = b (moreover, a, b ∈ (a0, b0) due
to the properties of the function ϕ(t)).

Then∫ b

a

f(x) dx =

∫ β

α

f
(
ϕ(t)

)
ϕ′(t) dt. (7)

Remark.
When using Theorem 5 to transform the integral

∫ b
a f(x) dx, the function

ϕ(t) arises when we change the previous integration parameter x by the new
parameter t: x = ϕ(t). In this case, the differentials will be related as follows:
dx = ϕ′(t) dt. This is similar to the relation used to change of variables in
an indefinite integral. The only difference from the case of changing vari-
ables in an indefinite integral is that in the case of a definite integral, it is
also necessary to change the integration limits using the relations a = ϕ(α),
b = ϕ(β).

https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=16m22s
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Proof.
First, we note that the integrals on the left-hand and right-hand side of (7)

exist, since their integrands are continuous over the entire integration seg-
ment.

Since the function f(x) is continuous on [a0, b0], it has an antiderivative
on (a, b) by virtue of Theorem 3. Denote this antiderivative by Φ(x).

Let us differentiate the superposition Φ
(
ϕ(t)

)
, which is defined for

t ∈ (α0, β0):(
Φ
(
ϕ(t)

))′
= Φ′(x)|x=ϕ(t) · ϕ

′(t) = f
(
ϕ(t)

)
ϕ′(t).

Thus, the superposition Φ
(
ϕ(t)

)
is the antiderivative for the integrand of

the right-hand side of equality (7) on the interval (α0, β0).
Now we apply the Newton–Leibniz formula for the integrals indicated on

the left-hand side and the right-hand side of (7):∫ b

a

f(x) dx = Φ(b)− Φ(a),∫ β

α

f
(
ϕ(t)

)
ϕ′(t) dt = Φ

(
ϕ(β)

)
− Φ

(
ϕ(α)

)
= Φ(b)− Φ(a).

Since the right-hand sides of the obtained equalities coincide, we conclude
that the left-hand sides coincide too, i. e., that equality (7) holds. �

Corollaries of the theorem on the change
of variables in a definite integral 2.7B/27:59 (09:28)

1. Let the function f be an odd function defined and continuous on the
segment [−a, a]. Then

∫ a
−a f(t) dt = 0.

Proof.
We represent this integral as the sum of the integrals:∫ a

−a
f(t) dt =

∫ 0

−a
f(t) dt+

∫ a

0

f(t) dt. (8)

In the first integral from the right-hand side of equality (8), we make the
variable change t = −x. Then dt = −dx, the integration limits −a and 0
will change by a and 0, respectively, and this integral will take the form∫ 0

−a
f(t) dt =

∫ 0

a

f(−x) (−dx).

Since the function f is odd, the equality f(−x) = −f(x) holds. Thus,

https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=27m59s
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∫ 0

a

f(−x) (−dx) =

∫ 0

a

(
−f(x)

)
(−dx) =

∫ 0

a

f(x) dx.

Now change the integration limits:∫ 0

a

f(x) dx = −
∫ a

0

f(x) dx.

Substituting this representation for the first integral in the right-hand side
of (8), we obtain

−
∫ a

0

f(x) dx+

∫ a

0

f(t) dt = 0. �

2. Let the function f be an even function defined and continuous on the
segment [−a, a]. Then

∫ a
−a f(t) dt = 2

∫ a
0 f(t) dt.

Proof.
As in the proof of corollary 1, we represent this integral as the sum of

integrals (8) and make the same variable change t = −x in the first integral
from the right-hand side of (8):∫ 0

−a
f(t) dt =

∫ 0

a

f(−x) (−dx).

In this case, the function is even, i. e., f(−x) = f(x), so further transfor-
mations of the integral will be as follows:∫ 0

a

f(−x) (−dx) = −
∫ 0

a

f(x) dx =

∫ a

0

f(x) dx.

Substituting this representation for the first integral in the right-hand side
of (8), we obtain the required expression:∫ a

0

f(x) dx+

∫ a

0

f(t) dt = 2

∫ a

0

f(t) dt. �

3. Let the function f be a continuous periodic function with period T .
Then

∀ a ∈ R
∫ a+T

a

f(t) dt =

∫ T

0

f(t) dt. (9)

Thus, the integral of a periodic function over any segment whose length is
equal to its period T is equal to the integral over the segment [0, T ].

Proof.
Using the second theorem on the additivity of a definite integral with

respect to the integration segment, we transform the integral
∫ a+T

a f(t) dt
as follows:
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∫ a+T

a

f(t) dt =

∫ 0

a

f(t) dt+

∫ T

0

f(t) dt+

∫ a+T

T

f(t) dt. (10)

In the last integral of the right-hand side of (10), we make the variable
change x = t − T . Then dx = dt, the integration limits T , a + T change
by 0, a, and this integral takes the form∫ a+T

T

f(t) dt =

∫ a

0

f(x+ T ) dx = −
∫ 0

a

f(x+ T ) dx.

Since the function f is periodic with the period T , the equality
f(x + T ) = f(x) holds. We got that the third integral on the right-hand
side of (10) is −

∫ 0

a f(x) dx and, in combination with the first integral, gives
the value 0. Thus, equality (10) turns into equality (9). �

Version of the theorem on the change
of variables in a definite integral 2.8A/00:00 (10:45)

The theorem on the change of variables in a definite integral considers the
intervals (a0, b0) and (α0, β0) containing segments with endpoints a, b and
α, β, over which the integration is carried out in (7). The purpose of this
formulation is to guarantee the existence of the derivative ϕ′(t) at all points
of the integration segment.

If we consider the derivatives defined on the segment, assuming that the
derivatives are calculated as one-sided limits at the endpoints of the segment,
then the condition of the theorem can be simplified by requiring that the
function f(x) is continuous on [a, b], the function ϕ(t) acts from [α, β] to
[a, b] and is continuously differentiable on [α, β], and the equalities ϕ(α) = a,
ϕ(β) = b hold.

Integration formula by parts
for a definite integral 2.8A/10:45 (04:49)

Theorem (on integration by parts of a definite integral)..
Let the functions u, v be continuously differentiable on the interval (a0, b0)

and the segment [a, b] be contained in the interval (a0, b0). Then the following
formula holds:∫ b

a

uv′ dx = uv|ba −
∫ b

a

u′v dx. (11)

Formula (11) is called the integration formula by parts for a definite inte-
gral. Recall that the expression uv|ba means the difference u(b)v(b)−u(a)v(a).

https://www.youtube.com/watch?v=Yg2rrKjorF8&t=00m01s
https://www.youtube.com/watch?v=Yg2rrKjorF8&t=10m45s
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Remark.
As in the case of the theorem on changing a variable in a definite integral,

if we consider the derivatives defined on the segment, assuming that the
derivatives at the endpoints of the segment are calculated as one-sided limits,
then the condition of the theorem can be simplified by requiring only that
the functions u, v were continuously differentiable on the segment [a, b].

Proof.
By the formula of the derivative of the product, we have(

u(x)v(x)
)′

= u′(x)v(x) + u(x)v′(x).

Let us express the product u(x)v′(x) from the last equality:

u(x)v′(x) =
(
u(x)v(x)

)′ − u′(x)v(x).

The expressions on the left and on the right are continuous functions and
therefore they are integrable. Integrating the left-hand side and the right-
hand side of the equality from a to b and using the linearity of a definite
integral with respect to the integrand, we obtain∫ b

a

u(x)v′(x) dx =

∫ b

a

(
u(x)v(x)

)′
dx−

∫ b

a

u′(x)v(x) dx. (12)

Obviously, the function F (x) = u(x)v(x) is the antiderivative for the
function

(
u(x)v(x)

)′. Then, according to the Newton–Leibniz formula, we
have ∫ b

a

(
u(x)v(x)

)′
dx = F (b)− F (a) = F (x)|ba = u(x)v(x)|ba.

Substituting the obtained representation of the integral
∫ b
a

(
u(x)v(x)

)′
dx

into (12), we get equality (11). �
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