
12. Numerical series

Numerical series: definition and examples

Definition of a numerical series 3.10A/11:35 (05:39)

Recall how the finite sum of terms is written using the summation sym-
bol

∑
:

n∑
k=1

ak = a1 + a2 + · · ·+ an.

If the symbol ∞ is indicated in the notation of the sum instead of the
finite number n, then this notation can be considered as a formal notation of
the sum of an infinite number of terms (such a construction is called a formal
sum):

∞∑
k=1

ak = a1 + a2 + · · ·+ ak + . . .

The expression
∑∞

k=1 ak is called a numerical series, and the value ak is
called a common term of the series. Thus, the series of numbers

∑∞
k=1 ak is

the formal sum of all elements of the sequence {ak} (the elements are taken
in ascending order of their indices).

Under additional conditions, a specific numerical value (called the sum of
a series) can be associated with a numerical series. Consider the finite sum

Sn =
n∑

k=1

ak.

This sum is called the partial sum of the series
∑∞

k=1 ak; it exists for any
number n ∈ R. Thus, we get a sequence of partial sums {Sn}.

If there exists a finite limit S of the sequence {Sn} as n → ∞, then
the numerical series

∑∞
k=1 ak is called convergent and the limit S is called the

sum of this numerical series. If the series converges, then its notation
∑∞

k=1 ak
usually means the value of its sum, i. e., the limit S (just as the notation of
an improper integral means the limit value of usual proper integrals):

∞∑
k=1

ak
def
= lim

n→∞

n∑
k=1

ak.

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=11m35s
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If the sequence of partial sums {Sn} has no limit or has an infinite limit,
then the series

∑∞
k=1 ak is called divergent; in this case, the sum of the series

is not defined (as well as the value of the divergent improper integral).
We emphasize that, in any case, the notation

∑∞
k=1 ak can be considered

as a formal sum of an infinite number of terms, regardless of whether this
formal notation corresponds to some numerical value or not.

As a summation parameter, the symbols i and j are often used along with
the symbol k.

The initial value of the summation parameter does not have to be 1. Series
with a summation parameter starting with 0 are often considered. Obviously,
if the series

∑∞
k=1 ak converges, then the series

∑∞
k=n0

ak also converges for
any n0 ∈ N.

Example of a numerical series: the sum
of the elements of a geometric progression 3.10A/17:14 (10:21)

Let q 6= 0 be an arbitrary real number. Consider a series with the common
term qk:

∞∑
k=0

qk = 1 + q + q2 + · · ·+ qk + . . .

This series is the formal sum of all terms of the geometric progression
with 1 as the first term and q as the ratio.

Recall the formula for the sum of the initial terms of such a geometric
progression (provided that q 6= 1):

Sn =
n∑

k=0

qk =
1− qn+1

1− q
.

In this case, Sn denotes the sum of (n + 1) initial terms of the geometric
progression. It is clear that if q = 1, then Sn = n+ 1.

If |q| < 1, then limn→∞ Sn = 1
1−q . If |q| ≥ 1, then the limit of the sequence

{Sn} as n → ∞ is either infinite or (for q = −1) does not exist (since, for
q = −1, the sequence {qn} has the form {1,−1, 1,−1, . . . } and therefore the
sequence {Sn} is equal to {1, 0, 1, 0, . . . }).

So, if |q| ≥ 1, then the series
∑∞

k=0 q
k diverges, and if |q| < 1, then the

series
∑∞

k=0 q
k converges and its sum is 1

1−q :
∞∑
k=0

qk =
1

1− q
, |q| < 1, q 6= 0.

This formula is called the formula of the sum of an infinitely decreasing
geometric progression.

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=17m14s
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Cauchy criterion for the convergence of a numerical
series and a necessary condition for its convergence

Cauchy criterion for the convergence
of a numerical series 3.10A/27:35 (07:57)

Theorem (Cauchy criterion for the convergence of a nu-
merical series).

The series
∑∞

k=1 ak converges if and only if the following condition is sat-
isfied:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N
∣∣∣ m+p∑
k=m+1

ak

∣∣∣ < ε. (1)

Proof.
Let Sn =

∑n
k=1 ak be a partial sum of the initial series. A series converges

if and only if the sequence of partial sums {Sn} is convergent.
For the sequence {Sn}, we write the condition from the Cauchy criterion

for the convergence of a sequence:
∀ ε > 0 ∃N ∈ N ∀m1,m2 > N |Sm2

− Sm1
| < ε.

If we put m1 = m, m2 = m + p for some p ∈ N, then the last condition
can be rewritten in the following form:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N |Sm+p − Sm| < ε. (2)
Let us transform the difference Sm+p−Sm taking into account the formula

for partial sums:

Sm+p−Sm =

m+p∑
k=1

ak−
m∑
k=1

ak =
m∑
k=1

ak+

m+p∑
k=m+1

ak−
m∑
k=1

ak =

m+p∑
k=m+1

ak.

Substituting the obtained expression for the difference Sm+p − Sm into
condition (2), we obtain condition (1).

So, we have shown that condition (1) is necessary and sufficient for the
convergence of the sequence {Sn}, and the convergence of this sequence takes
place if and only if the initial series converges. �

A necessary condition for the convergence
of a numerical series 3.10A/35:32 (04:58)

Corollary (a necessary condition for the convergence
of a numerical series).

If the series
∑∞

k=1 ak converges, then its common term ak approaches zero:

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=27m35s
https://www.youtube.com/watch?v=RuNzgI_hUCk&t=35m32s
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lim
k→∞

ak = 0.

Remarks.
1. This condition means that if the common term of a series does not

approach 0, then the series is not convergent. Thus, it makes it easy to prove
the divergence of many series. However, it should be emphasized that this
condition is not a sufficient condition for convergence: from the fact that
the common term of a series approaches 0, it does not follow that the series
converges (we will give the corresponding examples later).

2. A similar condition for improper integrals over a semi-infinite inter-
val, generally speaking, does not hold. There exist conditionally convergent
improper integrals of the form

∫ +∞
a f(x) dx for which the integrand f(x)

does not approach zero as x → +∞. An example of such an integral is∫ +∞
1 sin ex dx. It is easy to prove the convergence of this integral by changing
the variable t = ex, since, as a result of this changing, the integral will take
the form

∫ +∞
e

sin t
t dt. At the same time, if the function f(x) is non-negative

and non-increasing on the interval [a,+∞), then the convergence of the inte-
gral

∫ +∞
a f(x) dx implies that limx→+∞ f(x) = 0 (this fact follows from the

integral convergence test considered in the next chapter).
Proof.
Since the initial series converges, condition (1) of the Cauchy criterion

for the convergence of a numerical series is fulfilled for it. We put p = 1
in this condition (this can be done, since it is allowed to take any p ∈ N
in condition (1)):

∀ ε > 0 ∃N ∈ N ∀m > N
∣∣∣ m+1∑
k=m+1

ak

∣∣∣ < ε. (3)

Since
∑m+1

k=m+1 ak = am+1, the last inequality takes the form |am+1| < ε.
Thus, condition (3) coincides with the definition (in the language ε–N) of

a convergent sequence {ak} in the case when its limit is 0. �

Absolutely convergent numerical series and arithmetic
properties of convergent numerical series

Absolutely convergent
numerical series 3.10A/40:30 (01:44), 3.10B/00:00 (03:09)

Definition.
The series

∑∞
k=1 ak absolutely converges if the series

∑∞
k=1 |ak| converges.

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=40m30s
https://www.youtube.com/watch?v=PcIYNHo15_Y&t=00m01s
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Theorem (on the convergence of an absolutely convergent
numerical series).

If the series absolutely converges, then it is convergent.
Proof.
Let the series

∑∞
k=1 ak absolutely converge. This means that the series∑∞

k=1 |ak| converges.
Therefore, by virtue of the necessary part of the Cauchy criterion for the

convergence of a numerical series, condition (1) is satisfied:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N
m+p∑

k=m+1

|ak| < ε.

The sum
∑m+p

k=m+1 |ak| can be estimated from below using the following
absolute value property (which is a generalization of the triangle inequality
for the case of the sum of n terms):∣∣∣ m+p∑

k=m+1

ak

∣∣∣ ≤ m+p∑
k=m+1

|ak|.

Since the right-hand side of the last inequality is bounded from above by ε,
the same estimate holds for the left-hand side of the inequality:∣∣∣ m+p∑

k=m+1

ak

∣∣∣ < ε.

This inequality coincides with condition (1) of the Cauchy criterion for
the convergence of the numerical series

∑∞
k=1 ak. Therefore, by virtue of

a sufficient part of the Cauchy criterion, this series converges. �

Arithmetic properties
of convergent numerical series 3.10B/03:09 (08:19)

Theorem (on arithmetic properties of convergent numeri-
cal series).

Let
∑∞

k=1 ak and
∑∞

k=1 bk be convergent series with sums Sa and Sb, re-
spectively. Let α, β ∈ R.

Then the series
∑∞

k=1(αak+βbk) also converges and its sum is αSa+βSb.
Thus, for convergent series, the same arithmetic transformations can be

used as for finite sums:
∞∑
k=1

(αak + βbk) = α
∞∑
k=1

ak + β
∞∑
k=1

bk. (4)

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=03m09s
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In addition, if the initial series converge absolutely, then the series∑∞
k=1(αak + βbk) also converges absolutely.
Proof.
Let us introduce partial sums:

S ′n =
n∑

k=1

ak, S ′′n =
n∑

k=1

bk, Sn =
n∑

k=1

(αak + βbk).

Obviously, for these finite sums, the equality holds:

Sn =
n∑

k=1

(αak + βbk) = α
n∑

k=1

ak + β
n∑

k=1

bk = αS ′n + βS ′′n.

Since, by condition, limn→∞ S
′
n = Sa, limn→∞ S

′′
n = Sb, we obtain, by

arithmetic properties of the limit of a sequence, that the limit Sn as n→∞
exists and is equal to αSa + βSb. Thus, we simultaneously proved the con-
vergence of the series

∑∞
k=1(αak + βbk) and formula (4).

To prove the absolute convergence of the series
∑∞

k=1(αak + βbk) in the
case when the initial series absolutely converge, we use the Cauchy criterion.

For α = β = 0, the statement is obvious; therefore, we will assume that
|α| + |β| 6= 0. Let us choose the value ε > 0. For absolutely convergent
initial series, by virtue of the Cauchy criterion, the following conditions are
satisfied:

∃N1 ∈ N ∀m > N1 ∀ p ∈ N
m+p∑

k=m+1

|ak| <
ε

|α|+ |β|
,

∃N2 ∈ N ∀m > N2 ∀ p ∈ N
m+p∑

k=m+1

|bk| <
ε

|α|+ |β|
.

If we put N = max {N1, N2}, then the following estimate will be true for
any m > N and p ∈ N:

m+p∑
k=m+1

|αak + βbk| ≤
m+p∑

k=m+1

(|α| · |ak|+ |β| · |bk|) =

= |α|
m+p∑

k=m+1

|ak|+ |β|
m+p∑

k=m+1

|bk| < |α| ·
ε

|α|+ |β|
+ |β| · ε

|α|+ |β|
= ε.

So, we have proved that, for the series
∑∞

k=1 |αak + βbk|, condition (1) of
the Cauchy criterion is fulfilled. Therefore, this series converges, which means
that the series

∑∞
k=1(αak + βbk) converges absolutely. �
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