12. Numerical series

Numerical series: definition and examples

Definition of a numerical series

$$
3.10 \mathrm{~A} / 11: 35(05: 39)
$$

Recall how the finite sum of terms is written using the summation symbol \sum :

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

If the symbol ∞ is indicated in the notation of the sum instead of the finite number n, then this notation can be considered as a formal notation of the sum of an infinite number of terms (such a construction is called a formal sum):

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+\cdots+a_{k}+\ldots
$$

The expression $\sum_{k=1}^{\infty} a_{k}$ is called a numerical series, and the value a_{k} is called a common term of the series. Thus, the series of numbers $\sum_{k=1}^{\infty} a_{k}$ is the formal sum of all elements of the sequence $\left\{a_{k}\right\}$ (the elements are taken in ascending order of their indices).

Under additional conditions, a specific numerical value (called the sum of a series) can be associated with a numerical series. Consider the finite sum

$$
S_{n}=\sum_{k=1}^{n} a_{k} .
$$

This sum is called the partial sum of the series $\sum_{k=1}^{\infty} a_{k}$; it exists for any number $n \in \mathbb{R}$. Thus, we get a sequence of partial sums $\left\{S_{n}\right\}$.

If there exists a finite limit S of the sequence $\left\{S_{n}\right\}$ as $n \rightarrow \infty$, then the numerical series $\sum_{k=1}^{\infty} a_{k}$ is called convergent and the limit S is called the sum of this numerical series. If the series converges, then its notation $\sum_{k=1}^{\infty} a_{k}$ usually means the value of its sum, i. e., the limit S (just as the notation of an improper integral means the limit value of usual proper integrals):

$$
\sum_{k=1}^{\infty} a_{k} \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

If the sequence of partial sums $\left\{S_{n}\right\}$ has no limit or has an infinite limit, then the series $\sum_{k=1}^{\infty} a_{k}$ is called divergent; in this case, the sum of the series is not defined (as well as the value of the divergent improper integral).

We emphasize that, in any case, the notation $\sum_{k=1}^{\infty} a_{k}$ can be considered as a formal sum of an infinite number of terms, regardless of whether this formal notation corresponds to some numerical value or not.

As a summation parameter, the symbols i and j are often used along with the symbol k.

The initial value of the summation parameter does not have to be 1 . Series with a summation parameter starting with 0 are often considered. Obviously, if the series $\sum_{k=1}^{\infty} a_{k}$ converges, then the series $\sum_{k=n_{0}}^{\infty} a_{k}$ also converges for any $n_{0} \in \mathbb{N}$.

Example of a numerical series: the sum of the elements of a geometric progression

```
3.10A/17:14 (10:21)
```

Let $q \neq 0$ be an arbitrary real number. Consider a series with the common term q^{k} :

$$
\sum_{k=0}^{\infty} q^{k}=\underbrace{1+q}+q^{2}+\cdots+q^{k}+\ldots
$$

This series is the formal sum of all terms of the geometric progression $q=1$ with 1 as the first term and q as the ratio.

Recall the formula for the sum of the initial terms of such a geometric, progression (provided that $q \neq 1$):

$$
S_{n}=\sum_{k=0}^{n} q^{k}=\frac{1-q^{n+1}}{1-q} \quad n=1 \quad \frac{1-q^{2}}{n}=\frac{1-q)(1+q}{1-q}=1+q=1
$$

 progression. It is clear that if $q=1$, then $S_{n}=n+1$.

If $|q|<1$, then $\lim _{n \rightarrow \infty} S_{n}=\frac{1}{1-q}$. If $|q| \geq 1$, then the limit of the sequence $\left\{S_{n}\right\}$ as $n \rightarrow \infty$ is either infinite or (for $q=-1$) does not exist (since, for $q=-1$, the sequence $\left\{q^{n}\right\}$ has the form $\{1,-1,1,-1, \ldots\}$ and therefore the sequence $\left\{S_{n}\right\}$ is equal to $\{1,0,1,0, \ldots\}$).

So, if $|q| \geq 1$, then the series $\sum_{k=0}^{\infty} q^{k}$ diverges, and if $|q|<1$, then the series $\sum_{k=0}^{\infty} q^{k}$ converges and its sum is $\frac{1}{1-q}$:

$$
\sum_{k=0}^{\infty} q^{k}=\frac{1}{1-q}, \quad|q|<1, q \neq 0 .
$$

This formula is called the formula of the sum of an infinitely decreasing geometric progression.

Cauchy criterion for the convergence of a numerical $\left|a_{n}-A\right|<\varepsilon$

 series and a necessary condition for its convergence
$m=$ deauchy criterion for the convergence

of a numerical series

$$
3.10 \mathrm{~A} / 27: 35(07: 57)
$$

Theorem (Cauchy criterion for the convergence of a numerical series).

The series $\sum_{k=1}^{\infty} a_{k}$ converges if and only if the following condition is satisfied:

Proof.

$$
\begin{equation*}
\rho=1 \tag{1}
\end{equation*}
$$

Let $S_{n}=\sum_{k=1}^{n} a_{k}$ be a partial sum of the initial series. A series converges if and only if the sequence of partial sums $\left\{S_{n}\right\}$ is convergent.

For the sequence $\{S\}$, we write the condition front the Cauchy criterion for the convergence of a sequence:

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall m \quad m_{2}>N \quad\left|S / m_{2}-S_{m_{1}}\right|<\varepsilon .
$$

If we put $m_{1}=m, m_{2}=m+p$ for sones $p \in \mathbb{N}$, then the last condition can be rewritten in the following form:

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall m>N \quad \forall p \in \mathbb{N} \quad\left|S_{m+p}-S_{m}\right|<\varepsilon \tag{2}
\end{equation*}
$$

Let us transform the difference $S_{m+p}-S_{m}$ taking into account the formula for partial sums:

$$
S_{m+p}-S_{m}=\sum_{k=1}^{m+p} a_{k}-\sum_{k=1}^{m} a_{k}=\sum_{k=1}^{m} a_{k}+\sum_{k=m+1}^{m+p} a_{k}-\sum_{k=1}^{m} a_{k}=\sum_{k=m+1}^{m+p} a_{k} .
$$

Substituting the obtained expression for the difference $S_{m+p}-S_{m}$ into condition (2), we obtain condition (1).

So, we have shown that condition (1) is necessary and sufficient for the convergence of the sequence $\left\{S_{n}\right\}$, and the convergence of this sequence takes place if and only if the initial series converges.

A necessary condition for the convergence

 of a numerical series$$
3.10 \mathrm{~A} / 35: 32(04: 58)
$$

Corollary (a necessary condition for the convergence of a Numerical series).

If the series $\sum_{k=1}^{\infty} a_{k}$ converges, then its common term a_{k} approaches zero:

$$
\lim _{k} a_{k}=0
$$

$K=1$
REMARKS.

1. This condition means that if the common term of a series does not approach 0 , then the series is not convergent. Thus, it makes it easy to prove the divergence of many series. However, it should be emphasized that this condition is not a sufficient condition for convergence: from the fact that the common term of a series approaches 0 , it does not follow that the series converges (we will give the corresponding examples later).
2.) A similar condition for improper integrals over a semi-infinite interval, generally speaking, does not hold. There exist conditionally convergent improper integrals of the form $\int_{a}^{+\infty} f(x) d x$ for which the integrand $f(x)$ does not approach zero as $x \rightarrow+\infty$. An example of such an integral is $\int_{1}^{+\infty} \sin e^{x} d x$. It is easy to prove the convergence of this integral by changing the variable $t=e^{x}$, since, as a result of this changing, the integral will take the form $\int_{e}^{+\infty} \frac{\sin t}{t} d t$. At the same time, if the function $f(x)$ is non-negative and non-increasing on the interval $[a,+\infty)$, then the convergence of the integrab $\int_{a}^{+\infty} f(x) d x$ implies that $\lim _{x \rightarrow+\infty} f(x)=0$ (this fact follows from the integral convergence test considered in the next chapter).

Proof.
Since the initial series converges, condition (1) of the Cauchy criterion for the convergence of a numerical series is fulfilled for it. We put $p=1$ in this condition (this can be done, since it is allowed to take any $p \in \mathbb{N}$ in condition (1)):

$$
\begin{equation*}
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall m>N \quad\left|\sum_{k=m+1}^{m+1} a_{k}\right|<\varepsilon \tag{3}
\end{equation*}
$$

Since $\sum_{k=m+1}^{m+1} a_{k}=a_{m+1}$, the last inequality takes the form $\left|a_{m+1}\right|<\varepsilon$.
Thus, condition (3) coincides with the definition (in the language $\varepsilon-N$) of a convergent sequence $\left\{a_{k}\right\}$ in the case when its limit is 0 .

Absolutely convergent numerical series and arithmetic properties of convergent numerical series

Absolutely convergent numerical series
 $$
3.10 \mathrm{~A} / 40: 30(01: 44), 3.10 \mathrm{~B} / 00: 00(03: 09)
$$

Definition.
The series $\sum_{k=1}^{\infty} a_{k}$ absolutely converges if the series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges.

Theorem (on the convergence of an absolutely convergent NUMERICAL SERIES).

If the series absolutely converges, then it is convergent.
Proof.
Let the series $\sum_{k=1}^{\infty} a_{k}$ absolutely converge. This means that the series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges.

Thertefore, by virtue of the necessary part of the Cauchy criterion for the convergence of a numerical series, condition (1) is satisfied:

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall m>N \quad \forall p \in \mathbb{N} \quad \sum_{k=m+1}^{m+p}\left|a_{k}\right|<\varepsilon
$$

The sum $\sum_{k=m+1}^{m+p}\left|a_{k}\right|$ can be estimated from below using the following absolute value property (which is a generalization of the triangle inequality for the case of the sum of n terms):

$$
\left|\sum_{k=m+1}^{m+p} a_{k}\right| \leq \sum_{k=m+1}^{m+p}\left|a_{k}\right| .<\varepsilon
$$

Since the right-hand side of the last inequality is bounded from above by ε, the same estimate holds for the left-hand side of the inequality:

This inequality coincides with condition (1) of the Cauchy criterion for the convergence of the numerical series $\sum_{k=1}^{\infty} a_{k}$. Therefore, by virtue of a sufficient part of the Cauchy criterion, this series converges.

Arithmetic properties

 of convergent numerical series$$
3.10 \mathrm{~B} / 03: 09 \quad(08: 19)
$$

ThEOREM (ON ARITHMETIC PROPERTIES OF CONVERGENT NUMERICAL SERIES).

Let $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be convergent series with sums S_{a} and S_{b}, respectively. Let $\alpha, \beta \in \mathbb{R}$.

Then the series $\sum_{k=1}^{\infty}\left(\alpha a_{k}+\beta b_{k}\right)$ also converges and its sum is $\alpha S_{a}+\beta S_{b}$.
Thus, for convergent series, the same arithmetic transformations can be used as for finite sums:

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\alpha a_{k}+\beta b_{k}\right)=\alpha \sum_{k=1}^{\infty} a_{k}+\beta \sum_{k=1}^{\infty} b_{k} . \tag{4}
\end{equation*}
$$

In addition, if the initial series converge absolutely, then the series $\sum_{k=1}^{\infty}\left(\alpha a_{k}+\beta b_{k}\right)$ also converges absolutely.

Proof.
Let us introduce partial sums:

$$
S_{n}^{\prime}=\sum_{k=1}^{n} a_{k}, \quad S_{n}^{\prime \prime}=\sum_{k=1}^{n} b_{k}, \quad S_{n}=\sum_{k=1}^{n}\left(\alpha a_{k}+\beta b_{k}\right)
$$

Obviously, for these finite sums, the equality holds:

$$
\underline{\underline{S_{n}}=\sum_{k=1}^{n}\left(\alpha a_{k}+\beta b_{k}\right)=\alpha \sum_{k=1}^{n} a_{k}+\beta \sum_{k=1}^{n} b_{k}=\alpha S_{n}^{\prime}+\beta S_{n}^{\prime \prime} .}
$$

Since, by condition, $\lim _{n \rightarrow \infty} S_{n}^{\prime}=S_{a}, \lim _{n \rightarrow \infty} S_{n}^{\prime \prime}=S_{b}$, we obtain, by arithmetic properties of the limit of a sequence, that the limit S_{n} as $n \rightarrow \infty$ exists and is equal to $\alpha S_{a}+\beta S_{b}$. Thus, we simultaneously proved the convergence of the series $\sum_{k=1}^{\infty}\left(\alpha a_{k}+\beta b_{k}\right)$ and formula (4).

Te prove the absolute convergence of the series, $\sum_{k=1}^{\infty}\left(\alpha a_{k}+\beta b_{k}\right)$ in the case when the initial serips absolutely converge, ye use the Cauchy criterion.

For $\alpha=\beta=0$, the statement is obvious; therefore, we will assume that $|\alpha|+|\beta| \neq 0$. Let us choose the value $\varepsilon>0$. For absolutely convergent initial series, by virtue of the Catchy chiterion, the following conditions are satisfied:

$$
\begin{aligned}
& \exists N_{1} \in \mathbb{N} \quad \forall m>N_{1} \quad \forall p \in \mathbb{N} \sum_{k=m+1}^{m+p}\left|a_{k}\right|<\frac{\varepsilon}{|\alpha|+|\beta|}, \\
& \exists N_{2} \in \mathbb{N} \quad \forall m>N_{2} \quad \forall p \in \mathbb{N}
\end{aligned}
$$

If we put $N=\max \left\{N_{1}, N_{2}\right\}$, then the following estimate will be true for any $m>N$ and $p \in \mathbb{N}$:

$$
\begin{aligned}
& \sum_{k=m+1}^{m+p}\left|\alpha a_{k}+\beta o_{k}\right| \leq \sum_{k=m+1}^{m+p}\left(|\alpha| \quad\left|a_{k}\right|+|\beta| \cdot\left|b_{k}\right|\right)= \\
& \quad=|\alpha| \sum_{k=m+1}^{m+p}\left|a_{k}\right|+|\beta\rangle \sum_{k=m}^{m+p}\left|b_{k}\right|<|\alpha| \cdot \frac{\varepsilon}{|\alpha|+|\beta|}+|\beta| \cdot \frac{\varepsilon}{|\alpha|+|\beta|}=\varepsilon .
\end{aligned}
$$

So, we have proved that, for theseries $\sum_{k=1}^{\infty}\left|\alpha a_{k}+\beta b_{k}\right|$, condition (1) of the Cauchy criterion is fulfillec. Therefore, this series converges, which means that the series $\sum_{k=1}^{\infty}\left(\alpha a_{k}+\beta b_{k}\right)$ converges absolutely.

