13. Convergence tests for numerical series
with non-negative terms

S——

Comparison test

Criterion for convergence of numerical series
with non-negative terms \3.1OB/11:28 (07:21) \

THEOREM (CRITERION FOR CONVERGENCE OF NUMERICAL SERIES
WITH NON-NEGATIVE TERMS).
Let all terms of the series > ;- ; a; be non-negative:

VEeN a;>0.

Then this series converges if and only if the set of values of its partial sums
SV

IM>0 VneN ) a <M. (1)
- k=1

PROOF.

Consider the sequence of partial sums S, = Y, _; aj. Since all the terms ay,

are non-negative, we obtaly that this sequénce is non-decreasing:

n
ar + apy1 > E ar = Sp.
1

quence, we proved that a non-decreasing

When studying the limit of
i bounded from above.

sequence converges if and onl
Thus, the condition (1),
negative terms) are bounded from abov
the sequence {5,,}, andAhe convergence
convergence of the numerical series. [

hich meays that the partial sums S,, (with non-
is equivalent to the convergence of
this sequence is equivalent to the


https://www.youtube.com/watch?v=PcIYNHo15_Y&t=11m28s

Comparison test for numerical series \3. 10B/18:49 (06:49) \

THEOREM (COMPARISON TEST FOR NUMERICAL SERIES).
Let 02, ax and Y, by, be series for which the following condition holds:

dmeN Vi>m 0<a; <. . g —

LR \
Then two statements are valid. 4\Z7 W -

1. If the series Y, ; by converges, then the series 7~ ay also converges.

2. If the series Y, ; ai diverges, then the series Y . by also diverges.

?)ROOF.

Since the convergence of the series Y~ ; ay, is equivalent to the convergence
of the series Zzozm ar, and the same fact is true for series with terms by, it is
enough to prove the theorem for the series >~ a and >~ b, all terms
of which are non-negative and satisfy the inequality ay leby.

1. If the series > ;- by converges, then, by the criterion for the conver-
_~——
gence of numerical series with ndij-negative terms, we have

we 3}
AVAD SN
dJM >0 VneNn>m, ZkaM.
= —
Then, due to the inequality a; < bi, we obtain that a similar estimate is
also valid for partial sums of the series >~ ag:

n

ZaksikaM. q‘_(‘(g,-lw;l \’"L
e

k=m k=m

Therefore, by the same criterion, the series Y ;- aj converges.

2. Let the series ), ay, diverge.
If we assume that the series > ;- by converges, then, by already proved
statement 1, the series >~ aj should also converge. But this fact contra-
dicts the condition. Therefore, the assumption made is false and the series
> re, b diverges. O

REMARK.

From the comparison test for numerical series, one can obtain a corollary
similar to the corollary from the comparison test for improper integrals: if, for
all £ € N starting from some m, the estimates ap > 0, b > 0 are fulfilled and
the limit relation limj o 3* = 1 holds, then the series S peqak and Y27 by,
either both converge orboth-diverge.



https://www.youtube.com/watch?v=PcIYNHo15_Y&t=18m49s
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Integral test of convergence —j/( Y= f(v\

— — —
Formulation of the integral test 2 3 Yy
of convergence 3.10B/25:38 (03:55)

THEOREM (INTEGRAL TEST OF CONVERGENCE).

Let the function f be defined on the set [1,400), be non-negative and
non-increasing, and lim, o, f(z) = 0.

Then the improper integral ffLoo f(x)dz and the series Y~ f(k) either
both converge or both diverge: —

Initial stage of the proof 13.10B/29:33 (07:07)]|

We choose thé~gints k, & + 1 € N and assume that tie point x € R is
between k and k+ 1: A< ¢ < k4 1. Since the function/f is non-increasing,
the following double inequal

fk+1) < fz) < f(k).
Let us integrate all the terms of théNgesulti
to k 4 1; this operation will not change the 3j¢n of inequality:

k1 k1
f(k+ 1)/ dr <
k

double inequality from k

k


https://www.youtube.com/watch?v=PcIYNHo15_Y&t=25m38s
https://www.youtube.com/watch?v=PcIYNHo15_Y&t=29m33s

Let us introduce the notagibn for the partial sum of the series:
Sp=>1_1 f(k). Using thispdtation, we finally obtain

Snr1— f(1) < () < S (2)

The final stage of the proof \3. 10B/36:40 (07:13) \

Now we consider vakous situations related to the convergence or divergence

of the initial integral any series.

1. Let the improper intégral f;roo f(x) dx conyérge. Then, by virtue of the
criterion for the convergence\Qf improper integgals of non-negative functions,
we have

dJM >0 Ve>1 /f
1

Using this estimate for the integral/nd the left-hand side of estimate (2),

we obtain -
St — f(1) < / £

Thus, we have proved tha#'the partial sums of\5,, are uniformly bounded:

and the right-hand side of estimate (2), we obtain
+1

Using this estim

[ swie< [

We have proved that the integra
Ve>1 /f(x)da:SM
1

Therefore, by the criterigh for the convergence of improper integrals of
. . . +00
non-negative functions, the integral fl f(x) dx converges.

(x) dx are uniformly bounded:


https://www.youtube.com/watch?v=PcIYNHo15_Y&t=36m40s

13. Convergence tests for numerical series with non-negative terms )

> ey f(Ek) conv

integral f1+oo () dr must also converge, but this contradicts the condition.

Therefore, the series diverges. [ P}
REMARK. A7 o l 7
The limit relation lim, .~ f(z) = 0 was not used in the proof. It is e :'—/o’u

required in order to ensure that the necessary condition for the convergence 'S

of the series > -, f(k) is satisfied, since if this condition is violated, the

series will necessarily diverge (and, as follows from the proof, the integral

f1+oo f(x)dx will also diverge). oo (k)( LW d S & %%

) €

N

/—'___/
An example of applying g ”"f c £ __&
the integral test of convergence - 3.11A/00:00 (04 749)

Earlier, we found that the improper integral f1+oo x% dx converges for a > 1 J=
and diverges for « < 1. Now we can extend this result to the correspond- "1
ing series. For a > 0, the function f(z) = = satisfies all the conditions 2 \
of the previous theorem (it is non-negative and monotonously approaches 0 —
as © — +00), therefore, by virtue of of the previous theorem, the series
> pei = converges for v > 1 and diverges for a € (0,1]. For a < 0, the =1
series > 1, = also diverges, since, in this case, its common term &+ does not

k=1 ko ) ) ) ke o ' ¢ Mjes
approach 0 as k& — oo and therefore the necessary convergence condition is
not satisfied for the series. Thus, we have proved the following statement.
THEOREM (ON THE CONVERGENCE OF NUMERICAL SERIES WITH COM-
MON TERMS THAT ARE POWER FUNCTIONS).
The numerical series Y -, k% converges for a > 1 and diverges for a < 1.

In particular, the series > -, %, called the harmonic series, diverges.

D’Alembert’s test and Cauchy’s test
for convergence of a numerical series

Formulation of D’Alembert’s test 13.11A/04:49 (04:01)]|

The tests considered in this section have no analogues for improper inte-
grals.


https://www.youtube.com/watch?v=ielvgfjqFjM&t=00m01s
https://www.youtube.com/watch?v=ielvgfjqFjM&t=04m49s

THEOREM (D’ALEMBERT’S TEST FOR CONVERGENCE OF A NUMERI-
CAL SERIES).
Let > 7 ai be a series with positive terms: Vk € N qa;, > 0.

1. Let the following condition be satisfied: —
Jge(0,1) ImeN Vk>m | E <y
—_— Qg

Then the series > ;- a; converges.
2. Let the following condition be satisfied:
Ak+1

dmeN VkE>m — >1.
— ag

Then the series > ;- aj diverges.

Proof of D’Alembert’s test \3. 11A/08:50 (08:54) \

1. Consider the terms of the initial series, starting with & = m. By
condition, “2 < ¢, whehge

Am+1 S qQm.

The same inequality holdsNorAhe term a,,19: @pao < qa,e1. Given the
previous inequality, we obtain

Obviously, for the ter

can be rigorously prov I induction):

be transformed as follows:
S d"am = a " q°. Si condition, ¢ € (0,1), we obtain,

Considerfng estimate (3))nd applying the comparison test for numerical
series, we obtain that theeries > ;- | ik also converges and therefore the
initial series Y7 | aj converges too.


https://www.youtube.com/watch?v=ielvgfjqFjM&t=08m50s
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2. As in the proof of sedtion 1, we consjder the terms of the initial series,

starting with & = m. By co
Am41 > Q-

Similarly, we obtain the estimate/a,, o > a;,11 > a,,. The same estimate
will be valid for all terms @, fi

Am+k > Q.

We have obtained that the terms of the initial series, starting with a,,, are

point A should contain all el¢ments of\he sequence except, perhaps, a finite
number of its initial elemefits.

Since the necessary/convergence condition is not satisfied for the series
> e ag, this series diverges. O

The limit D’Alembert test 13.11A/17:44 (07:23)|

COROLLARY (THE LIMIT D’ALEMBERT TEST).

Let > 7~ a be a series with positive terms: Vk € N a; > 0. Suppose
that there exists a limit limkﬁoo/azk?: q. If ¢ < 1, then the series 220:1 ay
converges; if ¢ > 1, then the series diverZes.

PROOF.
Using the limit definition in the fanguage e—N, we can write
a
Ve>0 4 L ‘ <e
Qg
1. If ¢ < 1, then chowgi = 12;q > 0, we get that, for all £ > N, the
inequality “= — g < =% JKlds, from which the estimate follows:
Ak+1

7£T<:q+— 5 ﬁ\g—q
Since ¢ < 1, we/obtain that ¢’ X 1, therefore the condition of statement 1
of D’Alembert’s test is satisfied for the initial series. Consequently, the series
converges.
2. If ¢ > 1, then cfOQsing ¢ = q;—l > 0, we get that, for all £ > N, the

inequality a’;—:l —q



https://www.youtube.com/watch?v=ielvgfjqFjM&t=17m44s

X
.éz/ -

\\{ \K following limit:

\40

« 5C*

a —1 +1
kL q— q _ 9 1
ag 2
Thus, for the initial s&jes, the condition of statement 2 of D’Alembert’s
test is satisfied, therefore thy series diverges. []
REMARKS.
Ok41

L. If the limit limg o =5

is 1, then nothing can be said about the con-
vergence or divergence of the series and further investigation is required.

2. If the limit limy_, ’“* L is equal to 400, then, by similar reasoning, we
can prove that the series d1verges

An example of applying D’Alembert’s test \3. 11A/25:07 (02:48) \

Consider the series Y -, ”%T Recall that, by definition, it is supposed that

. - k .
0! = 1. Here x is an arbitrary real number. Denote aj, = % and consider the

k!

k+1

LRt
koo A k—oo %T ke aF(k + ) " e k +1 CV

“\ The limit exists and its value is less than 1, therefore, due to the limit
D’Alembert test, this series converges for any value of the parameter x € R.
REMARK.
In what follows, we prove that the sum of the series -, 52—1: is equal to e”.

Cauchy’s test 13.11A/27:55 (07:22)]

THEOREM (CAUCHY’S TEST FOR CONVERGENCE OF A NUMERICAL
SERIES).

Let Zzozl ap be a series with non-negative terms: Vk € N a; > 0.

1. Let the following condition be satisfied:

%j’ Q\u—i
g€ (0,1) dmeN Vk>m ap <gq. I
— Q(c A

—
Then the series ) -, a; converges.
2. Let the following condition be satisfied:

dmeN Vk>m Jap > 1

Then the series > .- | ai diverges.

PROOF.

1. Consider the terms of the initial series, starting with & = m. By
condition, /a;. < g; let us raise both sides of this inequality to the power of k:
e= k (4)

ar < ¢".



https://www.youtube.com/watch?v=ielvgfjqFjM&t=25m07s
https://www.youtube.com/watch?v=ielvgfjqFjM&t=27m55s
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Estimate (4) is valid for terms of the series > - ay and >_°  ¢*. Since,
by condition, ¢ € (0, 1), we obtain, by virtue of the formula for the sum of
infinite geometric progression, that the series >~ q" converges.

Taking into account estimate (4) and applying the comparison test for nu-
merical series, we obtain that the series > ;- ay, also converges and therefore
the original series Y~ aj converges too.

2. As in the proof of section 1, we consider the terms of the initial series,
starting with & = m. By condition, /a; > 1. We raise both sides of this

inequality to the power of k: G‘K -

ap > 1. o =T Q o)

_h =
Arguing in the same way as in the proof of section 2 of D’Alembert’s test,
we obtain that the sequence {ay} cannot approach 0 as k — oo, and therefore
the necessary convergence condition is not satisfied for the series Y, | ax. So,
this series diverges. [J —_—

COROLLARY (THE LIMIT CAUCHY TEST).

Let Yoo, ax be a series with non-negative terms: Vk € N a5 > 0. Sup-
pose that there exists a limit limy_, ¥/ar = ¢. If ¢ < 1, then the series
>0 ay converges; if ¢ > 1, then the series diverges.

The proof is carried out in the same way as the proof of the limit
D’Alembert test. [

REMARKS.

1. If the limit limj . {/a; is 1, then nothing can be said about the
convergence or divergence of the series and further investigation is required.

2. If the limit limy_, {/ay is equal to +oo, then we can prove that the

series diverges.

An example of applying Cauchy’s test \3.11A/35:17 (06:06) \

Consider the series >, (1 + %)_kz. Denote aj, = (1 4+ %)_kz and consider 0 ~97.
the following limit: ~<.

lim {/a; = lim ' (1—!—%)]{2:111&1( )k 1 < 1—

k—o0 k—o0 k—o00

In the last step, we used the second remarkable limit hmk_m ( 1 + = e.
Thus, the limit limy,_.., +/ay exists and its value 1 = is less than 1. Therefore,
by virtue of the limit Cauchy test, this series converges.

Note that the series > oo (1 + ) - diverges,  since its common term

{ :l;O D™ does not approach 0 as kK — oo (as shown above, the limit of
the eommon term is 2).


https://www.youtube.com/watch?v=ielvgfjqFjM&t=35m17s
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