
13. Convergence tests for numerical series
with non-negative terms

Comparison test

Criterion for convergence of numerical series
with non-negative terms 3.10B/11:28 (07:21)

Theorem (criterion for convergence of numerical series
with non-negative terms).

Let all terms of the series
∑∞

k=1 ak be non-negative:

∀ k ∈ N ak ≥ 0.

Then this series converges if and only if the set of values of its partial sums∑n
k=1 ak is bounded from above:

∃M > 0 ∀n ∈ N
n∑

k=1

ak ≤M . (1)

Proof.
Consider the sequence of partial sums Sn =

∑n
k=1 ak. Since all the terms ak

are non-negative, we obtain that this sequence is non-decreasing:

∀n ∈ N Sn+1 =
n+1∑
k=1

ak =
n∑

k=1

ak + an+1 ≥
n∑

k=1

ak = Sn.

When studying the limit of a sequence, we proved that a non-decreasing
sequence converges if and only if it is bounded from above.

Thus, the condition (1), which means that the partial sums Sn (with non-
negative terms) are bounded from above, is equivalent to the convergence of
the sequence {Sn}, and the convergence of this sequence is equivalent to the
convergence of the numerical series. �

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=11m28s
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Comparison test for numerical series 3.10B/18:49 (06:49)

Theorem (comparison test for numerical series).
Let

∑∞
k=1 ak and

∑∞
k=1 bk be series for which the following condition holds:

∃m ∈ N ∀ k ≥ m 0 ≤ ak ≤ bk.

Then two statements are valid.
1. If the series

∑∞
k=1 bk converges, then the series

∑∞
k=1 ak also converges.

2. If the series
∑∞

k=1 ak diverges, then the series
∑∞

k=1 bk also diverges.
Proof.
Since the convergence of the series

∑∞
k=1 ak is equivalent to the convergence

of the series
∑∞

k=m ak and the same fact is true for series with terms bk, it is
enough to prove the theorem for the series

∑∞
k=m ak and

∑∞
k=m bk, all terms

of which are non-negative and satisfy the inequality ak lebk.
1. If the series

∑∞
k=m bk converges, then, by the criterion for the conver-

gence of numerical series with non-negative terms, we have

∃M > 0 ∀n ∈ N, n ≥ m,
n∑

k=m

bk ≤M .

Then, due to the inequality ak ≤ bk, we obtain that a similar estimate is
also valid for partial sums of the series

∑∞
k=m ak:

n∑
k=m

ak ≤
n∑

k=m

bk ≤M .

Therefore, by the same criterion, the series
∑∞

k=m ak converges.
2. Let the series

∑∞
k=m ak diverge.

If we assume that the series
∑∞

k=m bk converges, then, by already proved
statement 1, the series

∑∞
k=m ak should also converge. But this fact contra-

dicts the condition. Therefore, the assumption made is false and the series∑∞
k=m bk diverges. �
Remark.
From the comparison test for numerical series, one can obtain a corollary

similar to the corollary from the comparison test for improper integrals: if, for
all k ∈ N starting from some m, the estimates ak > 0, bk > 0 are fulfilled and
the limit relation limk→∞

ak
bk

= 1 holds, then the series
∑∞

k=1 ak and
∑∞

k=1 bk
either both converge or both diverge.

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=18m49s
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Integral test of convergence

Formulation of the integral test
of convergence 3.10B/25:38 (03:55)

Theorem (integral test of convergence).
Let the function f be defined on the set [1,+∞), be non-negative and

non-increasing, and limx→+∞ f(x) = 0.
Then the improper integral

∫ +∞
1 f(x) dx and the series

∑∞
k=1 f(k) either

both converge or both diverge.

Initial stage of the proof 3.10B/29:33 (07:07)

We choose the points k, k + 1 ∈ N and assume that the point x ∈ R is
between k and k + 1: k ≤ x ≤ k + 1. Since the function f is non-increasing,
the following double inequality holds:

f(k + 1) ≤ f(x) ≤ f(k).

Let us integrate all the terms of the resulting double inequality from k

to k + 1; this operation will not change the sign of inequality:

f(k + 1)

∫ k+1

k

dx ≤
∫ k+1

k

f(x) dx ≤ f(k + 1)

∫ k+1

k

dx.

The integrals on the left-hand and right-hand sides of this double inequality
are equal to 1:∫ k+1

k

dx = x
∣∣∣k+1

k
= k + 1− k = 1.

Thus, the double inequality takes the form

f(k + 1) ≤
∫ k+1

k

f(x) dx ≤ f(k).

Now we summarize the inequalities obtained for k = 1, . . . , n:
n∑

k=1

f(k + 1) ≤
n∑

k=1

∫ k+1

k

f(x) dx ≤
n∑

k=1

f(k).

Given the property of additivity of the integral with respect to the inte-
gration interval, the resulting double inequality can be rewritten as follows:

n∑
k=1

f(k + 1) ≤
∫ n+1

1

f(x) dx ≤
n∑

k=1

f(k).

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=25m38s
https://www.youtube.com/watch?v=PcIYNHo15_Y&t=29m33s


4

Let us introduce the notation for the partial sum of the series:
Sn =

∑n
k=1 f(k). Using this notation, we finally obtain

Sn+1 − f(1) ≤
∫ n+1

1

f(x) dx ≤ Sn. (2)

The final stage of the proof 3.10B/36:40 (07:13)

Now we consider various situations related to the convergence or divergence
of the initial integral and series.

1. Let the improper integral
∫ +∞
1 f(x) dx converge. Then, by virtue of the

criterion for the convergence of improper integrals of non-negative functions,
we have

∃M > 0 ∀ c > 1

∫ c

1

f(x) dx ≤M .

Using this estimate for the integral and the left-hand side of estimate (2),
we obtain

Sn+1 − f(1) ≤
∫ n+1

1

f(x) dx ≤M .

Thus, we have proved that the partial sums of Sn are uniformly bounded:
∀n ∈ N Sn+1 ≤M + f(1).

Therefore, by the criterion for the convergence of a numerical series with
non-negative terms, the series

∑∞
k=1 f(k) converges.

2. Let the series
∑∞

k=1 f(k) converge. Then, by virtue of the criterion for
the convergence of a numerical series with non-negative terms, we have

∃M > 0 ∀n ∈ N Sn ≤M .
Choose an arbitrary real number c > 1 and consider the integral∫ c

1 f(x) dx. For any number c > 1, there exists an integer n such that
c < n+ 1. Since the function f(x) is non-negative, the estimate holds:∫ c

1

f(x) dx ≤
∫ n+1

1

f(x) dx.

Using this estimate and the right-hand side of estimate (2), we obtain∫ c

1

f(x) dx ≤
∫ n+1

1

f(x) dx ≤ Sn ≤M .

We have proved that the integrals
∫ c

1 f(x) dx are uniformly bounded:

∀ c > 1

∫ c

1

f(x) dx ≤M .

Therefore, by the criterion for the convergence of improper integrals of
non-negative functions, the integral

∫ +∞
1 f(x) dx converges.

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=36m40s
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3. Let the series
∑∞

k=1 f(k) diverge. Assuming that the integral∫ +∞
1 f(x) dx converges, we obtain that, by the result already proved in sec-
tion 1, the series

∑∞
k=1 f(k) should also converge, but this contradicts the

condition. Therefore, the integral diverges.
4. Let the integral

∫ +∞
1 f(x) dx diverge. If we assume that the series∑∞

k=1 f(k) converges, then, by the result already proved in section 2, the
integral

∫ +∞
1 f(x) dx must also converge, but this contradicts the condition.

Therefore, the series diverges. �
Remark.
The limit relation limx→+∞ f(x) = 0 was not used in the proof. It is

required in order to ensure that the necessary condition for the convergence
of the series

∑∞
k=1 f(k) is satisfied, since if this condition is violated, the

series will necessarily diverge (and, as follows from the proof, the integral∫ +∞
1 f(x) dx will also diverge).

An example of applying
the integral test of convergence 3.11A/00:00 (04:49)

Earlier, we found that the improper integral
∫ +∞
1

1
xα dx converges for α > 1

and diverges for α ≤ 1. Now we can extend this result to the correspond-
ing series. For α > 0, the function f(x) = 1

xα satisfies all the conditions
of the previous theorem (it is non-negative and monotonously approaches 0
as x → +∞), therefore, by virtue of of the previous theorem, the series∑∞

k=1
1
kα converges for α > 1 and diverges for α ∈ (0, 1]. For α ≤ 0, the

series
∑∞

k=1
1
kα also diverges, since, in this case, its common term 1

kα does not
approach 0 as k → ∞ and therefore the necessary convergence condition is
not satisfied for the series. Thus, we have proved the following statement.

Theorem (on the convergence of numerical series with com-
mon terms that are power functions).

The numerical series
∑∞

k=1
1
kα converges for α > 1 and diverges for α ≤ 1.

In particular, the series
∑∞

k=1
1
k , called the harmonic series, diverges.

D’Alembert’s test and Cauchy’s test
for convergence of a numerical series

Formulation of D’Alembert’s test 3.11A/04:49 (04:01)

The tests considered in this section have no analogues for improper inte-
grals.

https://www.youtube.com/watch?v=ielvgfjqFjM&t=00m01s
https://www.youtube.com/watch?v=ielvgfjqFjM&t=04m49s
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Theorem (D’Alembert’s test for convergence of a numeri-
cal series).

Let
∑∞

k=1 ak be a series with positive terms: ∀ k ∈ N ak > 0.
1. Let the following condition be satisfied:

∃ q ∈ (0, 1) ∃m ∈ N ∀ k ≥ m
ak+1

ak
≤ q.

Then the series
∑∞

k=1 ak converges.
2. Let the following condition be satisfied:

∃m ∈ N ∀ k ≥ m
ak+1

ak
≥ 1.

Then the series
∑∞

k=1 ak diverges.

Proof of D’Alembert’s test 3.11A/08:50 (08:54)

1. Consider the terms of the initial series, starting with k = m. By
condition, am+1

am
≤ q, whence

am+1 ≤ qam.

The same inequality holds for the term am+2: am+2 ≤ qam+1. Given the
previous inequality, we obtain

am+2 ≤ qam+1 ≤ q2am.

Obviously, for the terms am+k, k ∈ N, the following estimate holds (which
can be rigorously proved by mathematical induction):

am+k ≤ qkam. (3)

Consider the series
∑∞

k=1 am+k and
∑∞

k=1 q
kam.

The first series can be rewritten in the form
∑∞

k=m+1 ak, therefore, it co-
incides with the initial series, from which m first terms are removed. So, if
the series

∑∞
k=1 am+k converges, then the initial series also converges, since

the presence or absence of a finite number of initial terms of the series does
not affect its convergence.

The second series can be transformed as follows:∑∞
k=1 q

kam = am
∑∞

k=1 q
k. Since, by condition, q ∈ (0, 1), we obtain,

by virtue of the formula for the sum of infinite geometric progression, that
the series

∑∞
k=1 q

k converges.
Considering estimate (3) and applying the comparison test for numerical

series, we obtain that the series
∑∞

k=1 am+k also converges and therefore the
initial series

∑∞
k=1 ak converges too.

https://www.youtube.com/watch?v=ielvgfjqFjM&t=08m50s
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2. As in the proof of section 1, we consider the terms of the initial series,
starting with k = m. By condition, am+1

am
≥ 1, whence

am+1 ≥ am.

Similarly, we obtain the estimate am+2 ≥ am+1 ≥ am. The same estimate
will be valid for all terms am+k for k ∈ N:

am+k ≥ am.

We have obtained that the terms of the initial series, starting with am, are
bounded from below by the positive value am. This means that the sequence
{ak} cannot approach 0 as k →∞. Indeed, choosing the number ε > 0 equal
to the minimum of a finite set of positive numbers a1, a2, . . . , am, we get that
the ε-neighborhood of zero does not contain any element of the sequence
{ak}. But, by the definition of the limit equal to A, any neighborhood of the
point A should contain all elements of the sequence except, perhaps, a finite
number of its initial elements.

Since the necessary convergence condition is not satisfied for the series∑∞
k=1 ak, this series diverges. �

The limit D’Alembert test 3.11A/17:44 (07:23)

Corollary (the limit D’Alembert test).
Let

∑∞
k=1 ak be a series with positive terms: ∀ k ∈ N ak > 0. Suppose

that there exists a limit limk→∞
ak+1

ak
= q. If q < 1, then the series

∑∞
k=1 ak

converges; if q > 1, then the series diverges.
Proof.
Using the limit definition in the language ε–N , we can write

∀ ε > 0 ∃N ∈ N ∀ k > N
∣∣∣ak+1

ak
− q
∣∣∣ < ε.

1. If q < 1, then choosing ε = 1−q
2 > 0, we get that, for all k > N , the

inequality ak+1

ak
− q < 1−q

2 holds, from which the estimate follows:

ak+1

ak
< q +

1− q
2

=
1 + q

2
= q′.

Since q < 1, we obtain that q′ < 1, therefore the condition of statement 1
of D’Alembert’s test is satisfied for the initial series. Consequently, the series
converges.

2. If q > 1, then choosing ε = q−1
2 > 0, we get that, for all k > N , the

inequality ak+1

ak
− q > −q−1

2 holds, from which the estimate follows:

https://www.youtube.com/watch?v=ielvgfjqFjM&t=17m44s
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ak+1

ak
> q − q − 1

2
=
q + 1

2
> 1.

Thus, for the initial series, the condition of statement 2 of D’Alembert’s
test is satisfied, therefore the series diverges. �

Remarks.
1. If the limit limk→∞

ak+1

ak
is 1, then nothing can be said about the con-

vergence or divergence of the series and further investigation is required.
2. If the limit limk→∞

ak+1

ak
is equal to +∞, then, by similar reasoning, we

can prove that the series diverges.

An example of applying D’Alembert’s test 3.11A/25:07 (02:48)

Consider the series
∑∞

k=0
xk

k! . Recall that, by definition, it is supposed that
0! = 1. Here x is an arbitrary real number. Denote ak = xk

k! and consider the
following limit:

lim
k→∞

ak+1

ak
= lim

k→∞

xk+1

(k+1)!

xk

k!

= lim
k→∞

xk+1k!

xk(k + 1)!
= lim

k→∞

x

k + 1
= 0.

The limit exists and its value is less than 1, therefore, due to the limit
D’Alembert test, this series converges for any value of the parameter x ∈ R.

Remark.
In what follows, we prove that the sum of the series

∑∞
k=0

xk

k! is equal to e
x.

Cauchy’s test 3.11A/27:55 (07:22)

Theorem (Cauchy’s test for convergence of a numerical
series).

Let
∑∞

k=1 ak be a series with non-negative terms: ∀ k ∈ N ak ≥ 0.
1. Let the following condition be satisfied:

∃ q ∈ (0, 1) ∃m ∈ N ∀ k ≥ m k
√
ak ≤ q.

Then the series
∑∞

k=1 ak converges.
2. Let the following condition be satisfied:

∃m ∈ N ∀ k ≥ m k
√
ak ≥ 1.

Then the series
∑∞

k=1 ak diverges.
Proof.
1. Consider the terms of the initial series, starting with k = m. By

condition, k
√
ak ≤ q; let us raise both sides of this inequality to the power of k:

ak ≤ qk. (4)

https://www.youtube.com/watch?v=ielvgfjqFjM&t=25m07s
https://www.youtube.com/watch?v=ielvgfjqFjM&t=27m55s
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Estimate (4) is valid for terms of the series
∑∞

k=m ak and
∑∞

k=m q
k. Since,

by condition, q ∈ (0, 1), we obtain, by virtue of the formula for the sum of
infinite geometric progression, that the series

∑∞
k=m q

k converges.
Taking into account estimate (4) and applying the comparison test for nu-

merical series, we obtain that the series
∑∞

k=m ak also converges and therefore
the original series

∑∞
k=1 ak converges too.

2. As in the proof of section 1, we consider the terms of the initial series,
starting with k = m. By condition, k

√
ak ≥ 1. We raise both sides of this

inequality to the power of k:
ak ≥ 1.

Arguing in the same way as in the proof of section 2 of D’Alembert’s test,
we obtain that the sequence {ak} cannot approach 0 as k →∞, and therefore
the necessary convergence condition is not satisfied for the series

∑∞
k=1 ak. So,

this series diverges. �
Corollary (the limit Cauchy test).
Let

∑∞
k=1 ak be a series with non-negative terms: ∀ k ∈ N ak ≥ 0. Sup-

pose that there exists a limit limk→∞ k
√
ak = q. If q < 1, then the series∑∞

k=1 ak converges; if q > 1, then the series diverges.
The proof is carried out in the same way as the proof of the limit

D’Alembert test. �
Remarks.
1. If the limit limk→∞ k

√
ak is 1, then nothing can be said about the

convergence or divergence of the series and further investigation is required.
2. If the limit limk→∞ k

√
ak is equal to +∞, then we can prove that the

series diverges.

An example of applying Cauchy’s test 3.11A/35:17 (06:06)

Consider the series
∑∞

k=1

(
1+ 1

k

)−k2. Denote ak =
(
1+ 1

k

)−k2 and consider
the following limit:

lim
k→∞

k
√
ak = lim

k→∞

k

√(
1 +

1

k

)−k2
= lim

k→∞

(
1 +

1

k

)−k
=

1

e
.

In the last step, we used the second remarkable limit limk→∞
(
1+ 1

k

)k
= e.

Thus, the limit limk→∞ k
√
ak exists and its value 1

e is less than 1. Therefore,
by virtue of the limit Cauchy test, this series converges.

Note that the series
∑∞

k=1

(
1 + 1

k

)−k diverges, since its common term(
1 + 1

k

)−k does not approach 0 as k → ∞ (as shown above, the limit of
the common term is 1

e).

https://www.youtube.com/watch?v=ielvgfjqFjM&t=35m17s
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