13. Convergence tests for numerical series with non-negative terms

Comparison test

Criterion for convergence of numerical series with non-negative terms
 $3.10 \mathrm{~B} / 11: 28 \quad(07: 21)$

THEOREM (CRITERION FOR CONVERGENCE OF NUMERICAL SERIES WITH NON-NEGATIVE TERMS).

Let all terms of the series $\sum_{k=1}^{\infty} a_{k}$ be non-negative:

$$
\forall k \in \mathbb{N} \quad a_{k} \geq 0
$$

Then this series converges if and only if the set of values of its partial sums $\sum_{k=1}^{n} a_{k}$ is bounded fropove:

$$
\begin{equation*}
\exists M>0 \quad \forall n \in \mathbb{N} \quad \sum_{k=1}^{n} a_{k} \leq M \tag{1}
\end{equation*}
$$

Proof.
 are non-negative, we obtak that this seqy nce is non-decreasing:

$$
\forall n \in \mathbb{N} \quad S_{n+1}=\sum_{k=1}^{n+1} d_{k}=\sum_{k=1}^{n} a_{k}+a_{n+1} \geq \sum_{k=1}^{n} a_{k}=S_{n}
$$

When studying the limit of sequence, we proved that a non-decreasing sequence converges if and only if it is bounded from above.

Thus, the condition (1), which meaps that the partial sums S_{n} (with nonnegative terms) are bounded from above is equivalent to the convergence of the sequence $\left\{S_{n}\right\}$, and the convergence of this sequence is equivalent to the convergence of the numerical series.

Comparison test for numerical series

ThEOREM (COMPARISON TEST FOR NUMERICAL SERIES).

Let $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be series for which the following condition holds:

$$
\exists m \in \mathbb{N} \quad \forall k \geq m \quad 0 \leq a_{k} \leq b_{k}
$$

Then two statements are valid.

1. If the series $\sum_{k=1}^{\infty} b_{k}$ converges, then the series $\sum_{k=1}^{\infty} a_{k}$ also converges.
2. If the series $\sum_{k=1}^{\infty} a_{k}$ diverges, then the series $\sum_{k=1}^{\infty} b_{k}$ also diverges.

Proof.
Since the convergence of the series $\sum_{k=1}^{\infty} a_{k}$ is equivalent to the convergence of the series $\sum_{k=m}^{\infty} a_{k}$ and the same fact is true for series with terms b_{k}, it is enough to prove the theorem for the series $\sum_{k=m}^{\infty} a_{k}$ and $\sum_{k=m}^{\infty} b_{k}$, all terms of which are non-negative and satisfy the inequality $a_{k} l e b_{k}$.

1. If the series $\sum_{k=m}^{\infty} b_{k}$ converges, then, by the criterion for the convergence of numerical series with noth-negative terms, we have

$$
\exists M>0 \quad \forall n \in \mathbb{N}, n \geq m, \xlongequal{\sum_{k=m}^{\sqrt{1 /}} b_{k} \leq M .}
$$

Then, due to the inequality $a_{k} \leq b_{k}$, we obtain that a similar estimate is also valid for partial sums of the series $\sum_{k=m}^{\infty} a_{k}$:

$$
\sum_{k=m}^{n} a_{k} \leq \sum_{k=m}^{n} b_{k} \leq M . \quad \text { sufficient poot }
$$

Therefore, by the same criterion, the series $\sum_{k=m}^{\infty} a_{k}$ converges.
2. Let the series $\sum_{k=m}^{\infty} a_{k}$ diverge.

If we assume that the series $\sum_{k=m}^{\infty} b_{k}$ converges, then, by already proved statement 1 , the series $\sum_{k=m}^{\infty} a_{k}$ should also converge. But this fact contradicts the condition. Therefore, the assumption made is false and the series $\sum_{k=m}^{\infty} b_{k}$ diverges.

REMARK.
From the comparison test for numerical series, one can obtain a corollary similar to the corollary from the comparison test for improper integrals: if, for all $k \in \mathbb{N}$ starting from some m, the estimates $a_{k}>0, b_{k}>0$ are fulfilled and the limit relation $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=1$ holds, then the series $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ either both converge or both diverge.

Integral test of convergence

Formulation of the integral test of convergence

Theorem (integral Test of convergence).
Let the function f be defined on the set $[1,+\infty)$, be non-negative and non-increasing, and $\lim _{x \rightarrow+\infty} f(x)=0$.

Then the improper integral $\int_{1}^{+\infty} f(x) d x$ and the series $\sum_{k=1}^{\infty} f(k)$ either both converge or both diverge.

Initial stage of the proof

$$
3.10 \mathrm{~B} / 29: 33 \quad(07: 07)
$$

We choose the points $k, k+1 \in \mathbb{N}$ and assume that the point $x \in \mathbb{R}$ is between k and $k+1: \leq x \leq k+1$. Since the function/ f is non-increasing, the following double inequatity holds:

$$
f(k+1) \leq f(x) \leq f(k) .
$$

Let us integrate all the terms of the resulting double inequality from k to $k+1$; this operation will not change the sin of inequality:

$$
f(k+1) \int_{k}^{k+1} d x \leq \int_{k}^{k+1} f(x) d x \leq f\left(k+1 \int_{k}^{k+1} d x\right.
$$

The integrals on the left-hand and right-hand sides of thrs double inequality are equal to 1 :

$$
\int_{k}^{k+1} d x=\left.x\right|_{k} ^{k+1}=k+1-k=1
$$

Thus, the double inequality takes the form

$$
f(k+1) \leq \int_{k}^{k+1} f(x) d x \leq f(k) .
$$

Now we summarize the inequalities ortained for $k=1, \ldots, n$:

$$
\sum_{k=1}^{n} f(k+1) \leq \sum_{k=1}^{n} \int_{k}^{k+1} f(x) d x \leq \sum_{k=1}^{n} f(k)
$$

Given the property of additivity of the integral wit respect to the integration interval, the resulting double inequality can be rewitten as follows:

$$
\sum_{k=1}^{n} f(k+1) \leq \int_{1}^{++1}(x) d x \leq \sum_{k=1}^{n} f(k) \text {. }
$$

Let us introduce the notation for the partial sum of the series: $S_{n}=\sum_{k=1}^{n} f(k)$. Using this notation, we finally obtain

$$
\begin{equation*}
S_{n+1}-f(1) \leq \int_{1}^{n} f(x) d x \leq S_{n} \tag{2}
\end{equation*}
$$

The final stage of the proof

Now we consider vatious situations related to the convergence or divergence of the initial integral and series.

1. Let the improper intctral $\int_{1}^{+\infty} f(x) d x$ converge. Then, by virtue of the criterion for the convergence of improper integyals of non-negative functions, we have

$$
\exists M>0 \quad \forall c>1 \quad \int_{1}^{c} f(x) d x \leq M
$$

Using this estimate for the integral and the left-hand side of estimate (2), we obtain

$$
S_{n+1}-f(1) \leq \int_{1}^{n+1} f(x) d x \leq M
$$

Thus, we have proved that the partial sums of S_{n} are uniformly bounded:

$$
\forall n \in \mathbb{N} \quad S_{n+1} \leq M+f(1)
$$

Therefore, by the friterion for the convergence of anumerical series with non-negative termb, the series $\sum_{k=1}^{\infty} f(k)$ converges.
2. Let the series $\sum_{k=1}^{\infty} f(k)$ converge. Then, by virtue of the criterion for the convergence of a nunerical series with non-ngfative terms, we have

$$
\exists M>0 \quad \forall n \in \mathbb{N} \quad S_{n} \leq M .
$$

Choose an arbitrary real nxmber of >1 and consider the integral $\int_{1}^{c} f(x) d x$. For any number $c>$ there exists an integer n such that $c<n+1$. Since the function $f(\not p)$ is nonegative, the estimate holds:

$$
\int_{1}^{c} f(x) d x \leq \int_{1}^{n+1} f(x) d x .
$$

Using this estimate and the right-hand side of estimate (2), we obtain

$$
\int_{1}^{c} f(x) d x \leq \int_{1}^{n+1} f(x) d x \leq S_{n} \leq M / \quad \text {. }
$$

We have proved that the integrat $\int^{c} f(x) d x$ are uniformly bounded:

$$
\forall c>1 \quad \int_{1}^{c} f(x) d x \leq M
$$

Therefore, by the criterion for the convergence of improper integrals of non-negative functions, the integral $\int_{1}^{+\infty} f(x) d x$ converges.
3. Let the series $\sum_{k=1}^{\infty} f(k)$ diverge. Assuming that the integral $\int_{1}^{+\infty} f(x) d x$ converges, we \&btain that, by the result already proved in section 1, the series $\sum_{k=1}^{\infty} f(k)$ she 11 d also converge, but this contradicts the condition. Therefore, the integral diverges.
4. Let the integral $\int_{1}^{+\infty} f(x) d x$ diverge. If we assume that the series $\sum_{k=1}^{\infty} f(k)$ converges, then, by the result already proved in section 2 , the integral $\int_{1}^{+\infty} f(x) d x$ must also converge, but this contradicts the condition. Therefore, the series diverges.

Remark.
The limit relation $\lim _{x \rightarrow+\infty} f(x)=0$ was not used in the proof. It is required in order to ensure that the necessary condition for the convergence of the series $\sum_{k=1}^{\infty} f(k)$ is satisfied, since if this condition is violated, the series will necessarily diverge (and, as follows from the proof, the integral $\int_{1}^{+\infty} f(x) d x$ will also diverge).

An example of applying the integral test of convergence

Earlier, we found that the improper integral $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} d x$ converges for $\alpha>1$ and diverges for $\alpha \leq 1$. Now we can extend this result to the corresponding series. For $\alpha>0$, the function $f(x)=\frac{1}{x^{\alpha}}$ satisfies all the conditions of the previous theorem (it is non-negative and monotonously approaches 0 as $x \rightarrow+\infty$), therefore, by virtue of of the previous theorem, the series $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converges for $\alpha>1$ and diverges for $\alpha \in(0,1]$. For $\alpha \leq 0$, the series $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ also diverges, since, in this case, its common term $\frac{1}{k^{\alpha}}$ does not approach 0 as $k \rightarrow \infty$ and therefore the necessary convergence condition is
 not satisfied for the series. Thus, we have proved the following statement.

THEOREM (ON THE CONVERGENCE OF NUMERICAL SERIES WITH COMMON TERMS THAT ARE POWER FUNCTIONS).

The numerical series $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converges for $\alpha>1$ and diverges for $\alpha \leq 1$. In particular, the series $\sum_{k=1}^{\infty} \frac{1}{k}$, called the harmonic series, diverges.

D'Alembert's test and Cauchy's test for convergence of a numerical series

Formulation of D'Alembert's test

$$
3.11 \mathrm{~A} / 04: 49 \quad(04: 01)
$$

The tests considered in this section have no analogues for improper integrals.

Theorem (D'Alembert's TESt for CONVERGENCE OF A NumeriCAL SERIES).

Let $\sum_{k=1}^{\infty} a_{k}$ be a series with positive terms: $\forall k \in \mathbb{N} a_{k}>0$.

1. Let the following condition be satisfied:

$$
\exists q \in(0,1) \quad \exists m \in \mathbb{N} \quad \forall k \geq m \quad \frac{a_{k+1}}{a_{k}} \leq q
$$

Then the series $\sum_{k=1}^{\infty} a_{k}$ converges.
2. Let the following condition be satisfied:

$$
\exists m \in \mathbb{N} \quad \forall k \geq m \quad \frac{a_{k+1}}{a_{k}} \geq 1
$$

Then the series $\sum_{k=1}^{\infty} a_{k}$ diverges.

Proof of D'Alembert's test

3.11A/08:50 (08:54)

1. Consider the terms of the initial series, starting with $k=m$. By condition, $\frac{a_{m+1}}{a_{m}} \leq q$, whence

$$
a_{m+1} \leq q a_{m}
$$

The same inequality holds for he term $a_{m+2}: a_{m+2} \leq q a_{m+1}$. Given the previous inequality, we obtain

$$
a_{m+2} \leq q a_{m+1} \leq q^{2} a
$$

Obviously, for the terms $a_{m+k}, k \in \mathbb{N}$, the following estimate holds (which can be rigorously proved by mathematical induction):

$$
\begin{equation*}
a_{m+k} \leq q^{k} a_{m} \tag{3}
\end{equation*}
$$

Consider the series $\sum_{k=1}^{\infty} a_{m+k}$ apd $\sum_{k=1}^{\infty} q^{k} a_{m}$.
The first series can be rewritten in the form $\sum_{k=m+1}^{\infty} a_{k}$, therefore, it coincides with the initial series, fyom which m first terms are removed. So, if the series $\sum_{k=1}^{\infty} a_{m+k}$ converges, then the initial series also converges, since the presence or absence of a finite number of initial terms of the series does not affect its convergeng

The second series can be transformed as follows: $\sum_{k=1}^{\infty} q^{k} a_{m}=a_{m} \sum_{k=1}^{\infty} q^{k}$. Since, by condition, $q \in(0,1)$, we obtain, by virtue of the formula for the fum of infinite geometric progression, that the series $\sum_{y=1}^{\infty} q^{k}$ converges.

Considering estimate (3) and applying the comparison test for numerical series, we obtain that the series $\sum_{k=1}^{\infty} a_{m+k}$ also converges and therefore the initial series $\sum_{k=1}^{\infty} a_{k}$ converges too.
2. As in the proof of section 1 , we consider the terms of the initial series, starting with $k=m$. By condition, $\frac{a_{m+1}}{a_{m}} \geq 1$, whence

$$
a_{m+1} \geq a_{m} .
$$

Similarly, we obtain the estimate $a_{m+2} \geq a_{m+1} \geq a_{m}$. The same estimate will be valid for all terms a_{m+k} fy $k \in \mathbb{N}$:

$$
a_{m+k} \geq a_{m} .
$$

We have obtained that the terms of the initial series, starting with a_{m}, are bounded from below by the positive value a_{m}. This means that the sequence $\left\{a_{k}\right\}$ cannot approach 0 as $k \Rightarrow \infty$. Inched, choosing the number $\varepsilon>0$ equal to the minimum of a finite set ofposifive numbers $a_{1}, a_{2}, \ldots, a_{m}$, we get that the ε-neighborhood of zero does not contain any element of the sequence $\left\{a_{k}\right\}$. But, by the definition of the linnet equal to A, any neighborhood of the point A should contain all elements of the sequence except, perhaps, a finite number of its initial elements.

Since the necessary convergence condition is not satisfied for the series $\sum_{k=1}^{\infty} a_{k}$, this series diverges.

The limit D'Alembert test

$$
3.11 \mathrm{~A} / 17: 44 \quad(07: 23)
$$

Corollary (THe limit D'Alembert test).
Let $\sum_{k=1}^{\infty} a_{k}$ be a series with positive terms: $\forall k \in \mathbb{N} a_{k}>0$. Suppose that there exists a limit $\lim _{k \rightarrow \infty} \frac{\widehat{a_{k+1}}}{a_{k}}=q$. If $q<1$, then the series $\sum_{k=1}^{\infty} a_{k}$ converges; if $q>1$, then the series diverges.

Proof.
Using the limit definition in the language $\varepsilon-N$, we can write

$$
\forall \varepsilon>0 \quad \exists M \in \mathbb{N} \quad \forall k \not \supset N \quad\left|\frac{a_{k+1}}{a_{k}}-q\right|<\varepsilon
$$

1. If $q<1$, then choosing $\varepsilon=\frac{1-q}{2}>0$, we get that, for all $k>N$, the inequality $\frac{a_{k+1}}{a_{k}}-q<\frac{1-q}{2}$ molds, from which the estimate follows:

$$
\frac{a_{k+1}}{a_{k}}<q+\frac{1-q}{2}=\frac{1+q}{2}=q^{\prime}
$$

Since $q<1$, we obtain that $q^{\prime} \npreceq 1$, therefore the condition of statement 1 of D'Alembert's test is satisfied for the initial series. Consequently, the series converges.
2. If $q>1$, then classing $\varepsilon=\frac{q-1}{2}>0$, we get that, for all $k>N$, the inequality $\left.\frac{a_{k+1}}{a_{k}}-q\right\rangle-\frac{q-}{2}$ holds, from which the estimate follows:

$$
\frac{a_{k+1}}{a_{k}}>q-\frac{q-1}{\ell}=\frac{q+1}{2}>1 .
$$

Thus, for the initial series, the condition of statement 2 of D'Alembert's test is satisfied, therefore the series diverges.

Remarks.

1. If the limit $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}$ is 1 , then nothing can be said about the convergence or divergence of the series and further investigation is required.
2. If the limit $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}$ is equal to $+\infty$, then, by similar reasoning, we can prove that the series diverges.

An example of applying D'Alembert's test

```
3.11A/25:07 (02:48)
```

Consider the series $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$. Recall that, by definition, it is supposed that $0!=1$. Here x is an arbitrary real number. Denote $a_{k}=\frac{x^{k}}{k!}$ and consider the following limit:
$+$

$$
\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{\frac{x^{k+1}}{(k+1)!}}{\frac{x^{k}}{k!}}=\lim _{k \rightarrow \infty} \frac{x^{k+1} k!}{x^{k}(k+1)!}=\lim _{k \rightarrow \infty} \frac{x}{k+1}=0=
$$

$\overline{\bar{O}}\left(X^{N}\right)$ The limit exists and its value is less than 1 , therefore, due to the limit D'Alembert test, this series converges for any value of the parameter $x \in \mathbb{R}$.

Remark.
In what follows, we prove that the sum of the series $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ is equal to e^{x}.

Cauchy's test

$3.11 \mathrm{~A} / 27: 55(07: 22)$
Theorem (Cauchy's test for convergence of a numerical SERIES).

Let $\sum_{k=1}^{\infty} a_{k}$ be a series with non-negative terms: $\forall k \in \mathbb{N} a_{k} \geq 0$.

1. Let the following condition be satisfied:

$$
\exists q \in(0,1) \quad \exists m \in \mathbb{N} \quad \forall k \geq m \quad \sqrt[k]{a_{k}} \leq q .
$$

Then the series $\sum_{k=1}^{\infty} a_{k}$ converges.

2. Let the following condition be satisfied:

$$
\exists m \in \mathbb{N} \quad \forall k \geq m \quad \sqrt[k]{a_{k}} \geq 1
$$

Then the series $\sum_{k=1}^{\infty} a_{k}$ diverges.
Proof.

1. Consider the terms of the initial series, starting with $k=m$. By condition, $\sqrt[k]{a_{k}} \leq q$; let us raise both sides of this inequality to the power of k :

Estimate (4) is valid for terms of the series $\sum_{k=m}^{\infty} a_{k}$ and $\sum_{k=m}^{\infty} q^{k}$. Since, by condition, $q \in(0,1)$, we obtain, by virtue of the formula for the sum of infinite geometric progression, that the series $\sum_{k=m}^{\infty} q^{k}$ converges.

Taking into account estimate (4) and applying the comparison test for numerical series, we obtain that the series $\sum_{k=m}^{\infty} a_{k}$ also converges and therefore the original series $\sum_{k=1}^{\infty} a_{k}$ converges too.
2. As in the proof of section 1 , we consider the terms of the initial series, starting with $k=m$. By condition, $\sqrt[k]{a_{k}} \geq 1$. We raise both sides of this inequality to the power of k :

$$
a_{k} \geq 1
$$

Arguing in the same way as in the proof of section 2 of D'Alembert's test, we obtain that the sequence $\left\{a_{k}\right\}$ cannot approach 0 as $k \rightarrow \infty$, and therefore the necessary convergence condition is not satisfied for the series $\sum_{k=1}^{\infty} a_{k}$. So, this series diverges.

Corollary (the limit Cauchy test).
Let $\sum_{k=1}^{\infty} a_{k}$ be a series with non-negative terms: $\forall k \in \mathbb{N} a_{k} \geq 0$. Suppose that there exists a limit $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=q$. If $q<1$, then the series $\sum_{k=1}^{\infty} a_{k}$ converges; if $q>1$, then the series diverges.

The proof is carried out in the same way as the proof of the limit D'Alembert test.

Remarks.

1. If the limit $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}$ is 1 , then nothing can be said about the convergence or divergence of the series and further investigation is required.
2. If the limit $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}$ is equal to $+\infty$, then we can prove that the series diverges.

An example of applying Cauchy's test

$$
3.11 \mathrm{~A} / 35: 17(06: 06)
$$

Consider the series $\sum_{k=1}^{\infty}\left(1+\frac{1}{k}\right)^{-k^{2}}$. Denote $a_{k}=\left(1+\frac{1}{k}\right)^{-k^{2}}$ and consider the following limit:

$$
\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\lim _{k \rightarrow \infty} \sqrt[k]{\left(1+\frac{1}{k}\right)^{-k^{2}}}=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{-k}=\frac{1}{e} \cdot<1
$$

In the last step, we used the second remarkable limit $\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e$. Thus, the limit $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}$ exists and its value $\frac{1}{e}$ is less than 1 . Therefore, by virtue of the limit Cauchy test, this series converges.

Note that the series $\sum_{k=1}^{\infty}\left(1+\frac{1}{k}\right)^{-k}$ diverges, since its common term $\left(1+\frac{1}{k}\right)^{-k}$ does not approach 0 as $k \rightarrow \infty$ (as shown above, the limit of the common term is $\frac{1}{e}$).

