Математические основы защиты информации Лекция 9

Пилиди Владимир Ставрович

26 мая 2020 года

 $\underline{\text{Задача:}} \ \mathbb{C}^*/\mathbb{U} \overset{?}{\cong} \mathbb{R}_+.$

$$\frac{\mathrm{Задача:}}{f:\mathbb{C}^*} \xrightarrow{\mathbb{R}_+} \mathbb{R}_+.$$

 $\frac{\text{Задача: }\mathbb{C}^*/\mathbb{U}\stackrel{?}{\cong}\mathbb{R}_+.}{f:\mathbb{C}^*\to\mathbb{R}_+,\;,\;f:z\mapsto|z|}$

$$\begin{array}{l} \underline{\text{Задача:}} \ \mathbb{C}^*/\mathbb{U} \stackrel{?}{\cong} \mathbb{R}_+. \\ f: \mathbb{C}^* \to \mathbb{R}_+, \ , \ f: z \mapsto |z| \\ \ker f = \mathbb{U} \end{array}$$

Задача: $\mathbb{C}^*/\mathbb{U} \stackrel{?}{\cong} \mathbb{R}_+$. $f: \mathbb{C}^* \to \mathbb{R}_+$, $f: z \mapsto |z|$ $\ker f = \mathbb{U}$, $\operatorname{im} f = \mathbb{R}_+$.
$$\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^*}\mathbb{C}^*/\mathbb{U} \overset{?}{\cong} \mathbb{R}_+.\\ &\frac{f:\mathbb{C}^* \to \mathbb{R}_+, \ , \ f:z \mapsto |z|}{\ker f = \mathbb{U} \ , \ \text{im} \ f = \mathbb{R}_+.}\\ &\text{Задача:} \ \mathbb{U}/\mathbb{U}_n \overset{?}{\cong} \mathbb{U}, \ n \geqslant 2. \end{split}$$

 $\frac{\text{Задача:}}{f: \mathbb{C}^* \to \mathbb{R}_+, \quad f: z \mapsto |z|}$ $\text{ker } f = \mathbb{U}, \text{ im } f = \mathbb{R}_+.$ $\frac{\text{Задача:}}{f: \mathbb{U} \to \mathbb{U}, \quad f: z \mapsto z^n}$

 $\begin{array}{l} \underline{\text{Задача:}} \ \mathbb{C}^*/\mathbb{U} \stackrel{?}{\cong} \mathbb{R}_+. \\ f: \mathbb{C}^* \to \mathbb{R}_+, \ , \ f: z \mapsto |z| \\ \ker f = \mathbb{U} \ , \ \operatorname{im} f = \mathbb{R}_+. \\ \underline{\text{Задача:}} \ \mathbb{U}/\mathbb{U}_n \stackrel{?}{\cong} \mathbb{U}, \ n \geqslant 2. \\ \overline{f: \mathbb{U} \to \mathbb{U}}, \ f: z \mapsto z^n \,, \end{array}$

$$\begin{split} & \underbrace{\text{Задача:}}_{f:\,\mathbb{C}^*} \mathbb{C}^*/\mathbb{U} \overset{?}{\cong} \mathbb{R}_+. \\ & \underbrace{f:\,\mathbb{C}^* \to \mathbb{R}_+,\, f:z \mapsto |z|}_{\text{ker } f=\,\mathbb{U} \text{ , im } f=\,\mathbb{R}_+.} \\ & \underbrace{\text{Задача:}}_{f:\,\mathbb{U} \to \mathbb{U}} \mathbb{U}/\mathbb{U}_n \overset{?}{\cong} \mathbb{U},\, n \geqslant 2. \\ & \underbrace{f:\,\mathbb{U} \to \mathbb{U}}_{f:\,z\mapsto z^n}, \end{split}$$

$$\begin{split} & \underbrace{\text{Задача:}}_{f:\,\mathbb{C}^*} \mathbb{C}^*/\mathbb{U} \overset{?}{\cong} \mathbb{R}_+. \\ & \underbrace{f:\,\mathbb{C}^* \to \mathbb{R}_+,\, f:z\mapsto |z|}_{\text{ker }f=\,\mathbb{U} \text{ , im }f=\,\mathbb{R}_+.} \\ & \underbrace{\text{Задача:}}_{f:\,\mathbb{U} \to \mathbb{U}} \mathbb{U}/\mathbb{U}_n \overset{?}{\cong} \mathbb{U},\, n\geqslant 2. \\ & \underbrace{f:\,\mathbb{U} \to \mathbb{U},\, f:z\mapsto z^n}_{f(z_1z_2)=\,(z_1z_2)^n}. \end{split}$$

$$\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^*}\mathbb{C}^*/\mathbb{U} \overset{?}{\cong} \mathbb{R}_+.\\ &\frac{f:\mathbb{C}^* \to \mathbb{R}_+, \ f:z \mapsto |z|}{\ker f = \mathbb{U} \ , \ \text{im} \ f = \mathbb{R}_+.}\\ &\frac{\text{Задача:}}{f:\mathbb{U} \to \mathbb{U}, \ f:z \mapsto z^n} \ ,\\ &\frac{f(z_1z_2) = (z_1z_2)^n = z_1^n \cdot z_2^n}{\det \mathbb{C}^n} \end{split}$$

$$\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^* \to \mathbb{R}_+, \ f:z \mapsto |z|} \\ &\ker f = \mathbb{U} \ , \ \operatorname{im} f = \mathbb{R}_+. \\ &\frac{\text{Задача:}}{f:\mathbb{U} \to \mathbb{U}, \ f:z \mapsto z^n}, \\ &\frac{f(z_1 z_2) = (z_1 z_2)^n = z_1^n \cdot z_2^n = f(z_1) f(z_2)} \end{split}$$

$$\begin{split} & \underbrace{\text{Задача:}}_{f:\,\mathbb{C}^*}\,\mathbb{C}^*/\mathbb{U} \overset{?}{\cong} \mathbb{R}_+. \\ & \underbrace{f:\,\mathbb{C}^* \to \mathbb{R}_+, \; f:z \mapsto |z|}_{\text{ker } f=\,\mathbb{U} \; , \; \text{im } f=\mathbb{R}_+.} \\ & \underbrace{\text{Задача:}}_{f:\,\mathbb{U} \to \mathbb{U}}\,\mathbb{U}_n \overset{?}{\cong} \,\mathbb{U}, \; n \geqslant 2. \\ & \underbrace{f:\,\mathbb{U} \to \mathbb{U}, \; f:z \mapsto z^n}_{f:z_1z_2) = (z_1z_2)^n = z_1^n \cdot z_2^n = f(z_1)f(z_2), \end{split}$$

```
\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^*\to\mathbb{R}_+,\;f:z\mapsto|z|}\\ &\ker f=\mathbb{U}\;,\; \text{im}\;f=\mathbb{R}_+.\\ &\frac{\text{Задача:}}{f:\mathbb{U}\to\mathbb{U}}\mathbb{U}_n\overset{?}{\cong}\mathbb{U},\;n\geqslant 2.\\ &\frac{f:\mathbb{U}\to\mathbb{U}}{f:z\mapsto z^n}\;,\\ &f(z_1z_2)=(z_1z_2)^n=z_1^n\cdot z_2^n=f(z_1)f(z_2),\\ &\ker f: \end{split}
```

```
\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^*} \stackrel{?}{\to} \mathbb{R}_+, & f:z\mapsto |z|\\ &\ker f=\mathbb{U} \text{ , im } f=\mathbb{R}_+.\\ &\frac{\text{Задача:}}{f:\mathbb{U}\to\mathbb{U}} \stackrel{?}{\to} \mathbb{U}, & n\geqslant 2.\\ &\frac{f:\mathbb{U}\to\mathbb{U}}{f:z\mapsto z^n}, & f(z_1z_2)=(z_1z_2)^n=z_1^n\cdot z_2^n=f(z_1)f(z_2),\\ &\ker f:\\ &f(z)=1 \end{split}
```

$$\frac{\text{Задача:}}{f:\mathbb{C}^* \to \mathbb{R}_+, \ f:z \mapsto |z|} \\ \ker f = \mathbb{U} \ , \ \operatorname{im} f = \mathbb{R}_+. \\ \frac{\text{Задача:}}{f:\mathbb{U} \to \mathbb{U}, \ f:z \mapsto z^n}, \\ \frac{f(z_1 z_2) = (z_1 z_2)^n = z_1^n \cdot z_2^n = f(z_1) f(z_2),}{f(z_1 z_2) + (z_1 z_2)^n = z_1^n \cdot z_2^n = f(z_1) f(z_2),} \\ \ker f: \\ f(z) = 1 \Leftrightarrow z^n = 1$$

$$\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^*\to\mathbb{R}_+,\ f:z\mapsto|z|}\\ &\ker f=\mathbb{U}\ , \ \text{im}\ f=\mathbb{R}_+.\\ &\ker f=\mathbb{U}\ , \ \text{im}\ f=\mathbb{R}_+.\\ &\frac{\text{Задача:}}{f:\mathbb{U}\to\mathbb{U},\ f:z\mapsto z^n}\ ,\\ &\frac{f(z_1z_2)=(z_1z_2)^n=z_1^n\cdot z_2^n=f(z_1)f(z_2),}{\ker f:}\\ &f(z)=1\Leftrightarrow z^n=1\Leftrightarrow z\in\mathbb{U}_n \end{split}$$

$$\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^* \to \mathbb{R}_+, \ f:z\mapsto |z|} \\ &\ker f = \mathbb{U} \ , \ \text{im} \ f = \mathbb{R}_+. \\ &\frac{\text{Задача:}}{f:\mathbb{U} \to \mathbb{U}, \ im} \stackrel{?}{\cong} \mathbb{U}, \ n\geqslant 2. \\ &\frac{f:\mathbb{U} \to \mathbb{U}, \ f:z\mapsto z^n,}{f(z_1z_2) = (z_1z_2)^n = z_1^n \cdot z_2^n = f(z_1)f(z_2),} \\ &\ker f: \\ &f(z) = 1 \Leftrightarrow z^n = 1 \Leftrightarrow z \in \mathbb{U}_n \ , \ \ker f = \mathbb{U}_n \end{split}$$

$$\begin{split} & \underbrace{\text{Задача:}}_{f:\,\mathbb{C}^*}\,\mathbb{C}^*/\mathbb{U} \overset{?}{\cong}\,\mathbb{R}_+, \\ & f:\,\mathbb{C}^* \to \mathbb{R}_+, \; , \; f:z \mapsto |z| \\ & \ker f = \mathbb{U} \; , \; \text{im} \; f = \mathbb{R}_+. \\ & \underbrace{\text{Задача:}}_{f:\,\mathbb{U} \to \mathbb{U}}\,\mathbb{U}, \; n \geqslant 2. \\ & \underbrace{f:\,\mathbb{U} \to \mathbb{U}}_{f:\,z \mapsto z^n}, \; f(z_1z_2) = (z_1z_2)^n = z_1^n \cdot z_2^n = f(z_1)f(z_2), \\ & \ker f: \\ & f(z) = 1 \Leftrightarrow z^n = 1 \Leftrightarrow z \in \mathbb{U}_n \, , \; \ker f = \mathbb{U}_n, \end{split}$$

```
Задача: \mathbb{C}^*/\mathbb{U} \stackrel{?}{\cong} \mathbb{R}_+. f: \mathbb{C}^* \to \mathbb{R}_+, f: z \mapsto |z| ker f = \mathbb{U}, im f = \mathbb{R}_+. \frac{3}{f}: \mathbb{U} \to \mathbb{U}, f: z \mapsto z^n, f(z_1 z_2) = (z_1 z_2)^n = z_1^n \cdot z_2^n = f(z_1) f(z_2), ker f: f(z) = 1 \Leftrightarrow z^n = 1 \Leftrightarrow z \in \mathbb{U}_n, ker f = \mathbb{U}_n, im f:
```

```
\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^*} \overset{?}{\to} \mathbb{R}_+, \ f:z\mapsto |z| \\ &\ker f=\mathbb{U} \ , \ \text{im} \ f=\mathbb{R}_+. \\ &\frac{\text{Задача:}}{f:\mathbb{U}\to\mathbb{U}} \overset{?}{\to} \mathbb{U}, \ n\geqslant 2. \\ &\frac{f:\mathbb{U}\to\mathbb{U}}{f:z\mapsto z^n} \overset{?}{\to} \mathbb{U}, \ f:z\mapsto z^n, \\ &f(z_1z_2)=(z_1z_2)^n=z_1^n\cdot z_2^n=f(z_1)f(z_2), \\ &\ker f: \\ &f(z)=1\Leftrightarrow z^n=1\Leftrightarrow z\in\mathbb{U}_n \ , \ \ker f=\mathbb{U}_n, \\ &\inf f: \\ &\alpha\in[0,2\pi/n] \end{split}
```

```
\begin{split} &\frac{\text{Задача:}}{f:\mathbb{C}^*} \overset{?}{\to} \mathbb{R}_+, \ f:z\mapsto |z| \\ &\ker f=\mathbb{U} \ , \ \operatorname{im} f=\mathbb{R}_+. \\ &\frac{\text{Задача:}}{f:\mathbb{U}\to\mathbb{U}} \overset{?}{\to} \mathbb{U}, \ n\geqslant 2. \\ &\frac{f:\mathbb{U}\to\mathbb{U}}{f:\mathbb{U}\to\mathbb{U}} \overset{?}{\cup} f:z\mapsto z^n, \\ &f(z_1z_2)=(z_1z_2)^n=z_1^n\cdot z_2^n=f(z_1)f(z_2), \\ &\ker f: \\ &f(z)=1\Leftrightarrow z^n=1\Leftrightarrow z\in\mathbb{U}_n \ , \ \ker f=\mathbb{U}_n, \\ &\inf f: \\ &\alpha\in[0,2\pi/n], \ f(\cos\alpha+i\sin\alpha) \end{split}
```

```
\begin{split} &\frac{3 \text{адача:}}{f:\mathbb{C}^*} \overset{?}{\to} \mathbb{R}_+, \ f:z\mapsto |z| \\ &\ker f=\mathbb{U} \ , \ \text{im} \ f=\mathbb{R}_+. \\ &\frac{3 \text{адача:}}{f:\mathbb{U}\to\mathbb{U}} \overset{?}{\to} \mathbb{U}, \ n\geqslant 2. \\ &\frac{f:\mathbb{U}\to\mathbb{U}}{f:z\mapsto z^n} \overset{?}{\to} \mathbb{U}, \ f:z\mapsto z^n, \\ &f(z_1z_2)=(z_1z_2)^n=z_1^n\cdot z_2^n=f(z_1)f(z_2), \\ &\ker f: \\ &f(z)=1\Leftrightarrow z^n=1\Leftrightarrow z\in\mathbb{U}_n \ , \ \ker f=\mathbb{U}_n, \\ &\inf f: \\ &\alpha\in[0,2\pi/n], \ f(\cos\alpha+i\sin\alpha)=(\cos\alpha+i\sin\alpha)^n \end{split}
```

```
\frac{3 \text{адача:}}{f:\mathbb{C}^* \to \mathbb{R}_+, \ f:z \mapsto |z|} \\ \ker f = \mathbb{U} \ , \ \operatorname{im} f = \mathbb{R}_+. \\ \frac{3 \text{адача:}}{f:\mathbb{U} \to \mathbb{U}, \ \operatorname{im} f = \mathbb{R}_+.} \\ \frac{3 \text{адача:}}{f:\mathbb{U} \to \mathbb{U}, \ f:z \mapsto z^n}, \\ f(z_1 z_2) = (z_1 z_2)^n = z_1^n \cdot z_2^n = f(z_1) f(z_2), \\ \ker f: \\ f(z) = 1 \Leftrightarrow z^n = 1 \Leftrightarrow z \in \mathbb{U}_n, \ \ker f = \mathbb{U}_n, \\ \operatorname{im} f: \\ \alpha \in [0, 2\pi/n], \ f(\cos \alpha + i \sin \alpha) = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n\alpha \\ \end{cases}
```

```
\underline{3}адача: \mathbb{C}^*/\mathbb{U}\stackrel{?}{\cong}\mathbb{R}_+.
f: \mathbb{C}^* \to \mathbb{R}_+, , f: z \mapsto |z|
\ker f = \mathbb{U}, \operatorname{im} f = \mathbb{R}_+.
Задача: \mathbb{U}/\mathbb{U}_n \stackrel{f}{\cong} \mathbb{U}, n \geqslant 2.
f: \mathbb{U} \to \mathbb{U}, \ f: z \mapsto z^n
f(z_1z_2) = (z_1z_2)^n = z_1^n \cdot z_2^n = f(z_1)f(z_2),
\ker f:
f(z) = 1 \Leftrightarrow z^n = 1 \Leftrightarrow z \in \mathbb{U}_n, ker f = \mathbb{U}_n
im f:
\alpha \in [0, 2\pi/n], f(\cos \alpha + i \sin \alpha) = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n\alpha
\Rightarrow \text{im } f = \mathbb{U}
```

```
\underline{3}адача: \mathbb{C}^*/\mathbb{U}\stackrel{?}{\cong}\mathbb{R}_+.
f: \mathbb{C}^* \to \mathbb{R}_+, , f: z \mapsto |z|
\ker f = \mathbb{U}, \operatorname{im} f = \mathbb{R}_+.
Задача: \mathbb{U}/\mathbb{U}_n \stackrel{f}{\cong} \mathbb{U}, n \geqslant 2.
f: \mathbb{U} \to \mathbb{U}, \ f: z \mapsto z^n
f(z_1z_2) = (z_1z_2)^n = z_1^n \cdot z_2^n = f(z_1)f(z_2),
\ker f:
f(z) = 1 \Leftrightarrow z^n = 1 \Leftrightarrow z \in \mathbb{U}_n, ker f = \mathbb{U}_n
im f:
\alpha \in [0, 2\pi/n], f(\cos \alpha + i \sin \alpha) = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n\alpha
\Rightarrow \text{im } f = \mathbb{U}.
```

Задача:
$$\mathbb{Z}/n\mathbb{Z}\stackrel{?}{\cong}\mathbb{Z}_n,\, n\geqslant 2.$$

$$rac{3$$
адача: $\mathbb{Z}/n\mathbb{Z}\stackrel{?}{\cong}\mathbb{Z}_n,\, n\geqslant 2.$ $f:\mathbb{Z} o \mathbb{Z}_n,\, f:k\mapsto k\, \mathrm{mod}\, n$

```
rac{3адача: \mathbb{Z}/n\mathbb{Z}\stackrel{?}{\cong}\mathbb{Z}_n,\,n\geqslant 2. f:\mathbb{Z}	o\mathbb{Z}_n,\,f:k\mapsto k\,\mathrm{mod}\,n\,, f(k_1+k_2)
```

$$rac{3$$
адача: $\mathbb{Z}/n\mathbb{Z}\stackrel{?}{\cong}\mathbb{Z}_n,\ n\geqslant 2.$ $f:\mathbb{Z} o\mathbb{Z}_n,\ f:k\mapsto k\,\mathrm{mod}\,n\,,$ $f(k_1+k_2)=(k_1+k_2)\,\mathrm{mod}\,n\,$

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.

f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \mod n,

f(k_1 + k_2) = (k_1 + k_2) \mod n = (k_1 \mod n + k_2 \mod n) \mod n
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.

f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,

f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =

= f(k_1) \oplus f(k_2)
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.

f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,

f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =

= f(k_1) \oplus f(k_2),

\ker f:
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n = f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n = f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \bmod n = 0
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n = f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \bmod n = 0 \Leftrightarrow k \in n\mathbb{Z}
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.

f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \mod n,

f(k_1 + k_2) = (k_1 + k_2) \mod n = (k_1 \mod n + k_2 \mod n) \mod n =

= f(k_1) \oplus f(k_2),

\ker f:

f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z}
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n = f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \bmod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
\operatorname{im} f:
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \bmod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
\operatorname{im} f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n - 1
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \bmod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
\operatorname{im} f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n - 1, f(k) = k \bmod n = k \in \mathbb{Z}_n
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \bmod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
\operatorname{im} f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n - 1, f(k) = k \bmod n = k \in \mathbb{Z}_n \Rightarrow \operatorname{im} f = \mathbb{Z}_n
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \bmod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
\operatorname{im} f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n - 1, f(k) = k \bmod n = k \in \mathbb{Z}_n \Rightarrow \operatorname{im} f = \mathbb{Z}_n.
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, \ f: k \mapsto k \ \mathrm{mod} \ n,
f(k_1 + k_2) = (k_1 + k_2) \ \mathrm{mod} \ n = (k_1 \ \mathrm{mod} \ n + k_2 \ \mathrm{mod} \ n) \ \mathrm{mod} \ n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \ \mathrm{mod} \ n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
\operatorname{im} f:
k \in \mathbb{Z}, \ 0 \leqslant k \leqslant n - 1, \ f(k) = k \ \mathrm{mod} \ n = k \in \mathbb{Z}_n \quad \Rightarrow \operatorname{im} f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \stackrel{?}{\cong} \mathbb{U}.
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n,
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \bmod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
\operatorname{im} f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n - 1, f(k) = k \bmod n = k \in \mathbb{Z}_n \Rightarrow \operatorname{im} f = \mathbb{Z}_n.
\frac{3a \operatorname{дачa:}}{f: \mathbb{R} \to \mathbb{U}} \mathbb{R}/\mathbb{Z} \stackrel{?}{\cong} \mathbb{U}.
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \mod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, \ 0 \leqslant k \leqslant n-1, \ f(k) = k \bmod n = k \in \mathbb{Z}_n \quad \Rightarrow \operatorname{im} f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y)
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \mod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi (x+y) + i \sin 2\pi (x+y)
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \mod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i \sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y)
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \mod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i \sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \mod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i \sin 2\pi(x+y) =
= (\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y),
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \mod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, \ 0 \leqslant k \leqslant n-1, \ f(k) = k \bmod n = k \in \mathbb{Z}_n \quad \Rightarrow \operatorname{im} f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i \sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i \sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i \sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i \sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i \sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z}
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i\sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z} \Leftrightarrow x \in \mathbb{Z}
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i\sin 2\pi(x+y) =
= (\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y),
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z} \Leftrightarrow x \in \mathbb{Z} \Rightarrow \ker f = \mathbb{Z}
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i\sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z} \Leftrightarrow x \in \mathbb{Z} \Rightarrow \ker f = \mathbb{Z},
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i\sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z} \Leftrightarrow x \in \mathbb{Z} \Rightarrow \ker f = \mathbb{Z},
im f:
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i\sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z} \Leftrightarrow x \in \mathbb{Z} \Rightarrow \ker f = \mathbb{Z},
im f:
0 \le x < 1
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i\sin 2\pi(x+y) =
= (\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y),
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z} \Leftrightarrow x \in \mathbb{Z} \Rightarrow \ker f = \mathbb{Z},
im f:
0 \le x < 1 \implies 0 \le 2\pi x < 2\pi
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i\sin 2\pi(x+y) =
= (\cos 2\pi x + i \sin 2\pi x)(\cos 2\pi y + i \sin 2\pi y) = f(x)f(y),
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z} \Leftrightarrow x \in \mathbb{Z} \Rightarrow \ker f = \mathbb{Z},
im f:
0 \le x < 1 \implies 0 \le 2\pi x < 2\pi \implies \text{im } f = \mathbb{U}
```

```
Задача: \mathbb{Z}/n\mathbb{Z} \stackrel{?}{\cong} \mathbb{Z}_n, \ n \geqslant 2.
f: \mathbb{Z} \to \mathbb{Z}_n, f: k \mapsto k \bmod n
f(k_1 + k_2) = (k_1 + k_2) \bmod n = (k_1 \bmod n + k_2 \bmod n) \bmod n =
= f(k_1) \oplus f(k_2),
\ker f:
f(k) = 0 \Leftrightarrow k \mod n = 0 \Leftrightarrow k \in n\mathbb{Z} \Rightarrow \ker f = n\mathbb{Z},
im f:
k \in \mathbb{Z}, 0 \leqslant k \leqslant n-1, f(k) = k \mod n = k \in \mathbb{Z}_n \implies \text{im } f = \mathbb{Z}_n.
Задача: \mathbb{R}/\mathbb{Z} \cong \mathbb{U}.
f: \mathbb{R} \to \mathbb{U}, \ f: x \mapsto \cos 2\pi x + i \sin 2\pi x
f(x+y) = \cos 2\pi(x+y) + i\sin 2\pi(x+y) =
=(\cos 2\pi x + i\sin 2\pi x)(\cos 2\pi y + i\sin 2\pi y) = f(x)f(y)
\ker f:
f(x) = 1 \Leftrightarrow \cos 2\pi x + i \sin 2\pi x = 1 \Leftrightarrow \cos 2\pi x = 1, \sin 2\pi x = 0 \Leftrightarrow
\Leftrightarrow 2\pi x = 2\pi n, n \in \mathbb{Z} \Leftrightarrow x \in \mathbb{Z} \Rightarrow \ker f = \mathbb{Z},
im f:
0 \le x < 1 \implies 0 \le 2\pi x < 2\pi \implies \text{im } f = \mathbb{U}.
```

Прямое произведение групп

 $G_1,\,G_2$

$$G_1, G_2, G_1 \times G_2$$

$$G_1,\,G_2\,\,,\,G_1\times G_2\,\,,\,(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2)$$

$$G_1,\,G_2\,\,,\,G_1 imes G_2\,\,,\,(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2).$$
 1) Ассоциативность:

$$G_1,\,G_2\,,\,G_1 imes G_2\,,\,(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2).$$
 1) Ассоциативность:
$$\big((a_1,a_2)(b_1,b_2)\big)(c_1,c_2)$$

$$G_1,\,G_2\,,\,G_1 imes G_2\,,\,(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2).$$
 1) Ассоциативность:
$$\big((a_1,a_2)(b_1,b_2)\big)(c_1,c_2)=(a_1b_1,a_2b_2)(c_1,c_2)$$

$$G_1,\,G_2$$
 , $G_1\times G_2$, $(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2).$ 1) Ассоциативность:
$$\big((a_1,a_2)(b_1,b_2)\big)(c_1,c_2)=(a_1b_1,a_2b_2)(c_1,c_2)=\big((a_1b_1)c_1,(a_2b_2)c_2\big)$$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
 1) Ассоциативность:
$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2))$$

$$G_1,\,G_2\,,\,G_1 imes G_2\,,\,(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2).$$
 1) Ассоциативность:
$$\big((a_1,a_2)(b_1,b_2)\big)(c_1,c_2)=(a_1b_1,a_2b_2)(c_1,c_2)=\big((a_1b_1)c_1,(a_2b_2)c_2\big)= \\ = \big(a_1(b_1c_1),a_2(b_2c_2)\big)=(a_1,a_2)(b_1c_1,b_2c_2)$$

$$G_1,\,G_2\,,\,G_1 imes G_2\,,\,(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2).$$
 1) Ассоциативность:
$$\big((a_1,a_2)(b_1,b_2)\big)(c_1,c_2)=(a_1b_1,a_2b_2)(c_1,c_2)=\big((a_1b_1)c_1,(a_2b_2)c_2\big)= \\ = \big(a_1(b_1c_1),a_2(b_2c_2)\big)=(a_1,a_2)(b_1c_1,b_2c_2)=(a_1,a_2)\big((b_1,b_2)(c_1,c_2)\big)$$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
 1) Ассоциативность:
$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)) .$$

Прямое произведение групп

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

1) Ассоциативность:

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) =$$

$$= (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$G_1,\,G_2\,,\,G_1 imes G_2\,,\,(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2).$$
 1) Ассоциативность:
$$\big((a_1,a_2)(b_1,b_2)\big)(c_1,c_2)=(a_1b_1,a_2b_2)(c_1,c_2)=\big((a_1b_1)c_1,(a_2b_2)c_2\big)=\\ =\big(a_1(b_1c_1),a_2(b_2c_2)\big)=(a_1,a_2)(b_1c_1,b_2c_2)=(a_1,a_2)\big((b_1,b_2)(c_1,c_2)\big)\ .$$
 2) Единичный элемент:
$$(e_1,e_2)$$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
1) Ассоциативность: $((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$
2) Единичный элемент: $(e_1, e_2), (e_1, e_2)(a_1, a_2)$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
1) Ассоциативность: $((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$
2) Единичный элемент: $(e_1, e_2), (e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2)$

Прямое произведение групп

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
1) Ассоциативность: $((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$
2) Единичный элемент:

 (e_1, e_2) , $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

Прямое произведение групп

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

1) Ассоциативность:

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

Прямое произведение групп

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

1) Ассоциативность:

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1})$$

Прямое произведение групп

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

1) Ассоциативность:

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) =$$

$$= (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$|G_1 \times G_2| = |G_1| \cdot |G_2|.$$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$|G_1 \times G_2| = |G_1| \cdot |G_2|.$$

 $G_1 \times G_2$ коммутативная

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$|G_1 \times G_2| = |G_1| \cdot |G_2|.$$

 $G_1 \times G_2$ коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
 1) Ассоциативность: $((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$ 2) Единичный элемент: $(e_1, e_2), (e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$ 3) Обратный элемент: $(a, b)^{-1} = (a^{-1}, b^{-1}), (a, b)^n = (a^n, b^n)n \in \mathbb{Z}.$ Обозначения $G_1 \times G_2, G_1 \oplus G_2.$ $|G_1 \times G_2| = |G_1| \cdot |G_2|.$ $G_1 \times G_2$ коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные . $|(a, b)| < \infty$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
1) Account Turning Transfer :

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$|G_1 \times G_2| = |G_1| \cdot |G_2|.$$

 $G_1 \times G_2$ коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные.

$$|(a,b)| < \infty \Leftrightarrow |a| < \infty, |b| < \infty$$

|a| = m, |b| = n

$$G_1,\,G_2\,\,,\,G_1 imes G_2\,\,,\,(a_1,a_2)(b_1,b_2)=(a_1b_1,a_2b_2).$$
 1) Ассоциативность:
$$\big((a_1,a_2)(b_1,b_2)\big)(c_1,c_2)=(a_1b_1,a_2b_2)(c_1,c_2)=\big((a_1b_1)c_1,(a_2b_2)c_2\big)=\\ =\big(a_1(b_1c_1),a_2(b_2c_2)\big)=(a_1,a_2)(b_1c_1,b_2c_2)=(a_1,a_2)\big((b_1,b_2)(c_1,c_2)\big)\ .$$
 2) Единичный элемент:
$$(e_1,e_2)\,\,,\,(e_1,e_2)(a_1,a_2)=(e_1a_1,e_2a_2)=(a_1,a_2)$$
 3) Обратный элемент:
$$(a,b)^{-1}=(a^{-1},b^{-1})\,\,,\,(a,b)^n=(a^n,b^n)n\in\mathbb{Z}.$$
 Обозначения $G_1 imes G_2,\,G_1\oplus G_2.$
$$|G_1 imes G_2|=|G_1|\cdot|G_2|.$$

$$|G_1 imes G_2\,\,$$
 коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные .
$$|(a,b)|<\infty\Leftrightarrow |a|<\infty,\,|b|<\infty.$$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
 1) Ассоциативность:

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) =$$

$$= (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$|G_1 \times G_2| = |G_1| \cdot |G_2|.$$

 $G_1 imes G_2$ коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные .

$$|(a,b)| < \infty \Leftrightarrow |a| < \infty, |b| < \infty.$$

$$|a| = m, |b| = n, (a,b)^k = (e_1, e_2)$$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$|G_1 \times G_2| = |G_1| \cdot |G_2|.$$

 $G_1 imes G_2$ коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные .

$$|(a,b)| < \infty \Leftrightarrow |a| < \infty, |b| < \infty.$$

$$|a| = m, |b| = n, (a,b)^k = (e_1, e_2) \Leftrightarrow a^k = e_1, b^k = e_2$$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$
1) Ассоциативность: $((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) =$
 $= (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$
2) Единичный элемент: $(e_1, e_2), (e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$
3) Обратный элемент: $(a, b)^{-1} = (a^{-1}, b^{-1}), (a, b)^n = (a^n, b^n)n \in \mathbb{Z}.$
Обозначения $G_1 \times G_2, G_1 \oplus G_2.$
 $|G_1 \times G_2| = |G_1| \cdot |G_2|.$

 $|a| = m, |b| = n, (a,b)^k = (e_1,e_2) \Leftrightarrow a^k = e_1, b^k = e_2 \Leftrightarrow m|k,n|k$

 $G_1 \times G_2$ коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные.

 $|(a,b)| < \infty \Leftrightarrow |a| < \infty, |b| < \infty.$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) =$$

$$= (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$|G_1 \times G_2| = |G_1| \cdot |G_2|.$$

 $G_1 imes G_2$ коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные .

$$|(a,b)| < \infty \Leftrightarrow |a| < \infty, |b| < \infty.$$

$$|a| = m$$
, $|b| = n$, $(a,b)^k = (e_1, e_2) \Leftrightarrow a^k = e_1$, $b^k = e_2 \Leftrightarrow m|k, n|k \Rightarrow |a,b| = [m,n]$

$$G_1, G_2, G_1 \times G_2, (a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2).$$

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1, a_2)((b_1, b_2)(c_1, c_2)).$$

2) Единичный элемент:

$$(e_1, e_2)$$
, $(e_1, e_2)(a_1, a_2) = (e_1a_1, e_2a_2) = (a_1, a_2)$

3) Обратный элемент:

$$(a,b)^{-1} = (a^{-1},b^{-1}), (a,b)^n = (a^n,b^n)n \in \mathbb{Z}.$$

Обозначения $G_1 \times G_2$, $G_1 \oplus G_2$.

$$|G_1 \times G_2| = |G_1| \cdot |G_2|.$$

 $G_1 imes G_2$ коммутативная $\Leftrightarrow G_1$ и G_2 коммутативные .

$$|(a,b)| < \infty \Leftrightarrow |a| < \infty, |b| < \infty.$$

$$|a| = m, |b| = n, (a,b)^k = (e_1, e_2) \Leftrightarrow a^k = e_1, b^k = e_2 \Leftrightarrow m|k, n|k \Rightarrow |a,b| = [m,n], |a,b| = [|a|,|b|].$$

Экспонента группы

Определение

Говорят, что группа G имеет конечную экспоненту, если существует такое натуральное n, что для любого $x \in G$ выполняется равенство $x^n = e$.

Группы Экспонента группы

Определение

Говорят, что группа G имеет конечную экспоненту, если существует такое натуральное n, что для любого $x \in G$ выполняется равенство $x^n = e$.

В этом случае наименьшее n, удовлетворяющее этому условию, называется экспонентой группы и обозначается $\exp(G)$.

Группы Экспонента группы

Определение

Говорят, что группа G имеет конечную экспоненту, если существует такое натуральное n, что для любого $x \in G$ выполняется равенство $x^n = e$.

В этом случае наименьшее n, удовлетворяющее этому условию, называется экспонентой группы и обозначается $\exp(G)$.

Свойство

Группа имеет конечную экспоненту тогда и только тогда, когда все ее элементы имеют конечные порядки и существует ненулевое общее кратное этих порядков.

В этом случае экспонента группы равна наименьшему натуральному общему кратному порядков ее элементов.

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы.

Группы Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы.

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leqslant |G|$.

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leqslant |G|$.

Свойство

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\exp(G) = m$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leqslant |G|$.

Свойство

$$\exp(G) = m, m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leqslant |G|$.

Свойство

$$\exp(G) = m, m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}, x \in G$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\exp(G) = m, m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}, x \in G, |x| = p_1^{k_1} s, s \in \mathbb{N}$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\exp(G) = m, m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}, x \in G, |x| = p_1^{k_1} s, s \in \mathbb{N}.$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\exp(G) = m , m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} , x \in G, |x| = p_1^{k_1} s, s \in \mathbb{N}.$$

$$y_1 = x^s$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leqslant |G|$.

Свойство

$$\exp(G) = m , m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} , x \in G, |x| = p_1^{k_1} s, s \in \mathbb{N}.$$

$$y_1 = x^s, |y_1| = \frac{|x|}{(|x|,s)}$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\exp(G) = m , m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} , x \in G, |x| = p_1^{k_1} s, s \in \mathbb{N}.$$

$$y_1 = x^s, |y_1| = \frac{|x|}{(|x|,s)} = p_1^{k_1}$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\exp(G) = m, \ m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}, \ x \in G, \ |x| = p_1^{k_1} s, \ s \in \mathbb{N}.$$
$$y_1 = x^s, \ |y_1| = \frac{|x|}{(|x|,s)} = p_1^{k_1}, \ y_2, \dots, \ y_r,$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\begin{split} \exp(G) &= m \;,\; m = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r} \;,\; x \in G \;,\; |x| = p_1^{k_1} s,\; s \in \mathbb{N} \;. \\ y_1 &= x^s,\; |y_1| = \frac{|x|}{(|x|,s)} = p_1^{k_1} \;,\; y_2,\; \ldots \;,\; y_r, |y_i| = p_i^{k_i} \;,\; i = 2,\; \ldots \;,\; r \end{split}$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\exp(G) = m , m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}, x \in G, |x| = p_1^{k_1} s, s \in \mathbb{N}.$$

$$y_1 = x^s, |y_1| = \frac{|x|}{(|x|,s)} = p_1^{k_1}, y_2, \dots, y_r, |y_i| = p_i^{k_i}, i = 2, \dots, r,$$

$$|y_1 y_2 \dots y_r|$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\begin{split} \exp(G) &= m \,,\, m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} \,,\, x \in G \,,\, |x| = p_1^{k_1} s,\, s \in \mathbb{N} \,. \\ y_1 &= x^s,\, |y_1| = \frac{|x|}{(|x|,s)} = p_1^{k_1},\, y_2,\, \dots,\, y_r, |y_i| = p_i^{k_i},\, i = 2,\, \dots,\, r \,, \\ |y_1 y_2 \dots y_r| &= |y_1| |y_2| \dots |y_r| \end{split}$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\begin{split} \exp(G) &= m \,,\, m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} \,,\, x \in G \,,\, |x| = p_1^{k_1} s,\, s \in \mathbb{N} \,. \\ y_1 &= x^s,\, |y_1| = \frac{|x|}{(|x|,s)} = p_1^{k_1} \,,\, y_2,\, \dots,\, y_r, |y_i| = p_i^{k_i} \,,\, i = 2,\, \dots,\, r \,, \\ |y_1 y_2 \dots y_r| &= |y_1| |y_2| \dots |y_r| = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} \end{split}$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\begin{split} \exp(G) &= m \,,\, m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} \,,\, x \in G \,,\, |x| = p_1^{k_1} s,\, s \in \mathbb{N} \,. \\ y_1 &= x^s,\, |y_1| = \frac{|x|}{(|x|,s)} = p_1^{k_1},\, y_2,\, \dots,\, y_r, |y_i| = p_i^{k_i},\, i = 2,\, \dots,\, r \,, \\ |y_1 y_2 \dots y_r| &= |y_1| |y_2| \dots |y_r| = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} = m \end{split}$$

Экспонента группы

Свойство

Конечная группа имеет конечную экспоненту, она является наименьшим общим кратным порядков всех элементов группы. Экспонента этой группы делит порядок группы. Имеет место неравенство $\exp(G) \leq |G|$.

Свойство

$$\begin{split} \exp(G) &= m \,,\, m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} \,,\, x \in G \,,\, |x| = p_1^{k_1} s,\, s \in \mathbb{N} \,. \\ y_1 &= x^s,\, |y_1| = \frac{|x|}{(|x|,s)} = p_1^{k_1},\, y_2,\, \dots,\, y_r, |y_i| = p_i^{k_i},\, i = 2,\, \dots,\, r \,, \\ |y_1 y_2 \dots y_r| &= |y_1| |y_2| \dots |y_r| = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} = m \,. \end{split}$$

Экспонента группы

Свойство

Конечная коммутативная группа G является циклической в том и только том случае, когда $|G| = \exp(G)$.

Экспонента группы

Свойство

Конечная коммутативная группа G является циклической в том и только том случае, когда $|G| = \exp(G)$.

Эта группа не является циклической в том и только том случае, когда $\exp(G) < |G|$.

Экспонента группы

Свойство

Конечная коммутативная группа G является циклической в том и только том случае, когда $|G| = \exp(G)$.

Эта группа не является циклической в том и только том случае, когда $\exp(G) < |G|.$

G циклическая

Экспонента группы

Свойство

Конечная коммутативная группа G является циклической в том и только том случае, когда $|G| = \exp(G)$.

Эта группа не является циклической в том и только том случае, когда $\exp(G) < |G|.$

G циклическая $\Leftrightarrow \exists \ x \in G \ |x| = |G|$

Экспонента группы

Свойство

Конечная коммутативная группа G является циклической в том и только том случае, когда $|G| = \exp(G)$.

Эта группа не является циклической в том и только том случае, когда $\exp(G) < |G|.$

G циклическая $\Leftrightarrow \exists x \in G |x| = |G| \Leftrightarrow |G| = \exp(G)$

Экспонента группы

Свойство

Конечная коммутативная группа G является циклической в том и только том случае, когда $|G| = \exp(G)$.

Эта группа не является циклической в том и только том случае, когда $\exp(G) < |G|.$

G циклическая $\Leftrightarrow \exists x \in G |x| = |G| \Leftrightarrow |G| = \exp(G)$.

Свойство

Группа $G_1 \times G_2$ имеет конечную экспоненту в том и только том случае, когда каждая из групп G_1, G_2 имеет конечную экспоненту.

Экспонента группы

Свойство

Конечная коммутативная группа G является циклической в том и только том случае, когда $|G| = \exp(G)$.

Эта группа не является циклической в том и только том случае, когда $\exp(G) < |G|.$

G циклическая $\Leftrightarrow \exists x \in G |x| = |G| \Leftrightarrow |G| = \exp(G)$.

Свойство

Группа $G_1 \times G_2$ имеет конечную экспоненту в том и только том случае, когда каждая из групп G_1, G_2 имеет конечную экспоненту. В этом случае экспонента группы $G_1 \times G_2$ является наименьшим общим кратным экспонент групп G_1 и G_2 , в частности $\exp(G_1 \times G_2) \leqslant \exp(G_1) \cdot \exp(G_2)$.

Экспонента группы

Свойство

Экспонента группы

Свойство

Прямое произведение конечных коммутативных групп G_1 и G_2 является циклической группой в том и только том случае, когда эти группы циклические и их порядки взаимно простые.

 $G_1 \times G_2$ циклическая

Экспонента группы

Свойство

$$G_1 imes G_2$$
 циклическая $\Leftrightarrow |G_1 imes G_2| = \exp(G_1 imes G_2)$

Экспонента группы

Свойство

$$G_1 \times G_2$$
 циклическая $\Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2)$. $|G_1 \times G_2|$

Экспонента группы

Свойство

$$G_1 imes G_2$$
 циклическая $\Leftrightarrow |G_1 imes G_2| = \exp(G_1 imes G_2)$. $|G_1 imes G_2| = |G_1| \cdot |G_2|$

Экспонента группы

Свойство

$$G_1 \times G_2$$
 циклическая $\Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2)$. $|G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2)$

Экспонента группы

Свойство

$$G_1 \times G_2$$
 циклическая $\Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2)$.
 $|G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 \times G_2)$

Экспонента группы

Свойство

$$G_1 \times G_2$$
 циклическая $\Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2)$. $|G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 \times G_2)$. $|G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2)$

Экспонента группы

Свойство

$$G_1 \times G_2$$
 циклическая $\Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2)$. $|G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 \times G_2)$. $|G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2)$, $\exp(G_1) \cdot \exp(G_2) = \exp(G_1 \times G_2)$

Экспонента группы

Свойство

$$G_1 \times G_2$$
 циклическая $\Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2)$. $|G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 \times G_2)$. $|G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2)$, $\exp(G_1) \cdot \exp(G_2) = \exp(G_1 \times G_2)$. $|G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2)$

Экспонента группы

Свойство

$$G_1 \times G_2$$
 циклическая $\Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2)$. $|G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 \times G_2)$. $|G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2)$, $\exp(G_1) \cdot \exp(G_2) = \exp(G_1 \times G_2)$. $|G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow |G_1| = \exp(G_1)$, $|G_2| = \exp(G_2)$

Экспонента группы

Свойство

```
G_1 \times G_2 циклическая \Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2). |G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 \times G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2), \exp(G_1) \cdot \exp(G_2) = \exp(G_1 \times G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow |G_1| = \exp(G_1), |G_2| = \exp(G_2). \exp(G_1 \times G_2) = \exp(G_1) \cdot \exp(G_2)
```

Экспонента группы

Свойство

```
G_1 \times G_2 циклическая \Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2). |G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 \times G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2), \exp(G_1) \cdot \exp(G_2) = \exp(G_1 \times G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow |G_1| = \exp(G_1), |G_2| = \exp(G_2). \exp(G_1 \times G_2) = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow \exp(G_1), \exp(G_2) взаимно простые
```

Экспонента группы

Свойство

```
G_1 	imes G_2 циклическая \Leftrightarrow |G_1 	imes G_2| = \exp(G_1 	imes G_2). |G_1 	imes G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 	imes G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2), \exp(G_1) \cdot \exp(G_2) = \exp(G_1 	imes G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow |G_1| = \exp(G_1), |G_2| = \exp(G_2). \exp(G_1 	imes G_2) = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow \exp(G_1), \exp(G_2) взаимно простые \Leftrightarrow |G_1| и |G_2| взаимно простые
```

Свойство

```
G_1 \times G_2 циклическая \Leftrightarrow |G_1 \times G_2| = \exp(G_1 \times G_2). |G_1 \times G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 \times G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2), \exp(G_1) \cdot \exp(G_2) = \exp(G_1 \times G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow |G_1| = \exp(G_1), |G_2| = \exp(G_2). \exp(G_1 \times G_2) = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow \exp(G_1 \times G_2) = \exp(G_1) взаимно простые \Leftrightarrow |G_1| и |G_2| взаимно простые .
```

Экспонента группы

Свойство

Прямое произведение конечных коммутативных групп G_1 и G_2 является циклической группой в том и только том случае, когда эти группы циклические и их порядки взаимно простые.

```
G_1 	imes G_2 пиклическая \Leftrightarrow |G_1 	imes G_2| = \exp(G_1 	imes G_2). |G_1 	imes G_2| = |G_1| \cdot |G_2| \geqslant \exp(G_1) \cdot \exp(G_2) \geqslant \exp(G_1 	imes G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2), \exp(G_1) \cdot \exp(G_2) = \exp(G_1 	imes G_2). |G_1| \cdot |G_2| = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow |G_1| = \exp(G_1), |G_2| = \exp(G_2). \exp(G_1 	imes G_2) = \exp(G_1) \cdot \exp(G_2) \Leftrightarrow \exp(G_1 	imes G_2) взаимно простые \Leftrightarrow |G_1| и |G_2| взаимно простые .
```

Следствие

Прямое произведение конечных коммутативных групп G_1, G_2, \ldots, G_k является циклической группой тогда и только тогда, когда эти группы циклические и их порядки попарно взаимно простые.

Экспонента группы

Следствие

Предположим, что $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$

Экспонента группы

Следствие

Предположим, что
$$n=p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}$$
, тогда $\mathbb{U}_n\cong \mathbb{U}_{p_1^{k_1}}\times \mathbb{U}_{p_2^{k_2}}\times \dots \times \mathbb{U}_{p_r^{k_r}}$

Экспонента группы

Следствие

Предположим, что
$$n=p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}$$
, тогда $\mathbb{U}_n\cong \mathbb{U}_{p_1^{k_1}}\times \mathbb{U}_{p_2^{k_2}}\times \dots \times \mathbb{U}_{p_r^{k_r}}, \mathbb{Z}_n\cong \mathbb{Z}_{p_1^{k_1}}\oplus \mathbb{Z}_{p_2^{k_2}}\times \dots \oplus \mathbb{Z}_{p_r^{k_r}}.$