

Mikhail E. Abramyan

CS212. PARADIGMS
AND TECHNOLOGIES
OF PROGRAMMING

MODULE 2

USER INTERFACE DEVELOPMENT

Study Assignments

 3

1. Study assignments

1.1. General requirements

If the form does not contain controls for which it makes sense to resize,

then it cannot be resized or maximized.

When placing controls in a form, make optimal use of the form space. For

forms of variable size, you should actively use the Anchor or Dock properties.

All actions provided in the project must be associated with keyboard

shortcuts. Information about keyboard shortcuts should be available in the pro-

gram window through underlined characters in the titles of controls, additional

text in parentheses (for example, Run (F5)), default buttons. Changing the focus

with the Tab key should occur in a natural order: left to right and top to bottom.

Programs should not contain handlers of the same type; instead, you must

connect one handler to multiple controls. Actions applied to multiple controls

must be performed in a loop using the Controls property of the form.

The default names of controls should not be changed, except for the names

of menu items and shortcut buttons.

1.2. CONSOLE project: console applications,
file and directory processing

General guidelines. All input data for the program must be passed using

command line arguments. To test a program with different arguments, use the

project settings specified in the Debug group and prepare a special directory

structure on disk.

The program should provide formatted output (for instance, using interpo-

lated strings). LINQ queries can be useful in a number of situations.

The program must correctly handle directories with relative paths (that is,

with paths that do not start with a drive letter and a backslash). For example,

specifying the dir1 directory means that the dir1 directory is a subdirectory of

the current directory. Special directory names “.” (one dot) and “..” (two dots)

do not need to be processed.

At the beginning of its work, the program should print to the console an ex-

ample of its call with the command line arguments (if some arguments are op-

tional, they are enclosed in square brackets). If there is an invalid argument (for

example, the name of a directory that does not exist), the program should dis-

play an error message. After the completion of the data output, it is necessary

that the form does not close immediately and allows the user to view the results

obtained.

4

1. At the end of program work, a list of files from the current directory (or

the directory specified as a command line argument) is displayed in the console.

Files are sorted by size. Information about files should be displayed in three col-

umns containing the file name, size (in bytes) and creation date. You do not

need to process subdirectories.

2. At the end of program work, a list of subdirectories of the current direc-

tory (or the directory specified as a command line argument) is displayed in the

console. Subdirectories of all levels must be listed in the order of their nesting,

and directories must be indented with four spaces for each level. At each level,

the directories must be sorted alphabetically by name.

3. At the end of program work, the console displays a list of files from the

current or user-specified directory with names matching the user-specified mask

(for example, *.jpg). The directory and mask are specified by the user on the

command line (the first is the mask, the second is the directory). If the second

argument is missing, the current directory is processed. If all arguments are

missing, an error message is displayed. Information about files should be dis-

played in three columns containing the file name, its size (in bytes) and the date

of creation (files are sorted by name in alphabetical order). You do not need to

process subdirectories.

4. At the end of program work, the console displays a list of files matching

the specified mask in all-level subdirectories of the current directory (or the di-

rectory specified as the first command line argument). The mask is specified as

the second argument; if it is not specified, then it is considered equal to *.*. For

each subdirectory, you should output its full name and then a list of the names of

the files that satisfy the mask and are located in this subdirectory, together with

their size in bytes (each name is displayed on a new line with an indention of 4

spaces, the files are sorted in alphabetical order of names). Subdirectories can be

listed in any order.

5. At the end of program work, the console displays summary information

about files matching the specified mask in all-level subdirectories of the current

directory (or the directory specified as the first command line argument). The

mask is specified as the second argument; if it is not specified, then it is consid-

ered equal to *.*. For each subdirectory, first its name is displayed, then (in the

same line) the number of files matching the mask and their total size in bytes.

Subdirectories of all levels must be listed in the order of their nesting, directories

must be indented with four spaces for each level. Within each level, directories

can be listed in any order.

6. At the end of program work, the console displays a list of files from the

user-specified directory with names that match the user-specified creation date

interval (subdirectories are not processed; the start date and end date may coin-

 5

cide). The directory, the start date, and the end date are specified by the user on

the command line as three arguments. If there are less than three command line

arguments, an error message is displayed. Information about files should be dis-

played in three columns containing the file name, its size (in bytes), and the cre-

ation date. Files must be sorted in ascending order of creation date. In an exam-

ple of program call (this example should be print to the console at the beginning

of program work), the required date format should be displayed.

7. Create a program that compares the contents of files with the same name

(case insensitive) in the two directories specified by the user as two command

line arguments. If there are less than two command line arguments, an error

message is displayed. Two lists of files are displayed on the screen: (1) a list of

files with the same name and the same contents, (2) a list of files with the same

name and different contents. In each list, files must be sorted alphabetically,

with each name displayed on a new line.

8. Create a program that compares the contents of two directories specified

by the user as two command line arguments. If there are less than two command

line arguments, an error message is displayed. Three lists of files must be dis-

played on the screen: (1) a list of files present in the first directory and absent in

the second, (2) a list of files present in the second directory and absent in the

first, (3) a list of files contained in both directories. File contents is not required

to analyze. In each list, files must be sorted alphabetically, with each name dis-

played on a new line. Filename comparisons are not case sensitive. You do not

need to process subdirectories.

9. Create a program that copies the structure of the nested directories. In the

created directory structure, each subdirectory name must have a prefix specified

by the user in the first command line argument. The source directory (containing

the directory structure to be copied) and the destination directory (in which the

copy of this structure will be created) must be specified as the second and third

command line argument, respectively. If there are less than three command line

arguments, an error message is displayed. The program must display the number

of created directories. You do not need to copy files.

10. Create a program that calculates two values: the number and total size

of all files located in the specified directory and its all-level subdirectories and

satisfying the mask specified by the user. The top-level directory and mask are

specified by the user as the first and second command line arguments, respec-

tively. If no mask is specified, the *.* mask is used. If the directory is also not

specified, then the current directory is processed. Several masks can be specified

in the command line arguments; in this case, each mask is processed separately,

and the program displays more than two values (each two values must be dis-

played on a new line).

6

11. Create a program that searches for a file by mask in the structure of

nested subdirectories, excluding some subdirectories from consideration. The

initial directory name, file mask, and subdirectory names to be excluded are

specified by the user on the command line (there can be multiple names of ex-

cluded subdirectories). Files of the initial directory are always processed. For all

found files, their full name, size (in bytes), and creation date are displayed (files

can be displayed in any order). If names of excluded directories are not speci-

fied, then all subdirectories are processed; if, in addition, no file mask is speci-

fied, then all files are displayed. If all command line arguments are missing, the

current directory is processed.

12. Create a program that finds the characteristics of the structure of nested

directories: the total number of subdirectories, the maximum nesting depth, the

maximum number of files in one directory, the total size of all files in the initial

directory and all subdirectories. The initial directory is specified as a command

line argument; if the initial directory is not specified, then the current directory

is processed.

13. Create a program to rename all files with a user-specified name in

a given directory and all its subdirectories. The user specifies the old and new

file names (without * and ? wildcards) and the top-level directory as command

line arguments. If there are less than three command line arguments, an error

message is displayed. Searching for files to rename should not be case sensitive.

The program displays the total number of renamed files.

1.3. DIALOGS project: form interaction

General guidelines. For dialog boxes (that is, modal forms), it is necessary

to implement the standard actions for the Enter and Esc keys (the Enter key is

always associated with the OK button or its analog, the Esc key is always asso-

ciated with the Cancel key or its analog). When you reopen the dialog box, it

must either retain the previous information or display new information if such is

the condition of a study assignment. In any case, it is necessary to ensure that

the first control of the dialog box is activated. The dialog box should not contain

minimize and maximize buttons. The main form must contain an available min-

imize button; maximization should only be available for the resizable main

form. By default (if a study assignment does not require the dialog box to be

resizable), the dialog box should be fixed in size.

1. The fixed-size main form contains a text box, the Password label, and

the Open a protected form button. The initial password is qwerty. If the pass-

word is input correctly, then, when the button (or the Enter key) is pressed,

a modal form with the Protected form title appears containing two text boxes

with the New password label (at the beginning, these text boxes contain the ini-

tial password) and two modal buttons: OK and Cancel. The OK button is avail-

 7

able if both text boxes in the modal form contain the same non-empty text.

When you close the modal form with the OK button or the Enter key, this text

becomes the new password. When you close the modal form with the Cancel

button or the Esc key, the password is not changed. When input a password, the

symbols "*" should be displayed instead of the typed characters; to do this, use

the PasswordChar property of the TextBox control. You do not need to save your

password when you close the application.

2. The fixed-size main form contains the Change scaling button (the button

is located at the upper left corner of the form). When the button is pressed,

a modal form with the Scaling title appears containing a text box with the New

scale (%) label and three buttons: OK, Apply, and Cancel. The OK and Apply

buttons are available if the text box contains an integer in the range from 10

to 300. The initial value of this input box is 100; only digits can be input in this

box. When you press the OK or Apply buttons, the main form and the button it

contains change their sizes in accordance with the new scale factor (for example,

if the factor is 200, then the sizes are doubled); in case of pressing the OK but-

ton, the modal form will close. The scaling is always relative to the initial size of

the form. When you click the Cancel button, the modal form closes without per-

forming any additional action. When you reopen the modal form, the text box

should display the current scale factor value.

3. The resizable main form contains a multi-line text box. When you try to

close the form, a modal form appears with buttons: Save, Not save, Cancel.

When you click the Save button, the entered text will be saved in the text.txt

file. Pressing the Cancel button cancels the closing of the main form. When you

reopen the form, if there is a text.txt file, its text is loaded into the text box.

4. The resizable main form contains the Show button. When this button is

clicked, a modal form appears with two text boxes containing the current values

of the coordinates of the upper left corner of the Show button (the x coordinate

is displayed in the first text box, the y coordinate in the second) and the buttons

OK, Apply, and Cancel . When you click the OK or Apply buttons, new coor-

dinates are set for the Show button; in case of pressing the OK button, the mod-

al form will close. When you click the Cancel button, the modal form closes

without performing any additional action. If the text boxes contain invalid val-

ues, the OK and Apply buttons should be unavailable (the value is considered

valid if it can be converted to a non-negative number and, after moving to the

specified position, the Show button will be at least partially visible on the

screen).

5. The fixed-size main form contains the Twin button. When you click the

button, a modal form of the same size appears with the OK and Cancel buttons.

The modal form can be resized. The OK button (and the Enter key) closes the

8

modal form and sets the size of the modal form for the main form, the Cancel

button (and the Esc key) also closes the modal form, but does not change the

size of the main form.

6. The resizable main form contains the Add Label button. When you click

the button, a modal form appears with two text boxes for the coordinates of

a new label, a text box for the text of this label, and buttons OK, Apply, and

Cancel. The OK and Apply buttons are available if the coordinates of a new la-

bel are non-negative numbers corresponding to some point in the main form and

the label text is a non-empty string. When you click the OK or Apply buttons,

a new label is created in the main form in the position specified by the user; in

case of clicking the OK button, the modal form will close. When you click the

Cancel button, the modal form closes without performing any additional action.

If the modal form was closed by pressing the OK button, then, when it is reo-

pened, the coordinates for the new label should increase by 20.

7. The fixed-size main form contains the Toss a coin button and labels dis-

playing statistics with the text Total number of tosses = 0 and Percentage of

heads = 0. When you click the Toss a coin button, a modal form appears with

a text box for input the number of tosses and the OK, Apply, and Cancel but-

tons. The OK and Apply buttons are available if the text box contains an integer

in the range from 1 to 10000. The initial value of this input box is 10; only digits

can be input in this box. When you press the OK or Apply buttons, the required

number of coin tosses is simulated and statistics labels are updated in the main

form; in case of pressing the OK button, the modal form will close. When you

click the Cancel button, the modal form closes without performing any addi-

tional action. Use the Random class to simulate a coin toss.

8. The fixed-size main form contains three labels. When you click on one of

the labels, a modal form appears with a text box and buttons OK, Apply, and

Cancel. The text box contains the text of the label being clicked; this text can be

changed. When you click OK or Apply, the text of the corresponding label in

the main form is updated; in case of pressing the OK button, the modal form

will close. When you click the Cancel button, the modal form closes without

performing any additional action.

9. The fixed-size main form contains three text boxes and a label (not a but-

ton!) with the text Change edit mode. At the launching of the program, the first

text box has focus, and all text boxes are editable. When you click on the label,

a modal form appears with the label Are you sure? and buttons Yes and No.

Clicking the Yes button changes the edit mode for the text box that has focus

(editable mode is switched to read-only mode and vice versa). Pressing the No

button does not change the edit mode. In any case, the modal form will close.

 9

You should implement the modal form yourself without using the MessageBox

class.

10. The fixed-size main form contains the Change Background button.

When you click this button, a modal form appears with three text boxes for input

the intensities of the red, green, and blue color components. In addition, the

modal form contains buttons OK, Apply, and Cancel. When you click the OK

or Apply buttons, the background color of the main form changes; in case of

clicking the OK button, the modal form will close. When you click the Cancel

button, the modal form closes without performing any additional action. If at

least one of the text boxes contains text other than a number from the range 0–

255, then the OK and Apply buttons should be unavailable. Use the Color struc-

ture and its FromRGB method.

11. The resizable main form contains the Change alignment button. When

you click on this button, a modal form appears with two drop-down lists labeled

Horizontal alignment and Vertical alignment. Each list contains three options:

Align Left, Align Center, Align Right for the Horizontal alignment list and

Align Top, Align Middle, Align Bottom for the Vertical alignment list. In ad-

dition, the modal form contains buttons OK, Apply, and Cancel. When you

click the OK or Apply buttons, the main form changes its position on the screen

in accordance with the values of the drop-down lists; in case of clicking the OK

button, the modal form will close. When you click the Cancel button, the modal

form closes without performing any additional action. When aligning, take into

account the current size of the main form. Use the PrimaryScreen.WorkingArea

property of the Screen class. Working with drop-down lists is described in the

LISTBOXES project (Section 19.1).

1.4. SYNC project: control synchronization

General guidelines. In all projects, it is required to configure all controls of

the same type by specifying one event handler for each group of controls of the

same type. If statements (such as if (n == 1), if (n == 2), if (n == 3), ...) or switch

statements should not be used in handlers. It is allowed to use the Tag properties

of the controls, as well as the Controls property of the form, which allows you to

refer to a control by its name. See the CALC project (Section 6.1) for infor-

mation on sharing event handlers.

Working with text boxes is described in the CALC project (Section 6.5) and

TEXTBOXES project (Section 8.1). Working with checkboxes is described in

the CHECKBOXES project (Chapter 20). Working with radio buttons is de-

scribed in the TEXTBOXES project (Section 8.2). Working with toolbar and

shortcut buttons is described in the TEXTEDIT4 project (Chapter 15). Working

with track bars is described in the COLORS project (Section 18.1). Working

with NumericUpDown controls is described in the TEXTEDIT6 project (Sec-

10

tion 17.3). Working with progress bars is described in the TRIGFUNC project

(Section 23.4).

1. The main form contains six text boxes with the text 1 – 6 and the Show

button. When the Show button is clicked, a second (non-modal) form appears

containing six checkboxes (the CheckBox controls). The checkboxes are labeled

1 – 6; initially none of them is checked. When you check any checkbox, the text

of the corresponding text box is highlighted in bold; when you uncheck the

checkbox, the bold highlighting of the corresponding text box is canceled. When

changing the text of any text box, the label of the corresponding checkbox

should change accordingly.

2. The main form contains six text boxes with the text 1 – 6 and the Show

button; the text of the first text box must be in bold. When the Show button is

clicked, a second (non-modal) form appears, containing six radio buttons (the

RadioButton controls). Radio buttons are labeled 1 – 6; the radio button corre-

sponding to the bold text box must be selected. When you select another radio

button, the bold highlighting is transferred to the text of the corresponding text

box. When changing the text of any text box, the label of the corresponding ra-

dio button should change accordingly.

3. The main form contains the Show button and the toolbar (the ToolStrip

control) with 6 shortcut buttons (the ToolStripButton controls). The shortcut but-

tons on the toolbar have titles 1 – 6; initially, none of the shortcut buttons is in

the pressed state. When the Show button is clicked, a second (non-modal) form

appears containing 6 checkboxes (the CheckBox controls). The checkboxes are

labeled 1 – 6. When checking/unchecking any checkbox, the corresponding

shortcut button on the toolbar is automatically pressed/released; when the

shortcut button is pressed/released on the toolbar, the corresponding checkbox is

automatically checked/unchecked.

4. The main form contains a Show button and the toolbar (the ToolStrip con-

trol) with 6 shortcut buttons (the ToolStripButton controls). The shortcut buttons

on the toolbar have titles 1 – 6, one of the shortcut buttons is in the pressed state

(initially it is the shortcut button 1). When the Show button is clicked, a second

(non-modal) form appears containing 6 radio buttons (the RadioButton controls).

Radio buttons are labeled 1 – 6; the radio button corresponding to the pressed

shortcut button in the main form should be selected. When another radio button

is selected, the corresponding shortcut button is automatically pressed (and the

previously pressed button is released); when the shortcut button is pressed, the

corresponding radio button is automatically selected (and the previously pressed

shortcut button is released).

5. The main form contains the Show button and six red labels with the text

Color. When the Show button is clicked, a second (non-modal) form appears

 11

containing six panels (the Panel controls); each panel contains three radio but-

tons. Radio buttons have labels Red, Green, Blue (these labels can be made

common for all panels by placing three additional Label controls to the left of the

first panel). Initially, the Red radio button is selected in each panel. When you

switch radio buttons, the text color of the corresponding label on the main form

is corrected. When you click on any label of the main form, its color changes

cyclically (from red to green, from green to blue, from blue to red) and the cor-

responding radio button is automatically selected on the corresponding panel of

the second form.

6. The main form contains the Show button and seven NumericUpDown con-

trols with the text 0. When the Show button is clicked, a second (non-modal)

form with seven track bars (the TrackBar controls) appears. When you move the

slider of some track bar, the number in the corresponding text box should auto-

matically change. Specifying a different number in the text box should automat-

ically change the slider position of the corresponding track bar. The range of

values for track bars and text boxes is from 0 to 100. The track bar should only

be synchronized with the text box if the correct number (0 to 100) is entered in

the text box.

7. The main form contains seven progress bars (the ProgressBar controls),

the Default button, and the Show button. When the Show button is clicked,

a second (non-modal) form with seven track bars (the TrackBar controls) appears.

As you change the slider position of some track bar, the content of the corre-

sponding progress bar should automatically change (the range of values for track

bars and progress bars is from 0 to 100). When you click on one of the progress

bars, the corresponding track bar is toggled between available and unavailable

state. When you click the Default button, all progress bars and track bars return

to their initial (zero) position; the accessibility of the track bars does not change.

8. The main form contains the Show button and seven text boxes with the

text text1 – text7. When the Show button is clicked, a second (non-modal) form

appears with seven track bars (the TrackBar controls) and labels containing the

same text as the text boxes in the main form. When you change the slider posi-

tion of some track bar, the width of the corresponding text box in the main form

should automatically change (the range of values for track bars is from 0

to 100). When changing the text in some text box, the text of the corresponding

label in the second form should automatically change.

9. The main form contains the Show button, seven track bars (the TrackBar
controls), and seven labels with the text label1 – label7. The range of values for

track bars is from 10 to 30, the initial value is 10. When the Show button is

clicked, a second (non-modal) form appears with seven text boxes. The content

of the text boxes must be synchronized with the text of the labels of the main

12

form. When you change the slider position of some track bar, the font size for

the corresponding text box changes according to the position of the slider (in the

range from 10 to 30). When you change the text in some text box, the text in the

corresponding label should change accordingly.

10. The main form contains the Show button and seven text boxes with the

text text1 – text7. When the Show button is clicked, a second (non-modal) form

appears with seven text boxes that must be synchronized with the corresponding

text boxes of the main form. Synchronization must be performed whenever the

text in any text box changes. The second form also contains the Stop Synchro-

nization button. When the Stop Synchronization button is clicked, synchroni-

zation stops and the button name is changed to Resume Synchronization.

Clicking the button again resumes synchronization mode, and the text specified

in the text boxes of the main form is used for synchronization. When you close

and reopen the second form, the state of the Stop/Resume Synchronization

button does not change.

11. The main form contains the Show button and seven text boxes with the

text text1 – text7. When the Show button is clicked, a second (non-modal) form

appears with seven labels; the text of label coincides with the text of the corre-

sponding text box. When you click on any label, the background color of the

corresponding text box toggles between white and gray. When you change the

text in the text box with a white background, the text of the corresponding label

is changed accordingly; when you change the text in the text box with a gray

background, the label does not change. However, when you change the back-

ground color of some text box from gray to white, the text of the text box and

the text of the corresponding label should be immediately synchronized.

12. The main form contains the Show button and seven text boxes with the

text text1 – text7. When the Show button is clicked, a second (non-modal) form

appears with seven track bars (the TrackBar controls); slider position of each

track bar coinsides with the length of the text in the corresponding text box.

When editing text in some text box, the slider position of the corresponding

track bar is automatically changed; when the slider position of some track bar is

changed, the text in the corresponding text box is shortened or lengthened (text

lengthening is performed by adding * characters). Track bars can take values

from 0 to 25; text longer than 25 characters cannot be input into the text box.

1.5. DRAGDROP project: drag-and-drop mode

General guidelines. In all projects, the form must have a fixed size. Drag-

and-drop mode has been discussed in detail in the ZOO project (Chapter 10); in

addition, it was used in the LISTBOXES (Section 19.4) and HTOWERS (Sec-

tion 24.3) projects. Working with menus was considered in the TEXTEDIT1

and TEXTEDIT2 projects (Sections 12.1, 13.1–13.3).

 13

1. The form contains three multi-line text boxes. Implement the ability to

drag and drop text files from Explorer onto one of the text boxes; as a result of

a such action, the contents of the text file is added to the existing text of this text

box. Only files with the .txt extension should be processed. In addition, imple-

ment the ability to drag and drop the non-empty content of one text box onto an-

other (while holding down the Ctrl key); as a result of a such action, the contents

of the source text box is added to the previous contents of the target text box.

The form menu contains one Command submenu with the Clear and Exit

menu items. The Clear command removes text from the text box that has focus.

2. The form contains three multi-line text boxes and three labels (each label

is placed above the corresponding text box). Initially, the labels contain the text

<No file>. Implement the ability to drag and drop text files from Explorer onto

one of the labels and automatically load the contents of these files into the ap-

propriate text box. Only files with the .txt extension should be processed; the

full file name must be displayed in the corresponding label. You can only drag

and drop a file onto the label with the text <No file>. The form menu contains

one Command submenu with the Save, Clear, and Exit menu items. The Save

and Clear commands affect the focus text box; the Save command saves the

new contents of the text box in the same file, the Clear command clears the text

box along with the associated label (the label displays the text <No file> again).

3. The form contains four “usual” labels with the letters of nucleotides A,

C, T, G and three “wide” labels that have a frame and contain gene sequences

(in the beginning, wide labels are empty). The width of wide labels does not de-

pend on the size of the text and is determined by the width of the form. Imple-

ment the ability to drag and drop a nucleotide letter from a usual label onto

a wide label; the nucleotides are added to the end of the text of the wide label.

Also, implement the ability to drag and drop the contents of one wide label onto

another; this action adds all text of the source label to the end of the target label

text. The form menu contains one Command submenu with the Clear 1,

Clear 2, Clear 3, and Exit menu items. The Clear commands clear the wide la-

bel with the specified number. All Clear commands must use one common han-

dler.

4. The form contains six labels with the text label1 – label6 and six text

boxes with the text textBox1 – textBox6. When you drag and drop a text box

onto a label (while holding down the Ctrl key), the text and font of the label

changes to the text and font of the text box (the position of the text box does not

change). You can drag and drop the text box onto the label several times. The

form menu contains one Command submenu with the Bold, Italic, and Exit

menu items. The Bold and Italic menu items act as checkboxes to set or unset

the bold and italic font mode for the text box that has focus.

14

5. The form contains six buttons with titles button1 – button6 and six

empty list boxes (the ListBox controls). When you drag and drop a button onto

the list box, the title of this button is inserted to the specified position of the list

(the position of the button does not change). You can drag and drop a button on-

to the list several times. The form menu contains one Command submenu with

the Clear and Exit menu items. The Clear command clears the contents of the

list with focus; if a button has focus, the command performs no action. To de-

termine the number of an item in the list by the position of the mouse cursor, use

the IndexFromPoint method (see Section 19.4).

6. The form contains six radio buttons with titles color1 – color6 (titles

have different colors) and six rectangles with a white background (use Panel
controls as rectangles). When you drag and drop a radio button onto a rectangle,

the background color of the rectangle changes to match the color of the title of

the radio button being dragged (the position of the radio button does not

change). The form menu contains one Command submenu with Color and Exit

menu items. The Color command shows the ColorDialog dialog box to change

the color of the title of the selected radio button. Working with the ColorDialog

control is described in Section 13.3.

7. The form contains a panel (the Panel control) and two buttons with titles

New and Trash. Pressing the New button creates a new label located in a ran-

dom place on the panel; the label text is a random capital Latin letter. Implement

the ability to drag and drop the appeared labels onto new location on the panel.

Dragging a label onto the Trash button removes the label. When you drag and

drop one label onto another, the source label is removed and the text of the

source label is added to the text of the target label. The form menu contains one

Command submenu with the Clear and Exit menu items. The Clear command

removes all labels. All labels are also removed by clicking the Trash button.

See the HTOWERS project (Section 24.1) for information on creating controls

at runtime.

8. The form contains four panels (Panel controls) and a group of four radio

buttons with titles 1 – 4 for selecting the current panel. There are three labels

with text label1 – label3 on each panel in random places. Implement the ability

to drag and drop labels from the current panel to any other (in addition, for the

current panel, you can drag and drop labels within this panel). Labels located on

other panels cannot be dragged. The form menu contains one Command sub-

menu with the Color and Exit menu items. The Color command shows the

ColorDialog dialog box to change the color of all labels in the current panel. See

the HTOWERS project (Section 24.3) for information on dragging and dropping

controls between group controls. Working with the ColorDialog control is de-

scribed in Section 13.3.

 15

9. Implement an application to test drag-and-drop mode. The form contains

four multi-line text boxes, a label with the text Label, and a label with the text

String. Any of the labels, as well as any objects from other programs, in particu-

lar from Explorer, can be dragged and dropped onto any empty text box. As

a result, detailed information about the drag object is displayed in the text box

(including the available formats, which can be determined using the GetFormats

method). When you drag the Label label, the drag object is the label itself; when

you drag the String label, the drag object is the string with its name (that is, the

string object). The form menu contains one Command submenu with the Clear

and Exit menu items. The Clear command clears the text box that has focus.

10. The form contains a list box for adding file names by dragging and

dropping them from Explorer (the full file name is added to the end of the list).

The form also contains the Trash label. When dragging the list onto the Trash

label (while holding down the Ctrl key), the current list item is deleted and the

next list item (or the previous one if the last list item was deleted) becomes the

current one; the position of the list box does not change. If the list box is empty,

then dragging it is not allowed (that is, the dragging cursor has a prohibition

sign). The form menu contains one Command submenu with the Clear and Ex-

it menu items. The Clear command clears the list box. See the LISTBOXES

project (Section 19.4) for information on dragging and dropping list items.

1.6. TIMER project: timer-controlled programs

General guidelines. In all projects, the form must be resizable; when

changing the form size, the size and position of the form controls must be ad-

justed accordingly (using the Anchor or Dock properties). Working with a timer

was discussed in the CLOCK project (Chapter 7).

1. The form contains a combo box with a list of comments (the ComboBox

control with DropDownStyle = DropDown; initially, it contains only one list

item “–”), an empty list box with the Results label, a stopwatch label with the

text 0:0, and a button with the title Start used to start the stopwatch (when the

stopwatch starts, the button title changes to Stop).

The stopwatch displays seconds and tenths of a second. When you stop the

stopwatch, its text, along with the current comment from the combo box, is ap-

pended to the end of the Results list and the stopwatch label is set to 0:0. To add

a new comment to the list of comments, just input it in the text field of the com-

bo box and press Enter. The form menu contains one Command submenu with

the Clear and Exit menu items. The Clear command clears the Results list.

2. The form contains a label with the lowercase Latin letter a and two read-

only text boxes with the labels Time and Points scored. In the upper part of the

form there is a toolbar with four shortcut buttons Start, 10 sec, 30 sec, 60 sec;

the last three shortcut buttons form a group that necessarily contains one button

16

in the pressed state (initially, it is the button with the title 10 sec). In addition,

the form contains a list box with the Top Scores label, this list box displays the

top 10 scores for the selected time mode (the time mode is determined by the

shortcut buttons 10 sec, 30 sec, 60 sec). List of top scores is sorted in descending

order.

When you press the Start button, the countdown begins in the Time text

box (in tenths of a second), the Points scored text box is reset to zero, and the

Latin letter in the label changes. It is required to press the key with the specified

Latin letter. When the key is pressed correctly, the counter in the Points scored

text box increases by 1 and the letter in the label changes again. If the key is

pressed incorrectly, the Points scored counter decreases by 1. The duration of

one training session (in seconds) is determined by the selected time mode, that

is, by the shortcut button in the pressed state.

After the completion of the training session, the Top Scores list is correct-

ed, if necessary; if the new score is added into the list, then this is reported in the

auxiliary dialog box (use the MessageBox.Show function). The lists of top scores

for each mode are stored in the files scores10.dat, scores30.dat, scores60.dat

and are read from them when changing the mode and when starting the program.

3. The form contains a label and two read-only text boxes with the labels

Time and Points scored. In the upper part of the form there is a toolbar with

five shortcut buttons: Start, “+”, “–”, “*”, “/”; the last four shortcut buttons

form a group that necessarily contains one button in the pressed state (initially, it

is the button with the title “+”). In addition, the form contains a panel with five

radio buttons with empty labels and a list box with the Top Scores label, this list

box displays the top 10 scores for the selected math operation mode (the math

operation mode is determined by the shortcut buttons “+”, “–”, “*”, “/”). List of

top scores is sorted in descending order.

When you press the Start button, the countdown begins in the Time text

box (in tenths of a second), the Points scored text box is reset to zero, and

a numerical expression with the selected math operation appears in the label (for

example, 34 + 78 =). The group of radio buttons displays 5 answer options. You

need to click on the radio button with the correct option. If the answer is correct,

the counter in the Points scored text box is increased by 1; if the answer is in-

correct, it is decreased by 1. In any case, a new expression appears in the label.

The duration of one training session is 30 seconds.

After the completion of the training session, the Top Scores list is correct-

ed, if necessary; if the new score is added into the list, then this is reported in the

auxiliary dialog box (use the MessageBox.Show function). The lists of the top

scores for each mode are stored in the files add.dat, sub.dat, mult.dat, div.dat

and are read from them when changing the mode and when starting the program.

For the “+” and “–” modes, the expressions must use numbers from 1

to 100, for the “*” mode, the expressions must use numbers from 1 to 10, for

 17

the “/” mode, the first operand must be two-digit number, the second one-digit

number, and the result must be an integer.

4. The form contains a label with text displaying the current system time of

the computer in the hh:mm format and three checkboxes associated with a sepa-

rate alarm clock. The text near the checkbox indicates the alarm time and is also

in the hh: mm format. Alarm clock is activated at the specified alarm time if the

corresponding checkbox is checked; in this case, the checkbox changes state to

Indeterminate and the sound signal (from the .wav sound file) is played for

10 seconds. If the sound file is less than 10 seconds long, the file is played in

a loop (use the System.Media.SoundPlayer class to play .wav file).

To turn off the signal early, just uncheck the corresponding checkbox. After

10 seconds of sound signal playback, the checkbox is automatically unchecked.

When you check any unchecked checkbox, a dialog box with two drop-down

lists is displayed, in which you can set a new alarm time (hours and minutes);

the default alarm time is the time previously associated with that alarm.

When the program finishes, it saves each alarm time and its current state in

the alarm.dat text file. The saved data is restored when the program is started.

5. The form contains a read-only text box with the text 0:0 and the label

Time, an empty list box with the label Results, and a panel that contains 6 small

square labels numbered 1 – 6. The form menu contains the Command submenu

with the Start and Exit menu items.

When the Start command is executed, all the panel labels change their lo-

cation on the panel randomly and are filled with a red backgroupd color, and the

time count begins in the Time text box (in tenths of a second). You need to

quickly click on all the panel labels in the ascending order of their numbers.

Clicking on the correct label makes its background green. As soon as all 6 labels

are clicked, the time count stops. If the Time text box contains a value less than

10:0 (that is, less than 10 seconds), then the message box with the text You win!

is displayed and this time value is added to the top of the Results list box. Oth-

erwise, the message box You lost is displayed.

The Start menu item should be available only when the game is stopped.

The list of results must be stored in the results.dat file and read from this file

each time the program is started. When changing the position of labels on the

panel, it is necessary that labels do not intersect (see Comment 2 in Section 4.3).

6. The form contains a panel and two read-only text boxes with the labels

Time and Points scored. In addition, the form contains a list box with the label

Top 5 scores. Initially, the Time text box contains the number 30; the Points

scored text box contains the number 0. The form menu contains one Command

submenu with the Start and Exit menu items.

When the Start command is executed, the countdown begins in the Time

text box (from 30 to 0, in seconds) and a small label with the number 50 appears

18

on the panel in a random place (the label size is 10 × 10 pixels). The number on

the label decreases by 1 every tenth of a second. When you click on the label,

the number in the Points scored text box increases by the number on the label

(or decreases if the number on the label is negative) and the label is displayed

elsewhere on the panel (again with the number 50). When you click outside the

label, the number 10 is subtracted from the Points scored value. After 30 se-

conds, the game ends. If the Points scored text box contains a positive number,

then the message box with the text You win! is displayed, otherwise the mes-

sage You lost is displayed; the list of the top scores is adjusted if necessary.

The Start menu item should be available only when the game is stopped.

The top score list must be stored in the score.dat text file and read from this file

each time the program is started.

7. The form contains a panel, a button with the title Start, three read-only

text boxes with the labels Accuracy, Time, and Result (initially, the text boxes

contain zeros), and a list box with the label 5 best results.

When you click on the Start button, its title changes to Stop, the time count

begins in the Time text box (in tenths of a second), and, in one of the corners of

the panel, a square framed label without a text is displayed (the panel corner is

selected randomly). It is required to drag this label with the mouse exactly to the

center of the panel and press the Stop button (when dragging, the label must fol-

low the mouse cursor). After that, the Accuracy text box displays two numbers:

the horizontal and vertical deviations from the correct position (in pixels) and

the Result text box displays a number calculated as follows: 1 is added to the

time obtained (in seconds, with one fractional digit) and this number is multi-

plied by the sum of the absolute values of the deviations. See the MOUSE pro-

ject (Section 9.1) for information on dragging with the mouse.

If the number in the Result text box is less than 50, then the message box

with the text You win! is displayed, otherwise the message You lost is dis-

played; the list of the best results is adjusted if necessary. The list of the best re-

sults must be stored in the results.dat text file and read from this file each time

the program is started.

8. The form contains two read-only text boxes with the labels Missiles and

Time to explosion, a panel, and a single-character label depicting an airplane

(the Wingdings font, symbol Q) located in the left top corner of the panel. The

mouse cursor on the panel looks like a cross. The form menu contains the

Command submenu with the Start and Exit menu items.

When the Start command is executed, the airplane’s label begins a straight-

line movement on the panel (the increments of the Left and Top properties should

be in the range 1–3; they are determined randomly before starting the game and

are performed every tenth of a second) and the number 4 appears in the Missiles

text box. Clicking on the panel marks the point of launching a missile, which

 19

will explode after 2 seconds (in the Time to explosion text box, the countdown

begins from 2.0 to 0.0, in tenths of a second); the missile launch point on the

screen should be marked with a red-colored label of the size 2 × 2 pixels. At the

moment of the explosion, the size of the red-colored label increases to 30 × 30

pixels (the destruction area).

If, at the moment of the explosion, the airplane is in the destruction area,

then the message box appears with the text The airplane is shot down and the

game ends. Otherwise, nothing happens. You cannot launch a new missile be-

fore the explosion of a previously launched one. If all the missiles have been

used without results or the airplane has reached the border of the panel, the mes-

sage You lost is displayed. Use the IntersectsWith method to verify that the air-

plane is in the destruction area (see Comment 2 in Section 4.3).

The Start menu item should be available only when the game is stopped.

1.7. REGISTRY project: dialog boxes and working
with the Windows registry

General guidelines. Working with the Windows registry is described in the

IMGVIEW project (Sections 21.5–21.6). Working with the OpenFileDialog dialog

box is described in the TEXTEDIT1 project (Section 12.3). To organize dialogs

related to choosing a font and color, you should use the FontDialog and

ColorDialog controls; an example of working with these controls is given in the

TEXTEDIT2 project (Sections 13.3–13.4). Working with the SplitContainer con-

trol is described in the IMGVIEW project (Sections 21.1–21.2). Working with

selections in the text boxes is discussed in the TEXTBOXES project (Sec-

tion 8.1).

1. The form contains the SplitContainer control with a vertical splitter orien-

tation. The left and right panels of the SplitContainer control contain one label and

one multi-line text box. Initially, focus is on the left text box; pressing the Tab

key toggles focus between the TextBox controls. When the form is resized, the

panels of the SplitContainer control are sized proportionally (you cannot change

the width of the panels by dragging the splitter; both panels always have the

same width). The form menu contains one File submenu with the Open..., Save,

Compare, and Exit menu items.

The Open... command displays the OpenFileDialog dialog box, which allows

you to open existing text files, as well as create new ones (if the required file is

missing, it is created automatically). When the required file is open, its text is

loaded into the active text box and the full file name is displayed in the label

above this text box.

The Compare command is available only if both TextBox controls contain

loaded data; it compares the contents of the left and right text boxes and posi-

tions the cursor before the first differing character in the left text box (pressing

20

Tab should set the cursor before the first differing character in the right text

box).

If the text of the text box is changed by the user, the symbol “*” is indicated

in the label before the file name. The Save command saves the contents of the

active text box in the file with the same name; after that, the symbol “*” disap-

pears in the label.

At the end of the program, the file names are saved in the Windows regis-

try; the next time the program is started, they are read from the registry; the size

and position of the form and the position of the cursor in each text box should

also be restored. When you try to close the program without saving the changed

contents of the files, a standard dialog box appears asking if you want to save

the changed file; the options are Yes, No, Cancel. If there are two unsaved files,

two dialog boxes are displayed sequentially (unless you selected Cancel in the

first dialog box).

2. The form contains a multi-line text box (the size of the text box is auto-

matically resized when the form is resized), a drop-down list of options of num-

ber system conversion: 10 => 2 (this option is selected by default), 10 => 16,

2 => 10, 16 => 10, 16 => 2, 2 => 16, and the Convert button. After the first

launch of the program, at the beginning of its work, the text box is not available

for editing. The form menu contains one File submenu with the Open..., Save,

and Exit menu items.

The Open... command displays the OpenFileDialog dialog box, which allows

you to open existing text files. As a result, the text of this file is loaded into the

text box and the name of the loaded file is displayed in the form title bar.

The Convert button converts the number selected by the user in the text

box from one number system to another (the selected number is replaced by the

converted number; the converted number remains selected). If nothing is select-

ed or the selection contains invalid data, then nothing happens.

If the text of the loaded file has been changed, the symbol “*” is displayed

in the form title bar after the file name. The Save command saves the contents of

the text box in the file with the same name; after that, the symbol “*” disappears

in the form title bar.

At the end of the program, the name of the currently open file is saved in

the Windows registry; the next time the program is started, it is read from the

registry; the last conversion option, the size and position of the form, and the po-

sition of the cursor in the text box are also restored. When you try to close the

program without saving the changed file contents, a standard dialog box appears

asking if you want to save the changed file; the options are Yes, No, Cancel.

3. The form contains a list box with the Playlist label, the buttons

Play/Stop, Up and Down, and the NumericUpDown control with the Duration

(sec) label. The list box is automatically resized when the form is resized. If the

 21

list box is empty, the buttons are inactive. The form menu contains one Com-

mand submenu with the Add file, Add folder, Clear, and Exit menu items.

The Add file and Add folder commands show the OpenFileDialog dialog

box, which allows you to open existing wav-files; the Add file command adds

the selected file to the list, the Add folder command adds all wav-files from the

folder to the list (files are added to the end of the list). The last item added to the

list becomes the current item. After adding at least one item to the list, the

Play/Stop button becomes available; if the list contains more than one item, the

Up and Down buttons become available.

Clicking the Play/Stop button starts playback of the current file from the

list or stops playback of a file. The Duration (sec) counter allows you to specify

the playback time of each file (in seconds); the default time is 10 seconds (if the

file duration is less than the specified time, the file is played cyclically). The Up

and Down buttons allow you to move the current item in the list up or down.

When the playing time ends, the file located in the list after the current one starts

playing automatically (this item of the list becomes the current one). Files are

played cyclically. During playback, the ListBox control, the NumericUpDown con-

trol, and the Up and Down buttons are disabled. Use the System.Media.Sound-
Player class to play wav-files; working with list box items is described in the

LISTBOXES project (Sections 19.2–19.3).

At the end of the program, the playlist, the position of the current list item,

the playback time, the size and position of the form are saved in the Windows

registry. The next time the program is started, it should restore the saved state.

4. The form contains the NumericUpDown control with the Symbol code la-

bel and a panel (the GroupBox control) with a label containing one character of

48 points size (the code of this symbol is specified in the NumericUpDown con-

trol). Initially, the program is configured for the Wingdings font; the name of

the font is specified in the title of the GroupBox control. The form menu contains

one Command submenu with the Font... and Exit menu items.

The Font... command shows the FontDialog dialog box, which allows you to

change the name and style of the font, but not its size. The font size should be

changed automatically when the form is resized; the initial form size cannot be

reduced. When value of the NumericUpDown control changed, the corresponding

symbol for the selected font is displayed in the panel. The displayed symbol

must be centered vertically and horizontally relative to the border of the

GroupBox control; to do this, set the appropriate values to the label properties

AutoSize, Dock, TextAlign.

At the end of the program, the value of the NumericUpDown control, the

name and style of the current font, as well as the size and position of the form

are saved in the Windows registry. The next time the program is started, it

should restore the saved state.

22

5. The form contains the NumericUpDown control with the KnownColor

number label and a panel (the GroupBox control). When the form is resized, the

panel size changes proportionally. When you input the number of one of the

standard named colors from the KnownColor enumeration into the NumericUpDown

control, the GroupBox panel is filled with this color and the name of this color is

displayed in the title of this panel. The range of valid values for the NumericUp-
Down control must match the range of all standard named colors of the Known-
Color enumeration: from AliceBlue to YellowGreen. The form menu contains

one Command submenu with the Color... and Exit menu items.

The Color... command shows the ColorDialog dialog box, which allows you

to select a color for the background of the GroupBox panel. If the selected color

is one of the standard named colors, then its number appears in the

NumericUpDown control, if the selected color is not a standard named color, then

an error message is displayed in the standard message box and the panel back-

ground does not change. Working with colors is described in the COLORS and

LISTBOXES projects (Chapter 18 and Section 19.1).

At the end of the program, the value of the NumericUpDown control and the

size and position of the form are saved in the Windows registry. The next time

the program is started, it should restore the saved state.

6. The form contains an empty multi-line text box (the TextBox control) un-

available for editing, with a gray background, the Open button, and 3 track bars

(the TrackBar controls). Each track bar can take 10 values: from 0 to 9. The track

bars are oriented vertically and are located in left-hand side of the form. A label

is displayed above each track bar that contains the current value of that track bar

(a number from 0 to 9). The Open button is located under the track bars, the

multi-line text box occupies the rest (right-hand) part of the form along its entire

height.

When the form is resized, the width and height of the multi-line text box, as

well as the height of the track bars, must change; the minimum allowable size of

the form must be adjusted so that they provide the display of all its controls.

When you set the correct three-digit lock code with the track bars and then

click the Open button (or press Enter), the content of the notebook.txt file (if

this file exists) is loaded into the TextBox control, the background of the TextBox

control turns white, the text box becomes editable, and the button title changes

to Close (if the code is set incorrectly, the appearance of the TextBox control and

the button does not change).

The correct lock code is stored in the Windows registry; if there is no the

corresponding subkey in the registry, then the code is 000. When the text box is

editable, you can set new lock code using the track bars.

When you click the Close button, the text is saved in the notebook.txt file,

the code is saved in the Windows registry, the text box is cleared, its background

 23

is grayed out, the button title is changed to Open, and the values of track bars

are changed randomly.

At the end of the program, the size and position of the form are additionally

saved in the Windows registry and are restored the next time the program is

started.

7. The form contains the SplitContainer control with a vertical splitter orien-

tation. The list box is located on the left panel of the SplitContainer control,

a multi-line text box is located on the right panel. The list box and text box are

automatically resized when the form is resized; when the form width changes,

the width of the text box changes. The splitter between the left and right panel of

the SplitContainer control can be dragged. The Tab key allows you to toggle focus

between the list box and the text box. The form menu contains one File sub-

menu with the Open..., Close, and Exit menu items.

The Open... command displays the OpenFileDialog dialog box which allows

you to open existing text files, as well as create new ones (if the required file is

missing, it is created automatically). When the required file is open, its full name

is added to the end of the list box (and becomes the selected list item) and its

text is loaded into the text box. In the future, to load this file into the text box, it

is enough to select its name in the list box. If, when executing the Open... com-

mand, the name of the file is already included in the list box, then this name in

the list is made selected. When a list item loses selection, its associated text is

automatically saved in the appropriate file.

The Close command removes the name of the selected file from the list of

files; this action also automatically saves the text in the file. When a list item is

deleted, the next item is selected; if the next item is absent, the previous item is

selected. If the list box is empty, then the text box is not editable and the Close

menu item is unavailable. Working with list box items is described in the

LISTBOXES project (Sections 19.2–19.3).

At the end of the program, the file list is saved in the Windows registry.

The index of the selected list item, the position of the cursor in the text box, the

size and position of the form, the position of the splitter between the left and

right panels are also saved in the registry. The next time the program is started,

it should restore the saved state.

1.8. MDIFORMS project: MDI applications

Working with MDI applications is described in the JPEGVIEW project

(Chapter 22).

1. The MDI main form initially contains one special child form with the ti-

tle Clipboard, which is entirely occupied by the multi-line TextBox control. This

child form acts as the application’s own clipboard. The MDI application menu

includes three submenus: File (the Open and Exit menu items), Clipboard (the

24

Cut, Copy, Paste menu items), and Window (the HTile, VTile, Cascade, Ar-

range Icons menu items, as well as a list of child forms). The commands of the

Window submenu provide standard MDI application actions related to the

placement of child forms and their selection (see Section 22.2).

The Open command allows you to create or load a text file and display it in

a new child form with the TextBox control (in this case, the Close menu item ap-

pears in the File submenu; this command closes the active child form). In the

OpenFileDialog control used to select the file name, you should set the file mask

(the Filter property) to display only text files (with the .txt extension). If a file

with the specified name does not exist, then it is created. The full name of the

created or loaded file is displayed in the title bar of the corresponding child

form; when you try to reload an existing file, a new child form is not created;

instead, the child form that already contains the specified file becomes active.

When the child form is closed, the corresponding text file is automatically

saved.

When executing the commands Cut, Copy, Paste, the TextBox control of

the Clipboard child form should be used (instead of the standard Windows

clipboard): the text cut or copied from any other child form should be placed on

the Clipboard child form (its previous content is deleted). When the Paste

command is executed, the text from the Clipboard form should be inserted into

the current position of the active child form. The contents of the Clipboard

form can be edited, however, commands related to copying, cutting and pasting

cannot be executed for it; furthermore, this child form cannot be closed.

2. The MDI main form initially contains no child forms. The MDI applica-

tion menu includes two submenus: File (the Open and Exit menu items) and

Group (the Open Group menu item).

The Open command allows you to create or load a text file and display it in

a new child form with the TextBox control; the Open Group command allows

you to immediately load all text files from the selected directory. In the

OpenFileDialog control used to select the file name, you should set the file mask

(the Filter property) to display only text files (with the .txt extension). The

OpenFileDialog control is also used for group file loading; when the Open Group

command is executed, it is sufficient to select one of the text files in the required

directory to load all text files from this directory. When executing the Open

command, you can specify the name of a non-existent file; in this case, it is cre-

ated. The full name of the created or loaded file is displayed in the title bar of

the corresponding child form; when you try to reload an existing file, a new

child form is not created; instead, the child form that already contains the speci-

fied file becomes active. A similar condition must be satisfied for a group load-

ing: already loaded files are not reloaded.

If there is at least one child form, the Close menu item appears in the File

submenu (this command closes the active child form) and the Close Group and

 25

Close All menu items appear in the Group submenu (the Close Group com-

mand closes the active child form and all other child forms with files from the

same directory as the active child form file; the Close All command closes all

child forms). When the child form is closed, the corresponding text file is auto-

matically saved.

In addition, if there is at least one child form, the Window submenu ap-

pears in the application menu with the HTile, VTile, Cascade, Arrange Icons

menu items, as well as with a list of child forms. The commands of the Window

submenu provide standard MDI application actions related to the placement of

child forms and their selection (see Section 22.2).

3. The MDI main form initially contains no child forms. The MDI applica-

tion menu includes two submenus: File (the Open and Exit menu items) and

Actions (the Shift Forward, Shift Backward, and Union menu items; these

menu items are available only if there are at least two child forms).

The Open command allows you to create or load a text file and display it in

a new child form with a TextBox control. In the OpenFileDialog control used to se-

lect the file name, you should set the file mask (the Filter property) to display on-

ly text files (with the .txt extension). When executing the Open command, you

can specify the name of a non-existent file; in this case, it is created. The full

name of the created or loaded file is displayed in the title bar of the correspond-

ing child form; when you try to reload an existing file, a new child form is not

created; instead, the child form that already contains the specified file becomes

active. If there is at least one child form, the File submenu displays the Close

menu item that closes the active child form, and the Close All menu item that

closes all child forms. When the child form is closed, the corresponding text file

is automatically saved.

The Shift Forward, Shift Backward, and Union commands change the

contents of the child forms as follows. The Shift Forward command performs

a cyclic shift forward, that is, it moves the contents of the first child form to the

second child form, the contents of the second child form to the third child

form, …, the contents of the last child form to the first child form. The Shift

Backward command performs a cyclic shift backward, that is, it moves the con-

tents of the second child form to the first child form, the contents of the third

child form to the second child form, …, the contents of the first child form to the

last child form. The Union command combines the contents of all child forms

into the active child form; the text is added in the order of child form numbers,

starting with the active child form (for example, when executing the Union

command for the third of five loaded forms, the initial text of the child forms

with the following numbers will be written in the third form: 3, 4, 5, 1, 2).

If there is at least one child form, the Window submenu appears in the ap-

plication menu with the HTile, VTile, Cascade, Arrange Icons menu items, as

well as with a list of child forms. The commands of the Window submenu pro-

26

vide standard MDI application actions related to the placement of child forms

and their selection (see Section 22.2).

4. The MDI main form initially contains no child forms. The MDI applica-

tion menu includes two submenus: File (the Open and Exit menu items) and

Actions (the Move, Add, and Swap menu items; these menu items are available

only if there are at least two child forms).

The Open command allows you to create or load a text file and display it in

a new child form with a TextBox control. In the OpenFileDialog control used to se-

lect the file name, you should set the file mask (the Filter property) to display on-

ly text files (with the .txt extension). When executing the Open command, you

can specify the name of a non-existent file; in this case, it is created. The full

name of the created or loaded file is displayed in the title bar of the correspond-

ing child form; when you try to reload an existing file, a new child form is not

created; instead, the child form that already contains the specified file becomes

active. If there is at least one child form, the File submenu displays the Close

menu item that closes the active child form, and the Close All menu item that

closes all child forms. When the child form is closed, the corresponding text file

is automatically saved.

The Move command changes the order of the child forms by moving the

active form to the end of the list of child forms. To implement this command, it

is enough to close the active child form (and save, if necessary, its contents in

the corresponding file) and create a new child form with the same contents.

The Add and Swap commands modify the contents of the child forms. The

Add command adds the contents of the form that follows the active form to the

contents of the active form. The Swap command swaps the contents of the ac-

tive child form and the form that follows the active form. The first child form is

assumed to follow the last child form.

If there is at least one child form, the Window submenu appears in the ap-

plication menu with the HTile, VTile, Cascade, Arrange Icons menu items, as

well as with a list of child forms. The commands of the Window submenu pro-

vide standard MDI application actions related to the placement of child forms

and their selection (see Section 22.2).

	1. Study assignments
	1.1. General requirements
	1.2. CONSOLE project: console applications, file and directory processing
	1.3. DIALOGS project: form interaction
	1.4. SYNC project: control synchronization
	1.5. DRAGDROP project: drag-and-drop mode
	1.6. TIMER project: timer-controlled programs
	1.7. REGISTRY project: dialog boxes and working with the Windows registry
	1.8. MDIFORMS project: MDI applications

