
11. Absolute and conditional convergence
of improper integrals

Cauchy criterion for the convergence
of an improper integral 3.9A/00:00 (10:08)

Theorem (Cauchy criterion for the convergence of an im-
proper integral).

Let the function f be defined on the interval [a, b) and there exists the
integral

∫ c
a f(x) dx for any point c ∈ (a, b). The improper integral

∫ b
a f(x) dx

converges if and only if the following condition is satisfied:

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,∣∣∣∫ c′′

c′
f(x) dx

∣∣∣ < ε. (1)

Proof.
Let us introduce the auxiliary function Φ(c) =

∫ c
a f(x) dx. According

to the definition of an improper integral, the convergence of the integral∫ b
a f(x) dx is equivalent to the existence of the limit of the function Φ(c) as
c→ b− 0.

By virtue of the Cauchy criterion for the existence of a function limit, the
limit of Φ(c) as c → b − 0 exists if and only if the following condition is
satisfied:

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,

|Φ(c′′)− Φ(c′)| < ε. (2)

Let us transform the difference Φ(c′′)− Φ(c′):

Φ(c′′)− Φ(c′) =

∫ c′′

a

f(x) dx−
∫ c′

a

f(x) dx =

=

∫ c′

a

f(x) dx+

∫ c′′

c′
f(x) dx−

∫ c′

a

f(x) dx =

∫ c′′

c′
f(x) dx.

After substituting the found expression for the difference Φ(c′′) − Φ(c′)
into condition (2), we obtain condition (1).

https://www.youtube.com/watch?v=at_eysCbc_M&t=00m01s
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Thus, condition (1) is equivalent to the existence of the limit limc→b−0 Φ(c)
and the existence of this limit is equivalent to the convergence of the inte-
gral

∫ b
a f(x) dx, therefore the condition (1) is necessary and sufficient for the

convergence of this integral. �

Absolute convergence
of improper integrals 3.9A/10:08 (06:46)

Definition.
Let the function f be defined on the interval [a, b). The improper integral∫ b

a f(x) dx is called absolutely convergent if the integral
∫ b
a |f(x)| dx converges.

Theorem (on the convergence of an absolutely convergent
integral).

If the improper integral
∫ b
a f(x) dx absolutely converges, then it converges.

Remark.
The converse is not true: we will show later that a convergent improper in-

tegral is not necessarily absolutely convergent. Thus, the property of absolute
convergence is stronger than the property of usual convergence.

Proof.
We are given that the integral

∫ b
a |f(x)| dx converges, and we need to prove

that the integral
∫ b
a f(x) dx converges.

Since the integral
∫ b
a |f(x)| dx converges, by the necessary condition of the

Cauchy criterion for improper integrals, we get

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,∣∣∣∫ c′′

c′
|f(x)| dx

∣∣∣ < ε. (3)

Since c′ < c′′, the last inequality in condition (3) can be rewritten without
specifying the external absolute value sign on the left-hand side:∫ c′′

c′
|f(x)| dx < ε. (4)

Recall the property of the integral of the absolute value of a function:∣∣∣∫ c′′

c′
f(x) dx

∣∣∣ ≤ ∫ c′′

c′
|f(x)| dx. (5)

Estimates (4) and (5) imply the following estimate:∣∣∣∫ c′′

c′
f(x) dx

∣∣∣ < ε. (6)

https://www.youtube.com/watch?v=at_eysCbc_M&t=10m08s


11. Absolute and conditional convergence of improper integrals 3

Thus, we can use (6) as the last inequality in condition (3):

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,
∣∣∣∫ c′′

c′
f(x) dx

∣∣∣ < ε.

This means, due to the sufficient condition of the Cauchy criterion for
improper integrals, that the integral

∫ b
a f(x) dx converges. �

Properties of improper integrals
of non-negative functions

Criterion for the convergence of improper
integrals of non-negative functions 3.9A/16:54 (10:00)

In this section, we consider improper integrals of non-negative functions.
Since the absolute value of the function is non-negative, all the results ob-
tained in this section can also be used to study the absolute convergence of
improper integrals of functions taking both negative and positive values.

Theorem (criterion for the convergence of improper inte-
grals of non-negative functions).

Let a function f be defined on [a, b) and f(x) ≥ 0 for any value x ∈ [a, b).
Suppose that, for any c ∈ [a, b), there exists an integral

∫ c
a f(x) dx. Then the

improper integral
∫ b
a f(x) dx converges if and only if the set of values of all

integrals
∫ c
a f(x) dx is bounded from above:

∃M > 0 ∀ c ∈ [a, b)

∫ c

a

f(x) dx ≤M . (7)

Proof.
We introduce an auxiliary function Φ(c) =

∫ c
a f(x) dx.

The inequality f(x) ≥ 0, which holds, by condition, for all x ∈ [a, b),
implies the inequality

∫ c′′
c′ f(x) dx ≥ 0 for any c′, c′′ ∈ [a, b) such that c′ < c′′.

Therefore, for c′ < c′′, we have

Φ(c′′) =

∫ c′′

a

f(x) dx =

∫ c′

a

f(x) dx+

∫ c′′

c′
f(x) dx =

= Φ(c′) +

∫ c′′

c′
f(x) dx ≥ Φ(c′).

We obtain that, for all c′ < c′′, the estimate Φ(c′) ≤ Φ(c′′) is true. This
means that the function Φ(c) is non-decreasing on the interval [a, b).

https://www.youtube.com/watch?v=at_eysCbc_M&t=16m54s
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1. Sufficiency. Given: condition (7) is satisfied. Prove: the integral∫ b
a f(x) dx converges.
Condition (7) means that the function Φ(c) is bounded from above on

the interval [a, b). Thus, the function Φ(c) is non-decreasing and bounded
from above on the interval [a, b), therefore, by virtue of the theorem on the
limit of a monotonous and upper-bounded function, there exists a limit of the
function Φ(c) as c→ b− 0 (equal to supc∈[a,b) Φ(c)). It remains to note that
the existence of this limit is equivalent to the convergence of the improper
integral

∫ b
a f(x) dx. The sufficiency is proven.

2. Necessity. Given: the integral
∫ b
a f(x) dx converges. Prove: condi-

tion (7) is satisfied.
As noted above, if the integral

∫ b
a f(x) dx converges, then there exists

a limit limc→b−0 Φ(c) = M . Since the function Φ(c) is non-decreasing, we
obtain that, for all c′, c′′ ∈ [a, b) such that c′ < c′′, the inequality holds:

Φ(c′) ≤ Φ(c′′).

In this inequality, we pass to the limit as c′′ → b − 0. By virtue of the
theorem on passing to the limit in the inequalities, the following inequality
holds for any c′ ∈ [a, b):

Φ(c′) ≤M .

Substituting the definition of the function Φ into this inequality, we obtain
the inequality from condition (7). �

The comparison test 3.9A/26:54 (10:35)

Theorem (the comparison test for improper integrals of
non-negative functions).

Let the functions f and g be defined on the interval [a, b) and the double
inequality 0 ≤ f(x) ≤ g(x) holds for any x ∈ [a, b). Suppose that, for any
c ∈ [a, b), there exist integrals

∫ c
a f(x) dx and

∫ c
a g(x) dx. Then the following

two statements are true.
1. If the improper integral

∫ b
a g(x) dx converges, then the integral∫ b

a f(x) dx also converges.
2. If the improper integral

∫ b
a f(x) dx diverges, then the integral

∫ b
a g(x) dx

also diverges.
Proof.
1. Let the integral

∫ b
a g(x) dx converge. Then, by the necessary condition

of the previous criterion, we obtain

https://www.youtube.com/watch?v=at_eysCbc_M&t=26m54s
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∃M > 0 ∀ c ∈ [a, b)

∫ c

a

g(x) dx ≤M . (8)

Since f(x) ≤ g(x) for all x ∈ [a, b), a similar inequality holds for the
proper integrals:∫ c

a

f(x) dx ≤
∫ c

a

g(x) dx. (9)

Combining estimates (8) and (9), we obtain∫ c

a

f(x) dx ≤
∫ c

a

g(x) dx ≤M .

Thus, condition (8) is also satisfied for the integral
∫ c
a f(x) dx. Therefore,

by virtue of a sufficient part of the previous criterion, the integral
∫ b
a f(x) dx

converges.
2. Let the integral

∫ b
a f(x) dx diverge.

If we assume that the integral
∫ b
a g(x) dx converges, then by the already

proved statement 1, the integral
∫ b
a f(x) dx should also converge. But this

contradicts the condition. Therefore, the assumption made is false and the
integral

∫ b
a g(x) dx diverges. �

Remark.
Obviously, the theorem remains valid if the functions f and g satisfy the

double inequality 0 ≤ f(x) ≤ Cg(x) with some constant C > 0 on the
interval [a, b).

Corollary of the comparison test 3.9A/37:29 (04:25)

Corollary.
Let the functions f and g be defined on the interval [a, b) and be non-

negative on this interval. Let f(x) ∼ g(x) as x→ b− 0. Then the integrals∫ b
a f(x) dx and

∫ b
a g(x) dx either both converge or both diverge.

Proof1.
The equivalence of the functions f and g as x→ b−0 means that in some

left-hand neighborhood U−b of the point b, the relation f(x) = α(x)g(x)
holds, where α(x)→ 1 as x→ b− 0.

Since limx→b−0 α(x) = 1, we can choose a neighborhood V −b ⊂ U−b , in
which the double inequality holds for the function α(x):

1− 1

2
< α(x) < 1 +

1

2
.

1There is no proof of the corollary in video lectures.

https://www.youtube.com/watch?v=at_eysCbc_M&t=37m29s
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We multiply all parts of this inequality by g(x) and take into account that
the equality f(x) = α(x)g(x) is true in the neighborhood V −b :(

1− 1

2

)
g(x) < α(x)g(x) <

(
1 +

1

2

)
g(x),

1

2
g(x) < f(x) <

3

2
g(x). (10)

Choosing some value B ∈ V −b , we obtain that inequality (10) holds for all
x ∈ [B, b).

Suppose that the integral
∫ b
B f(x) dx converges. Then, taking into ac-

count statement 1 of the previous theorem, the remark, and the estimate
g(x) < 2f(x), which follows from the left-hand side of (10), we obtain that the
integral

∫ b
B g(x) dx also converges. If we assume that the integral

∫ b
B g(x) dx

converges, then from the right-hand side of (10) (i. e., f(x) < 3
2 g(x)), it

follows that the integral
∫ b
B f(x) dx also converges.

On the other hand, if we assume that the integral
∫ b
B g(x) dx diverges,

then, taking into account statement 2 of the previous theorem, the remark,
and the estimate g(x) < 2f(x), which follows from the left-hand side of (10),
we obtain that the integral

∫ b
B f(x) dx also diverges, and if we assume that the

integral
∫ b
B f(x) dx diverges, then it follows from the right-hand side of (10)

that the integral
∫ b
B g(x) dx also diverges.

So, we have proved that the improper integrals
∫ b
B f(x) dx and

∫ b
B g(x) dx

either both converge or both diverge. Taking into account the theorem on the
additivity of an improper integral with respect to the integration interval, we
obtain that the same statement holds for the initial integrals

∫ b
a f(x) dx and∫ b

a g(x) dx. �

Examples of using the comparison test 3.9B/00:00 (08:23)

1. Consider the integral
∫ +∞
1

sinx
x2 dx.

For the absolute value of the integrand, the following estimate holds:∣∣∣sinx
x2

∣∣∣ ≤ 1

x2
.

Earlier, we proved that the integral
∫ +∞
1

1
x2 dx converges. Therefore, the

integral
∫ +∞
1

∣∣ sinx
x2

∣∣ dx also converges by the comparison test. And this, in
turn, means that the initial integral converges absolutely.

In a similar way, one can prove that absolute convergence holds for the
integral

∫ +∞
1

sinx
xα dx for any α > 1.

https://www.youtube.com/watch?v=dVh4k6yr8O8&t=00m01s
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2. Consider the integral
∫ +∞
2

1
lnx dx.

For any x > 1, the double estimate 0 < lnx < x is valid. It follows that
1
x <

1
lnx . Earlier, we proved that the integral

∫ +∞
1

1
x dx diverges. Obviously,

the integral
∫ +∞
2

1
x dx also diverges. Then the initial integral

∫ +∞
2

1
lnx dx also

diverges by the comparison test.
3. Consider the integral

∫ +∞
1

1
xα+sinx dx, α > 1.

Let us show that the integrand is equivalent to the function 1
xα as x→ +∞:

lim
x→+∞

1
xα+sinx

1
xα

= lim
x→+∞

xα

xα + sinx
= lim

x→+∞

1

1 + sinx
xα

= 1.

So, we have proved that 1
xα+sinx ∼

1
xα , x→ +∞.

Since the integral
∫ +∞
1

1
xα dx converges for α > 1, we obtain from the

corollary of the comparison test that the initial integral also converges.

Conditional convergence
of improper integrals 3.9B/08:23 (15:56)

Definition.
The improper integral

∫ b
a f(x) dx is called conditionally convergent if this

integral converges and the integral
∫ b
a |f(x)| dx diverges. In other words,

the integral converges conditionally if it converges, but it is not absolutely
convergent.

It is clear that conditional convergence may hold only for integrals whose
integrands change sign.

Example.
Consider the integral

∫ +∞
1

sinx
x dx and show that it converges conditionally.

We begin by proving the convergence of this integral and consider the
proper integral with integration limits from 1 to c, where c > 1. We use
the integration formula by parts, setting u = 1

x , dv = sinx dx (in this case,
v = − cosx, du = − 1

x2 dx):∫ c

1

sinx

x
dx = −cosx

x

∣∣∣c
1
−
∫ c

1

cosx

x2
dx. (11)

The integral
∫ c
1

cosx
x2 dx converges (moreover, it absolutely converges). This

can be proved by the comparison test (see example 1 from the previous sec-
tion). Thus, the second term on the right-hand side of (11) has a finite limit
as c→ +∞. Let us transform the first term:

https://www.youtube.com/watch?v=dVh4k6yr8O8&t=08m23s
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−cosx

x

∣∣∣c
1

= −cos c

c
+

cos 1

1
.

The limit of this expression as c→ +∞ also exists and is equal to cos 1.
Since the right-hand side of equality (11) has a finite limit as c → +∞,

we conclude that the left-hand side also has a finite limit. We have proved
that the integral

∫ +∞
1

sinx
x dx converges.

It remains for us to show that the integral
∫ +∞
1

∣∣ sinx
x

∣∣ dx diverges. We can
move the absolute value sign to the numerator, since the denominator of the
integrand is positive:∫ +∞

1

∣∣∣sinx
x

∣∣∣ dx =

∫ +∞

1

| sinx|
x

dx.

The function |sinx| can be estimated from below by the function sin2 x:
|sinx| ≥ sin2 x for any x ∈ R. Therefore, for any x ≥ 1, the estimate holds:

sin2 x

x
≤ | sinx|

x
.

If we prove that the integral
∫ +∞
1

sin2 x
x dx diverges, then the integral∫ +∞

1

∣∣ sinx
x

∣∣ dx will diverge as well.

So, it remains for us to prove the divergence of the integral
∫ +∞
1

sin2 x
x dx.

We consider the proper integral with integration limits from 1 to c, where
c > 1, and transform it using the formula sin2 x = 1

2(1− cos 2x):∫ c

1

sin2 x

x
dx =

1

2

∫ c

1

1− cos 2x

x
dx =

1

2

∫ c

1

1

x
dx− 1

2

∫ c

1

cos 2x

x
dx.

The second integral on the right-hand side of the last equality converges
to a finite limit as c → +∞. This can be proved using the same method of
integration by parts, which we previously applied in the study of the integral∫ c
1

sinx
x dx.

The first integral on the right-hand side equals ln |c| and therefore it ap-
proaches +∞ as c→ +∞. Thus, the limit of the right-hand side is +∞, so
the limit of the left-hand side is also +∞. We have proved that the improper
integral

∫ +∞
1

sin2 x
x dx diverges.

Therefore, the integral
∫ +∞
1

∣∣ sinx
x

∣∣ dx also diverges by the comparison test.
The conditional convergence of the initial integral

∫ +∞
1

sinx
x dx is proved.
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Dirichlet’s test for conditional convergence
of an improper integral

Formulation of Dirichlet’s test 3.9B/24:19 (06:36)

Theorem (Dirichlet’s test for conditional convergence of
an improper integral).

Let the functions f and g be defined on the interval [a, b) and satisfy the
following conditions:

1) the function f is continuous on [a, b), and the integral
∫ c
a f(x) dx is

uniformly bounded for all c ∈ (a, b), i.e.,

∃M > 0 ∀ c ∈ (a, b)
∣∣∣∫ c

a

f(x) dx
∣∣∣ ≤M ;

2) the function g is continuously differentiable on [a, b), and g(c)
monotonously approaches 0 as c→ b− 0 (the monotonicity condition means
that g′(c) preserves the sign for all c ∈ (a, b)).

Then the improper integral
∫ b
a f(x)g(x) dx converges (generally speaking,

conditionally).

Proof of Dirichlet’s test 3.9B/30:55 (13:14)

We introduce an auxiliary function Φ(c) =
∫ c
a f(x) dx. By condition 1,

this function is uniformly bounded on (a, b):

∃M > 0 ∀ c ∈ (a, b) |Φ(c)| ≤M . (12)

In addition, the function Φ(c) is differentiable on (a, b) as an integral
with a variable upper limit and the continuous integrand f , and the equality
Φ′(c) = f(c) holds.

Therefore, the proper integral
∫ c
a f(x)g(x) dx can be represented in the

following form:∫ c

a

f(x)g(x) dx =

∫ c

a

Φ′(x)g(x) dx.

The resulting integral can be transformed by the integration formula by
parts, setting u = g(x), dv = Φ′(x) dx, whence v = Φ(x):∫ c

a

Φ′(x)g(x) dx = Φ(x)g(x)
∣∣c
a
−
∫ c

a

Φ(x)g′(x) dx =

= Φ(c)g(c)− Φ(a)g(a)−
∫ c

a

Φ(x)g′(x) dx. (13)

https://www.youtube.com/watch?v=dVh4k6yr8O8&t=24m19s
https://www.youtube.com/watch?v=dVh4k6yr8O8&t=30m55s
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Since the function Φ(c) is bounded (see (12)) and the function g(c) ap-
proaches 0 as c→ b−0 by condition 2, we obtain that the first term Φ(c)g(c)
of the right-hand side approaches 0 as c→ b− 0. The second term Φ(a)g(a)
does not depend on the parameter c.

It remains to show that the integral
∫ c
a Φ(x)g′(x) dx also has a finite limit

as c→ b− 0, i. e., that the improper integral
∫ b
a Φ(x)g′(x) dx converges.

We prove the convergence of the integral
∫ b
a Φ(x)g′(x) dx using the Cauchy

criterion for the convergence of the improper integral.
However, we first use the Cauchy criterion for the existence of a function

limit. By condition 2, the function g(c) has a limit as c → b − 0. By virtue
of the necessary part of the Cauchy criterion for the existence of a function
limit, this means the following:

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,

|g(c′′)− g(c′)| < ε

M
. (14)

In inequality (14), we used the constant M from estimate (12).
According to the Cauchy criterion, to prove the convergence of the integral∫ b

a Φ(x)g′(x) dx, it suffices to establish the following fact:

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,∣∣∣∫ c′′

c′
Φ(x)g′(x) dx

∣∣∣ < ε. (15)

We choose an arbitrary value ε > 0, get the value B ∈ (a, b) from condi-
tion (14), and show that estimate (15) holds for this value B. To do this, we
transform the integral

∣∣∫ c′′
c′ Φ(x)g′(x) dx

∣∣ using the theorem on the integral
of the absolute value of a function and estimate (12):∣∣∣∫ c′′

c′
Φ(x)g′(x) dx

∣∣∣ ≤ ∫ c′′

c′
|Φ(x)|·|g′(x)| dx ≤M

∫ c′′

c′
|g′(x)| dx. (16)

Since, by condition 2, the derivative g′(x) preserves the sign on (a, b), we
can move the absolute value sign outside the integral sign in the integral∫ c′′
c′ |g

′(x)| dx:∫ c′′

c′
|g′(x)| dx =

∣∣∣∫ c′′

c′
g′(x) dx

∣∣∣.
Indeed, if the derivative g′(x) is always positive, then the absolute value

can be omitted, and if the derivative g′(x) is always negative, then the minus
sign can be taken out of the integral sign, the positive function remains under
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the integral sign, and the external minus can be removed using the external
operation of taking the absolute value.

The integral on the right-hand side of the last equality can be transformed
according to the Newton–Leibniz formula:∫ c′′

c′
g′(x) dx = g(c′′)− g(c′).

Thus, the chain of inequalities (16) can be continued as follows:

M

∫ c′′

c′
|g′(x)| dx ≤M |g(c′′)− g(c′)|.

Since the values of c′ and c′′ are chosen so that condition (14) is satisfied,
the expression M |g(c′′) − g(c′)| is estimated by ε. Taking into account that
the transformations in the chain of inequalities (16) started with the integral∣∣∫ c′′
c′ Φ(x)g′(x) dx

∣∣, we finally obtain the estimate∣∣∣∫ c′′

c′
Φ(x)g′(x) dx

∣∣∣ < ε.

Thus, condition (15) is satisfied. Therefore, by virtue of a sufficient part of
the Cauchy criterion for the convergence of the improper integral, the integral∫ b
a Φ(x)g′(x) dx converges.
We have proved that all terms on the right-hand side of equality (13) have

a finite limit as c→ b− 0. This means that the integral
∫ c
a f(x)g(x) dx also

has a finite limit and therefore the initial improper integral
∫ b
a f(x)g(x) dx

converges. �

Integrals with several singularities 3.10A/00:00 (11:35)

Let the function f be defined on the interval (a, b) and either the end-
points of this interval are points at infinity or the function is unbounded in a
neighborhood of these endpoints (or a combination of these situations takes
place). Then the improper integral

∫ b
a f(x) dx, which has singularities at both

endpoints of the integration interval, can be represented as the sum of the
improper integrals considered above with unique singularity:∫ b

a

f(x) dx =

∫ d

a

f(x) dx+

∫ b

d

f(x) dx. (17)

Here d is some point belonging to the interval (a, b). If both integrals
on the right-hand side of equality (17) converge, then the initial integral∫ b
a f(x) dx is also convergent and its value is equal to the sum of the values of

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=00m01s
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the integrals on the right-hand side. If at least one integral on the right-hand
side diverges, then the initial integral is divergent too.

The same can be done if the singularity arises at some internal point of the
integration interval. Let the function f be defined on the set [a, b] \ {d} and
be unbounded in a neighborhood of the point d. Then the integral

∫ b
a f(x) dx

must be understood as an improper integral defined by the same relation (17),
in which the improper integrals on the right-hand side have unique singularity
at the point d.

In this case, given the definition of an improper integral, the value of the
integral

∫ b
a f(x) dx (provided that it converges) will be equal to the sum of

the following limits:∫ b

a

f(x) dx = lim
c→d−0

∫ c

a

f(x) dx+ lim
c′→d+0

∫ b

c′
f(x) dx.

The rate at which the point c approaches d from the left and the rate at
which the point c′ approaches d from the right are not related in any way:
these limits must be considered independently of each other.

If we define an improper integral with a singularity at one internal point
in this way, then the integral

∫ 1

−1
1
x dx (with a singularity at 0) will diverge,

since the integral
∫ 1

0
1
x dx diverges:∫ 1

0

1

x
dx = lim

ε→+0

∫ 1

ε

1

x
dx = lim

ε→+0
(ln |x|)

∣∣∣1
ε

= lim
ε→+0

(− ln |ε|) = +∞.

Similarly, we can establish that the integral
∫ 0

−1
1
x dx also diverges:∫ 0

−1

1

x
dx = lim

ε→−0

∫ ε

−1

1

x
dx = lim

ε→−0
(ln |x|)

∣∣∣ε
−1

= lim
ε→−0

ln |ε| = −∞.

However, it is easy to see that we would get a finite limit value if this limit
was calculated not for two integrals separately, but simultaneously for the
sum of the integrals

∫ −ε
−1

1
x dx+

∫ 1

ε
1
x dx as ε→ +0:

lim
ε→+0

(∫ −ε
−1

1

x
dx+

∫ 1

ε

1

x
dx
)

= lim
ε→+0

(ln | − ε| − ln |ε|) = lim
ε→+0

0 = 0.

The main feature here is that the parameter ε approaches a singular point
on the left and right at the same rate, which allows us to eliminate two
infinitely growing terms.

Such a type of convergence of an improper integral with a singularity at
an internal point is called convergence in the sense of the principal value. We
give a general definition of this type of convergence.
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Definition.
Let the function f be defined on the set [a, b] \ {d} and be unbounded

in a neighborhood of the point d. The improper integral
∫ b
a f(x) dx is

said to converge in the sense of the principal value (or in the sense of the
Cauchy principal value) if there exists a finite limit on the sum of the inte-
grals

∫ d−ε
a f(x) dx +

∫ b
d+ε f(x) dx as ε → +0. For this limit, the notation

(v. p.)
∫ b
a f(x) dx is used:

(v. p.)
∫ b

a

f(x) dx
def
= lim

ε→+0

(∫ d−ε

a

f(x) dx+

∫ b

d+ε

f(x) dx
)
.

Thus, the previously obtained result for the integral of the function 1
x on

the segment [−1, 1] can be written as follows:

(v. p.)
∫ 1

−1

1

x
dx = 0.

There is an extensive theory related to the convergence of improper inte-
grals in the sense of the Cauchy principal value, but we will not study this
type of convergence in this book.
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