
Algorithms and Data Structures

Module 1

Lecture 1
Introduction to algorithmic complexity

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

adimg@yandex.ru

Problems and algorithms

•What is an ‘algorithm’?

•Algorithms solve problems.

•Unsolvable problems.

•Classes and instances of problems.

• Tractable vs intractable problems.

2

Algorithmic/Computational complexity

Informal definition:

Complexity of an algorithm is the amount of resources the algorithm
needs to successfully solve the problem.

Resource types:

• Time

• Space

• …

3

Algorithmic/Computational complexity

• Let x be an instance of a problem.

• T(x) = time spent by the algorithm to solve instance x.

• T(x) depends on the size (length) of x. Size of x = |x| = n.

Column addition:

x=(a,b)

T(x) = min{|a|,|b|}+1

T(x) = max{|a|,|b|}+1

• In general case, |x| = number of bits needed to represent x (=bit length of x).

• But for practical purposes other measures are often used.

4

Algorithmic/Computational complexity

• T(n) = T(x) where |x|=n.

• Problem: find element b in the given array A. |A|=n. T(n)=?

• Worst case complexity: T(n)=max{T(x): |x|=n}

• Average complexity: 𝑇avg 𝑛 = σ𝑇 𝑥 ∙ 𝑝 𝑥

• Which one is more useful for practical computations?

5

Algorithmic/Computational complexity

• How do we measure time complexity?
✓ milliseconds, seconds, hours

✓ number of basic operations

• Why bother with number of operations?
✓Implementation issues

✓Moore’s law

6

Algorithmic/Computational complexity

Asymptotic evaluation. O (,) notation

✓ T(n) = O(f(n))  for sufficiently large n, T(n) is bounded above by 𝑐 ⋅ 𝑓(𝑛).

✓ T(n) = (f(n))  for sufficiently large n, T(n) is at least 𝑐 ⋅ 𝑓(𝑛).

✓ T(n) = (f(n))  both T(n) = O(f(n)) and (f(n))

Examples: 𝑂(𝑛), 𝑂(𝑛 ⋅ log 𝑛), 𝑂 𝑛2 , 𝑂 2𝑛 , 𝑂 𝑛! , 𝑂(𝑛𝑛).

Why can we omit multiplication constant?

7

Algorithmic/Computational complexity

Let us consider two algorithms for a problem with time complexities
𝑂(𝑛) and 𝑂(2𝑛).

8

n O(n) O(2n)

50 1.00 sec 1 sec

51 1.02 sec 2 sec

52 1.04 sec 4 sec

60 1.20 sec 17 min

70 1.40 sec 12 days

80 1.60 sec 34 years

90 1.70 sec ~ 35 000 years

