
Algorithms and Data Structures

Module 1

Lecture 4
Graph traversals: depth-first search, 

breadth-first search and their applications. 
Part 1

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru



Graph traversals

Graph G=(V,E).

A graph traversal: start at a certain vertex and visit 
other vertices of G in a specific order.

Traversals let us explore the graph and discover its 
structure.

• Depth-first traversal (DFS)

• Breadth-first traversal (BFS)

2



Graph traversals

3

https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html



Graph connectivity

Graph G=(V,E).

A path (walk) is a sequence of edges 𝑒1, 𝑒2, … , 𝑒𝑙 such that for each 
𝑖 the end-point vertex of 𝑒𝑖 is a start-point of 𝑒𝑖+1. 

Alternative representation: a sequence of vertices 𝑣1, 𝑣2, … , 𝑣𝑙+1 .

The number of edges = length of the path.

4



Graph connectivity

•A path 𝑣1, 𝑣2, … , 𝑣𝑙+1 is a cycle iff 𝑣1 = 𝑣𝑖+1.

•A vertex 𝑣 is reachable from the vertex 𝑢 on G iff
there is a path on G from 𝑢 to 𝑣 .

5



Graph connectivity

•A graph is called connected iff for each pair of 
vertices {𝑢, 𝑣} there is a path between 𝑢 and 𝑣.

• The maximally connected subgraphs of G are called 
connected components.

6



Graph connectivity

Problem

Given a graph 𝐺(𝑉, 𝐸), detect all its connected components.

1. {0, 1,2,3,4}

2. {5,6}

3. {7}

7



Graph connectivity

Solution

1. Mark all vertices as ‘unvisited’.

2. While there is an unvisited vertex s:

3. Initialize a new component 𝐶𝑘.

4. Start DFS/BFS from s.

5. Visiting a vertex, put it into 𝐶𝑘.

8



DFS: Depth-First Search

Visiting a vertex 𝑣, recursively visit (start DFS) each of its 
unvisited neighbors.

DFS(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited:

DFS(u) https://en.wikipedia.org/wiki/Depth-first_search

9



DFS: Depth-First Search

Visiting a vertex 𝑣, recursively visit (start DFS) each of its 
unvisited neighbors.

DFS(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited:

DFS(u) https://en.wikipedia.org/wiki/Depth-first_search

10



DFS: Depth-First Search

For graph exploration, we often need to perform some 
processing before / after recursive DFS.

DFS(v)

PreVisit(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited: DFS(u)

PostVisit(v)

11



DFS: explicit stack implimentation

Recursive implementation can lead to ‘stack overflow’ 
error 

=> An alternative implementation using explicit stack.

12



Stack: abstract data structure

Stack = abstract data structure with two principal 
operations:

• Push(item)

• Pop()

LIFO = Last-In, First-Out

13



Stack: abstract data structure

Stack = abstract data structure with two principal 
operations:

• Push(item)

• Pop()

• [Get the top item]

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

14



Stack: abstract data structure

15
https://people.cs.vt.edu/~shaffer/Book/



Stack: implementation

A stack data structure can be implemented in different 
ways:

• array based

• linked-list based

16



Stack: array-based implementation

17

template <typename E> class ads_stack_array: public Stack<E>

Version 1: STL array

{

protected:

std::vector<E> arr;

}

Version 2: static array

{

protected:

E* arr;

size_t top; // index of the top item

void resize();

}



Stack: dynamic list-based implementation

18

A dynamic list data structure with top (=head) pointer.

item itemitemitemTop

New item



DFS: explicit stack implementation

StackDFS(G)

Select 𝑠 ∈ 𝑉

Push(s)

While (stack is not empty):

v = Pop()

if v is unvisited:

Mark v as ‘visited’

For each u in Adj(v):

Push(v)

19



DFS: example

20


