Algorithms and Data Structures
Module 1

Lecture 4
Graph traversals: depth-first search,
breadth-first search and their applications.
Part 1

Adigeev Mikhail Georgievich

mgadigeev@sfedu.ru

Graph traversals

Graph G=(V,E).

A graph traversal: start at a certain vertex and visit
other vertices of G in a specific order.

Traversals let us explore the graph and discover its
structure.

* Depth-first traversal (DFS)
* Breadth-first traversal (BFS)

Graph traversals

Depth-First dearch Ereadth-First Search

e &

i, conbinatorica . com . conbinatorica . com

https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

Graph connectivity

Graph G=(V,E).

A path (walk) is a sequence of edges {eq, e,, ..., €;} such that for each
[the end-point vertex of ¢; is a start-point of ¢;, 1.

Alternative representation: a sequence of vertices {v{, V5, ..., U141}
The number of edges = length of the path.

& ©® O ®\/@

Graph connectivity

* A path {v{, vy, ..., V41 } isa cycle iff vy = v 4.

e A vertex v is reachable from the vertex u on G iff
thereisa pathon Gfromutov.

Graph connectivity

* A graph is called connected iff for each pair of
vertices {u, v} there is a path between u and v.

* The maximally connected subgraphs of G are called
connected components.

&5 ©® O @\/@)
.

Graph connectivity

Problem

Given a graph G(V, E), detect all its connected components.

1. {0,1,2,3,4) ®» © O
2. {5,6}
3. {7)

Graph connectivity

Solution

1. Mark all vertices as ‘unvisited’.

2. While there is an unvisited vertex%
3. Initialize a new component (..
4. Start DFS/BFS from s.

5 Visiting a vertex, put it into Cy,.

DFS: Depth-First Search

Visiting a vertex v, recursively visit (start DFS) each of its
unvisited neighbors. O

DEF'S (v) C) (:> ()

Mark v as ‘visited’

For each u 1n Adj(v): <> <><:><>

1f u 1s unvisited: {i> CD

D F S (u) https://en.wikipedia.org/wiki/Depth-first_search

DFS: Depth-First Search

Visiting a vertex v, recursively visit (start DFS) each of its
unvisited neighbors.

O
DFS (v)
Mark v as ‘visited’ <> <:> <>
For each u 1n Adj(v): @

1f u 1s unvisited: @ @

D F S (u) https://en.wikipedia.org/wiki/Depth-first_search

10

DFS: Depth-First Search

For graph exploration, we often need to perform some
processing before / after recursive DFS.

DE'S (v)
PreVisit (v)

Mark v as ‘visited’
For each u in Adj(v) :

1f u 1s unvisited: DFS (u)
PostVisit (v)

11

DFS: explicit stack implimentation

Recursive implementation can lead to ‘stack overflow’
error ®

=> An alternative implementation using explicit stack.

12

Stack: abstract data structure

Stack = abstract data structure with two principal
operations:

* Push(item)
* Pop()

LIFO = Last-In, First-Out

13

Stack: abstract data structure

Stack = abstract data structure with two principal

operations: - 81~
[4 |, .Pulﬁh.f Pugh';,'
* Push (1tem) - S| Pushy 4] 4]
L ™, ush y 3 5 3
£~ v 3] 3] EY
* Pop () s E : 3 ®
* [Get the top item] e ;L
_3. _:_‘:’“ "m;'q' --F":E*: .
4] [P = _
2 2 2 @ [
| 1] 1 1 1 |1

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

14

Stack: abstract data structure

// Stack abtract class
template <typename E> class Stack {

private:
vold operator =(const Stacké&) {} // Protect assignment
Stack (const Stack&) {} // Protect copy constructor
public:
Stack() {} // Default constructor
virtual “Stack() {} // Base destructor

// Reinitialize the stack. The user is responsible for
/{ reclaiming the storage used by the stack elements.
virtual wveoid clear() = 0;

// Push an element onto the top of the stack.
// it: The element being pushed onto the stack.
virtual wvoid push(const E& it) = 0;

// Remove the element at the top of the stack.
/{ Return: The element at the top of the stack.
virtual E pop() = 0;

// Return: A copy of the top element.
virtual const E& topValue () const = 0;

// Return: The number of elements in the stack.
wvirtual int length() const = 0;
}i

https://people.cs.vt.edu/~shaffer/Book/

Stack: implementation

A stack data structure can be implemented in different
ways:

* array based
* linked-list based

16

Stack: array-based implementation

template <typename E> class ads stack array: public Stack<E>
Version 1: STL array
{

protected:
std: :vector<E> arr;
J 0 1 2 3 4
Version 2: static array -, b .
{ top=2
protected: :
E* arr;

size t top; // index of the top item

vold resize () ;

17

Stack: dynamic list-based implementation

A dynamic list data structure with top (=head) pointer.

New item >

18

DFS: explicit stack implementation

StackDFS (G)

Select seV

Push (s)

While (stack 1s not empty):

v = Pop ()
1f v 1s unvisited:
Mark v as ‘visited’
For each u in Adj (v):
Push (v)

19

DFS: example

20

