
Algorithms and Data Structures

Module 1

Lecture 6
Graph traversals: depth-first search,

breadth-first search and their applications.
Part 3

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

DFS & BFS: applications

• DFS/BFS:

✓ Connected components detection (see lecture 4)

• BFS:

✓ Calculating distances (see lecture 5)

✓ Bipartiteness testing

• DFS:

✓ Detecting cycles

✓ Topological ordering (topological sort) of a DAG

2

BFS: Calculating distances

Graph G=(V,E).

A distance between vertices u and v is the minimum
length of the path between u and v.

dist(A,E) = 2

3

BFS: Calculating distances

4

Problem: for given 𝐺 𝑉, 𝐸 and a vertex 𝑠 ∈ 𝑉 find distances and the
shortest paths from 𝑠 to every other vertex.

DistancesBFS(G)

// Initialization

Create d[],p[]

For each 𝑣 ∈ 𝑉\{𝑠}:

d[u] = +∞;

p[u]= null;

d[s] = 0;

Enqueue(s)

BFS: Calculating distances

5

// Breadth-First Search

While (Queue is not empty):

v = Dequeue()

if v is unvisited:

Mark v as ‘visited’

For each u in Adj(v):

if d[u] > d[v]+1:

d[u] = d[v]+1

p[u] = v

Enqueue(u)

BFS: Calculating distances

6

How do we construct a path from 𝑠 to 𝑣?

We start from 𝑣 and reconstruct the path

backward to 𝑠: we move from a current vertex 𝑢

to 𝑥 = 𝑝 𝑢 , then to 𝑦 = 𝑝 𝑥 ,… , until we

get 𝑠.

BFS: Bipartiteness check

7

Graph 𝐺(𝑉, 𝐸) is called bipartite iff its vertex set V can be partitioned
into two disjoint subsets (parts): 𝑉 = 𝐵 ∪ 𝑅 such that for each edge
𝑒 ∈ 𝐸 the endpoints of 𝑒 belong to different subsets.

BFS: Bipartiteness check

8

Theorem. Graph 𝐺(𝑉, 𝐸) is bipartite iff it has no cycles of odd length.

Corollary: trees and forests are bipartite graphs.

BFS: Bipartiteness check

9

Algorithm for bipartiteness check.

Let 𝐺 𝑉, 𝐸 be a connected graph.

1. 𝑅 = 𝐵 = ∅

2. Select any 𝑠 ∈ 𝑉. d[s]=0.

3. Calculate 𝑑[𝑣] - distances from s to all other vertices.

4. For each 𝑣 ∈ 𝑉:
if d[v] is odd: 𝑅 = 𝑅 ∪ {𝑣}

else: 𝐵 = 𝐵 ∪ {𝑣}

5. Scan thru 𝐸 and check whether the condition holds.

Time complexity: 𝑂(𝑉 + E)

BFS: Bipartiteness check

10

DFS: Detecting cycles

11

DAG = directed acyclic graph = directed graph with no directed
cycles.

DFS: Detecting cycles

12

DFS(v)

Mark v as ‘visited’

Mark v as ‘active’

For each u in Adj(v):

if u is unvisited:

DFS(u)

else if u is ‘active’:

a cycle found!!!

Mark v as ‘inactive’

DFS: Topological sort of a DAG

Topological ordering (sort) is vertex numbering 𝜏: 𝑉 ↔ 1,… , 𝑉 :
there are no edges (u,v) in G: 𝜏 𝑢 > 𝜏 𝑣 .

13

Graphs: definition (lecture 03)

𝑣 ∈ 𝑉 :

✓ deg(𝑣) – degree of vertex 𝑣 = number of edges incident to 𝑣 .

✓ outdeg 𝑣 – out-degree of vertex 𝑣 = number of edges which start from 𝑣 .

✓ indeg 𝑣 – in-degree of vertex 𝑣 = number of edges which end at 𝑣 .

✓ 𝑣 is a source iff indeg 𝑣 = 0

✓ 𝑣 is a sink iff outdeg 𝑣 = 0

14

Topological sort of a DAG

15

Theorem. A directed graph G has a topological sort iff G is a DAG.
Proof

⇒ Suppose that G is not acyclic, i.e. it contains a directed cycle.

In this case, the vertices of the cycle cannot be numerated according the topological
sort requirement.

Topological sort of a DAG

16

 Let G(V,E) be a DAG. Let us see, how topological sort for G can be built.

Statement. Any DAG has at least one source and at least one sink.

Algorithm for Topological sort based on sources:

1. Create counter and initialize it with 1.

2. While 𝑉 > 0

• Find a source and assign it the current counter value.

• Remove this source from the graph.

• Increase the counter by 1.

Topological sort of a DAG

17

The resulting numeration is a topological sort.

1) All vertices have numbers. This is due to the fact that after removing a source the graph is

still a DAG, so the algorithm is running until all vertices are numbered.

2) For each arc, the number of the starting vertex is less than the number of the finishing

vertex.

Topological sort of a DAG

18

DFS can also be used for building topological sort.

1. Create counter and initialize it with the number of vertices (𝑛 = |𝑉|).

2. Run depth-first-search. Before leaving a vertex, assign it the current counter value as the topological

number; the counter is decreased by 1.

Complexity of the

topological sort: 𝑂 𝑛 +𝑚 .

DFS: Topological sort of a DAG

19

Assign a vertex ‘topological number’ just before leaving this
vertex: initialize CurTopNum with 𝑛 = |𝑉|, then run DFS:

DFS(v)

PreVisit(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited: DFS(u)

PostVisit(v)

PostVisit(v)

TopNum[v] = CurTopNum

CurTopNum--

DFS: Topological sort of a DAG

20

	Слайд 1, Algorithms and Data Structures Module 1 Lecture 6 Graph traversals: depth-first search, breadth-first search and their applications. Part 3
	Слайд 2, DFS & BFS: applications
	Слайд 3, BFS: Calculating distances
	Слайд 4, BFS: Calculating distances
	Слайд 5, BFS: Calculating distances
	Слайд 6, BFS: Calculating distances
	Слайд 7, BFS: Bipartiteness check
	Слайд 8, BFS: Bipartiteness check
	Слайд 9, BFS: Bipartiteness check
	Слайд 10, BFS: Bipartiteness check
	Слайд 11, DFS: Detecting cycles
	Слайд 12, DFS: Detecting cycles
	Слайд 13, DFS: Topological sort of a DAG
	Слайд 14, Graphs: definition (lecture 03)
	Слайд 15, Topological sort of a DAG
	Слайд 16, Topological sort of a DAG
	Слайд 17, Topological sort of a DAG
	Слайд 18, Topological sort of a DAG
	Слайд 19, DFS: Topological sort of a DAG
	Слайд 20, DFS: Topological sort of a DAG

