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In memory of Professor
Vladimir Stavrovich Pilidi
(1946–2021)

Preface
The book is a continuation of the textbook [1] and contains lecture mate-

rial of the second part of the course on mathematical analysis, which was read
by the author for several years at the I. I. Vorovich Institute of Mathematics,
Mechanics, and Computer Science of the Southern Federal University (spe-
cialization 01.03.02 – “Applied Mathematics and Computer Science”). The
book includes the following topics: indefinite integral, definite integral and
its geometric applications, improper integral, numerical series, functional se-
quences and series, power series, Fourier series.

Beyond the scope of the course material presented in [1] and this book,
there are topics related to the differential and integral calculus of functions
of many variables.

This book, like the book [1], can be attributed to the category of “short
textbooks”, covering only the material that can usually be given in lectures.
In this respect, it is similar to books [10, 16] and differs from the “detailed
textbooks” that cover the subject with much greater completeness. In par-
ticular, topics related to the integral calculus of functions of one variable are
described in detail in textbooks [4, 6, 8, 11, 14, 18, 19], and topics related to
series theory are included in textbooks [4, 6, 7, 9, 12, 14, 18–20]; moreover,
the theory of Fourier series is often presented separately (see [5, 13, 15]).

Most of the statements in the book are provided with detailed proof; for
a few auxiliary facts taken without proof, references are given to textbooks
in which these facts are proved (the textbook [18] was chosen as the main
source for such references).

Like the book [1], the proposed book has two main features: relationship
with the set of video lectures and the presence of two versions: in Russian and
English (the Russian version of the book [1] is [2]). The noted features and
the additional advantages for the reader resulting from them are described in
detail in the preface to [1]. Books [3, 10, 17] can be mentioned as additional
sources in English that are closest to Russian textbooks.
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The index to the book is composed on the same principles as the index
to [1]: it contains all definitions and theorems; all references to theorems
include their detailed descriptions grouped in the section “Theorem”. In ad-
dition, all theorems and other concepts containing surnames in their titles
are given in the positions corresponding to these surnames. In the electronic
version of the book, page numbers in the index, as well as in the table of
contents, are hyperlinks allowing to go directly to this page.

The initial “Video Lectures” section provides complete information about
the set of video lectures related to the book, including their Internet links.
This information allows the reader to quickly access the required lecture even
in the absence of an electronic version of the book.



Video lectures

If the framed text follows the title of the section or subsection, this means
that a fragment of the video lecture is associated with this section or sub-
section. The framed text consists of three parts: the number of the video
lecture, the time from which this fragment begins, and the duration of this
fragment.

For example, the following text 2.1A/00:00 (16:47) is located after the
title of the first section of Chapter 1 (the section is devoted to the definition of
the antiderivative and indefinite integral). It means that this topic is discussed
at the very beginning of lecture 2.1A, and the corresponding fragment of the
lecture lasts 16 minutes 47 seconds. The last section of Chapter 20 is the
section devoted to the decreasing rate of Fourier coefficients for differentiable
functions. The correspondent text is 3.19B/33:49 (06:32) , which means
that this topic is discussed in the lecture 3.19B, starting at 33:49, and the
discussion lasts 6 minutes 32 seconds.

The double numbering of video lectures is due to the fact that they are
taken from two sets with numbers 2 and 3 corresponding to lectures of the
second and third semester; the lectures in each set are numbered starting
from 1.

In the electronic version of the book, all framed texts are hyperlinks. Click-
ing on such text allows you to immediately play the corresponding lecture,
starting from the specified time.

When using the paper version of the book, hyperlinks, of course, are not
available, therefore, an additional information is provided here, which will
allow you to quickly start playing the required video lecture.

All video lectures are available on youtube.com. The first 10 video lectures
belong to set 2 and are the initial lectures of this set (with numbers from 1
to 10); the final 11 video lectures belong to the middle part of set 3 and have
numbers from 9 to 19 in this set. In addition, there is a link to video lecture
2.11A, in which the topic “Curves” ends, and a link to video lecture 3.8B, in
which the topic “Improper integrals” begins. All other video lectures consist
of two parts: A and B. The following list of lectures contains their titles and
short links to each part.
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2.1. Indefinite integral
2.1A: https://youtu.be/66lAeLxskVA
2.1B: https://youtu.be/xzIopk1WCDM

2.2. Integration of rational functions
2.2A: https://youtu.be/aLuD104G8PI
2.2B: https://youtu.be/pPDP0Lv23fk

2.3. Integration of trigonometric and irrational functions
2.3A: https://youtu.be/_5Maq2J0eHg
2.3B: https://youtu.be/aSDoNpfUbAs

2.4. Definite integral. Darboux sums
2.4A: https://youtu.be/TRBKy1OknMM
2.4B: https://youtu.be/a4gf4Temgug

2.5. Classes of integrable functions
2.5A: https://youtu.be/oLRSzkV4FLo
2.5B: https://youtu.be/OXUliFTV26s

2.6. Properties of a definite integral
2.6A: https://youtu.be/VkS-AcA9njQ
2.6B: https://youtu.be/tygGvPGHTps

2.7. Newton–Leibniz formula
2.7A: https://youtu.be/h77yheGoE1I
2.7B: https://youtu.be/FPhuVOZFZZ8

2.8. Calculation of areas
2.8A: https://youtu.be/Yg2rrKjorF8
2.8B: https://youtu.be/sX5r7CP2oR0

2.9. Calculation of volumes
2.9A: https://youtu.be/3Vpk5JvFLaM
2.9B: https://youtu.be/6VT320AFKbw

2.10. Vector functions. Calculation of a curve length
2.10A: https://youtu.be/Q6sxEiXVzhc
2.10B: https://youtu.be/xb8oN2tz4Lw

2.11. Metric spaces
2.11A: https://youtu.be/J29z4Sog7WE

3.8. Definition and properties of an improper integral
3.8B: https://youtu.be/3r3u9nmPvQI

3.9. Absolute and conditional convergence of improper integrals
3.9A: https://youtu.be/at_eysCbc_M

https://youtu.be/66lAeLxskVA
https://youtu.be/xzIopk1WCDM
https://youtu.be/aLuD104G8PI
https://youtu.be/pPDP0Lv23fk
https://youtu.be/_5Maq2J0eHg
https://youtu.be/aSDoNpfUbAs
https://youtu.be/TRBKy1OknMM
https://youtu.be/a4gf4Temgug
https://youtu.be/oLRSzkV4FLo
https://youtu.be/OXUliFTV26s
https://youtu.be/VkS-AcA9njQ
https://youtu.be/tygGvPGHTps
https://youtu.be/h77yheGoE1I
https://youtu.be/FPhuVOZFZZ8
https://youtu.be/Yg2rrKjorF8
https://youtu.be/sX5r7CP2oR0
https://youtu.be/3Vpk5JvFLaM
https://youtu.be/6VT320AFKbw
https://youtu.be/Q6sxEiXVzhc
https://youtu.be/xb8oN2tz4Lw
https://youtu.be/J29z4Sog7WE
https://youtu.be/3r3u9nmPvQI
https://youtu.be/at_eysCbc_M
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3.9B: https://youtu.be/dVh4k6yr8O8

3.10. Definition and properties of a numerical series, convergence tests
3.10A: https://youtu.be/RuNzgI_hUCk
3.10B: https://youtu.be/PcIYNHo15_Y

3.11. Convergence tests (continuation), alternating series
3.11A: https://youtu.be/ielvgfjqFjM
3.11B: https://youtu.be/l1j-OAwBM5w

3.12. Functional sequences and series, uniform convergence
3.12A: https://youtu.be/vlcY9UpBHGg
3.12B: https://youtu.be/PRXEFme2sV0

3.13. Properties of functional sequences and series
3.13A: https://youtu.be/pJywld91FOs
3.13B: https://youtu.be/cyHCvVqlDGw

3.14. Power series
3.14A: https://youtu.be/lkbV5-3O7Ps
3.14B: https://youtu.be/uOH9-hFgtbM

3.15. Properties of power series
3.15A: https://youtu.be/gvKZiJVjOhE
3.15B: https://youtu.be/JzgBm_z7OqI

3.16. Taylor series
3.16A: https://youtu.be/jM7_Gc7vThE
3.16B: https://youtu.be/8Js_Dl29pX0

3.17. Fourier series in Euclidean space
3.17A: https://youtu.be/yT2KwZh8XVQ
3.17B: https://youtu.be/vnHwF6qCLRU

3.18. Fourier series in the space of integrable functions
3.18A: https://youtu.be/2_hb1tefg7U
3.18B: https://youtu.be/yJqsGKaYgmw

3.19. Properties of Fourier series for various classes of functions
3.19A: https://youtu.be/Y6ftB0rijqk
3.19B: https://youtu.be/5UJfMwBOpx4

You can create a link that immediately plays the video lecture, starting
from the specified time. Let us describe this additional feature using the
previously mentioned fragment 3.19B/33:49 (06:32) as an example. This
is a fragment of part B of video lecture 3.19B, its short link has the form
5UJfMwBOpx4. We need to play a lecture starting at 33:49.

https://youtu.be/dVh4k6yr8O8
https://youtu.be/RuNzgI_hUCk
https://youtu.be/PcIYNHo15_Y
https://youtu.be/ielvgfjqFjM
https://youtu.be/l1j-OAwBM5w
https://youtu.be/vlcY9UpBHGg
https://youtu.be/PRXEFme2sV0
https://youtu.be/pJywld91FOs
https://youtu.be/cyHCvVqlDGw
https://youtu.be/lkbV5-3O7Ps
https://youtu.be/uOH9-hFgtbM
https://youtu.be/gvKZiJVjOhE
https://youtu.be/JzgBm_z7OqI
https://youtu.be/jM7_Gc7vThE
https://youtu.be/8Js_Dl29pX0
https://youtu.be/yT2KwZh8XVQ
https://youtu.be/vnHwF6qCLRU
https://youtu.be/2_hb1tefg7U
https://youtu.be/yJqsGKaYgmw
https://youtu.be/Y6ftB0rijqk
https://youtu.be/5UJfMwBOpx4
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To do this, use the Internet link https://www.youtube.com/watch? spec-
ifying two options after it: a short link to the video lecture (option v=) and the
start time of playback (option t=). The options themselves must be separated
by the & character.

In our case, the full text of the Internet link will be as follows:
https://www.youtube.com/watch?v=5UJfMwBOpx4&t=33m49s

Pay attention to the time format: after the number of minutes, the letter m
is indicated; after the number of seconds, the letter s is indicated. If the
number of seconds is 0, then only the number of minutes can be specified.

A set of hyperlinks to video lectures, which also contains the names of the
corresponding chapters, sections, and subsections of this book, is presented on
the website mmcs.sfedu.ru of the Institute of Mathematics, Mechanics, and
Computer Science of the Southern Federal University (Moodle environment,
link http://edu.mmcs.sfedu.ru/course/view.php?id=271 for the lecture
set 2 and link http://edu.mmcs.sfedu.ru/course/view.php?id=379 for
the lecture set 3). At the top of each specified page, a set of hyperlinks is
displayed with titles in Russian and then in English.

http://edu.mmcs.sfedu.ru/course/view.php?id=271
http://edu.mmcs.sfedu.ru/course/view.php?id=379


1. Antiderivative and indefinite integral

Definition of an antiderivative
and indefinite integral 2.1A/00:00 (16:47)

Definition.
Let the function f be defined on the interval (a, b), where a and b are finite

points or points at infinity. Let the function F be a differentiable function
on this interval, with F ′(x) = f(x) for x ∈ (a, b). Then the function F is
called the antiderivative (or primitive function) of the function f on a given
interval.

The process of finding an antiderivative is called indefinite integration (or
antidifferentiation). If a function has an antiderivative on (a, b), then it is
called integrable on (a, b).

Hereinafter we, as a rule, will not specify interval on which the function is
integrable.

The question arises: how many different antiderivatives exist? Let F1 be
the antiderivative of the function f , that is, F ′1(x) = f(x). Let F2(x) =
= F1(x) + C, where C is a constant. Then the function F2 is also the
antiderivative of the function f , since

F ′2(x) =
(
F1(x) + C

)′
= F ′1(x) = f(x).

Therefore, if we add a constant to some antiderivative, then we will also
get a primitive function. So, there exists an infinite number of antiderivatives,
differing from each other by a constant term.

There are no other antiderivatives: all possible antiderivatives can be ob-
tained by adding a constant to some selected antiderivative. Let us formalize
this fact as a theorem.

Theorem (on antiderivatives of a given function).
Let F1 and F2 be antiderivatives of f on (a, b). Then there exists a constant

C ∈ R such that F2(x) = F1(x) + C.
Proof.
We introduce the auxiliary function h(x) = F2(x) − F1(x). The function

h(x) is differentiable on (a, b) as the difference of differentiable functions. Let
us find its derivative:

https://www.youtube.com/watch?v=66lAeLxskVA&t=00m01s
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h′(x) =
(
F2(x)− F1(x)

)′
= F ′2(x)− F ′1(x) = f(x)− f(x) = 0.

Thus, h′(x) is equal to 0 at any point x ∈ (a, b). Then, by corollary 1
of Lagrange’s theorem [1, Ch. 21], the function h(x) is a constant on the
interval (a, b):

h(x) = C, x ∈ (a, b).

Therefore, F2(x)− F1(x) = C, F2(x) = F1(x) + C. �
So, knowing one antiderivative, we can obtain all the other antiderivatives,

since they all differ from the chosen antiderivative by a constant term.
Definition.
The indefinite integral

∫
f(x) dx of the function f is the set of all its

antiderivatives: if F1 is some antiderivative of the function f (that is,
F ′1(x) = f(x)), then∫

f(x) dx
def
= {F1(x) + C, C ∈ R}.

The symbol
∫

is called the integral sign, the function f(x) is called the
integrand, and the expression f(x) dx under the integral sign is called the
element of integration.

As a rule, curly braces are not used and, moreover, it is not indicated
that C is an arbitrary real constant:∫

f(x) dx = F1(x) + C.

Table of indefinite integrals 2.1A/16:47 (12:44)∫
0 dx = C.∫
Adx = Ax+ C, A ∈ R.∫
xα dx =

xα+1

α + 1
+ C, x > 0, α ∈ R \ {−1}.∫

1

x
dx = ln |x|+ C, x 6= 0.

To prove the last formula, it suffices to differentiate the superposition
ln |x| = ln y ◦ |x| for x 6= 0:

(ln |x|)′ = (ln y)′|y=|x| · (|x|)
′ =

1

y

∣∣∣∣
y=|x|
· signx =

signx

|x|
=

1

x
.

https://www.youtube.com/watch?v=66lAeLxskVA&t=16m47s
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∫
ex dx = ex + C.∫
ax dx =

ax

ln a
+ C, a > 0, a 6= 1.∫

sinx dx = − cosx+ C.∫
cosx dx = sinx+ C.∫

1

cos2 x
dx = tanx+ C.∫

1√
1− x2

dx = arcsinx+ C.∫
1

1 + x2
dx = arctanx+ C.∫

shx dx = ch x+ C.∫
chx dx = shx+ C.

The simplest properties of an indefinite integral
2.1A/29:31 (09:54), 2.1B/00:00 (02:28)

1. If the function f is integrable, then(∫
f(x) dx

)′
= f(x).

Proof.
Let F (x) be the antiderivative of the function f(x), then(∫

f(x) dx
)′

= (F (x) + C)′ = F ′(x) = f(x). �

2. If the function f is differentiable, then∫
f ′(x) dx = f(x) + C.

Proof.
In this case, f(x) is one of the antiderivatives of the function f ′(x), whence

the formula to be proved follows. �
3. Additivity of the indefinite integral.
Let f and g be integrable, then the function f + g is also integrable and

the formula holds:∫
(f + g) dx =

∫
f dx+

∫
g dx. (1)

https://www.youtube.com/watch?v=66lAeLxskVA&t=29m31s
https://www.youtube.com/watch?v=xzIopk1WCDM&t=00m01s
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Proof.
Equality (1) must be interpreted as the equality of two sets. Therefore,

we should prove that the set from the left-hand side of equality (1) is equal
to the set from the right-hand side of (1). Let F be some antiderivative of
the function f , G be some antiderivative of the function g. Then F + G is
the antiderivative of the function f + g, since (F + G)′ = F ′ + G′ = f + g.
Therefore, equality (1) can be rewritten in the form:

F +G+ C = (F + C1) + (G+ C2), C, C1, C2 ∈ R.
Obviously, if we choose the constants C1 and C2, that is, if we select some

element of the right-hand set, then this element will also belong to the left-
hand set (we can just put C = C1 + C2).

If we select some element F + G + C of the left-hand set, then, by rep-
resenting the constant C as the sum of two constants C1 and C2, we obtain
that this element also belongs to the right-hand set.

Thus, we have proved the equality of these sets. �
4. Homogeneity of the indefinite integral.
Let f be integrable, α ∈ R, α 6= 0. Then the function αf is integrable

and the formula holds:∫
αf dx = α

∫
f dx. (2)

Formula (2) means that the constant factor can be taken out of the integral
sign.

The proof is similar to the proof of property 3. �
Remark.
In the case of α = 0, formula (2) turns out to be incorrect, as we noted

earlier that
∫

0 dx = C.
If we combine the properties of additivity and homogeneity, then we get

the property of linearity.
5. Linearity of the indefinite integral.
Let f and g be integrable, α, β ∈ R, with α and β not turning into 0 at

the same time: |α| + |β| 6= 0. Then the function αf + βg is also integrable
and the formula holds:∫

(αf + βg) dx = α

∫
f dx+ β

∫
g dx.

Example.
Using the simplest properties of the indefinite integral and the table of

indefinite integrals, one can find the integrals of linear combinations of func-
tions, for example:
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∫
(5ex + 6 cosx) dx = 5

∫
ex dx+ 6

∫
cosx dx = 5ex + 6 sinx+ C.

To verify the resulting relation, it suffices to differentiate the expression
on the right-hand side.

Change of variables
in an indefinite integral 2.1B/02:28 (13:37)

Theorem (on the change of variables).
Let f(x) be an integrable function on (a, b) and one of its antiderivatives

is the function F (x). Let ϕ(t) be a differentiable function on the interval
(α, β) and ϕ(t) ∈ (a, b) as t ∈ (α, β). Then∫

f
(
ϕ(t)

)
ϕ′(t) dt = F

(
ϕ(t)

)
+ C. (3)

Proof.
It is enough for us to verify that the right-hand side of equality (3) is

the antiderivative of the integrand of the left-hand side of (3). We use the
superposition differentiation theorem and the condition that F ′(x) = f(x):(

F (ϕ(t))
)′

= F ′(x)|x=ϕ(t) ϕ
′(t) = f(x)|x=ϕ(t) ϕ

′(t) = f
(
ϕ(t)

)
ϕ′(t).�

Remark.
Considering that the expression ϕ′(t) dt is the differential of the function ϕ,

the left-hand side of equality (3) can be written as
∫
f(ϕ)dϕ.

If we assume that ϕ is an independent variable, then equality (3) turns
into the definition of an indefinite integral:∫

f(ϕ)dϕ = F (ϕ) + C. (4)

However, the proved theorem means that equality (4) also holds for the
case when ϕ is a dependent variable, that is, it represents a differentiable
function of some independent variable (for example, t). In this case, the
expression dϕ must be understood as the differential of the function.

The noted circumstance is an additional justification for including the
expression dx in the notation of the indefinite integral. It should be noted
that this notation is also convenient for calculating integrals by changing
variables.

An example of applying the variable changing theorem.
Find the integral

∫
tanx dx:∫

tanx dx =

∫
sinx dx

cosx
.

https://www.youtube.com/watch?v=xzIopk1WCDM&t=02m28s
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We introduce a new variable: y = cos x. The variable y is the func-
tion ϕ from the variable changing theorem, that is, we can assume that y
depends on x. Then dy is the differential of the function cosx, therefore
dy = − sinx dx. Thus, by virtue of the remark on the variable changing the-
orem, the expression in the numerator of the initial integral can be replaced
with −dy, and the expression in the denominator can be replaced with y. As
a result of changing the variable y = cosx, the initial integral is significantly
simplified and can now be found using the table of indefinite integrals:∫

sinx dx

cosx
=

∫
−dy
y

= −
∫
dy

y
= − ln |y|+ C.

It remains for us to return to the initial variable x. Finally we obtain∫
tanx dx = − ln | cosx|+ C.

Remarks.
1. When finding the last integral, we actually applied the formula (3),

representing the initial integral as follows:∫
tanx dx =

∫
f(cosx) · (cosx)′ dx, f(y) = −1

y
.

However, when performing a variable change in an indefinite integral, for-
mula (3) is not used. Instead, in the integral, both the initial variable x and
its differential dx are replaced, as was done in the above example.

2. Using a similar change of variable, one can also find the integral
∫

dx
sinx .

To do this, take into account that sinx = 2 sin x
2 cos x

2 and additionally trans-
form the resulting expression to obtain the result of differentiation of the
function tan x

2 in it.
3. The resulting formula for the integral

∫
tanx dx makes sense on any

interval that does not contain points π
2 + πk, k ∈ Z, that is, points at which

the tangent function is not defined.

Formula of integration by parts

Derivation of the formula
of integration by parts 2.1B/16:05 (07:28)

The integral of the product of functions is not equal to the product of
the integrals. This is due to the more complicated form of the formula for
differentiating the product, compared with the formula for differentiating the
sum:

https://www.youtube.com/watch?v=xzIopk1WCDM&t=16m05s
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(
u(x)v(x)

)′
= u′(x)v(x) + u(x)v′(x). (5)

Nevertheless, using formula (5) for differentiating the product, we can
obtain the formula of integration by parts, which in some cases allows us to
simplify the calculation of the integral of the product.

Let us express the product u(x)v′(x) from equality (5):

u(x)v′(x) =
(
u(x)v(x)

)′ − u′(x)v(x).

Integrating the last equality and using the linearity of the indefinite inte-
gral (the simplest property 5), we obtain∫

u(x)v′(x) dx =

∫ ((
u(x)v(x)

)′ − u′(x)v(x)
)
dx =

=

∫ (
u(x)v(x)

)′
dx−

∫
u′(x)v(x) dx. (6)

Given the simplest property 2 of the indefinite integral, we have∫ (
u(x)v(x)

)′
dx = u(x)v(x) + C.

Since the remaining term
∫
u′(x)v(x) dx on the right-hand side of equal-

ity (6) also contains an arbitrary constant, we can add the constant C to
this arbitrary constant and not specify it explicitly. Finally, we obtain the
following formula:∫

u(x)v′(x) dx = u(x)v(x)−
∫
u′(x)v(x) dx.

This formula is called the formula of integration by parts. It holds if the
functions u and v are differentiable and there exists at least one of the integrals
included in it (in this case, there necessarily exists another integral).

So, the formula of integration by parts allows us to express the integral of
the product of the functions u and v′ in terms of the integral of the product
of u′ and v. It is used in situations where the integral on its right-hand side
is easier to find than the integral on the left-hand side.

The formula of integration by parts can also be written in the following
short form:∫

u dv = uv −
∫
v du.

Examples of applying the formula
of integration by parts 2.1B/23:33 (12:42)

1. Let us find the integral
∫

lnx dx. We put u(x) = lnx, dv = dx,
whence v(x) = x. Then

https://www.youtube.com/watch?v=xzIopk1WCDM&t=23m33s
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∫
lnx dx = x lnx−

∫
x(lnx)′ dx =

= x lnx−
∫
x · 1

x
dx = x lnx−

∫
dx = x lnx− x+ C.

2. Let us find the integral
∫
ex sinx dx.

We put u(x) = sinx, dv = ex dx, whence v(x) = ex. Then∫
ex sinx dx = ex sinx−

∫
ex cosx dx. (7)

Transform the integral on the right-hand side of (7) by the formula of
integration by parts with u(x) = cos x, v(x) = ex:∫

ex cosx dx = ex cosx−
∫
ex(− sinx) dx = ex cosx+

∫
ex sinx dx.

Substituting the found integral in (7), we obtain∫
ex sinx dx = ex sinx− ex cosx−

∫
ex sinx dx.

So, after completing two integrations by parts, we get the initial integral∫
ex sinx dx. If we denote one of the antiderivatives of the initial integrand

by I(x) and transfer arbitrary constants to the right-hand side of the last
equality, then this equality can be written as follows:

I(x) = ex(sinx− cosx)− I(x) + C. (8)

Solving equation (8) with respect to I(x), we obtain

I(x) =
ex

2
(sinx− cosx) +

C

2
.

The final formula takes the form∫
ex sinx dx =

ex

2
(sinx− cosx) + C.

A similar technique can be applied when integrating functions of a more
general form ebx sin ax and ebx cos ax.

Remark.
It is also advisable to apply the formula of integration by parts in the

case of an integrand of the form P (x)f(x), where P (x) is a polynomial and
f(x) is a function for which there exists a simple antiderivative (such as sinx,
cosx, ax). In this case, we put u(x) = P (x); as a result of differentiation
of the function u(x), a polynomial of a lesser degree will be obtained. The
integration by parts is again applied to the obtained integral, and the pro-
cess is repeated until the polynomial at the next differentiation turns into
a constant.
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If there is a function lnx in the integrand, we can put u(x) = lnx, since
we obtain a simpler function 1

x after differentiation.
Sometimes it is convenient to apply the formula of integration by parts,

not dividing the integrand into two factors, but setting dv = dx, v(x) = x
(as in example 1).



2. Integration of rational functions

Partial fraction decomposition
of a rational function 2.1B/36:15 (11:49)

Definition.
The rational function R(x) is the ratio of two polynomials:

R(x) =
Pm(x)

Qn(x)
.

In studying the question of integrating rational functions, the following
facts from the course of algebra are used.

Theorem 1 (on the factorization of a real polynomial).
A polynomial Qn(x) of degree n with real coefficients can be decomposed

into the following irreducible factors:

Qn(x) = a0(x−c1)
α1 . . . (x−ck)αk(x2 +p1x+q1)

β1 . . . (x2 +plx+ql)
βl.
(1)

Here a0 is the coefficient of the highest degree of the polynomial Qn(x),
c1, . . . , ck are the real roots of the polynomialQn(x) of multiplicity α1, . . . , αk,
quadratic factors of the form x2 + pix + qi with real coefficients pi, qi have
a negative discriminant: p2

i − 4qi < 0; each factor (x2 + pix + qi)
βi cor-

responds to a pair of complex conjugate roots of the polynomial Qn(x) of
multiplicity βi, i = 1, . . . , l. In addition, the following relation holds:

α1 + · · ·+ αk + 2(β1 + · · ·+ βl) = n.

Theorem 2 (on the partial fraction decomposition of a real
rational function).

Let R(x) be a rational function of the form Pm(x)
Qn(x) and decomposition (1)

takes place for the polynomial Qn(x). Then R(x) can be represented as
follows:

R(x) = P̃ (x) +
k∑
i=1

αi∑
j=1

Aij

(x− ci)j
+

l∑
i=1

βi∑
j=1

Bijx+Dij

(x2 + pix+ qi)j
. (2)

The term P̃ (x) appears if the degree m of the polynomial Pm(x) is greater
than or equal to the degree n of the polynomial Qn(x). This term P̃ (x) is

https://www.youtube.com/watch?v=xzIopk1WCDM&t=36m15s
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a polynomial of degree m− n obtained by dividing the polynomial Pm(x) by
the polynomial Qn(x).

For all remaining terms in formula (2) (called partial fractions), the degree
of the numerator is less than the degree of the denominator.

Methods for finding the decomposition
of a rational function 2.2A/00:00 (09:34)

Consider the following rational function as an example:

R(x) =
5x3 + 3x+ 2

(x− 1)2(x2 + 2x+ 2)
.

The degree of its numerator is less than the degree of the denominator,
therefore, the term P̃ (x) will not be present in the decomposition. The de-
composition will consist of three partial fractions:

R(x) =
A

x− 1
+

B

(x− 1)2
+

Cx+D

x2 + 2x+ 2
.

It remains for us to find the coefficients of these fractions. To do this,
we can use the so-called method of equating coefficients. Let us reduce the
expression on the right-hand side to a common denominator and equate the
resulting numerators:

5x3+3x+2 = A(x−1)(x2+2x+2)+B(x2+2x+2)+(Cx+D)(x−1)2.
(3)

Now we remove parentheses on the right-hand side and group the terms
with the same powers of x:

5x3 + 3x+ 2 = (A+ C)x3 + (A+B − 2C +D)x2 +

+ (2B + C − 2D)x+ (−2A+ 2B +D).

Let us equate the coefficients at the same powers of x:

5 = A+ C,

0 = A+B − 2C +D,

3 = 2B + C − 2D,

2 = −2A+ 2B +D.

As a result, we obtained a system of four linear equations in four unknowns.
According to the theorem on the partial fraction decomposition of a rational
function, this system has a solution. Having solved this system, we will find
the required coefficients: A = 2, B = 2, C = 3, D = 2.

https://www.youtube.com/watch?v=aLuD104G8PI&t=00m01s
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There is another way: we can consider the specific values of x. If we put
x = 1 in equality (3), then two terms will disappear in its right-hand side
and the only term will remain. Using this term, we can immediately find the
coefficient B:

5 ·13 +3+2 = A(1−1)(12 +2+2)+B(12 +2+2)+(C+D)(1−1)2,

10 = 5B,

B = 2.

This method is convenient if there are no quadratic factors in the factor-
ization of a denominator. However, even in our case, this method allows us
to simplify the resulting system by reducing the number of unknowns:

5 = A+ C,

−2 = A− 2C +D,

−1 = C − 2D,

−2 = −2A+D.

Integration of terms in the partial fraction
decomposition of a rational function

Simple cases based on the direct use
of the table of integrals 2.2A/09:34 (06:46)

After finding the partial fraction decomposition of the rational function,
it remains to integrate separately all the obtained terms.

1. The integral of the polynomial P̃ (x).
This integral is a polynomial whose free term is an arbitrary constant C.
2. The integral of a partial fraction of the form A

(x−c)k corresponding to
the real root c of multiplicity k.

For k 6= 1, we have∫
A

(x− c)k
dx =

A

(1− k)(x− c)k−1
+ C.

For k = 1, we have∫
A

x− c
dx = A ln |x− c|+ C.

https://www.youtube.com/watch?v=aLuD104G8PI&t=09m34s
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Using change of variable 2.2A/16:20 (09:56)

3. The integral of a partial fraction of the form Bx+D
(x2+px+q)k

, provided that
the discriminant of the quadratic trinomial is less than zero: p2−4q < 0 (this
fraction corresponds to complex conjugate roots of multiplicity k).

Let us transform the polynomial in the denominator by complete the
square:

x2 + px+ q = x2 + 2x · p
2

+
(p

2

)2

−
(p

2

)2

+ q =
(
x+

p

2

)2

+ q − p2

4
.

Note that the expression q− p2

4 is greater than zero, since, by assumption,
the discriminant p2 − 4q is less than zero. Denote q − p2

4 = ∆2.
As a result of the transformation, we decrease the number of variables x

in the integral:∫
(Bx+D) dx

(x2 + px+ q)k
=

∫
(Bx+D) dx((
x+ p

2

)2
+ ∆2

)k .
Let us change of variable: t = x+ p

2 . Differentials will not change: dt = dx.
This variable changing will further simplify the denominator:∫

(Bx+D) dx((
x+ p

2

)2
+ ∆2

)k =

∫ (
B
(
t− p

2

)
+D

)
dt

(t2 + ∆2)k
.

Now transform the numerator by grouping the free terms and denoting
the difference D − Bp

2 by D′:∫ (
B
(
t− p

2

)
+D

)
dt

(t2 + ∆2)k
=

∫
(Bt+D′) dt

(t2 + ∆2)k
.

Let us split the resulting integral into two:∫
(Bt+D′) dt

(t2 + ∆2)k
=

∫
Bt dt

(t2 + ∆2)k
+

∫
D′ dt

(t2 + ∆2)k
.

Thus, it remains for us to analyze the integrals of two types:
∫

t dt
(t2+∆2)k

and
∫

dt
(t2+∆2)k

.
3a. Find the integral

∫
t dt

(t2+∆2)k
. We make the following variable change

in it: y = t2 + ∆2. Then dy = 2t dt and as a result we get∫
t dt

(t2 + ∆2)k
=

1

2

∫
dy

yk
.

The integral on the right-hand side can be found using the same formulas
as the integrals considered in subsection 2.

https://www.youtube.com/watch?v=aLuD104G8PI&t=16m20s
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Using recurrence relation 2.2A/26:16 (12:00)

3b. Now let us turn to the last integral:
∫

dt
(t2+∆2)k

.
In this case, we perform integration by parts, setting u = 1

(t2+∆2)k
, dv = dt,

v = t: ∫
dt

(t2 + ∆2)k
=

t

(t2 + ∆2)k
−
∫

2(−k)t2 dt

(t2 + ∆2)k+1
=

=
t

(t2 + ∆2)k
+ 2k

∫
t2 dt

(t2 + ∆2)k+1
.

In the numerator of the last integral, we add and subtract ∆2:
t

(t2 + ∆2)k
+ 2k

∫
(t2 + ∆2 −∆2) dt

(t2 + ∆2)k+1
=

=
t

(t2 + ∆2)k
+ 2k

∫
dt

(t2 + ∆2)k
− 2k∆2

∫
dt

(t2 + ∆2)k+1
.

If we denote Ik =
∫

dt
(t2+∆2)k

, then we can write the resulting relation as
follows:

Ik =
t

(t2 + ∆2)k
+ 2k(Ik −∆2Ik+1).

Express Ik+1 in terms of Ik:

Ik+1 =
1

2k∆2

(
t

(t2 + ∆2)k
+ (2k − 1)Ik

)
.

We have obtained a recurrence relation that allows us to reduce the finding
of the integral Ik+1 to Ik. Applying it the required number of times, we can
reduce the integral Ik to the integral I1, which can be found explicitly:

I1 =

∫
dt

t2 + ∆2
=

1

∆2

∫
dt(

t
∆

)2
+ 1

=
1

∆

∫
d
(
t
∆

)(
t
∆

)2
+ 1

=

=
1

∆
arctan

t

∆
+ C.

Theorem on the integration
of a rational function 2.2B/00:00 (06:08)

Thus, we have shown that all the integrals arising during the integration
of a rational function are expressed in terms of elementary functions and the
following theorem holds.

https://www.youtube.com/watch?v=aLuD104G8PI&t=26m16s
https://www.youtube.com/watch?v=pPDP0Lv23fk&t=00m01s


2. Integration of rational functions 27

Theorem (on the integration of a rational function).
Any rational function can be integrated in elementary functions.
This is an important fact, since there are elementary functions whose in-

tegrals are not expressed in terms of elementary functions. Examples of such
functions are ex

x ,
sinx
x , cosx

x .
Having proved the theorem on the integration of a rational function, we

can use it to study the integrability of other types of functions. If we can
reduce (for example, by changing a variable) a certain integrand to a rational
function, then we can state that the original function is also integrated in
elementary functions.

Remark.
When integrating rational functions, we “go beyond” the set of rational

functions, because as a result of integrating rational functions, logarithms
and arctangents can arise.
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Rational expressions
for trigonometric functions 2.2B/06:08 (03:45)

Definition.
A polynomial in two variables P (u, v) is a function of the form

P (u, v) =
n∑
j=0

m∑
i=0

aiju
ivj.

A rational function of two variables R(u, v) is the ratio of polynomials
P (u, v) and Q(u, v) in two variables:

R(u, v) =
P (u, v)

Q(u, v)
.

We want to study the integrability of a rational function R(u, v), in
which the trigonometric functions sinx and cosx are indicated as arguments:
R(sinx, cosx). This is a wide class of functions containing any arithmetic
combinations of integer (including negative) degrees of trigonometric func-
tions sinx and cosx.

It turns out that such functions, like rational functions, can be integrated
in elementary functions.

Universal trigonometric substitution 2.2B/09:53 (04:18)

To find the integral
∫
R(sinx, cosx) dx, we can use the following variable

change, called the universal trigonometric substitution (or tangent half-angle
substitution):

t = tan
x

2
.

This substitution is based on the fact that both sine and cosine are ex-
pressed in terms of the tangent of a half angle:

sinx =
2 tan x

2

1 + tan2 x
2

=
2t

1 + t2
,

cosx =
1− tan2 x

2

1 + tan2 x
2

=
1− t2

1 + t2
.

https://www.youtube.com/watch?v=pPDP0Lv23fk&t=06m08s
https://www.youtube.com/watch?v=pPDP0Lv23fk&t=09m53s
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In addition, since arctan t = x
2 , we get dx = 2 dt

1+t2 .
Thus, when using this substitution, both the functions sinx, cosx and the

differential dx are represented as rational functions of the new variable t.
Performing such a variable change, we obtain an integral of the following

form: ∫
R(sinx, cosx) dx =

∫
R

(
2t

1 + t2
,
1− t2

1 + t2

)
2 dt

1 + t2
.

The integrand in the right-hand integral, being a superposition of rational
functions, is itself a rational function of the argument t. Since any rational
function is integrated in elementary functions, we get that the initial integral
can also be integrated in elementary functions.

Features of the use of universal
trigonometric substitution 2.2B/14:11 (15:03)

When performing a universal trigonometric substitution, a narrowing of
the domain of definition of the integrand can occur, since the function tan x

2

does not exist for some values of x.
In order to illustrate such a feature, we consider the following integral,

which is defined for all real numbers x:
∫

(sin2 x + cos2 x) dx. By virtue of
the Pythagorean trigonometric identity, this integral is x+ C.

We find this integral using the universal trigonometric substitution:∫
(sin2 x+ cos2 x) dx =

∫ (
4t2

(1 + t2)2
+

(1− t2)2

(1 + t2)2

)
2 dt

1 + t2
=

= 2

∫
(4t2 + 1− 2t2 + t4) dt

(1 + t2)3
= 2

∫
(1 + 2t2 + t4) dt

(1 + t2)3
=

= 2

∫
(1 + t2)2 dt

(1 + t2)3
= 2

∫
dt

1 + t2
= 2 arctan t+ C.

Returning to the initial variable x, we get∫
(sin2 x+ cosx) dx = 2 arctan

(
tan

x

2

)
+ C.

The resulting expression is not equal to x+C on the entire real axis: it is
equal to x+C only on the interval (−π, π), since the function arctanx takes
values between −π

2 and π
2 . If, for example, we consider the interval (π, 3π),

then our function 2 arctan
(
tan x

2

)
will also take values from −π to π; thus,

its graph will be a graph of the linear function x− 2π. We can say that the
graph of the function 2 arctan

(
tan x

2

)
on the interval (π, 3π) is obtained by

https://www.youtube.com/watch?v=pPDP0Lv23fk&t=14m11s
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shifting to the right by 2π the graph of the same function on the interval
(−π, π). Using similar shifts, we can obtain graphs of this function on any
interval of the form (−π + 2kπ, π + 2kπ), k ∈ Z. We also note that at the
points π + 2kπ, k ∈ Z, the function 2 arctan

(
tan x

2

)
is not defined.

Thus, the function 2 arctan
(
tan x

2

)
is a piecewise linear function, it takes

values from −π to π and has discontinuities of the first kind at points π+2kπ,
k ∈ Z (Fig. 1).

Fig. 1. Graph of the function 2 arctan
(
tan x

2

)
Since the antiderivative must be a differentiable function and there-

fore a continuous function, we obtain that the found representation
2 arctan

(
tan x

2

)
+ C of the initial integral makes sense only on intervals

(−π + 2kπ, π + 2kπ), k ∈ Z.
However, in the obtained formula, there exists a constant C that can be

chosen differently on the intervals (−π + 2kπ, π + 2kπ), k ∈ Z, on which
antiderivative makes sense. Due to this choice, it is possible to “combine”
parts of a piecewise linear function in such a way as to turn discontinuity
points of the first kind into points of removable discontinuity. This can be
achieved, for example, by setting C = 0 for the antiderivative on the interval
(−π, π), C = 2π for the antiderivative on the interval (π, 3π), C = −2π for
the antiderivative on the interval (−3π,−π), etc. (Fig. 2).

Fig. 2. Combining antiderivative segments
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Having defined a combined antiderivative by continuity at the points
π + 2kπ, k ∈ Z, we obtain a linear function x, i. e., one of the initial in-
tegral antiderivatives defined on the entire real axis.

Thus, the universal trigonometric substitution allows us to obtain a repre-
sentation of the initial integral on intervals that do not contain singular points
of the tangent function, but additional transformations are required (related
to the selection of arbitrary terms C and to the additional definition the ob-
tained function by continuity at its singular points) to get the antiderivatives
defined on the entire real axis (if such antiderivatives exist).

Other types of variable change
for trigonometric expressions

Variable change using the cosine
and sine functions 2.2B/29:14 (08:12), 2.3A/00:00 (15:04)

In some cases, when integrating trigonometric expressions, more simple
change of variable can be used, which does not narrow the domain of definition
of the original expression.

Such types of variable change are possible if the rational function of two
variables R(sinx, cosx) has additional properties.

Case 1.
Let R(−u, v) = −R(u, v) for any u, v from the domain of definition of this

function. This property is called oddness with respect to the first argument.
In this case, for an integral of the form

∫
R(sinx, cosx) dx, we can use

a simpler variable change, which reduces it to an integral of a rational func-
tion. To justify such a variable change, we need to analyze the properties of
the function that is an odd function with respect to the first argument.

First, consider the auxiliary function R̃(u, v), which is an even function
with respect to the first argument:

R̃(−u, v) = R̃(u, v).

Obviously, in such a situation, all powers of the argument u in the func-
tion R̃ have an even degree. This means that the function R̃(u, v) can be
represented as follows:

R̃(u, v) = R∗(u2, v).

Here R∗ is a new rational function.

https://www.youtube.com/watch?v=pPDP0Lv23fk&t=29m14s
https://www.youtube.com/watch?v=_5Maq2J0eHg&t=00m01s
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For example, the function R̃(u, v) = u2+u4v+v3

v4u2 is an even function with
respect to the first argument and can be represented in the form R∗(u2, v),
where R∗(y, v) = y+y2v+v3

v4y .
Let us return to the initial function R, which is an odd function with

respect to the first argument, and construct the following function:

R̃(u, v) =
R(u, v)

u
.

The function being constructed is a rational function and it is an even
function with respect to the first argument because, given the property of the
function R, we have

R̃(−u, v) =
R(−u, v)

−u
=
−R(u, v)

−u
=
R(u, v)

u
= R̃(u, v).

Since the function R̃(u, v) is an even function with respect to the first
argument, it can be represented as follows:

R̃(u, v) = R∗(u2, v).

Given the definition of the function R̃(u, v), we obtain that the expression
R(u,v)
u can also be represented as R∗(u2, v):

R(u, v)

u
= R∗(u2, v).

Therefore, for a rational function R(u, v) which is an odd function with
respect to the first argument, there exists the following representation using
some rational function R∗:

R(u, v) = R∗(u2, v)u.

Let us return to our integral and rewrite it as follows:∫
R(sinx, cosx) dx =

∫
R∗(sin2 x, cosx) sinx dx.

We make the variable change t = cosx, then dt = − sinx dx. In addition,
sin2 x = 1− cos2 x = 1− t2. Thus, the initial integral takes the form∫

R(sinx, cosx) dx = −
∫
R∗(1− t2, t)t dx.

The function R∗ and its arguments are rational functions, therefore the
integrand is a rational function and it can be integrated in elementary func-
tions.

Thus, if the function R(u, v) is an odd function with respect to the first
argument, then, for the integral

∫
R(sinx, cosx) dx, we can use the variable
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change t = cosx, and as a result we obtain the integral of the rational
function.

Case 2.
Let the function R(u, v) be an odd function with respect to the second

argument: R(u,−v) = −R(u, v).
Then, using similar reasoning, we can prove that the function

R̃(u, v) = R(u,v)
v is an even function with respect to the second argument

and therefore it can be represented in the form R∗(u, v2). Finally, we obtain
the following representation for R:

R(u, v) = R∗(u, v2)v.

In this case, the integral
∫
R(sinx, cosx) dx takes the form∫

R(sinx, cosx) dx =

∫
R∗(sinx, cos2 x) cosx dx.

For its transformation to the integral of a rational function, we can use
the variable change t = sinx (with dt = cosx dx):∫

R(sinx, cosx) dx =

∫
R∗(t, 1− t2)t dx.

Remark.
Both considered variable changes (t = cosx and t = sinx), unlike the

universal trigonometric substitution, do not narrow the domain of definition
of the initial function.

Variable change using the tangent function 2.3A/15:04 (09:28)

Case 3.
Let the function R(u, v) be an even function with respect to both argu-

ments, that is, for any u and v from its domain of definition, the following
relation holds:

R(−u,−v) = R(u, v).

We transform the function R as follows:

R(u, v) = R
(u
v
· v, v

)
.

The expression on the right-hand side means that the initial function can
be represented as a rational function of the arguments u

v and v:

R(u, v) = R̃
(u
v
, v
)
.

Since the initial function R is an even function with respect to both argu-
ments, the function R̃ is an even function with respect to the second argument:

https://www.youtube.com/watch?v=_5Maq2J0eHg&t=15m04s
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R̃
(u
v
,−v

)
= R̃

(−u
−v

,−v
)

= R(−u,−v) = R(u, v) = R̃
(u
v
, v
)
.

Therefore, the function R̃
(
u
v , v
)
has the following representation using

some rational function R∗:

R̃
(u
v
, v
)

= R∗
(u
v
, v2
)
.

So, we have proved that a function R(u, v), which is an even function with
respect to both arguments, can be represented using some rational function
R∗ as follows:

R(u, v) = R∗
(u
v
, v2
)
.

Thus, for the integral
∫
R(sinx, cosx) dx we can get the following repre-

sentation:∫
R(sinx, cosx) dx =

∫
R∗(tanx, cos2 x) dx.

In this case, it is convenient to make the variable change t = tanx, then
x = arctan t, dx = dt

1+t2 . In addition, cos2 x = 1
1+tan2 x

= 1
1+t2 . Given the

obtained relations, the initial integral takes the form∫
R(sinx, cosx) dx =

∫
R∗
(
t,

1

1 + t2

) dx

1 + t2
.

So, we can represent the initial integral as the integral of rational function,
although when replacing t = tan x, the domain of definition of the original
function can be narrowed (as in the case of universal trigonometric substitu-
tion t = tan x

2). However, the resulting superposition of rational functions is
more simple than the superposition obtained as a result of universal trigono-
metric substitution.

Using multiple variable changes 2.3A/24:32 (05:08)

Any rational function R(u, v) can be represented as the sum of three ra-
tional functions, the first of which is an odd function with respect to the
first argument, the second one is an odd function with respect to the sec-
ond argument, and the third one is an even function with respect to both
arguments. Therefore, to integrate the initial function R(sinx, cosx), we can
represent it in the form of the indicated sum of three functions and apply the
corresponding change of variable described for cases 1, 2, 3 to each of these
functions.

The required representation of the function R(u, v) can be obtained using
the following equality:

https://www.youtube.com/watch?v=_5Maq2J0eHg&t=24m32s
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R(u, v) =
R(u, v)−R(−u, v)

2
+
R(−u, v)−R(−u,−v)

2
+

+
R(−u,−v) +R(u, v)

2
.

It is easy to verify that on the right-hand side of the equality obtained, the
first term R(u,v)−R(−u,v)

2 is a rational function which is an odd function with
respect to the first argument, the second term R(−u,v)−R(−u,−v)

2 is a rational
function which is an odd function with respect to the second argument, and
the third term R(−u,−v)+R(u,v)

2 is a rational function which is an even function
with respect to both arguments.

For example, if we denote the first term by R1(u, v) and replace u with
(−u) in it, then we get

R1(−u, v) =
R(−u, v)−R(u, v)

2
= −R(u, v)−R(−u, v)

2
=

= −R1(u, v).

This relation means that the function R1(u, v) is an odd function with
respect to the first argument.
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Integration of a rational function
with an irrational argument 2.3A/29:40 (08:42)

Let R(u, v) be a rational function, a, b, c, d ∈ R, p ∈ Q. Consider the
following integral:∫

R

(
x,
(ax+ b

cx+ d

)p)
dx.

This integral contains an irrational function if the exponent p is not an in-
teger: p = q

r , where q ∈ Z, r ∈ N, r > 1.
We also require that the determinant consisting of coefficients a, b, c, d be

nonzero:∣∣∣∣a b

c d

∣∣∣∣ = ad− bc 6= 0. (1)

If condition (1) is violated, then the coefficients a and b will be proportional
to the coefficients c and d. In this case, the fraction ax+b

cx+d will be a constant
and the irrationality in the integrand will disappear. Therefore, this case is
not interesting.

This integral can be transformed, by an appropriate change of variable, to
the integral of a rational function. Let us use the following variable change:

t =
(ax+ b

cx+ d

) 1
r

. (2)

Then the second argument of the function R takes the form tq, i. e., it does
not contain irrationality. It remains for us to express the argument x and the
differential dx in terms of the new variable t. We transform equality (2) as
follows:

tr =
ax+ b

cx+ d
,

(cx+ d)tr = ax+ b,

x =
b− dtr

ctr − a
.

Condition (1) ensures that the terms tr on the right-hand side of the equal-
ity obtained do not disappear. Thus, we have obtained that x is expressed as
a rational function of the argument t: R1(t) = b−dtr

ctr−a .

https://www.youtube.com/watch?v=_5Maq2J0eHg&t=29m40s
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Since x = R1(t), we get that dx = R′1(t) dt, where R′1(t) is also a rational
function (as a derivative of a rational function).

As a result of this variable change, the initial integral takes the form∫
R

(
x,
(ax+ b

cx+ d

)p)
dx =

∫
R
(
R1(t), t

q
)
R′1(t) dt.

The integrand in the right-hand integral is a rational function as a super-
position and a product of rational functions. Therefore, applying the theorem
on integrating a rational function, we obtain that the initial integral can also
be expressed in elementary functions.

Generalization to the case of several irrational
arguments 2.3A/38:22 (05:28), 2.3B/00:00 (03:45)

Definition.
A polynomial in n variables is a function P (x1, x2, . . . , xn) of the following

form:

P (x1, x2, . . . , xn) =

m1∑
i1=0

m2∑
i2=0

· · ·
mn∑
in=0

ci1i2...inx
i1
1 x

i2
2 . . . x

in
n .

A rational function of n variables is the ratio of two polynomials in n vari-
ables.

We generalize the previous result on the integration of a rational function
with an irrational argument to the case of a rational function of n+1 variables
containing n irrational arguments with the same bases:∫

R

(
x,
(ax+ b

cx+ d

)p1
,
(ax+ b

cx+ d

)p2
, . . . ,

(ax+ b

cx+ d

)pn)
dx.

Here p1, p2, . . . , pn ∈ Q, pi = qi
ri
, where qi ∈ Z, ri ∈ N, ri > 1, i = 1, . . . , n.

We require that condition (1) is satisfied for the coefficients a, b, c, d.
Let us introduce an auxiliary value s which is the least common multiple

of the numbers r1, r2, . . . , rn:

s = LCM {r1, r2, . . . , rn}. (3)

Then pi, i = 1, . . . , n, can be represented as follows:

pi =
qi
ri

=
qi
s
· s
ri

=
qili
s
.

Here li = s
ri
is an integer by (3).

Thus, we expressed all the numbers pi as fractions with the same denom-
inator s. Perform the following change of variable in the integral:

https://www.youtube.com/watch?v=_5Maq2J0eHg&t=38m22s
https://www.youtube.com/watch?v=aSDoNpfUbAs&t=00m01s
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t =
(ax+ b

cx+ d

) 1
s

. (4)

Then the arguments
(
ax+b
cx+d

)pi of the function R will take the form tqili, that
is, they will not contain irrationality.

Acting in the same way as in the previously considered case, we can ex-
press x from relation (4) as a rational function of the argument t:

x =
b− dts

cts − a
= R1(t).

As a result of this variable change, the initial integral takes the form∫
R
(
R1(t), t

q1l1, tq2l2, . . . , tqnln
)
R′1(t) dt.

The integrand in the resulting integral is a rational function, so this integral
and therefore the initial integral can also be expressed in elementary functions.

Integration of the binomial differential 2.3B/03:45 (15:59)

Consider the following integral (called the integral of the binomial differ-
ential): ∫

xm(a+ bxn)p dx.

Here m, n, p are some rational numbers.
Due to the power function xn, this integral differs from the previously

considered one (for which the base of the power function with a rational
exponent was the ratio of linear functions).

Therefore, at the first stage of the transformation, we get rid of the power
function xn by performing the variable change t = xn. Then x = t

1
n ,

dx = 1
nt

1
n−1 dt, and the integral takes the form∫
xm(a+bxn)p dx =

1

n

∫
t
m
n (a+bt)pt

1−n
n dt =

1

n

∫
t
m+1
n −1(a+bt)p dt.

For brevity, we denote the resulting rational exponent m+1
n −1 by q. Using

this notation we get∫
xm(a+ bxn)p dx =

1

n

∫
tq(a+ bt)p dt.

Thus, it remains for us to consider the following integral containing rational
exponents p and q:∫

tq(a+ bt)p dt.

https://www.youtube.com/watch?v=aSDoNpfUbAs&t=03m45s
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There are three simple cases in which a given integral can be transformed
to an integral of a rational function.

Case 1: q ∈ Z, p = r
s , r ∈ Z, s ∈ N.

This case has already been analyzed previously. To transform the integral
to the integral of a rational function, it suffices to use the variable change
u = (a+ bt)

1
s .

Case 2: p ∈ Z, q = r
s , r ∈ Z, s ∈ N.

In this case, we use the variable change u = t
1
s . Then t = us,

dt = sus−1 du, and we get the integral of a polynomial:∫
tq(a+ bt)p dt =

∫
ur(a+ bus)psus−1 du.

Case 3: p+ q ∈ Z, p = r
s , r ∈ Z, s ∈ N.

We transform the integral as follows:∫
tq(a+ bt)p dt =

∫
tp+q

(a+ bt

t

)p
dt .

We again got the integral considered earlier, since the irrational factor
has a base which is a ratio of linear functions. To transform the integral
to the integral of a rational function, it suffices to use the variable change
u =

(
a+bt
t

) 1
s .

Remark.
In all other cases, the integral of the binomial differential cannot be rep-

resented as the integral of a rational function. This fact was established by
the Russian mathematician P. L.Chebyshev.

Euler’s substitutions

Three types of Euler’s substitutions 2.3B/19:44 (12:18)

Let R(u, v) be a rational function of two variables, a, b, c ∈ R, a 6= 0.
Consider the following integral:∫

R
(
x,
√
ax2 + bx+ c

)
dx. (5)

We exclude from consideration those values of x for which ax2+bx+c < 0.
L. Euler showed that the integral (5) can always be transformed to the in-

tegral of a rational function using one of three variable changes called Euler’s
substitutions.

Case 1: a > 0.
The substitution

√
ax2 + bx+ c =

√
ax+ t is used.

https://www.youtube.com/watch?v=aSDoNpfUbAs&t=19m44s
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Square both sides of the equality:

ax2 + bx+ c = ax2 + 2
√
axt+ t2,

bx+ c = 2
√
axt+ t2.

The last equality contains only the first power of the variable x, so we can
easily express x through the new variable t, resulting in a rational function
R1(t):

x =
t2 − c

b− 2
√
at

= R1(t).

Thus, the initial integral takes the form∫
R
(
x,
√
ax2 + bx+ c

)
dx =

∫
R
(
R1(t),

√
aR1(t) + t

)
R′1(t) dt.

We got the integral of the rational function.
Case 2: c > 0.
The substitution

√
ax2 + bx+ c = xt+

√
c is used.

When squaring both sides of this equality, we obtain

ax2 + bx+ c = x2t2 + 2
√
cxt+ c,

ax2 + bx = x2t2 + 2
√
cxt,

ax+ b = xt2 + 2
√
ct.

The last equality contains only the first power of the variable x, which
allows us to express x through the new variable t, resulting in a rational
function R2(t):

x =
2
√
ct− b

a− t2
= R2(t).

The initial integral will take the form∫
R
(
x,
√
ax2 + bx+ c

)
dx =

∫
R
(
R2(t), tR2(t) +

√
c
)
R′2(t) dt.

We again got the integral of the rational function.
Case 3: the quadratic trinomial ax2 + bx + c has real roots, i. e., it can

be represented as follows:

ax2 + bx+ c = a(x− α)(x− β), α, β ∈ R. (6)

Then the substitution
√
ax2 + bx+ c = (x− α)t is used.

We square both sides of this equality and then apply relation (6) on the
left-hand side:

a(x− α)(x− β) = (x− α)2t2,
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a(x− β) = (x− α)t2.

The last equality contains only the first power of the variable x, which
allows us to express the variable x through the new variable t, resulting in
a rational function R3(t):

x =
aβ − αt2

a− t2
= R3(t).

The initial integral takes the form∫
R
(
x,
√
ax2 + bx+ c

)
dx =

∫
R (R3(t), (R3(t)− α)t)R′3(t) dt.

We again got the integral of the rational function.
Remark.
In each case, we can use one more formula for the corresponding sub-

stitution. For case 1, this is
√
ax2 + bx+ c =

√
ax − t, for case 2, this is√

ax2 + bx+ c = xt−
√
c, for case 3, this is

√
ax2 + bx+ c = (x− β)t. For

some types of quadratic trinomials, we can use substitution corresponding to
different cases (for example, if the inequalities a > 0 and c > 0 are satisfied
simultaneously). The choice of a substitution formula is determined by which
formula leads to a simpler form of the resulting rational function.

On the possibility of applying Euler’s
substitutions to any quadratic trinomial 2.3B/32:02 (08:38)

It turns out that, for any quadratic trinomial ax2 + bx+ c, at least one of
the three cases listed above necessarily takes place, therefore any integral (5)
can be transformed to the integral of a rational function. Moreover, for any
quadratic trinomial, either case 1 or case 3 takes place. Let us prove this
statement.

Recall that we consider the integral (5) on the set of x such that
ax2 + bx + c ≥ 0. In particular, if the entire graph of the parabola
y = ax2 + bx + c is located below the OX axis, then it does not make
sense to analyze the integral (5).

Therefore, only the following types for the location of the parabola
y = ax2 + bx+ c relative to the OX axis are of interest:

1) the entire parabola (or the entire parabola, except for its vertex) is
located above the OX axis (see the left-hand part of Fig. 3);

2) the parabola intersects the OX axis at two points (see the right-hand
part of Fig. 3).

https://www.youtube.com/watch?v=aSDoNpfUbAs&t=32m02s
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Fig. 3. Types of parabola location

For type 2 of parabola location, case 3 of Euler’s substitutions takes place:
the quadratic trinomial has two real roots.

It remains for us to show that, for type 1 of parabola location, case 1 of
Euler’s substitutions necessarily takes place, i. e., a > 0. So, suppose that
the following relation holds for all x ∈ R:

ax2 + bx+ c ≥ 0. (7)

We transform the left-hand side of inequality (7) by complete the square:

a

(
x2 + 2

b

2a
x+

( b
2a

)2

+
c

a
−
( b

2a

)2
)

=

= a

((
x+

b

2a

)2

+
( c
a
− b2

4a2

))
.

Now let us transform the term c
a −

b2

4a2 :

c

a
− b2

4a2
=

4ac− b2

4a2
.

The denominator of the fraction obtained is greater than zero. The nu-
merator is non-negative, because it is (−D), where D = b2 − 4ac is the
discriminant that cannot be positive, since the parabola crosses the OX axis
at no more than one point. Therefore, the term c

a −
b2

4a2 is also non-negative
and can be denoted by ∆2.

Thus, inequality (7) can be rewritten in the form

a

((
x+

b

2a

)2

+ ∆2

)
≥ 0.

Since the expression in parentheses is non-negative, the coefficient a must
also be non-negative. Since a 6= 0 by condition, we finally obtain that a > 0
and case 1 holds.
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Remark.
The required result can be obtained more easily without transforming the

original quadratic trinomial. It is enough to note that the term ax2 grows
faster than the term bx as x→∞; this means that the sign of the expression
ax2 + bx+ c for sufficiently large x is determined by the sign of the term ax2.
Therefore, if the inequality a < 0 holds, then estimate (7) could not be valid
for all x ∈ R.
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Definite integral

The problem of finding the area
of a curvilinear trapezoid 2.4A/00:00 (07:00)

The basic concepts related to a definite integral can be considered by
the example of the geometric problem of finding the area of a curvilinear
trapezoid.

Let a function f(x) be defined on the segment (closed interval) [a, b] and
taking non-negative values on this segment: f(x) ≥ 0, x ∈ [a, b]. It is required
to find the area of the figure G bounded by the OX axis, the vertical lines
x = a and x = b, and the graph of the function y = f(x). Such a figure is
called a curvilinear trapezoid with the base [a, b] (Fig. 4).

Fig. 4. Curvilinear trapezoid

How to find the approximate area of a curvilinear trapezoid?
Let us divide the segment [a, b] into smaller segments (not necessarily of

equal length) with endpoints a = x0 < x1 < x2 < · · · < xn−1 < xn = b.
For brevity, we denote the obtained segments as follows: ∆i = [xi−1, xi],
i = 1, . . . , n. We also introduce the notation for the length of the segment ∆i:
∆xi = xi − xi−1, i = 1, . . . , n.

Choose a point ξi on each of the segments ∆i: ξi ∈ ∆i, i = 1, . . . , n.
Provided that the function f has sufficiently “good” properties, we can

assume that the area of the curvilinear trapezoid with the base ∆i will be

https://www.youtube.com/watch?v=TRBKy1OknMM&t=00m01s
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close to the area of the rectangle with the same base ∆i and a height equal
to the value of the function f at the point ξi. The area of this rectangle is
f(ξi)∆xi.

Summing up the areas of all such rectangles, we get the approximate value
of the area of the initial curvilinear trapezoid:

∑n
i=1 f(ξi)∆xi (see the left-

hand part of Fig. 5).

Fig. 5. Curvilinear trapezoid approximation by a set of rectangles

As the length of segments ∆i decreases, the resulting union of the rectan-
gles will be even closer to the initial curvilinear trapezoid (see the right-hand
part of Fig. 5).

If the expression
∑n

i=1 f(ξi)∆xi has a limit as the length of segments ∆i

unlimitedly decreases (and, accordingly, as the number of points xi unlim-
itedly increases), then it is natural to consider this limit as the area of the
initial curvilinear trapezoid.

It is this limit that is called the definite integral of the function f over the
segment [a, b].

Definition of a definite integral 2.4A/07:00 (14:01)

Definition.
Let the function f be defined on the segment [a, b]. The partition T of

the segment [a, b] is the ordered set of points xi, i = 0, . . . , n, which has the
following property:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

For the segments [xi−1, xi] with endpoints at adjacent points of the parti-
tion T , as well as for their lengths xi−xi−1, we will use the notation introduced
above:

∆i
def
= [xi−1, xi], ∆xi

def
= xi − xi−1, i = 1, . . . , n.

https://www.youtube.com/watch?v=TRBKy1OknMM&t=07m01s
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Obviously, ∆xi > 0.
The mesh of the partition T (notation l(T )) is the maximum of the lengths

of the segments ∆i:

l(T )
def
= max

i=1,...,n
∆xi.

A sample ξ constructed on the basis of a partition T is an arbitrary set of
points ξi ∈ ∆i, i = 1, . . . , n.

The integral sum σT (f, ξ) of the function f by the partition T and the
sample ξ is the following expression:

σT (f, ξ)
def
=

n∑
i=1

f(ξi)∆xi.

A function f is called Riemann integrable on the segment [a, b] if there
exists a number I such that

∀ ε > 0 ∃ δ > 0 ∀T, l(T ) < δ, ∀ ξ |σT (f, ξ)− I| < ε. (1)

Briefly, condition (1) can be written using the limit notation:

I = lim
l(T )→0,∀ ξ

σT (f, ξ).

The number I is called the Riemann integral, or the definite integral, of
the function f over the segment [a, b], and it is denoted as follows:

∫ b
a f(x) dx.

So, the Riemann integral of the function f is the limit of the integral sums
σT (f, ξ) as l(T )→ 0, ∀ ξ, if this limit exists:∫ b

a

f(x)dx
def
= lim

l(T )→0,∀ ξ
σT (f, ξ).

In what follows, Riemann integrability and the Riemann integral will be
called simply integrability and integral, respectively.

Remarks.
1. Although the limit of integral sums used in the definition of the inte-

gral I differs from the usual limit of a function at a point, it is easy to prove,
using condition (1), that this limit satisfies both the theorem on arithmetic
properties of the limit and the theorem on passing to the limit in the inequal-
ities. We will use these theorems in the next chapter to prove the properties
of a definite integral.

2. One can extend the class of integrable functions by giving other def-
initions of integrability. Among such types of integrability, one of the most
important is Lebesgue integrability. Lebesgue integrability is not considered
in this book.
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A necessary condition for integrability 2.4A/21:01 (11:50)

Theorem (a necessary condition for integrability).
If the function is integrable on a segment, then it is bounded on this

segment.
Proof.
Let the function f be integrable on the segment [a, b]. This means that

there exists a number I for which condition (1) is satisfied. In this condition,
we choose the value of ε, setting it equal to 1. Then there exists a value δ > 0
such that the following estimate holds for any partition T of the segment [a, b]
satisfying the additional condition l(T ) < δ and any sample ξ constructed on
the basis the partition T :

|σT (f, ξ)− I| < 1. (2)

We select some partition T satisfying the condition l(T ) < δ.
Let us prove the statement of the theorem by contradiction: suppose that

the function f is not bounded on [a, b]. This means that it is unbounded on
at least one segment ∆i associated with the previously selected partition T .
For definiteness, we assume that such a segment is the segment ∆1.

From the integral sum σT (f, ξ), we extract the term associated with this
segment:

σT (f, ξ) = f(ξ1)∆x1 +
n∑
i=2

f(ξi)∆xi. (3)

Let us fix all the elements of the sample ξ except for the first one, i. e., let
us fix the values ξ2, ξ3, . . . , ξn. In this case, the second term on the right-hand
side of equality (3) will be uniquely determined. Denote the value of this term
by A:

A =
n∑
i=2

f(ξi)∆xi.

Then inequality (2) can be transformed as follows:

I − 1 < σT (f, ξ) < I + 1,

I − 1 < f(ξ1)∆x1 + A < I + 1.

In the resulting relation, we move A from the middle part to the left-hand
and right-hand part, after which we divide all parts of the double inequality
by ∆x1 (this can be done since ∆x1 > 0):

I − 1− A
∆x1

< f(ξ1) <
I + 1− A

∆x1
. (4)

https://www.youtube.com/watch?v=TRBKy1OknMM&t=21m01s
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In this double inequality, all values are fixed except for the point ξ1, which
can vary within the segment ∆1. Thus, we have obtained that the double
inequality (4) holds for all ξ1 ∈ ∆1, which implies that the function f is
bounded on the segment ∆1. But this contradicts our assumption that the
function f is unbounded on this segment. The obtained contradiction proves
the theorem. �

Remarks.
1. Taking into account this theorem, we will consider only bounded func-

tions hereinafter, not always noting this condition.
2. The converse of the proved theorem is false: if the function is bounded,

then this does not follow that it is integrable. We give a corresponding ex-
ample at the end of this chapter.

Darboux sums and Darboux integrals

Definition of Darboux sums 2.4A/32:51 (05:52)

Definition.
Let the function f be defined and bounded on the segment [a, b].
We choose some partition T of this segment and introduce the following

notation:

Mi = sup
x∈∆i

f(x), mi = inf
x∈∆i

f(x), i = 1, . . . , n.

Since the function f is bounded on [a, b], the values Mi and mi exist for
all i = 1, . . . , n.

The upper Darboux sum S+
T (f) and the lower Darboux sum S−T (f) are

defined as follows:

S+
T (f)

def
=

n∑
i=1

Mi∆xi, S−T (f)
def
=

n∑
i=1

mi∆xi.

If it is clear which function f is associated with Darboux sums, then the
short notation S+

T and S−T can be used for them.
Remark.
The main difference between Darboux sums and integral sums is that the

notion of sample ξ is not used in the definition of Darboux sums: Darboux
sums depend only on the function f itself and the partition T of the initial
segment.

https://www.youtube.com/watch?v=TRBKy1OknMM&t=32m51s
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The simplest properties
of Darboux sums 2.4A/38:43 (01:33), 2.4B/00:00 (12:05)

In the formulations of all properties, it is assumed that the function f is
defined and bounded on the segment [a, b].

1. Let T be some partition of the segment [a, b], ξ be an arbitrary sample
associated with this partition. Then the following double inequality holds:

S−T (f) ≤ σT (f, ξ) ≤ S+
T (f). (5)

Proof.
From the definition of the supremum Mi and the infimum mi, it follows

∀ ξi mi ≤ f(ξi) ≤Mi. (6)

Multiply all parts of the double inequality (6) by ∆xi > 0 and take a sum
of all inequalities for i = 1, . . . , n:

n∑
i=1

mi∆xi ≤
n∑
i=1

f(ξi)∆xi ≤
n∑
i=1

Mi∆xi.

Given the definitions of the integral sum and Darboux sums, we ob-
tain (5). �

2. For a fixed partition T of the segment [a, b], the following relations
hold:

S+
T (f) = sup

ξ
σT (f, ξ), S−T (f) = inf

ξ
σT (f, ξ).

Proof.
Let us prove this property for the upper Darboux sum. Given the definition

of supremum, it is necessary to prove two statements:
1) ∀ ξ σT (f, ξ) ≤ S+

T (f),
2) ∀ ε > 0 ∃ ξ′ σT (f, ξ′) > S+

T (f)− ε.
Statement 1 has already been proved (see property 1). Let us prove state-

ment 2. From the definition of the supremum Mi, it follows

∀ ε > 0 ∃ ξ′i ∈ ∆i f(ξ′i) > Mi −
ε

b− a
. (7)

Multiply both sides of inequality (7) by ∆xi > 0 and take a sum of all
inequalities for i = 1, . . . , n:

n∑
i=1

f(ξ′i)∆xi >
n∑
i=1

Mi∆xi −
n∑
i=1

ε

b− a
∆xi.

https://www.youtube.com/watch?v=TRBKy1OknMM&t=38m43s
https://www.youtube.com/watch?v=a4gf4Temgug&t=00m01s
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Given the definitions of the integral sum and the upper Darboux sum, as
well as the fact that

∑n
i=1

ε
b−a∆xi = ε

b−a
∑n

i=1 ∆xi = ε
b−a(b − a) = ε, we

obtain statement 2.
The property for the lower Darboux sum is proved similarly, using the

definition of the infimum. �

Darboux sum property related
to refinement of a partition 2.4B/12:05 (15:11)

Before stating the next property, we introduce the concept of refinement
of a partition.

Definition.
The partition T2 is called the refinement of the partition T1 if any element

of the partition T1 belongs to the partition T2, i. e., T1 ⊂ T2. In other words,
the refinement T2 of the partition T1 contains all points of the partition T1

and possibly some other points of the original segment.
3. If the partition T2 is a refinement of the partition T1, then the following

chain of inequalities holds:

S−T1 ≤ S−T2 ≤ S+
T2
≤ S+

T1
. (8)

Proof.
The middle inequality in (8) immediately follows from property 1. Let us

prove the right-hand inequality: S+
T2
≤ S+

T1
.

It is enough for us to consider the case when the refinement T2 of the
partition T1 differs from T1 by only one additional point. The case when there
are several additional points can be reduced to the case with one point if we
add these points to the partition sequentiallyand apply the proved estimate
to the resulting refinements.

So, we assume that the refinement T2 contains one additional point x′:
T1 = {xi, i = 0, . . . , n} , T2 = T1∪{x′}. For definiteness, we also assume that
x′ ∈ ∆1, i. e., x0 < x′ < x1. We also introduce the following notation:

∆′1 = [x0, x
′], ∆x′1 = x′ − x0, M ′

1 = sup
x∈∆′1

f(x),

∆′′1 = [x′, x1], ∆x′′1 = x1 − x′, M ′′
1 = sup

x∈∆′′1

f(x).

We need to prove that

S+
T1
− S+

T2
≥ 0. (9)

https://www.youtube.com/watch?v=a4gf4Temgug&t=12m05s
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The indicated Darboux sums contain the coinciding terms Mi∆xi for
i = 2, . . . , n. After reducing these coinciding terms, the difference S+

T1
− S+

T2
takes the following form:

S+
T1
− S+

T2
= M1∆x1 − (M ′

1∆x
′
1 +M ′′

1 ∆x′′1). (10)
Since supA ≤ supB for A ⊂ B and in our case ∆′1 ⊂ ∆1 and ∆′′1 ⊂ ∆1,

we get
M ′

1 ≤M1, M ′′
1 ≤M1.

Therefore, the right-hand side of equality (10) can be estimated as follows:
M1∆x1 − (M ′

1∆x
′
1 +M ′′

1 ∆x′′1) ≥M1∆x1 − (M1∆x
′
1 +M1∆x

′′
1).

The right-hand side of the last inequality is 0, since ∆x1 = ∆x′1+∆x′′1. We
proved the validity of inequality (9) and thereby the validity of the right-hand
inequality in (8).

The left-hand inequality in (8) is proved similarly, by taking into account
the following property of the infimum: inf A ≥ inf B for A ⊂ B. �

Darboux sums associated
with different partitions 2.4B/27:16 (05:14)

4. If T ′ and T ′′ are some partitions of the segment [a, b], then the estimate
holds:

S−T ′ ≤ S+
T ′′. (11)

Thus, any lower Darboux sum of the function f is less than or equal to
any of its upper Darboux sums.

Proof.
Consider the union of two given partitions: T = T ′ ∪ T ′′. The resulting

partition T is a refinement of both the partition T ′ and the partition T ′′.
Therefore, applying property 3, we obtain the following chain of inequalities:

S−T ′ ≤ S−T ≤ S+
T ≤ S+

T ′′. (12)
In this case, we applied the left-hand inequality from (8) for T ′ and its

refinement T , the middle inequality from (8) for T , and the right-hand in-
equality from (8) for T ′′ and its refinement T .

Consequently, the boundary terms of the obtained chain of inequalities (12)
satisfy inequality (11). �

Darboux integrals 2.4B/32:30 (07:05)

5. There exist values I−(f) = supT S
−
T (f), I+(f) = infT S

+
T (f) and the

following estimate holds for them:

https://www.youtube.com/watch?v=a4gf4Temgug&t=27m16s
https://www.youtube.com/watch?v=a4gf4Temgug&t=32m30s
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I−(f) ≤ I+(f). (13)

Proof.
Consider the previously proved inequality (11), fix the partition T ′′ in it,

and consider the arbitrary partition T of the segment [a, b] as the partition T ′:

S−T (f) ≤ S+
T ′′(f).

This inequality means that the set of all lower Darboux sums over arbitrary
partitions T is bounded from above by S+

T ′′(f). Therefore, the set of all lower
Darboux sums for the function f is bounded from above, which means that
it has the least upper bound I−(f).

Since the value S+
T ′′(f) is the upper bound for the set of all lower Darboux

sums and the value I−(f) is the least upper bound for these sums, we obtain
the following inequality:

I−(f) ≤ S+
T ′′(f).

In the last inequality, we can assume that T ′′ is an arbitrary partition
of the segment [a, b]. Therefore, the set of all upper Darboux sums of the
function f over an arbitrary partition T ′′ is bounded from below by the value
I−(f). So, this set has the greatest lower bound I+(f).

The estimate (13) follows from the fact that the quantity I−(f) is the
lower bound for the set of all upper Darboux sums and the value I+(f) is the
greatest lower bound for these sums.

Definition.
The values I−(f) and I+(f) are called the lower and upper Darboux inte-

grals for the function f on the segment [a, b], respectively. Thus, by virtue of
property 5, any bounded function has the lower and upper Darboux integrals
and inequality (13) holds for them.

Integrability criterion in terms of Darboux sums

Formulation of the integrability criterion 2.5A/00:00 (09:13)

Theorem (integrability criterion in terms of Darboux
sums).

The function f is integrable on the segment [a, b] if and only if two condi-
tions are satisfied:

1) f is bounded on [a, b],
2) ∀ ε > 0 ∃ δ > 0 ∀T, l(T ) < δ, S+

T (f)− S−T (f) < ε.

https://www.youtube.com/watch?v=oLRSzkV4FLo&t=00m01s
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Remark.
Condition 2 of the theorem can be written as follows:

lim
l(T )→0

(
S+
T (f)− S−T (f)

)
= 0.

Proof of necessity 2.5A/09:13 (09:43)

Given: the function f is integrable on [a, b]. Prove: conditions 1 and 2 are
satisfied.

The validity of condition 1 follows from the necessary condition for inte-
grability. It remains for us to prove the validity of condition 2.

Since the function f is integrable, the following limit exists:

lim
l(T )→0,∀ ξ

σT (f, ξ) = I.

We choose some value of ε > 0. Due to the integrability of the function f ,
we obtain

∃ δ > 0 ∀T, l(T ) < δ, ∀ ξ |σT (f, ξ)− I| < ε

3
. (14)

Let us show that the choice of the same value δ ensures the fulfillment of
condition 2 of the theorem.

Transform estimate (14) as follows:

I − ε

3
< σT (f, ξ) < I +

ε

3
. (15)

This double estimate is valid for any sample ξ. Thus, we have lower and
upper bounds for the set of integral sums σT (f, ξ) for a fixed partition T and
any sample ξ.

By property 2 of Darboux sums, we have

S+
T (f) = sup

ξ
σT (f, ξ), S−T (f) = inf

ξ
σT (f, ξ).

Since the expressions I − ε
3 and I + ε

3 are, by virtue of (15), the lower
and upper bounds of the integral sums, respectively, and S−T (f) and S+

T (f)
are, by virtue of property 2 of Darboux sums, the greatest lower bound and
the least upper bound of the integral sums, we obtain the following chain of
inequalities:

I − ε

3
≤ S−T (f) ≤ S+

T (f) ≤ I +
ε

3
. (16)

Since the distance between the internal terms of the triple inequality (16)
cannot exceed the distance between its external terms, the following estimate
follows from this triple inequality:

https://www.youtube.com/watch?v=oLRSzkV4FLo&t=09m13s
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S+
T (f)− S−T (f) ≤

(
I +

ε

3

)
−
(
I − ε

3

)
. (17)

Simplify the right-hand side:(
I +

ε

3

)
−
(
I − ε

3

)
=

2ε

3
< ε.

Thus, estimate (17) can be rewritten in the form

S+
T (f)− S−T (f) < ε.

We obtained an estimate from condition 2 of the theorem. The necessity
is proven.

Proof of sufficiency 2.5A/18:56 (14:25)

Given: conditions 1 and 2 are satisfied. Prove: the function f is integrable
on [a, b].

Condition 1 (i. e., the boundedness of the function f) is required only to
guarantee the existence of lower and upper Darboux sums for the function f .

By condition 2, for any ε > 0, there exists a value δ > 0 such that, for all
partitions T with mesh l(T ) < δ, the estimate holds:

S+
T (f)− S−T (f) < ε. (18)

On the other hand, for any partition T , by virtue of property 5 of the
Darboux sums, the following triple estimate holds:

S−T (f) ≤ I−(f) ≤ I+(f) ≤ S+
T (f).

This estimate implies the inequality

I+(f)− I−(f) ≤ S+
T (f)− S−T (f).

Given (18), we obtain

I+(f)− I−(f) < ε.

The left-hand side of the resulting inequality does not depend on ε, there-
fore, this inequality can be true for arbitrary ε > 0 only if I+(f)−I−(f) = 0,
i. e., I+(f) = I−(f).

Thus, we have proved that, under condition 2 of the theorem, the lower
and upper Darboux integrals coincide. We denote their value by I and show
that the value of I is equal to the integral of the function f on the segment
[a, b], i. e., that the following condition is true:

∀ ε > 0 ∃ δ > 0 ∀T, l(T ) < δ, ∀ ξ |σT (f, ξ)− I| < ε. (19)

https://www.youtube.com/watch?v=oLRSzkV4FLo&t=18m56s
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We choose the value ε > 0 and select the value δ > 0 from it using
condition 2 of the theorem. Then, for any partition T satisfying the condition
l(T ) < δ, estimate (18) holds.

Using property 1 of the Darboux sums, we obtain

∀ ξ S−T (f) ≤ σT (f, ξ) ≤ S+
T (f).

In addition, by virtue of property 5 of the Darboux sums, we have

S−T (f) ≤ I ≤ S+
T (f).

Thus, the values of σT (f, ξ) and I are between the values of S−T (f) and
S+
T (f). Therefore, the following estimate is true:

∀ ξ |σT (f, ξ)− I| ≤ S+
T (f)− S−T (f).

Given that S+
T (f)− S−T (f) < ε, we finally get

∀ ξ |σT (f, ξ)− I| < ε.

We proved that condition (19) is satisfied for the function f ; therefore, the
function f is integrable. �

Corollary of the criterion
and an example of a non-integrable function 2.5A/33:21 (08:48)

Corollary.
If the function f is integrable on the segment [a, b], then its upper and lower

Darboux integrals coincide and, moreover, they are equal to the integral of
the function f over the segment [a, b].

Proof.
If the function is integrable, then condition 2 of the theorem is fulfilled

for it, which implies both the coincidence of the upper and lower Darboux
integrals and their equality to the integral of this function (see the proof of
sufficiency). �

Remark.
It follows from the corollary that if the upper and lower Darboux integrals

are different, then the function is not integrable.
An example of a bounded function that is not integrable.
We define the following function, called the Dirichlet function:

D(x) =

{
1, x ∈ Q,
0, x ∈ R \Q.

Thus, the Dirichlet function is equal to 1 at rational points and is equal
to 0 at irrational points.

https://www.youtube.com/watch?v=oLRSzkV4FLo&t=33m21s
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This function is bounded. However, it is not integrable on any segment
[a, b] of nonzero length. We show this for the segment [0, 1].

It is easy to prove that any segment of nonzero length contains both ra-
tional and irrational numbers. This means that, for any partition T of the
segment [0, 1], the following relations hold:

mi = inf
x∈∆i

D(x) = 0, Mi = sup
x∈∆i

D(x) = 1.

Then, for Darboux sums of the Dirichlet function over any partition T of
the segment [0, 1], we have

S+
T (D) =

n∑
i=1

Mi∆xi =
n∑
i=1

1 ·∆xi =
n∑
i=1

∆xi = 1,

S−T (f) =
n∑
i=1

mi∆xi =
n∑
i=1

0 ·∆xi = 0.

Similar relations hold for Darboux integrals:

I+(D) = inf
T
S+
T (D) = inf

T
1 = 1,

I−(D) = sup
T
S−T (D) = sup

T
0 = 0.

We proved that I−(D) 6= I+(D), therefore, the Dirichlet function is not
integrable on the interval [0, 1].



6. Classes of integrable functions.
Properties of a definite integral

Classes of integrable functions

The simplest example of an integrable
function: a constant function 2.5B/00:00 (02:05)

Consider the constant function f(x) = c and show that it is integrable on
any segment [a, b].

To do this, we calculate the integral sum for the function f on this segment:

σT (ξ) =
n∑
i=1

f(ξi)∆xi = c
n∑
i=1

∆xi = c(b− a).

Thus, for any partition T and any sample ξ, the integral sum takes the
same value, therefore, when passing to the limit as l(T )→ 0, ∀ ξ, this value
will not change.

We have proved that∫ b

a

c dx = c(b− a).

Oscillation of a function and its use
in integrability criterion 2.5B/02:05 (04:12)

We noted earlier that the condition for integrability criterion in terms of
Darboux sums can be written as follows:

lim
l(T )→0

(S+
T − S

−
T ) = 0.

Using the definition of Darboux sums, we can transform an expression
under the limit sign:

S+
T − S

−
T =

n∑
i=1

Mi∆xi −
n∑
i=1

mi∆xi =
n∑
i=1

(Mi −mi)∆xi.

Under the sum sign, the expression Mi −mi arises, which determines the
maximum difference of the values of the function f on the segment ∆i. This

https://www.youtube.com/watch?v=OXUliFTV26s&t=00m01s
https://www.youtube.com/watch?v=OXUliFTV26s&t=02m05s
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characteristic is called the oscillation of the function f on the segment ∆i

and is denoted by ωi(f):

ωi(f)
def
= Mi −mi.

Thus, the condition from the criterion of integrability of the function can
be represented as follows:

lim
l(T )→0

n∑
i=1

ωi(f)∆xi = 0.

Remark.
It can be proved that the following formula holds for the oscillation of

a function:

ωi(f) = sup
x′,x′′∈∆i

|f(x′)− f(x′′)|. (1)

We will use this formula to prove the integrability of the product of func-
tions.

Integrability of continuous functions 2.5B/06:17 (13:33)

Theorem (integrability theorem for continuous functions).
If the function is continuous on a segment, then it is integrable on this

segment.
Remark.
Continuity is not a necessary condition for integrability. An integrable

function may have points of discontinuity.
Proof.
Let the function f be continuous on [a, b]. Let us prove that the conditions

of the integrability criterion are satisfied for it.
Condition 1 of the criterion (boundedness of a function on [a, b]) follows

from the first Weierstrass theorem, which states that any function continuous
on a segment is bounded on this segment.

To prove condition 2 of the criterion, we use Cantor’s theorem, which
states that a function continuous on an segment is uniformly continuous on
this segment.

Let us write the definition of uniform continuity for the function f on the
segment [a, b] in the following form:

∀ ε > 0 ∃ δ > 0 ∀x′, x′′ ∈ [a, b], |x′ − x′′| < δ,

|f(x′)− f(x′′)| < ε

b− a
. (2)

https://www.youtube.com/watch?v=OXUliFTV26s&t=06m17s
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We choose the value ε > 0, select the value δ > 0 from (2) and show that
condition 2 of the integrability criterion will be satisfied for the given value δ,
i. e., that, for all partitions T such that l(T ) < δ, the estimate S+

T − S
−
T < ε

holds.
So, let us choose some partition T satisfying the condition l(T ) < δ.
Let x′, x′′ ∈ ∆i, where ∆i is some segment defined by the partition T ,

i = 1, . . . , n. Obviously, |x′ − x′′| ≤ ∆xi. Considering that the mesh of
the partition l(T ) is the maximum length of the segments ∆i and, by the
condition, l(T ) < δ, we obtain the following chain of inequalities:

|x′ − x′′| ≤ ∆xi ≤ l(T ) < δ.
Therefore, if x′, x′′ ∈ ∆i, then the inequality |x′ − x′′| < δ holds

for these points. Then, by the condition of uniform continuity (2),
|f(x′)− f(x′′)| < ε

b−a .
Since the points x′ and x′′ can be arbitrarily selected on the segment ∆i, we

choose them so that the maximum value of the function f on the segment ∆i

is reached at the point x′, and the minimum value of the function f on this
segment is reached at the point x′′. Such points exist by virtue of the second
Weierstrass theorem, which states that a function continuous on the segment
takes its maximum and minimum value:

f(x′) = max
x∈∆i

f(x) = Mi, f(x′′) = min
x∈∆i

f(x) = mi.

Since the estimate |x′−x′′| < δ is also valid for these points, which means
that the estimate |f(x′)− f(x′′)| < ε

b−a holds, we obtain

|Mi −mi| <
ε

b− a
.

In this estimate it is not necessary to use the absolute value sign, since the
difference Mi −mi is always non-negative.

So, we have proved that if for a given ε > 0, we choose the value δ > 0
from condition (2), then, for any partition T for which l(T ) < δ, the following
relation holds:

Mi −mi <
ε

b− a
, i = 1, . . . , n.

Then, for the difference S+
T − S

−
T , we get

S+
T − S

−
T =

n∑
i=1

Mi∆xi −
n∑
i=1

mi∆xi =
n∑
i=1

(Mi −mi)∆xi <

<

n∑
i=1

ε

b− a
∆xi =

ε

b− a

n∑
i=1

∆xi =
ε

b− a
(b− a).
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We got the estimate S+
T − S

−
T < ε. Thus, condition 2 of the integrability

criterion is also satisfied, and, by virtue of this criterion, the function f is
integrable on the segment [a, b]. �

Integrability of monotone functions 2.5B/19:50 (10:18)

Theorem (integrability theorem for monotone functions).
If the function is monotone on the segment, then it is integrable on this

segment.
Remark.
This fact does not follow from the previous theorem, since a monotone

function can have a finite or even infinite number of discontinuity points (of
the first kind).

Proof.
Let the function f be monotone on the segment [a, b]. For definiteness, we

assume that f is non-decreasing on [a, b]. Let us prove its integrability using
the integrability criterion in terms of Darboux sums.

First, we prove the validity of condition 1 of the criterion, i. e., let us prove
the boundedness of the function f .

Since the function f is non-decreasing, we have

∀x ∈ [a, b] f(a) ≤ f(x) ≤ f(b).

The resulting double inequality means that the function f is bounded
on [a, b].

Now we prove the validity of condition 2 of the criterion. This condition
can be represented as

lim
l(T )→0

(S+
T − S

−
T ) = 0.

Choose some partition T . Since the function f is non-decreasing, we have
for any segment ∆i, i = 1, . . . , n,

mi = min
x∈∆i

f(x) = f(xi−1), Mi = max
x∈∆i

f(x) = f(xi).

Then the difference S+
T − S

−
T can be transformed as follows:

S+
T − S

−
T =

n∑
i=1

(Mi −mi)∆xi =
n∑
i=1

(
f(xi)− f(xi−1)

)
∆xi.

By the definition of the mesh of the partition, we get ∆xi ≤ l(T ). Since
all factors are non-negative, the following estimate holds:

https://www.youtube.com/watch?v=OXUliFTV26s&t=19m50s
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n∑
i=1

(
f(xi)− f(xi−1)

)
∆xi ≤

n∑
i=1

(
f(xi)− f(xi−1)

)
l(T ) =

= l(T )
n∑
i=1

(
f(xi)− f(xi−1)

)
.

We write out the terms of the last sum in the reverse order and reduce
similar terms:

n∑
i=1

(
f(xi)− f(xi−1)

)
=
(
f(xn)− f(xn−1)

)
+
(
f(xn−1)− f(xn−2)

)
+

+
(
f(xn−2)−f(xn−3)

)
+ · · ·+

(
f(x2)−f(x1)

)
+
(
f(x1)−f(x0)

)
=

= f(xn)− f(x0).

Thus, we obtained the following double inequality (in which we took into
account that x0 = a, xn = b):

0 ≤ S+
T − S

−
T ≤

(
f(b)− f(a)

)
l(T ).

If we pass to the limit in the resulting double inequality as l(T )→ 0, then
the left-hand and right-hand sides of the inequality will be 0; therefore, by
virtue of the theorem on passing to the limit in inequalities, the difference
S+
T − S

−
T will also be 0.

So, we have proved that condition 2 of the integrability criterion also holds.
By virtue of this criterion, the function f is integrable on the segment [a, b]. �

Integral properties associated with integrands

Linearity of a definite integral 2.5B/30:08 (09:46)

Theorem 1 (on linearity of a definite integral with respect
to the integrand).

Let the functions f and g be integrable on the segment [a, b], α, β ∈ R.
Then the function αf+βg is also integrable on [a, b] and the following equality
holds: ∫ b

a

(
αf(x) + βg(x)

)
dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx. (3)

Proof.
Let us prove this fact using the definition of a definite integral. We write

down the integral sum for the function αf + βg and transform it:

https://www.youtube.com/watch?v=OXUliFTV26s&t=30m08s
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σT (αf + βg, ξ) =
n∑
i=1

(
αf(ξi) + βg(ξi)

)
∆xi =

= α
n∑
i=1

f(ξi)∆xi + β
n∑
i=1

g(ξi)∆xi = ασT (f, ξ) + βσT (g, ξ).

We have obtained the following relation, which is valid for any partition T
and any sample ξ:

σT (αf + βg, ξ) = ασT (f, ξ) + βσT (g, ξ). (4)

Since, by condition, the functions f and g are integrable on [a, b], the limits
liml(T )→0,∀ ξ σT (f, ξ) and liml(T )→0,∀ ξ σT (g, ξ) exist and are equal to

∫ b
a f(x) dx

and
∫ b
a g(x) dx, respectively.

Then the limit on the right-hand side of equality (4), as l(T ) → 0, ∀ ξ,
exists and equals α

∫ b
a f(x) dx + β

∫ b
a g(x) dx. Therefore, for the left-hand

side of equality (4), there also exists a limit with the same value. Thus,
we simultaneously proved the integrability of the function αf + βg and the
validity of formula (3). �

Integrability of the product 2.6A/00:00 (16:44)

Theorem 2 (on integrability of the product of integrable
functions).

Let the functions f and g be integrable on the segment [a, b]. Then the
function fg is also integrable on [a, b].

Remark.
In this case, we can only establish the fact of integrability, since there is

no formula expressing the integral of the product of functions in terms of the
integrals of the factors.

Proof.
Let us use the integrability criterion in terms of the oscillation of a function,

which can be formulated as follows: the function f is integrable if and only
if it is bounded and

∑n
i=1 ωi(f)∆xi → 0 as l(T )→ 0. To find the oscillation

of the function, we apply the formula (1).
First, we note that if the functions f and g are integrable, then they are

bounded on [a, b] due to the necessary integrability condition:

∃C > 0 ∀x ∈ [a, b] |f(x)| ≤ C, |g(x)| ≤ C. (5)

Therefore, the product fg is also bounded.

https://www.youtube.com/watch?v=VkS-AcA9njQ&t=00m01s
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Taking into account (5), we transform the absolute value of the differ-
ence f(x′)g(x′)− f(x′′)g(x′′) in such a way that it allows us to estimate the
oscillation of the product fg through the oscillations of the factors f and g:

|f(x′)g(x′)− f(x′′)g(x′′)| =

= |f(x′)g(x′)− f(x′′)g(x′) + f(x′′)g(x′)− f(x′′)g(x′′)| ≤

≤ |g(x′)||f(x′)− f(x′′)|+ |f(x′′)||g(x′)− g(x′′)| ≤

≤ C
(
|f(x′)− f(x′′)|+ |g(x′)− g(x′′)|

)
. (6)

We assume that x′, x′′ ∈ ∆i, i = 1, . . . , n. Then, by virtue of (1), we
obtain

|f(x′)− f(x′′)| ≤ sup
x′,x′′∈∆i

|f(x′)− f(x′′)| = ωi(f).

Similarly,

|g(x′)− g(x′′)| ≤ ωi(g).

Given the estimates obtained, relation (6) can be written in the form

∀x′, x′′ ∈ ∆i |f(x′)g(x′)− f(x′′)g(x′′)| ≤ C
(
ωi(f) + ωi(g)

)
.

We have obtained an upper bound for the set of differences of the form
|f(x′)g(x′) − f(x′′)g(x′′)| when x′, x′′ ∈ ∆i. Therefore, this set is bounded
from above and we have the following estimate for its least upper bound:

sup
x′,x′′∈∆i

|f(x′)g(x′)− f(x′′)g(x′′)| ≤ C
(
ωi(f) + ωi(g)

)
.

The expression on the left-hand side of the last inequality is, by virtue
of (1), an oscillation of the function fg. Thus, the resulting inequality takes
the form

ωi(fg) ≤ C
(
ωi(f) + ωi(g)

)
.

So, we have estimated the oscillation of the product fg through the oscilla-
tions of the factors. It remains to multiply both sides by ∆xi and summarize
these inequalities by i = 1, . . . , n:

n∑
i=1

ωi(fg)∆xi ≤ C
( n∑
i=1

ωi(f)∆xi +
n∑
i=1

ωi(g)∆xi

)
.

Since, by condition, the functions f and g are integrable on [a, b], we
obtain, by the necessary condition of the integrability criterion in terms of
the oscillation of the function, that each term on the right-hand side of the
inequality approaches 0 as l(T )→ 0.
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Consequently, the quantity indicated on the left side of the inequality also
approaches 0 by virtue of the theorem on passing to the limit in inequalities.
Therefore, by virtue of the sufficient condition for the integrability criterion,
the function fg is integrable on [a, b]. �

Properties associated with integration segments

Integrability on a nested segment 2.6A/16:44 (07:03)

Theorem 3 (on integrability on a nested segment).
If the function f is integrable on the segment [a, b], then it is integrable

on any segment [c, d] ⊂ [a, b].
Proof.
It is enough for us to prove, by virtue of the integrability criterion in terms

of the oscillation of the function, that∑
T

ωi(f)∆xi → 0, l(T )→ 0. (7)

Here, T denotes the partition of the segment [c, d]. To make the notation
more clear, we used the partition T , according to which the segments ∆i are
constructed, as the summation parameter.

For any partition T , we can add to it new points in such a way as to
obtain a partition of the original segment [a, b] as a result. We will denote
the resulting partition of the segment [a, b] by T ′ and we will use the index k
to indicate the segments obtained for this partition: ∆k (such a notation
allows us to distinguish these segments from the segments connected with
the partition T and marked with the index i). We require that the mesh
of the constructed partition T ′ coincides with l(T ): l(T ′) = l(T ). This can
be satisfied by choosing new points so that neighboring points are located at
a distance not exceeding l(T ).

If we consider all possible partitions T ′ constructed on the basis of parti-
tions T and pass to the limit as l(T ′) approaches 0, then the mesh of parti-
tions T will also approach 0.

Since, by condition, the function f is integrable on [a, b], we obtain, by
virtue of the necessary part of the integrability criterion in terms of the os-
cillation of the function, that∑

T ′

ωk(f)∆xk → 0, l(T ′)→ 0. (8)

Note that the integrability criterion assumes that the indicated limit rela-
tion is valid for all possible partitions of the interval [a, b]. But if this relation

https://www.youtube.com/watch?v=VkS-AcA9njQ&t=16m44s
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is valid for all partitions, then it remains valid for a part of these partitions,
namely, a part that is constructed on the basis of partitions T of segment
[c, d] as described above.

Since the sum
∑

T ′ ωk(f)∆xk contains all terms from the sum∑
T ωi(f)∆xi, as well as some additional non-negative terms, corresponding

to the segments ∆k not lying on [c, d], the estimate holds:∑
T

ωi(f)∆xi ≤
∑
T ′

ωk(f)∆xk. (9)

It follows from (8) and (9) that
∑

T ωi(f)∆xi → 0 as l(T ′) → 0. Since,
by construction, l(T ′) = l(T ), we obtain that relation (7) also holds. �

The first theorem on the additivity of a definite integral
with respect to the integration segment 2.6A/23:47 (06:27)

Theorem 4 (the first theorem on the additivity of a defi-
nite integral with respect to the integration segment).

Let the function f be integrable on [a, b], c ∈ (a, b) (note that, by virtue of
Theorem 3, this function is integrable on the segments [a, c] and [c, b]). Then
the following equality holds:∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx. (10)

Proof.
Let T ′ be some partition of the segment [a, c], T ′′ be some partition of

the segment [c, b]. Then T = T ′ ∪ T ′′ is a partition of the segment [a, b].
The partition T necessarily contains the point c and, in addition, we have
l(T )→ 0 as l(T ′)→ 0 and l(T ′′)→ 0.

Let ξ′ and ξ′′ be the samples corresponding to the partitions T ′ and T ′′.
By ξ we denote the sample, which is the union of ξ′ and ξ′′; this sample
corresponds to the partition T .

Then, for the integral sums corresponding to the constructed partitions
and samples, the following equality holds:

σT (f, ξ) = σT ′(f, ξ
′) + σT ′′(f, ξ

′′).

We pass to the limit as l(T ′)→ 0, ∀ ξ′, and l(T ′′)→ 0, ∀ ξ′′. By virtue of
the already proved integrability of the function f on [a, c] and [c, b], we obtain
that the right-hand side of the equality approaches

∫ c
a f(x) dx+

∫ b
c f(x) dx.

On the other hand, since the function f is integrable on [a, b], we get that
the limit of integral sums exists (and is equal to

∫ b
a f(x) dx) for any partitions

https://www.youtube.com/watch?v=VkS-AcA9njQ&t=23m47s
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whose mesh approaches 0 and for any samples related to these partitions. But
then the same will be true for the part of the possible partitions T that are
constructed on the basis of the partitions T ′, T ′′ such that l(T ′) → 0, ∀ ξ′,
and l(T ′′)→ 0, ∀ ξ′′.

Passing to the limit in both sides of the previous equality, we obtain the
proved relation (10). �

Remark.
The converse statement, which we accept without proof, is also true: if the

function is integrable on the segments [a, c] and [c, b], then it is integrable on
the segment [a, b] and equality (10) holds. This fact implies that any function
that has a finite number of discontinuities of the first kind on the segment
[a, b] is integrable on this segment.

The second theorem on the additivity of a definite integral
with respect to the integration segment 2.6A/30:14 (11:39)

Definition.
We assume that the integral of any function defined at a over a segment

of zero length [a, a] is 0:∫ a

a

f(x) dx
def
= 0.

In addition, we define the integral from b to a for a < b as follows:∫ a

b

f(x) dx
def
= −

∫ b

a

f(x) dx.

This is a quite natural definition, which follows from the initial definition
of a definite integral if we allow the situation xi−1 > xi (for which ∆xi < 0).

So, we can say that if we swap the limits of integration, then the sign of
the integral changes to the opposite.

Theorem 5 (the second theorem on the additivity of a def-
inite integral with respect to the integration segment).

Let the function f be integrable on [a, b], c1, c2, c3 ∈ [a, b]. Then the
equality holds:∫ c3

c1

f(x) dx =

∫ c2

c1

f(x) dx+

∫ c3

c2

f(x) dx. (11)

https://www.youtube.com/watch?v=VkS-AcA9njQ&t=30m14s
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Proof.
Let us prove equality (11) for one of the cases of the location of the points

c1, c2, c3 that is different from the case c1 < c2 < c3, which is already consid-
ered in Theorem 4.

Let, for example, c2 < c1 < c3. By virtue of Theorem 4, we have∫ c3

c2

f(x) dx =

∫ c1

c2

f(x) dx+

∫ c3

c1

f(x) dx.

In the obtained relation, we transform the integrals so that their limits
correspond to the limits indicated in (11). In this case, we only need to
transform the integral from c2 to c1, changing its sign:∫ c3

c2

f(x) dx = −
∫ c2

c1

f(x) dx+

∫ c3

c1

f(x) dx.

If we transfer the integral preceded by a minus sign to another part of the
equality and swap the left-hand and right-hand sides of this equality, then we
obtain (11).

Any other arrangement of points c1, c2, c3 can be analyzed in a similar
way. For example, for the case c3 < c2 < c1, we have∫ c1

c3

f(x) dx =

∫ c2

c3

f(x) dx+

∫ c1

c2

f(x) dx,

−
∫ c3

c1

f(x) dx = −
∫ c3

c2

f(x) dx−
∫ c2

c1

f(x) dx,

Multiplying the resulting equality by −1, we obtain (11). It is even easier
to analyze situations in which some points coincide. �

Estimates for integrals

Simple estimates
of integrals 2.6A/41:53 (01:17), 2.6B/00:00 (06:47)

Theorem 6 (on the non-negativity of the integral of a non-
negative function).

If the function f is integrable on [a, b] and ∀x ∈ [a, b] f(x) ≥ 0, then∫ b

a

f(x) dx ≥ 0. (12)

Proof.
Consider the integral sum for some partition T and a sample ξ:

https://www.youtube.com/watch?v=VkS-AcA9njQ&t=41m53s
https://www.youtube.com/watch?v=tygGvPGHTps&t=00m01s
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σT (f, ξ) =
n∑
i=1

f(ξi)∆xi.

Since ∆xi > 0 and, by condition, f(ξi) ≥ 0, all terms of this sum are
non-negative, therefore the integral sum itself is non-negative too:

σT (f, ξ) ≥ 0.

When passing to the limit as l(T ) → 0, ∀ ξ, the sign of the non-strict
inequality is preserved, therefore estimate (12) holds. �

Theorem 7 (on the comparison of integrals).
If the functions f and g are integrable on [a, b] and ∀x ∈ [a, b] f(x) ≤ g(x),

then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx. (13)

Proof.
We use the previously proved Theorems 1 and 6. Let us introduce the

auxiliary function h(x) = g(x) − f(x). Obviously, this function is non-
negative. In addition, by virtue of Theorem 1, this function is integrable;
moreover,∫ b

a

h(x) dx =

∫ b

a

g(x) dx−
∫ b

a

f(x) dx.

According to Theorem 6, the left-hand side of the resulting equality is
non-negative:∫ b

a

h(x) dx ≥ 0.

Therefore, the right-hand side is also non-negative, therefore estimate (13)
holds. �

Corollary.
If the function f is integrable on [a, b] and ∀x ∈ [a, b] m ≤ f(x) ≤M for

some m,M ∈ R, then

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a). (14)

Proof.
Earlier, we established that the constant function f(x) = c is integrable

on any interval and∫ b

a

c dx = c(b− a).
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We apply Theorem 7 to the double inequality m ≤ f(x) ≤M :∫ b

a

mdx ≤
∫ b

a

f(x) dx ≤
∫ b

a

M dx.

Given the formula for the integral of the constant, we obtain rela-
tion (14). �

Integral of a positive continuous function 2.6B/06:47 (11:25)

Theorem 8 (on the integral of a positive continuous func-
tion).

Let the function f be integrable and non-negative on [a, b]. Also sup-
pose that the function f is continuous at the point c ∈ [a, b] and, moreover,
f(c) > 0. Then∫ b

a

f(x) dx > 0.

Proof.
We use the simplest property of a continuous function: if the function is

continuous at the point c and takes a positive value at it, then there exists
a neighborhood of this point at which the function remains positive.

If we denote f(c) = D > 0, then it can be argued that there exists
a neighborhood U δ

c such that the estimate f(x) ≥ D
2 holds for any point

x ∈ U δ
c .

We assume that the neighborhood U δ
c lies inside the segment [a, b], and

also that the estimate f(x) ≥ D
2 is satisfied at the boundary of the neighbor-

hood U δ
c (otherwise, it’s enough to simply reduce the neighborhood). Then

the integral from a to b can be represented as the sum of three integrals:∫ b

a

f(x) dx =

∫ c−δ

a

f(x) dx+

∫ c+δ

c−δ
f(x) dx+

∫ b

c+δ

f(x) dx.

The first and third integrals on the right-hand side are non-negative
by virtue of Theorem 6. Let us turn to the second integral. Since
∀x ∈ [c − δ, c + δ] f(x) ≥ D

2 , applying the corollary of Theorem 7, we
obtain ∫ c+δ

c−δ
f(x) dx ≥ D

2
·
(
c+ δ − (c− δ)

)
= Dδ > 0.

Thus, the second integral is positive. Therefore, the sum of the three
integrals is also positive. �

https://www.youtube.com/watch?v=tygGvPGHTps&t=06m47s
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Corollary.
If the function f is continuous on [a, b] and ∀x ∈ [a, b] f(x) < M , then∫ b

a

f(x) dx < M(b− a).

Proof.
Consider the function h(x) = M − f(x). This function is continu-

ous and positive on [a, b]. Therefore, by the previous theorem, we obtain∫ b
a h(x) dx > 0. To get the required estimate, it remains to use the linearity
of the integral and the formula for the integral of a constant function. �

Properties of the integral
of the absolute value of a function 2.6B/18:12 (16:20)

Theorem 9 (on the integral of the absolute value of a func-
tion).

If the function f is integrable on [a, b], then its absolute value |f | is also
integrable on [a, b] and the estimate holds:∣∣∣∫ b

a

f(x) dx
∣∣∣ ≤ ∫ b

a

|f(x)| dx. (15)

Proof.
First, we prove the integrability of the function |f |. Let us use the lower

bound for the difference |t′ − t′′|:

|t′ − t′′| ≥
∣∣|t′| − |t′′|∣∣. (16)

We choose the partition T of the segment [a, b], choose some segment ∆i

defined by this partition, and write the estimate (16) for f(x′) and f(x′′) when
x′, x′′ ∈ ∆i, swapping the left-hand and right-hand sides of the estimate:∣∣|f(x′)| − |f(x′′)|

∣∣ ≤ |f(x′)− f(x′′)|.

We will argue in the same way as in the proof of the integrability
of the product (see Theorem 2). First, it is obvious that the right-
hand side of the resulting inequality is bounded from above by the value
supx′,x′′∈∆i

|f(x′)− f(x′′)|, which is equal to the oscillation of the function f
on the segment ∆i. Therefore,∣∣|f(x′)| − |f(x′′)|

∣∣ ≤ ωi(f).

Further, since this estimate is valid for all x′, x′′ ∈ ∆i, we find that a similar
estimate holds for the least upper boundary of the left-hand side:

https://www.youtube.com/watch?v=tygGvPGHTps&t=18m12s
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sup
x′,x′′∈∆i

∣∣|f(x′)| − |f(x′′)|
∣∣ ≤ ωi(f).

The left-hand side of the last estimate is the oscillation of the function |f |:

ωi(|f |) ≤ ωi(f).

So, we have proved that the oscillation of the absolute value of a function
does not exceed the oscillation of the function itself. It remains for us to mul-
tiply both sides of the resulting estimate by ∆xi and summarize the resulting
inequalities for i from 1 to n:

n∑
i=1

ωi(|f |)∆xi ≤
n∑
i=1

ωi(f)∆xi.

This estimate is valid for an arbitrary partition T . Passing to the limit
as l(T ) → 0 and taking into account that, by condition, the function f is
integrable on [a, b], we obtain, by virtue of the integrability criterion, that the
right-hand side of the inequality approaches 0. Then, by virtue of the theorem
on passing to the limit in inequalities, the left-hand side also approaches 0;
therefore, due to the same integrability criterion, the function |f | is also
integrable on [a, b]. The first part of the theorem is proved.

Now let us turn to the proof of estimate (15). We choose an arbitrary
partition T of the segment [a, b] and a sample ξ, consider the absolute value
of the integral sum for the function f , and transform it using a generalization
of the triangle inequality |t′ + t′′| ≤ |t′|+ |t′′| for the case of n terms:

|σT (f, ξ)| =
∣∣∣ n∑
i=1

f(ξi)∆xi

∣∣∣ ≤ n∑
i=1

|f(ξi)|∆xi.

On the right-hand side, we get the integral sum for the function |f | over
the same partition T and the sample ξ. Therefore,

|σT (f, ξ)| ≤ σT (|f |, ξ).

Since we have already proved that the function |f | is integrable, the lim-
its of the integral sums as l(T ) → 0, ∀ ξ, exist both on the left-hand side
and on the right-hand side. These limits are equal to the integrals of the
corresponding functions and the same estimate holds for them. �

Remark.
The integrability of the absolute value of a function does not imply the

integrability of the function itself. To prove this statement, it suffices to give
an example. Consider the following function (which can be obtained from the
Dirichlet function by stretching and shifting along the OY axis):



72 M.E.Abramyan. Lectures on integral calculus and series theory

f(x) =

{
1, x ∈ Q,
−1, x ∈ R \Q.

This function, like the Dirichlet function, is not integrable on any segment
of positive length, because for any segment [a, b], its upper Darboux integral
is (b − a), and it differs from the lower Darboux integral equal to −(b − a).
At the same time, the absolute value of this function is a constant: |f(x)| = 1,
and the constant is integrable on any interval.

Mean value theorems for definite integrals

The first mean value theorem 2.6B/34:32 (10:39)

Theorem 10 (the first mean value theorem).
Suppose that the functions f and g are integrable on [a, b] and the following

conditions are satisfied for them:
1) for the function f , a double estimate holds: m ≤ f(x) ≤M , x ∈ [a, b];
2) the function g preserves the sign on [a, b], i. e., either g(x) ≥ 0 for

x ∈ [a, b] or g(x) ≤ 0 for x ∈ [a, b].
Then there exists a value µ ∈ [m,M ] such that the following equality

holds: ∫ b

a

f(x)g(x) dx = µ

∫ b

a

g(x) dx. (17)

Proof.
First, we consider the case when g(x) ≥ 0 for x ∈ [a, b].
We multiply all the terms of the estimate from condition 1 by g(x). The

signs of inequality will not change, since, by our assumption, the function g
is non-negative:

mg(x) ≤ f(x)g(x) ≤Mg(x).

By virtue of Theorem 2, each of the obtained products is an integrable
function. We integrate all the terms of the double inequality from a to b.
By virtue of Theorem 7, the signs of inequality will not change. In addition,
the constants m and M can be taken out of the signs of the integrals:

m

∫ b

a

g(x) dx ≤
∫ b

a

f(x)g(x) dx ≤M

∫ b

a

g(x) dx.

Thus, we obtain the integral
∫ b
a g(x) dx on the left-hand and right-hand

sides of the resulting double inequality.

https://www.youtube.com/watch?v=tygGvPGHTps&t=34m32s
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If
∫ b
a g(x) dx = 0, then the last double inequality takes the form

0 ≤
∫ b
a f(x)g(x) dx ≤ 0, which implies that

∫ b
a f(x)g(x) dx = 0. In this

case, equality (17) is satisfied and any value from the interval [m,M ] can be
taken as µ.

If
∫ b
a g(x) dx 6= 0, then we can divide all parts of the double inequality by

this nonzero value. As a result, we get

m ≤
∫ b
a f(x)g(x) dx∫ b

a g(x) dx
≤M .

Denote the obtained quotient of integrals by µ:

µ =

∫ b
a f(x)g(x) dx∫ b

a g(x) dx
. (18)

Thus, the double inequality m ≤ µ ≤ M holds for µ and, in addition,
relation (18) can be transformed to (17) by multiplying both sides of the
equality by

∫ b
a g(x) dx.

So, we have proved the theorem for the case g(x) ≥ 0.
Now suppose that g(x) ≤ 0 for x ∈ [a, b]. Consider the auxiliary function

g̃(x) = −g(x). The function g̃(x) is non-negative: g̃(x) ≥ 0 for x ∈ [a, b] and
the theorem has already been proved for the case of non-negative functions.
Therefore, there exists a value µ ∈ [m,M ] such that∫ b

a

f(x)g̃(x) dx = µ

∫ b

a

g̃(x) dx.

Let’s get back to the function g(x):∫ b

a

f(x)
(
−g(x)

)
dx = µ

∫ b

a

(
−g(x)

)
dx.

To obtain equality (17), it suffices to put the signs “minus” behind the signs
of the integrals and multiply both sides of the resulting equality by (−1).
Thus, equality (17) is valid for the function g(x) also in the case g(x) ≤ 0. �

The second and the third
mean value theorems 2.7A/00:00 (12:56)

Theorem 11 (the second mean value theorem).
Suppose that the functions f and g are defined on [a, b] and the following

conditions are satisfied for them:
1) the function f is continuous on [a, b] (this condition immediately implies

the integrability of the function f on [a, b]);

https://www.youtube.com/watch?v=h77yheGoE1I&t=00m01s
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2) the function g is integrable on [a, b] and preserves the sign on this
segment, i. e., either g(x) ≥ 0 for x ∈ [a, b] or g(x) ≤ 0 for x ∈ [a, b].

Then there exists a point c ∈ [a, b] such that the following equality holds:∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx. (19)

Proof.
We use the already proved Theorem 10, for which all conditions are sat-

isfied. In particular, since the function f is continuous on a segment, for it,
by virtue of the first Weierstrass theorem, there exist numbers m,M ∈ R
such that m ≤ f(x) ≤ M for x ∈ [a, b] (note that the boundedness of the
function f follows not only from the first Weierstrass theorem, but also from
the necessary integrability condition).

As m and M , we can take the values infx∈[a,b] f(x) and supx∈[a,b] f(x),
respectively:

m = inf
x∈[a,b]

f(x), M = sup
x∈[a,b]

f(x).

By virtue of Theorem 10, there exists a value µ ∈ [m,M ] for which equality
(17) holds.

Since the function f is continuous on the segment [a, b], we obtain, by
virtue of the second Weierstrass theorem, that the values of m and M are
reached at some points, i. e., there exist points c1, c2 ∈ [a, b] for which the
equalities f(c1) = m, f(c2) = M hold.

By virtue of the corollary of the intermediate value theorem, for the func-
tion f , there exists a point c lying on a segment with endpoints c1 and c2,
in which the function f takes the value µ: f(c) = µ. Since c1, c2 ∈ [a, b], we
obtain that the point c also belongs to the segment [a, b].

Substituting the value f(c) into (17) instead of µ, we get equality (19). �
Theorem 12 (the third mean value theorem).
Let the function f be continuous on [a, b]. Then there exists a point

c ∈ [a, b] such that the following equality holds:∫ b

a

f(x) dx = f(c)(b− a). (20)

Remark (geometric sense of the third mean value theorem).
Assume that f(x) > 0 for x ∈ [a, b]. We noted earlier that the value of

a definite integral
∫ b
a f(x) dx can be interpreted as the area of a curvilinear

trapezoid bounded by the graph y = f(x), the segment of the axis OX,
and the lines x = a and x = b (this fact will be proved later when we give
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a rigorous definition of area). Formula (20) means that there exists a point
c ∈ [a, b] for which a rectangle with the base [a, b] and the height f(c) has
an area equal to the area of this curvilinear trapezoid (Fig. 6).

Fig. 6. Geometric sense of the third mean value theorem

Proof.
It is enough to use the second mean value theorem (Theorem 11) by putting

g(x) ≡ 1 in it. Obviously, in this case the function g(x) preserves the sign.
Then ∫ b

a

g(x) dx =

∫ b

a

dx = b− a.

Substituting the function g(x) ≡ 1 and the found value of the integral
of this function into formula (19), we obtain (20). �



7. Integral with a variable upper limit.
Newton–Leibniz formula

Integral with a variable upper limit

Definition of an integral
with a variable upper limit 2.7A/12:56 (04:01)

Definition.
Let the function f be integrable on the segment [a, b]. Then, by the inte-

grability theorem on the embedded segment, it is integrable on the segment
[a, x] for any x ∈ [a, b]. Therefore, for any x ∈ [a, b], there exists an integral∫ x
a f(t) dt. Denote this integral by F (x):

F (x)
def
=

∫ x

a

f(t) dt.

The function F (x) is called an integral with a variable upper limit. Obvi-
ously, F (a) = 0 as an integral over a segment of zero length.

Theorem on the continuity of an integral
with a variable upper limit 2.7A/16:57 (16:48)

Theorem 1 (on the continuity of an integral with a variable
upper limit).

For any function f integrable on the segment [a, b], its integral with a vari-
able upper limit F is a continuous function on this segment.

Proof.
We choose an arbitrary point x0 ∈ [a, b] and prove that the function F (x)

is continuous at this point. For definiteness, we assume that x0 ∈ (a, b).
We want to prove that the limit of the function F (x) as x → x0 is equal

to the value of the function at the point x0:

lim
∆x→0

(
F (x0 + ∆x)− F (x0)

)
= 0.

We assume that x0 + ∆x ∈ [a, b]; the increment ∆x can be both positive
and negative.

https://www.youtube.com/watch?v=h77yheGoE1I&t=12m56s
https://www.youtube.com/watch?v=h77yheGoE1I&t=16m57s
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Consider the difference |F (x0 + ∆x)− F (x0)| and transform it using the
definition of an integral with a variable upper limit and the additivity theorem
for the integral with respect to the integration segment:

|F (x0 + ∆x)− F (x0)| =
∣∣∣∫ x0+∆x

a

f(t) dt−
∫ x0

a

f(t) dt
∣∣∣ =

=
∣∣∣∫ x0

a

f(t) dt+

∫ x0+∆x

x0

f(t) dt−
∫ x0

a

f(t) dt
∣∣∣ =

∣∣∣∫ x0+∆x

x0

f(t) dt
∣∣∣.

If ∆x > 0, then the right-hand side of the resulting equality can be esti-
mated using the property of the integral of the absolute value of a function:∣∣∣∫ x0+∆x

x0

f(t) dt
∣∣∣ ≤ ∫ x0+∆x

x0

|f(t)| dt.

A similar estimate can be obtained for the case ∆x < 0; in this case, we
must use the integral

∫ x0
x0+∆x |f(t)| dt on the right-hand side of the estimate.

If we do not impose additional conditions on ∆x, then we can write the
following version of the estimate, which is valid for both positive and negative
values of ∆x:∣∣∣∫ x0+∆x

x0

f(t) dt
∣∣∣ ≤ ∣∣∣∫ x0+∆x

x0

|f(t)| dt
∣∣∣.

Since the function f is integrable, it is bounded:

∃C > 0 ∀x ∈ [a, b] |f(x)| ≤ C.

If we assume that ∆x > 0, then from the estimate |f(x)| ≤ C, using the
theorem on the comparison of integrals, we obtain the following estimate:∫ x0+∆x

x0

|f(t)| dt ≤
∫ x0+∆x

x0

C dt = C∆x .

If we do not impose additional conditions on ∆x, then we have a similar
estimate containing the absolute value of the integral and the absolute value
of ∆x: ∣∣∣∫ x0+∆x

x0

|f(t)| dt
∣∣∣ ≤ C|∆x|.

Indeed, in the case ∆x < 0 we get∣∣∣∫ x0+∆x

x0

|f(t)| dt
∣∣∣ =

∫ x0

x0+∆x

|f(t)| dt ≤ C(−∆x) = C|∆x|.

So, we started with the expression |F (x0 + ∆x)−F (x0)| and, as a result,
evaluated it from above with the expression C|∆x|:
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|F (x0 + ∆x)− F (x0)| ≤ C|∆x|.
If ∆x approaches 0, then the right-hand side of the resulting estimate also

approaches 0; therefore, by virtue of the theorem on passing to the limit in
inequalities, the left-hand side also approaches 0. We have proved that the
function F is continuous at an arbitrary point x0 ∈ (a, b).

The case when x0 coincides with one of the endpoints of the initial segment
is considered similarly, taking into account the fact that in this case the limit
at the endpoints of the segment should be understood as one-sided limit (and
it suffices to consider the positive increment ∆x for the point a and negative
increment for the point b). �

Theorem on the differentiability of an integral with a variable
upper limit and a continuous integrand

2.7A/33:45 (13:39), 2.7B/00:00 (04:04)

Theorem 2 (on the differentiability of an integral with
a variable upper limit and a continuous integrand).

If the function f is integrable on the segment [a, b] and continuous at the
point x0 ∈ (a, b), then its integral with a variable upper limit F is a differen-
tiable function at the point x0 and the formula holds:

F ′(x0) = f(x0).

Remarks.
1. It can be proved that the integral with a variable upper limit and an

integrand continuous on [a, b] is a differentiable function also at the endpoints
of the segment [a, b] if, in this case, we consider the one-sided derivative, that
is, one-sided limit of the ratio of the increment of the function to the increment
of the argument. However, we will not need this fact.

2. Theorems 1 and 2 indicate that the integration operation “improves” the
properties of functions: if the original function is integrable, then its integral
with a variable upper limit is a continuous function and if the original function
is continuous, then its integral with a variable upper limit is a differentiable
function.

Proof.
We need to prove that there exists a limit lim∆x→0

F (x0+∆x)−F (x0)
∆x and the

limit value is f(x0). In other words, we need to prove that the following
equality holds:

lim
∆x→0

(F (x0 + ∆x)− F (x0)

∆x
− f(x0)

)
= 0 .

https://www.youtube.com/watch?v=h77yheGoE1I&t=33m45s
https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=00m01s
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Let us write down what the last equality means in the language ε–δ:

∀ ε > 0 ∃ δ > 0 ∀∆x, |∆x| < δ,∣∣∣F (x0 + ∆x)− F (x0)

∆x
− f(x0)

∣∣∣ < ε. (1)

We select some value of ε > 0. By condition, the function f is continuous
at the point x0. This means that the following condition is true for the
selected ε:

∃ δ > 0 ∀∆x, |∆x| < δ, |f(x0 + ∆x)− f(x0)| <
ε

2
. (2)

Let us show that the value δ from condition (2) also ensures that condi-
tion (1) is satisfied, i. e., that the estimate |f(x0 + ∆x)− f(x0)| < ε

2 implies
the validity of the estimate

∣∣F (x0+∆x)−F (x0)
∆x − f(x0)

∣∣ < ε.
Transform the difference

∣∣F (x0+∆x)−F (x0)
∆x − f(x0)

∣∣ by taking out the factor
1

∆x and then use the definition of an integral with a variable upper limit:∣∣∣ 1

∆x

(∫ x0+∆x

a

f(t) dt−
∫ x0

a

f(t) dt− f(x0)∆x
)∣∣∣. (3)

In the proof of Theorem 1, we have already established that the difference∫ x0+∆x

a f(t) dt −
∫ x0
a f(t) dt is an integral from x0 to x0 + ∆x. Further, the

factor ∆x in the last term f(x0)∆x of expression (3) can be represented as
the integral

∫ x0+∆x

x0
dt. Thus, expression (3) takes the form

1

|∆x|

∣∣∣∫ x0+∆x

x0

f(t) dt− f(x0)

∫ x0+∆x

x0

dt
∣∣∣.

Since the obtained integrals have the same integration limits, we can write
the last expression as a single integral of the difference of functions:

1

|∆x|

∣∣∣∫ x0+∆x

x0

(
f(t)− f(x0)

)
dt
∣∣∣.

This expression can be estimated from above by an expression containing
the integral of the absolute value of the difference of functions:

1

|∆x|

∣∣∣∫ x0+∆x

x0

(
f(t) − f(x0)

)
dt
∣∣∣ ≤ 1

|∆x|

∣∣∣∫ x0+∆x

x0

|f(t) − f(x0)| dt
∣∣∣.

(4)

We did not remove the absolute value sign for the integral, since the value
of ∆x can be either positive or negative.

Now let us turn to the estimate |f(x0 + ∆x) − f(x0)| < ε
2 from (2).

The points x0 and x0 + ∆x appearing in this estimate are the limits of the
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integral on the right-hand side of (4). Any point t located between x0 and
x0 + ∆x can be represented as x0 + δ′, where |δ′| < |∆x|. Since it is assumed
in condition (2) that |∆x| < δ, we see that the same estimate holds for
|δ′|: |δ′| < δ. This means that, for the point t = x0 + δ′, the estimate
|f(t)− f(x0)| < ε

2 is also valid.
Thus, the integrand on the right-hand side of (4) is estimated by ε

2 for all
points t:

|f(t)− f(x0)| <
ε

2
.

In this estimate, the “<” sign can be replaced with the “≤” sign. Using
the theorem on the comparison of integrals, we obtain

1

|∆x|

∣∣∣∫ x0+∆x

x0

|f(t)− f(x0)| dt
∣∣∣ ≤ 1

|∆x|

∣∣∣∫ x0+∆x

x0

ε

2
dt
∣∣∣ =

=
1

|∆x|
· ε

2

∣∣∣∫ x0+∆x

x0

dt
∣∣∣ =

1

|∆x|
· ε

2
|∆x| = ε

2
< ε.

So, we have proved that, for any values of ∆x satisfying the condition
|∆x| < δ, the estimate holds:∣∣∣F (x0 + ∆x)− F (x0)

∆x
− f(x0)

∣∣∣ < ε.

This means that condition (1) is satisfied. Therefore, the function F (x)
has a derivative at the point x0 and this derivative is equal to f(x0). �

Newton–Leibniz formula

Theorems on antiderivatives
for continuous functions 2.7B/04:04 (06:23)

Theorem 3 (on the existence of an antiderivative for a con-
tinuous function).

Any function f continuous on [a, b] has an antiderivative on (a, b), which
is an integral with a variable upper limit: F (x) =

∫ x
a f(t) dt.

Proof.
Since f is continuous on [a, b], it follows from Theorem 2 that its integral

with a variable upper limit F is a differentiable function on (a, b) and, for
any point x ∈ (a, b), the equality F ′(x) = f(x) is true. We have obtained
that F (x) satisfies the definition of the antiderivative of the function f(x) for
x ∈ (a, b). �

https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=04m04s
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Corollary.
If f is a continuous function on [a, b] and Φ(x) is its antiderivative on (a, b),

then this antiderivative can be represented in the following form, where C is
some constant:

Φ(x) =

∫ x

a

f(t) dt+ C. (5)

Proof.
By Theorem 3, we obtain that the integral with a variable upper limit∫ x

a f(t) dt is an antiderivative of the function f . The theorem on antideriva-
tives of a given function states that any two antiderivatives of the function f
are different by some constant term C. �

Newton–Leibniz formula 2.7B/10:27 (05:55)

Theorem 4 (the fundamental theorem of calculus).
If the function f is continuous on [a, b], Φ(x) is a continuous function on

[a, b], and Φ is the antiderivative of the function f on (a, b) (a function Φ
with the indicated properties exists by virtue of Theorem 3), then∫ b

a

f(x) dx = Φ(b)− Φ(a). (6)

Formula (6) is called the Newton–Leibniz formula.
Remarks.
1. The antiderivative (and the indefinite integral) is defined by means of

the differentiation operation, but the definite integral is defined by means
of the limit of integral sums and therefore its definition is not related with
the differentiation operation. Nevertheless, there is a relation between the
operations of differentiation (that is, finding the derivative) and integration
(that is, finding the definite integral), which is established by the Newton–
Leibniz formula. That is why Theorem 4 is called the fundamental theorem
of calculus.

2. The Newton–Leibniz formula (6) allows us to reduce the problem of
finding a definite integral to the problem of finding the antiderivative of an
integrand over a given interval.

3. Formula (6) remains valid for the case a ≥ b.
4. Formula (6) is often written in the following form:∫ b

a

f(x) dx = Φ(x)
∣∣∣b
a
.

https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=10m27s
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Proof.
By the corollary of Theorem 3, there exists a constant C ∈ R such that

the antiderivative Φ(x) of the function f(x) is representable in the form (5).
Given this form, we find the values of the antiderivative Φ(x) at the endpoints
of the segment [a, b]:

Φ(a) =

∫ a

a

f(t) dt+ C = C, Φ(b) =

∫ b

a

f(t) dt+ C.

The difference Φ(b)− Φ(a) is
∫ b
a f(t) dt + C − C =

∫ b
a f(t) dt. Thus, the

Newton–Leibniz formula is proved, since the value of the integral does not
depend on the choice of a letter for the integration parameter (in this case, x
or t). �

Additional techniques for calculating definite integrals

Change of variables in a definite integral 2.7B/16:22 (11:37)

Theorem 5 (on the change of variables in a definite inte-
gral).

Let the function f(x) be continuous on [a0, b0], the function ϕ(t) act from
(α0, β0) to (a0, b0) and be continuously differentiable on (α0, β0) (this means
that the derivative ϕ′(t) is defined and continuous on (α0, β0)). Let, in addi-
tion, α, β ∈ (α0, β0) and ϕ(α) = a, ϕ(β) = b (moreover, a, b ∈ (a0, b0) due
to the properties of the function ϕ(t)).

Then∫ b

a

f(x) dx =

∫ β

α

f
(
ϕ(t)

)
ϕ′(t) dt. (7)

Remark.
When using Theorem 5 to transform the integral

∫ b
a f(x) dx, the function

ϕ(t) arises when we change the previous integration parameter x by the new
parameter t: x = ϕ(t). In this case, the differentials will be related as follows:
dx = ϕ′(t) dt. This is similar to the relation used to change of variables in
an indefinite integral. The only difference from the case of changing vari-
ables in an indefinite integral is that in the case of a definite integral, it is
also necessary to change the integration limits using the relations a = ϕ(α),
b = ϕ(β).

https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=16m22s
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Proof.
First, we note that the integrals on the left-hand and right-hand side of (7)

exist, since their integrands are continuous over the entire integration seg-
ment.

Since the function f(x) is continuous on [a0, b0], it has an antiderivative
on (a, b) by virtue of Theorem 3. Denote this antiderivative by Φ(x).

Let us differentiate the superposition Φ
(
ϕ(t)

)
, which is defined for

t ∈ (α0, β0):(
Φ
(
ϕ(t)

))′
= Φ′(x)|x=ϕ(t) · ϕ

′(t) = f
(
ϕ(t)

)
ϕ′(t).

Thus, the superposition Φ
(
ϕ(t)

)
is the antiderivative for the integrand of

the right-hand side of equality (7) on the interval (α0, β0).
Now we apply the Newton–Leibniz formula for the integrals indicated on

the left-hand side and the right-hand side of (7):∫ b

a

f(x) dx = Φ(b)− Φ(a),∫ β

α

f
(
ϕ(t)

)
ϕ′(t) dt = Φ

(
ϕ(β)

)
− Φ

(
ϕ(α)

)
= Φ(b)− Φ(a).

Since the right-hand sides of the obtained equalities coincide, we conclude
that the left-hand sides coincide too, i. e., that equality (7) holds. �

Corollaries of the theorem on the change
of variables in a definite integral 2.7B/27:59 (09:28)

1. Let the function f be an odd function defined and continuous on the
segment [−a, a]. Then

∫ a
−a f(t) dt = 0.

Proof.
We represent this integral as the sum of the integrals:∫ a

−a
f(t) dt =

∫ 0

−a
f(t) dt+

∫ a

0

f(t) dt. (8)

In the first integral from the right-hand side of equality (8), we make the
variable change t = −x. Then dt = −dx, the integration limits −a and 0
will change by a and 0, respectively, and this integral will take the form∫ 0

−a
f(t) dt =

∫ 0

a

f(−x) (−dx).

Since the function f is odd, the equality f(−x) = −f(x) holds. Thus,

https://www.youtube.com/watch?v=FPhuVOZFZZ8&t=27m59s
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∫ 0

a

f(−x) (−dx) =

∫ 0

a

(
−f(x)

)
(−dx) =

∫ 0

a

f(x) dx.

Now change the integration limits:∫ 0

a

f(x) dx = −
∫ a

0

f(x) dx.

Substituting this representation for the first integral in the right-hand side
of (8), we obtain

−
∫ a

0

f(x) dx+

∫ a

0

f(t) dt = 0. �

2. Let the function f be an even function defined and continuous on the
segment [−a, a]. Then

∫ a
−a f(t) dt = 2

∫ a
0 f(t) dt.

Proof.
As in the proof of corollary 1, we represent this integral as the sum of

integrals (8) and make the same variable change t = −x in the first integral
from the right-hand side of (8):∫ 0

−a
f(t) dt =

∫ 0

a

f(−x) (−dx).

In this case, the function is even, i. e., f(−x) = f(x), so further transfor-
mations of the integral will be as follows:∫ 0

a

f(−x) (−dx) = −
∫ 0

a

f(x) dx =

∫ a

0

f(x) dx.

Substituting this representation for the first integral in the right-hand side
of (8), we obtain the required expression:∫ a

0

f(x) dx+

∫ a

0

f(t) dt = 2

∫ a

0

f(t) dt. �

3. Let the function f be a continuous periodic function with period T .
Then

∀ a ∈ R
∫ a+T

a

f(t) dt =

∫ T

0

f(t) dt. (9)

Thus, the integral of a periodic function over any segment whose length is
equal to its period T is equal to the integral over the segment [0, T ].

Proof.
Using the second theorem on the additivity of a definite integral with

respect to the integration segment, we transform the integral
∫ a+T

a f(t) dt
as follows:
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∫ a+T

a

f(t) dt =

∫ 0

a

f(t) dt+

∫ T

0

f(t) dt+

∫ a+T

T

f(t) dt. (10)

In the last integral of the right-hand side of (10), we make the variable
change x = t − T . Then dx = dt, the integration limits T , a + T change
by 0, a, and this integral takes the form∫ a+T

T

f(t) dt =

∫ a

0

f(x+ T ) dx = −
∫ 0

a

f(x+ T ) dx.

Since the function f is periodic with the period T , the equality
f(x + T ) = f(x) holds. We got that the third integral on the right-hand
side of (10) is −

∫ 0

a f(x) dx and, in combination with the first integral, gives
the value 0. Thus, equality (10) turns into equality (9). �

Version of the theorem on the change
of variables in a definite integral 2.8A/00:00 (10:45)

The theorem on the change of variables in a definite integral considers the
intervals (a0, b0) and (α0, β0) containing segments with endpoints a, b and
α, β, over which the integration is carried out in (7). The purpose of this
formulation is to guarantee the existence of the derivative ϕ′(t) at all points
of the integration segment.

If we consider the derivatives defined on the segment, assuming that the
derivatives are calculated as one-sided limits at the endpoints of the segment,
then the condition of the theorem can be simplified by requiring that the
function f(x) is continuous on [a, b], the function ϕ(t) acts from [α, β] to
[a, b] and is continuously differentiable on [α, β], and the equalities ϕ(α) = a,
ϕ(β) = b hold.

Integration formula by parts
for a definite integral 2.8A/10:45 (04:49)

Theorem (on integration by parts of a definite integral)..
Let the functions u, v be continuously differentiable on the interval (a0, b0)

and the segment [a, b] be contained in the interval (a0, b0). Then the following
formula holds:∫ b

a

uv′ dx = uv|ba −
∫ b

a

u′v dx. (11)

Formula (11) is called the integration formula by parts for a definite inte-
gral. Recall that the expression uv|ba means the difference u(b)v(b)−u(a)v(a).

https://www.youtube.com/watch?v=Yg2rrKjorF8&t=00m01s
https://www.youtube.com/watch?v=Yg2rrKjorF8&t=10m45s
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Remark.
As in the case of the theorem on changing a variable in a definite integral,

if we consider the derivatives defined on the segment, assuming that the
derivatives at the endpoints of the segment are calculated as one-sided limits,
then the condition of the theorem can be simplified by requiring only that
the functions u, v were continuously differentiable on the segment [a, b].

Proof.
By the formula of the derivative of the product, we have(

u(x)v(x)
)′

= u′(x)v(x) + u(x)v′(x).

Let us express the product u(x)v′(x) from the last equality:

u(x)v′(x) =
(
u(x)v(x)

)′ − u′(x)v(x).

The expressions on the left and on the right are continuous functions and
therefore they are integrable. Integrating the left-hand side and the right-
hand side of the equality from a to b and using the linearity of a definite
integral with respect to the integrand, we obtain∫ b

a

u(x)v′(x) dx =

∫ b

a

(
u(x)v(x)

)′
dx−

∫ b

a

u′(x)v(x) dx. (12)

Obviously, the function F (x) = u(x)v(x) is the antiderivative for the
function

(
u(x)v(x)

)′. Then, according to the Newton–Leibniz formula, we
have ∫ b

a

(
u(x)v(x)

)′
dx = F (b)− F (a) = F (x)|ba = u(x)v(x)|ba.

Substituting the obtained representation of the integral
∫ b
a

(
u(x)v(x)

)′
dx

into (12), we get equality (11). �



8. Calculation of areas and volumes

Quadrable figures on a plane

Plane figures. Cell figures 2.8A/15:34 (09:49)

We began the study of definite integrals by formulating the problem of
finding the area of a curvilinear trapezoid. But a strict definition of the area
was not given.

To prove that a definite integral is equal to the area of a curvilinear trape-
zoid, we need, first of all, to define the area for a sufficiently wide class of sets
on the plane. For this we need to introduce a number of auxiliary definitions.

A figure is any nonempty bounded set of points on the plane. Recall that
the boundedness of the set G on the plane means that there exists a circle
that contains all points of the set G.

We define the area of the rectangle Π with sides parallel to the coordinate
axes as follows: if Π = {(x, y) : a1 ≤ x ≤ b1, a2 ≤ y ≤ b2}, then the area of
the rectangle (denoted by S(Π)) is

S(Π)
def
= (b1 − a1)(b2 − a2). (1)

We will also assume that formula (1) determines the area of the rectangle
even if its boundary (or part of it) does not belong to this rectangle. In
particular, for the rectangle Π = {(x, y) : a1 < x < b1, a2 < y < b2}, the area
is also calculated by formula (1). Rectangles can degenerate into segments or
points; the areas of such degenerate rectangles are equal to 0.

A cell figure is a figure Q, which can be represented as the union of a finite
number of pairwise disjoint rectangles Πi, i = 1, . . . , n, with sides parallel to
the coordinate axes:

Q =
n⋃
i=1

Πi, Πi ∩ Πj = ∅, i 6= j.

Part of the boundary of the rectangle Πi may not belong to this rectangle.
By definition, the area of the cell figure Q, which is the union of pairwise

disjoint rectangles, is the sum of the areas of these rectangles (notation S(Q)):

S(Q)
def
=

n∑
i=1

S(Πi).

https://www.youtube.com/watch?v=Yg2rrKjorF8&t=15m34s
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This definition of the area of the cell figure is well-posed, since the following
statement can be proved: for any method of splitting the cell figure into
pairwise disjoint rectangles, the sum of the areas of these rectangles will be
equal to the same value.

We also accept the following statement without proof: if the embedding
q ⊂ Q holds for the cell figures q and Q, then the inequality S(q) ≤ S(Q)
holds for their areas.

Squarable figure and its area 2.8A/25:23 (12:33)

Now we give two basic definitions: the squarable figure and its area.
A figure G is called squarable if, for any ε > 0, there exists a pair of cell

figures q, Q such that q ⊂ G ⊂ Q and S(Q)− S(q) < ε.
The area of the squarable figure G is the number S(G) satisfying the dou-

ble inequality S(q) ≤ S(G) ≤ S(Q) for any cell figures q, Q such that
q ⊂ G ⊂ Q.

Remark.
Not each bounded set on a plane is a squarable figure. For example, one

can prove that the set of all points with rational coordinates located inside
the square {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} is not a squarable figure.

Theorem (on the well-posedness of the definition of the
squarable figure area).

If G is a squarable figure, then the number S(G) exists and is unique.
Proof.
The existence of this number follows from the axiom of continuity. Let A

be the set of areas of all cell figures q embedded in G and let B be the
set of areas of all cell figures Q containing G. These sets are nonempty.
Since the embedding q ⊂ Q holds for q and Q, we obtain that the estimate
S(q) ≤ S(Q) holds for all S(q) ∈ A and S(Q) ∈ B. Therefore, by virtue
of the axiom of continuity, there exists a number S(G) satisfying the double
estimate S(q) ≤ S(G) ≤ S(Q) for all S(q) ∈ A and S(Q) ∈ B.

Now we prove uniqueness. Let there exist two numbers S ′ and S ′′ satisfying
the inequalities S(q) ≤ S ′ ≤ S(Q) and S(q) ≤ S ′′ ≤ S(Q) for any cell
figures q, Q such that q ⊂ G ⊂ Q.

Without loss of generality, we can assume that S ′ ≤ S ′′. Then the following
chain of inequalities holds:

S(q) ≤ S ′ ≤ S ′′ ≤ S(Q).

From this chain of inequalities we obtain

https://www.youtube.com/watch?v=Yg2rrKjorF8&t=25m23s
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S ′′ − S ′ ≤ S(Q)− S(q). (2)
By the definition of a squarable figure, for any value ε > 0, there exists

a pair of cell figures q, Q such that q ⊂ G ⊂ Q and S(Q)−S(q) < ε. Taking
into account (2), we obtain that the following estimate holds for any ε > 0:

S ′′ − S ′ < ε.
Since the last estimate can be fulfilled only for S ′ = S ′′, we get that there

exists a unique value S(G) satisfying the definition of the area of the squarable
figure G. �

Remarks.
1. The existence of the number S(G) can be proved for any figure (not

necessarily squarable one). However, only for the squarable figure it can be
proved that the number S(G) is unique.

2. It can also be proved that the following equalities are valid for the area
of the squarable figure G, (in these equalities cell figures are denoted by q
and Q):

S(G) = sup
q⊂G

S(q) = inf
G⊂Q

S(Q).

Criterion for the squarability of a figure 2.8A/37:56 (03:38)

The following criterion for the squarability of a figure holds (its proof is
given, for example, in [18, Ch. 7, Sec. 37.1]).

Theorem (criterion for the squarability of a figure).
A figure G is a squarable one if and only if, for any ε > 0, there exist

squarable figures q̃, Q̃ such that q̃ ⊂ G ⊂ Q̃ and S(Q̃)− S(q̃) < ε.
This criterion differs from the definition of a squarable figure in that the

cell figures q and Q are used in the definition, and the squarable figures q̃
and Q̃ are used in the criterion.

Remark.
Obviously, the area of the squarable figure is non-negative. In addition, it

can be proved that the area of the squarable figure has the following proper-
ties:

1) additivity: the area of the union of any finite number of pairwise disjoint
squarable figures is equal to the sum of the areas of these figures;

2) invariance: the area of the figure does not change when it is shifted,
rotated or reflected.

Now, after introducing all the required definitions and formulating the
necessary statements, we will consider figures of a special kind, prove their
squarability, and find formulas for their area.

https://www.youtube.com/watch?v=Yg2rrKjorF8&t=37m56s
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Area of a curvilinear trapezoid
and area of a curvilinear sector

Theorem on the area of a curvilinear trapezoid:
formulation and proof of squarability 2.8B/00:00 (13:27)

Theorem (on the area of a curvilinear trapezoid).
Let the function f be continuous on [a, b] and non-negative on this segment:

f(x) ≥ 0, x ∈ [a, b]. Let G be a curvilinear trapezoid defined as follows (see
Fig. 4 in Chapter 5):

G = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ f(x)}.
Then the curvilinear trapezoid G is a squarable figure and its area is

calculated by the formula

S(G) =

∫ b

a

f(x) dx. (3)

Proof.
1. To prove the squarability of the figure G, we must show that, for any

ε > 0, there exist cell figures q and Q satisfying two conditions: q ⊂ G ⊂ Q

and S(Q)− S(q) < ε.
We will construct cell figures qT and QT based on some partition T of the

segment [a, b]. For each segment ∆i of this partition, i = 1, . . . , n, we define
two numbers:

mi = min
x∈∆i

f(x), Mi = max
x∈∆i

f(x).

Note that in this case we use the notation min and max instead of inf
and sup, since, by virtue of the second Weierstrass theorem, the continuous
function takes its minimum and maximum value on the segment.

Define the following rectangles:

qi = {(x, y) : x ∈ ∆i, 0 ≤ y ≤ mi},
Qi = {(x, y) : x ∈ ∆i, 0 ≤ y ≤Mi}.

By definition of the area of the rectangle, we get S(qi) = mi∆xi,
S(Qi) = Mi∆xi, i = 1, . . . , n, and the area of these rectangles does not
change if we remove a part of their boundary.

Now we define the sets qT and QT as unions of pairwise disjoint rectangles:

qT =
n⋃
i=1

q̃i, QT =
n⋃
i=1

Q̃i.

https://www.youtube.com/watch?v=sX5r7CP2oR0&t=00m01s
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The rectangles q̃i and Q̃i differ from the previously defined rectangles qi
and Qi since part of the boundary of q̃i and Q̃i can be removed. Removing
a part of the boundary is necessary to satisfy the conditions q̃i ∩ q̃j = ∅,
Q̃i ∩ Q̃j = ∅ for i 6= j. For definiteness, we can assume that, for any
index i = 2, . . . , n, the common part of the boundary of the figures qi−1, qi
(and Qi−1 and Qi) is removed from the boundary of the figure qi (and Qi,
respectively).

By construction, qT and QT are cell figures and its areas are as follows:

S(qT ) =
n∑
i=1

S(q̃i) =
n∑
i=1

S(qi) =
n∑
i=1

mi∆xi,

S(QT ) =
n∑
i=1

S(Q̃i) =
n∑
i=1

S(Qi) =
n∑
i=1

Mi∆xi.

Note that the obtained values of the areas coincide with the values of
the lower and upper Darboux sums for the function f and the partition T :
S(qT ) = S−T (f), S(QT ) = S+

T (f). The left-hand part of Fig. 7 shows the
figure qT and the right-hand part of Fig. 7 shows the figure QT .

Fig. 7. A curvilinear trapezoid and the associated cell figures qT and QT

In addition, a double embedding qT ⊂ G ⊂ QT holds for the figures qT
and QT .

So, we have constructed two cell figures qT and QT on the basis of an
arbitrary partition T , these figures satisfy the condition qT ⊂ G ⊂ QT , and
the following relations hold: S(qT ) = S−T (f), S(QT ) = S+

T (f).
By the condition of the theorem, the function f is continuous on [a, b] and

therefore is integrable. So, by virtue of the integrability criterion in terms of
Darboux sums, for any ε > 0, there exists δ > 0 such that, for any partition T
with l(T ) < δ, the estimate S+

T (f)− S−T (f) < ε holds.
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Therefore, for a given ε > 0, we can choose a partition T such that for the
cell figures qT and QT constructed on the basis of this partition and satisfying
the condition qT ⊂ G ⊂ QT , the following relation is fulfilled:

S(QT )− S(qT ) = S+
T (f)− S−T (f) < ε.

So, we have shown that the set G is a squarable figure.

Proof of the formula
of the curvilinear trapezoid area 2.8B/13:27 (07:27)

2. It remains for us to prove formula (3). Recall that the area of
the squarable figure G is the number S(G) satisfying the double inequality
S(q) ≤ S(G) ≤ S(Q) for any cell figures q and Q such that q ⊂ G ⊂ Q.

In the proof of the integrability criterion, we obtained the following relation
connecting the integral with Darboux sums:∫ b

a

f(x) dx = sup
T
S−T (f) = inf

T
S+
T (f).

The last relation can be rewritten using the areas of the cell figures qT
and QT :∫ b

a

f(x) dx = sup
T
S(qT ) = inf

T
S(QT ). (4)

Moreover, for all T , the embeddings qT ⊂ G ⊂ QT are valid.
Relation (4) means that, for any cell figures qT , QT , the double inequality

holds:

S(qT ) ≤
∫ b

a

f(x) dx ≤ S(QT ). (5)

No value A other than
∫ b
a f(x) dx can satisfy the double inequality (5).

Indeed, if we take A >
∫ b
a f(x) dx, then, by virtue of (4), the estimate

infT S(QT ) < A will be satisfied for A; therefore, there exists a partition T
for which the figure QT has an area smaller than A: S(QT ) < A. If we take
A <

∫ b
a f(x) dx, then, by (4), the estimate supT S(qT ) > A will be satisfied

for A; therefore, there exists a partition T for which the figure qT has an area
greater than A: S(qT ) > A.

Since any numbers A except
∫ b
a f(x) dx do not satisfy the double inequal-

ity (5), such numbers A also cannot satisfy the more general inequality
S(q) ≤ S(G) ≤ S(Q), where q and Q are arbitrary cell figures satisfying
the condition q ⊂ G ⊂ Q.

https://www.youtube.com/watch?v=sX5r7CP2oR0&t=13m27s
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On the other hand, the value S(G) exists, since we have already proved
that the curvilinear trapezoid G is a squarable figure. Therefore, the only
possible value for S(G) is the integral

∫ b
a f(x) dx. �

Theorem on the area of a figure
with two curvilinear boundary parts 2.8B/20:54 (05:15)

The result proved for a curvilinear trapezoid can be generalized to a figure
with two curvilinear parts of the boundary.

Theorem (on the area of a figure with two curvilinear
boundary parts).

Let the functions f and g be continuous on [a, b] and satisfy the inequality
f(x) ≤ g(x), x ∈ [a, b]. We define the figure G as follows (see the left-hand
part of Fig. 8):

G = {(x, y) : a ≤ x ≤ b, f(x) ≤ y ≤ g(x)}.
Then G is a squarable figure and its area is calculated by the formula

S(G) =

∫ b

a

(
g(x)− f(x)

)
dx.

Proof.
Perform a shift of the figure G in the positive direction of the OY axis

so that its lower curvilinear boundary is located above the OX axis. Such
a shift means that, instead of the functions f and g, we need to consider the
functions f + C and g + C with the constant C equal, for example, to the
value

∣∣minx∈[a,b] f(x)
∣∣+ 1.

Fig. 8. The figure bounded by the graphs of two continuous functions

Denote by G′ the figure obtained as a result of the described shift:

G′ = {(x, y) : a ≤ x ≤ b, f(x) + C ≤ y ≤ g(x) + C}.

https://www.youtube.com/watch?v=sX5r7CP2oR0&t=20m54s
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Then the figure G′ can be represented as the difference of two curvilinear
trapezoids (see the right-hand part of Fig. 8):

G′ = Gg \Gf ,

Gf = {(x, y) : a ≤ x ≤ b, 0 ≤ y < f(x) + C},

Gg = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ g(x) + C}.

Note that in the definition of the set Gf , we used the strict inequality
y < f(x) + C. However, this modification of the definition of a curvilinear
trapezoid will not affect its squarability and will not change its area.

Using formula (3) from the theorem on the area of a curvilinear trapezoid,
we obtain

S(Gf) =

∫ b

a

(
f(x) + C

)
dx, S(Gg) =

∫ b

a

(
g(x) + C

)
dx.

Now we use the additivity property of an area and the additivity property
of a definite integral with respect to the integrand:

S(G′) = S(Gg \Gf) = S(Gg)− S(Gf) =

=

∫ b

a

(
g(x) + C

)
dx−

∫ b

a

(
f(x) + C

)
dx =

∫ b

a

(
g(x)− f(x)

)
dx.

It remains for us to notice that, due to the invariance property, the area
of the figure does not change with its shift, therefore S(G) = S(G′). �

Calculation of the area of an ellipse.
Circular sector and curvilinear sector 2.8B/26:09 (07:57)

Find the area of the ellipse Gab defined by the equation x2

a2 + y2

b2 = 1 (Fig. 9).
For symmetry reasons, it is enough for us to find the area of the part G1 of
the ellipse, which is located in the first coordinate quarter, and multiply it
by 4: S(Gab) = 4S(G1).

Fig. 9. Ellipse

https://www.youtube.com/watch?v=sX5r7CP2oR0&t=26m09s
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The set G1 can be described as follows:

G1 =
{

(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b

√
1− x2

a2

}
.

Therefore, this set is a curvilinear trapezoid and its area is calculated by
the formula

S(G1) =

∫ a

0

b

√
1− x2

a2
dx.

In the resulting integral, we can make the variable change x = a sin t.
Then dx = a cos t dt, the integration limits will change to 0 and π

2 , and the

expression
√

1− x2

a2 will take the form
√

1− sin2 t = cos t (when extracting
the square root, we use the “plus” sign, since the cosine takes non-negative
values on the segment

[
0, π2
]
). So,∫ a

0

b

√
1− x2

a2
dx =

∫ π
2

0

ab cos2 t dt =
ab

2

∫ π
2

0

(1 + cos 2t) dt =

=
ab

2

(
t+

sin 2t

2

)∣∣∣∣π2
0

=
ab

2
· π

2
=
πab

4
.

Finally we get

S(Gab) = 4S(G1) = 4 · πab
4

= πab.

Remark.
In the case a = b = R, we obtain the well-known formula for the area of

the circle GR: S(GR) = πR2.
Recall also the formula for the area of the circular sector Gα

R with an an-
gle α and a radius R:

S(Gα
R) = πR2 · α

2π
=
R2α

2
. (6)

Definition.
Let the function f(ϕ) be defined and continuous on the segment [α, β],

where 0 ≤ α < β < 2π. The curvilinear sector (Fig. 10) is the set G defined
in the polar coordinate system (ρ, ϕ) as follows:

G = {(ρ, ϕ) : α ≤ ϕ ≤ β, 0 ≤ ρ ≤ f(ϕ)}. (7)

This notion is a generalization of the notion of a circular sector; if the
function f is a constant, f(ϕ) ≡ R, then the corresponding curvilinear sector
is a circular sector with an angle β − α and a radius R.
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Fig. 10. Curvilinear sector

Theorem on the area of a curvilinear sector:
formulation and proof of squarability 2.9A/00:00 (15:06)

Theorem (on the area of a curvilinear sector).
The curvilinear sector G defined by formula (7) for the function f contin-

uous on the segment [α, β] is a squarable figure and its area is calculated by
the formula

S(G) =
1

2

∫ β

α

f 2(x) dx. (8)

Remark.
If the function f is constant, i. e., f(ϕ) ≡ R, then formula (8) turns into

formula (6) of the area of the circular sector with an angle β − α.
Proof.
1. In this case, we cannot construct simple cell figures that are “close” to

the initial curvilinear sector. However, we can use simple squarable figures and
then apply the squarability criterion. Such squarable figures can be composed
of circular sectors, for which we have already established the squarability.

Let T be a partition of the segment [α, β]:

α = x0 < x1 < · · · < xn−1 < xn = β.

In this case, the segment ∆i, i = 1, . . . , n, corresponds to various angles ϕ
in the range from xi−1 to xi. For each segment ∆i, we define two numbers:

mi = min
ϕ∈∆i

f(ϕ), Mi = max
ϕ∈∆i

f(ϕ).

We define the following circular sectors (Fig. 11):

qi = {(ρ, ϕ) : ϕ ∈ ∆i, 0 ≤ ρ ≤ mi},

Qi = {(ρ, ϕ) : ϕ ∈ ∆i, 0 ≤ ρ ≤Mi}.

https://www.youtube.com/watch?v=3Vpk5JvFLaM&t=00m01s
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By formula (6), we have S(qi) = 1
2m

2
i∆xi, S(Qi) = 1

2M
2
i ∆xi, i = 1, . . . , n,

and the areas of these sectors will not change if we remove part of their
boundaries.

Now we define the sets qT and QT as unions of pairwise disjoint circular
sectors:

qT =
n⋃
i=1

q̃i, QT =
n⋃
i=1

Q̃i.

Fig. 11. Curvilinear sector with a set of auxiliary circular sectors

The sectors q̃i and Q̃i differ from the previously defined sectors qi and Qi

since part of the boundary of q̃i and Q̃i can be removed. For definiteness, we
can assume that, for any index i = 2, . . . , n, the common part of the boundary
of the figures qi−1, qi (and Qi−1 and Qi) is removed from the boundary of the
figure qi (and Qi, respectively).

The figures qT and QT are squarable as a union of squarable figures. The
circular sectors included into them are pairwise disjoint, therefore, due to the
property of area additivity, we obtain

S(qT ) =
n∑
i=1

S(q̃i) =
n∑
i=1

S(qi) =
1

2

n∑
i=1

m2
i∆xi,

S(QT ) =
n∑
i=1

S(Q̃i) =
n∑
i=1

S(Qi) =
1

2

n∑
i=1

M 2
i ∆xi.

The obtained values of the areas coincide with the values of the lower
and upper Darboux sums for the function 1

2f
2 and the partition T :

S(qT ) = S−T
(

1
2f

2
)
, S(QT ) = S+

T

(
1
2f

2
)
.

In addition, a double embedding qT ⊂ G ⊂ QT holds for the figures qT
and QT .
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So, we have constructed two squarable figures qT and QT on the basis of
an arbitrary partition T , these figures satisfy the condition qT ⊂ G ⊂ QT ,
and the following relations hold: S(qT ) = S−T

(
1
2f

2
)
, S(QT ) = S+

T

(
1
2f

2
)
.

By the condition of the theorem, the function 1
2f

2 is continuous on [α, β]
and therefore is integrable. So, by virtue of the integrability criterion in
terms of Darboux sums, for any ε > 0, there exists δ > 0 such that, for any
partition T with l(T ) < δ, the estimate S+

T

(
1
2f

2
)
− S−T

(
1
2f

2
)
< ε holds.

Therefore, for a given ε > 0, we can choose a partition T such that, for
the squarable figures qT and QT constructed on the basis of this partition and
satisfying the condition qT ⊂ G ⊂ QT , the following relation holds:

S(QT )− S(qT ) = S+
T

(1

2
f 2
)
− S−T

(1

2
f 2
)
< ε.

We have proved that, for any ε > 0, there exist squarable figures q, Q
that satisfy the conditions q ⊂ G ⊂ Q, S(Q) − S(q) < ε. By virtue of the
squarability criterion, this means that the set G is a squarable figure.

Proof of the curvilinear sector area formula 2.9A/15:06 (04:48)

2. Formula (8) can be proved by the same reasoning as formula (3) from
the theorem on the area of a curvilinear trapezoid, if we replace the segment
[a, b] with [α, β] and the function f with 1

2f
2. �

Volume calculation

Cubable solids 2.9A/19:54 (11:52)

As with the study of areas, we begin with auxiliary definitions associated
with sets in three-dimensional space.

A solid is any nonempty bounded set of points in three-dimensional space.
Consider a cuboid (a rectangular parallelepiped) P with edges parallel to

the coordinate axes:

P = {(x, y, z) : a1 ≤ x ≤ b1, a2 ≤ y ≤ b2, a3 ≤ z ≤ b3}.
The volume of the cuboid P (notation V (P )) is defined as follows:

V (P )
def
= (b1 − a1)(b2 − a2)(b3 − a3). (9)

We will also assume that formula (9) determines the volume of the cuboid
even if its boundary (or part of it) does not belong to this cuboid. In partic-
ular, for the cuboid P = {(x, y, z) : a1 < x < b1, a2 < y < b2, a3 < z < b3},
the volume is also calculated by formula (9).

https://www.youtube.com/watch?v=3Vpk5JvFLaM&t=15m06s
https://www.youtube.com/watch?v=3Vpk5JvFLaM&t=19m54s
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A cell solid is a solid Q, which can be represented as the union of a finite
number of pairwise disjoint cuboids Pi, i = 1, . . . , n, with edges parallel to
the coordinate axes:

Q =
n⋃
i=1

Pi, Pi ∩ Pj = ∅, i 6= j.

Part of the boundary of the cuboid Pi may not belong to this cuboid.
By definition, the volume of the cell solid Q, which is the union of pairwise

disjoint cuboids, is the sum of the volumes of these cuboids (notation V (Q)):

V (Q)
def
=

n∑
i=1

V (Pi).

This definition of the volume of the cell solid is well-posed, since the fol-
lowing statement can be proved: for any method of dividing the cell solid into
pairwise disjoint cuboids, the sum of the volumes of these cuboids will be the
same value.

Now we give two basic definitions: a cubable solid and its volume.
A solid Ω is called cubable if, for any ε > 0, there exists a pair of cell

solids q, Q such that q ⊂ Ω ⊂ Q and V (Q)− V (q) < ε.
The volume of a cubable solid Ω is the number V (Ω) satisfying the double

inequality V (q) ≤ V (Ω) ≤ V (Q) for any cell solids q, Q such that q ⊂ Ω ⊂ Q.
Theorem (on the well-posedness of the definition of the

cubable solid volume).
If Ω is a cubable solid, then the number V (Ω) exists and is unique.
The proof of this theorem is similar to the proof of the theorem on the

well-posedness of the definition of the squarable figure area. �
There exists a cubability criterion similar to the squarability criterion given

above, which we also accept without proof.
Theorem (criterion for the cubability of a solid).
The solid Ω is cubable if and only if, for any ε > 0, there exist cubable

solids q, Q such that q ⊂ Ω ⊂ Q, V (Q)− V (q) < ε.
Remark.
It can be proved that the volume of the cubable solid has the same addi-

tivity and invariance properties as the area of the squarable figure.

Cylindrical solid and its volume 2.9B/00:00 (13:57)

Definition.
Let G be some figure located on the coordinate plane OXY . Perform its

shift by the distance h in the positive direction of the OZ axis (Fig. 12).

https://www.youtube.com/watch?v=6VT320AFKbw&t=00m01s
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Fig. 12. The cylindrical solid Ω

All points through which the figure G passes as a result of the described
shift form a solid Ω called a cylindrical solid with the base G and height h:

Ω = {(x, y, z) : (x, y) ∈ G, 0 ≤ z ≤ h}.
Theorem (on the volume of a cylindrical solid).
If the base G of the cylindrical solid Ω is a squarable figure, then the

cylindrical solid Ω is cubable and its volume is calculated by the formula

V (Ω) = S(G)h.

Proof.
By condition, the base G is a squarable figure; therefore, for any ε > 0,

there exist cell figures q and Q that satisfy two conditions:

q ⊂ G ⊂ Q, S(Q)− S(q) <
ε

h
. (10)

We need to prove that, for any ε > 0, there exist cell solids q̃ and Q̃ that
satisfy the following conditions:

q̃ ⊂ Ω ⊂ Q̃, V (Q̃)− V (q̃) < ε. (11)

We choose some ε > 0, take cell figures q andQ that satisfy conditions (10),
and construct cell solids q̃ and Q̃ performing a shift of figures q and Q to the
distance h in the positive direction of the OZ axis:

q̃ = {(x, y, z) : (x, y) ∈ q, 0 ≤ z ≤ h},
Q̃ = {(x, y, z) : (x, y) ∈ Q, 0 ≤ z ≤ h}.

As a result, we obtain cylindrical solids, which are obviously cell ones, since
with such a shift any of the pairwise disjoint rectangles Π, which form the
cell figure q or Q, is transformed into a cuboid with the base Π and height h
and the union of such (pairwise disjoint) cuboids coincides with the solid q̃
or Q̃, respectively.
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Moreover, if the area of the rectangle Π is equal to s, then the volume
of the cuboid with the base Π and height h will be equal to sh. Thus, the
volume of the cell solid q̃ or Q̃ can be obtained by multiplying the area of its
base (S(q) or S(Q), respectively) by h:

V (q̃) = S(q)h, V (Q̃) = S(Q)h. (12)
Obviously, for the constructed cell solids q̃ and Q̃, the embedding chain

from conditions (11) holds: q̃ ⊂ Ω ⊂ Q̃. An estimate of the difference
V (Q̃) − V (q̃) from (11) can be obtained by multiplying both parts of the
estimate from (10) by h:

S(Q)h− S(q)h <
ε

h
· h, V (Q̃)− V (q̃) < ε.

So, we have proved that, for arbitrary ε > 0, there exist cell solids q̃ and Q̃
that satisfy conditions (11). Therefore, the cylindrical solid Ω is cubable. It
remains to prove the formula for its volume.

By definition of the area of the squarable figure, the value of the area S(G)
satisfies the following double inequality, which is valid for any cell figures q
and Q such that q ⊂ G ⊂ Q:

S(q) ≤ S(G) ≤ S(Q). (13)
Moreover, there exists a unique number S(G) satisfying condition (13) for

any q and Q.
Multiply all parts of the double inequality (13) by h:

S(q)h ≤ S(G)h ≤ S(Q)h.
Given the previously obtained relations (12), the last inequality can be

rewritten in the form
V (q̃) ≤ S(G)h ≤ V (Q̃). (14)

We get that the value S(G)h is the only value that satisfies the double
inequality (14) for all the cell solids q̃ and Q̃ described above.

Since we have already proved that the solid Ω is cubable, it can
be stated that there exists a number V (Ω) satisfying the condition
V (q̃) ≤ V (Ω) ≤ V (Q̃) for any cell solids q̃ and Q̃ such that q̃ ⊂ Ω ⊂ Q̃.
Therefore, the only possible value for V (Ω) is S(G)h. �

Remark.
The simplest case of a cylindrical solid is a circular cylinder Ωh,R with

height h and a base that is a circle of radius R. The volume of such a circular
cylinder is calculated by the formula

V (Ωh,R) = πR2h. (15)
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Volume of a solid of revolution 2.9B/13:57 (09:58)

Definition.
Consider a curvilinear trapezoid defined by the continuous function f(x)

on the segment [a, b] (we assume that f(x) ≥ 0) and located on the plane
OXY (thus, the curvilinear part of the trapezoid is a graph y = f(x)). We
will rotate this curvilinear trapezoid around the OX axis. As a result, we get
a three-dimensional solid Ω (Fig. 13) called a solid of revolution:

Ω =
{

(x, y, z) : a ≤ x ≤ b, 0 ≤
√
y2 + z2 ≤ f(x)

}
. (16)

Fig. 13. The solid of revolution Ω

Theorem (on the volume of a solid of revolution).
The solid of revolution Ω defined by formula (16) for a function f contin-

uous on a segment [a, b] is a cubable solid and its volume is calculated by the
formula

V (Ω) = π

∫ b

a

f 2(x) dx. (17)

Remark.
If the function f is constant, i. e., f(x) ≡ R, then formula (17) turns into

formula (15) of the volume of a circular cylinder with height b− a.
Proof.
We use the cubability criterion and show that, for any ε > 0, there exist

cubable solids q and Q such that q ⊂ Ω ⊂ Q and V (Q)− V (q) < ε.
The required cubable solids can be composed of circular cylinders, for

which we have already established cubability and obtained the volume for-
mula (15).

Let T be a partition of the segment [a, b]:

a = x0 < x1 < · · · < xn−1 < xn = b.

For each segment ∆i, i = 1, . . . , n, we define two numbers:

https://www.youtube.com/watch?v=6VT320AFKbw&t=13m57s
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mi = min
x∈∆i

f(x), Mi = max
x∈∆i

f(x).

We define the following circular cylinders (Fig. 14):

qi =
{

(x, y, z) : x ∈ ∆i, 0 ≤
√
y2 + z2 ≤ mi

}
,

Qi =
{

(x, y, z) : x ∈ ∆i, 0 ≤
√
y2 + z2 ≤Mi

}
.

Fig. 14. Circular cylinders qi and Qi

By formula (15), we have V (qi) = πm2
i∆xi, V (Qi) = πM 2

i ∆xi,
i = 1, . . . , n, moreover, the volume of these cylinders does not change if
we remove part of their boundaries.

Now we define the sets qT and QT as unions of pairwise disjoint circular
cylinders:

qT =
n⋃
i=1

q̃i, QT =
n⋃
i=1

Q̃i.

The cylinders q̃i and Q̃i differ from the previously defined cylinders qi
and Qi since part of the boundary of q̃i and Q̃i can be removed. For defi-
niteness, we can assume that, for any index i = 2, . . . , n, the common part
of the boundary of the solids qi−1 and qi (and Qi−1 and Qi) is removed from
the boundary of the solid qi (and Qi, respectively).

The solids qT and QT are cubable as the unions of cubable solids. The
circular cylinders included into them are pairwise disjoint, therefore, due to
the property of volume additivity, we obtain

V (qT ) =
n∑
i=1

V (q̃i) =
n∑
i=1

V (qi) = π
n∑
i=1

m2
i∆xi,

V (QT ) =
n∑
i=1

V (Q̃i) =
n∑
i=1

V (Qi) = π
n∑
i=1

M 2
i ∆xi.
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The obtained values of the volumes coincide with the values of the
lower and upper Darboux sums for the function πf 2 and the partition T :
V (qT ) = S−T

(
πf 2
)
, V (QT ) = S+

T

(
πf 2
)
.

In addition, a double embedding qT ⊂ Ω ⊂ QT holds for the solids qT
and QT .

So, we have constructed two cubable solids qT and QT on the basis of an
arbitrary partition T , these solids satisfy the condition qT ⊂ Ω ⊂ QT , and
the following relations hold: V (qT ) = S−T

(
πf 2
)
, V (QT ) = S+

T

(
πf 2
)
.

By the condition of the theorem, the function πf 2 is continuous on [a, b]
and therefore is integrable. So, by virtue of the integrability criterion in
terms of Darboux sums, for any ε > 0, there exists δ > 0 such that, for any
partition T with l(T ) < δ, the estimate S+

T

(
πf 2
)
− S−T

(
πf 2
)
< ε holds.

Therefore, for a given ε > 0, we can choose a partition T such that, for
the cubable solids qT and QT constructed on the basis of this partition and
satisfying the condition qT ⊂ Ω ⊂ QT , the following relation is fulfilled:

V (QT )− V (qT ) = S+
T

(
πf 2
)
− S−T

(
πf 2
)
< ε.

We have shown that, for any ε > 0, there exist cubable solids q and Q
that satisfy the conditions q ⊂ Ω ⊂ Q, V (Q) − V (q) < ε. By virtue of the
cubability criterion, this means that the set Ω is a cubable solid.

Formula (17) can be proved by the same reasoning as formula (3) from the
theorem on the area of a curvilinear trapezoid if we replace the function f
with πf 2. �

Volume of a solid
with given cross-sectional areas 2.9B/23:55 (05:47)

In conclusion, we formulate another theorem related to the calculation of
volumes, which we accept without proof (a proof of this theorem is given, for
example, in [18, Ch. 7, Sec. 37.2]).

Theorem (on the volume of a solid with given cross-
sectional areas).

Let the solid Ω be enclosed between planes that are perpendicular to
the OX axis and intersect this axis at points x = a and x = b (as usual,
we assume that a < b). We denote by Gx a cross-section of the solid Ω by the
plane perpendicular to the OX axis and passing through the point x ∈ [a, b]
on this axis (Fig. 15).

https://www.youtube.com/watch?v=6VT320AFKbw&t=23m55s
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Fig. 15. A solid with given cross-sectional areas

Suppose that, for any point x ∈ [a, b], the figure Gx is squarable and its
area s(x) is a continuous function on the segment [a, b]. Suppose, in addition,
that, for any α, β ∈ [a, b], the following condition is fulfilled: when projecting
the figures Gα and Gβ on a plane perpendicular to the OX axis, we get
figures, one of which is embedded in the other. Then the solid Ω is cubable
and its volume is calculated by the following formula:

V (Ω) =

∫ b

a

s(x) dx.
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Vector functions and their properties

Vector functions 2.9B/29:42 (04:28)

Definition.
Any map r acting from some set X ⊂ R into R3 is called a vector function.
When considering vector functions, we always assume that their domain

of definition X is some segment [α, β].
The name “vector function” means that the value of the vector function

r(t) can be interpreted not only as some pointM in three-dimensional space,
but also as a radius vector OM with the origin (0, 0, 0) as the starting point
and the point M as the ending point.

So, we will interpret the values of the vector function as radius vectors.
To emphasize this fact, we will use the overline sign for the notation of vector
functions.

If all the values of the vector function lie in one plane, then we assume that
it acts in R2 and write its values in the form of a vector with two coordinates.

The limit
of a vector function 2.9B/34:10 (07:39), 2.10A/00:00 (02:14)

Definition.
The vector a is called the limit of the vector function r(t) as t → t0,

t0 ∈ [α, β], (notation limt→t0 r(t) = a) if limt→t0 |r(t)− a| = 0. Here,
|r(t)− a| denotes the length of the vector r(t)− a.

Thus, the limit of the vector function r(t) is defined through the limit of
the numerical function |r(t)− a|.

https://www.youtube.com/watch?v=6VT320AFKbw&t=29m42s
https://www.youtube.com/watch?v=6VT320AFKbw&t=34m10s
https://www.youtube.com/watch?v=Q6sxEiXVzhc&t=00m01s
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Convergence criterion of a vector function
in terms of its coordinate functions 2.10A/02:14 (06:17)

We also introduce the notation of the vector function r(t) in the coordinate
form: r(t) =

(
x(t), y(t), z(t)

)
. Here x(t), y(t), z(t) are numerical functions

called coordinate functions, which are defined, like the vector function r(t),
on the segment [α, β].

We formulate and prove a simple theorem that allows us to reduce the
study of the limit of a vector function to the study of the limits of its coordi-
nate functions.

Theorem (a criterion for the convergence of a vector
function in terms of its coordinate functions).

Let r(t) : [α, β] → R be a vector function, r(t) =
(
x(t), y(t), z(t)

)
, let

a ∈ R3 be a vector, a = (a1, a2, a3).
The limit of the vector function r(t) is equal to a, as t→ t0, if and only if

the limits of its coordinate functions, as t→ t0, are equal to the corresponding
coordinates of the vector a:(

lim
t→t0

r(t) = a
)
⇔
(

lim
t→t0

x(t) = a1, lim
t→t0

y(t) = a2, lim
t→t0

z(t) = a3

)
.

Proof.
1. Sufficiency. Let us write the expression |r(t)− a| in coordinate form:

|r(t)− a| =
√(

x(t)− a1

)2
+
(
y(t)− a2

)2
+
(
z(t)− a3

)2 . (1)

If the limits of the coordinate functions are equal to the coordinates of the
vector a, then each of the differences on the right-hand side of equality (1) ap-
proaches 0, therefore, the left-hand side also approaches 0. By definition, this
means that the vector function r(t) approaches the vector a. The sufficiency
is proved.

2. The necessity. Equation (1) yields the estimates

|x(t)− a1| ≤ |r(t)− a|,

|y(t)− a2| ≤ |r(t)− a|,

|z(t)− a3| ≤ |r(t)− a|.

Thus, if the vector function r(t) approaches the vector a, then the differ-
ences indicated on the left-hand side of these estimates also approach 0 (by
the theorem on passing to the limit in inequalities) and this is equivalent to
the fact that the coordinate functions approach the corresponding coordinates
of the vector a. The necessity is proved. �

https://www.youtube.com/watch?v=Q6sxEiXVzhc&t=02m14s
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Arithmetic properties of the limit
of vector functions 2.10A/08:31 (05:53)

Theorem (on arithmetic properties of the limit of vector
functions).

Let limt→t0 r1(t) = a, limt→t0 r2(t) = b, limt→t0 f(t) = α. Then the follow-
ing relations hold:

lim
t→t0

(
r1(t) + r2(t)

)
= a+ b,

lim
t→t0

f(t)r1(t) = αa,

lim
t→t0

(
r1(t), r2(t)

)
= (a, b).

In the last equality, (a, b) denotes the scalar product of the vectors a and b.
Proof.
We prove the last equality (the other equalities are proved similarly). Let

ri(t) =
(
xi(t), yi(t), zi(t)

)
, i = 1, 2, a = (a1, a2, a3) , b = (b1, b2, b3). Then,

by virtue of the convergence criterion of a vector function in terms of its
coordinate functions, the following limit relations are satisfied:

lim
t→t0

x1(t) = a1, lim
t→t0

y1(t) = a2, lim
t→t0

z1(t) = a3,

lim
t→t0

x2(t) = b1, lim
t→t0

y2(t) = b2, lim
t→t0

z2(t) = b3. (2)

Let us write the scalar product in coordinate form:(
r1(t), r2(t)

)
= x1(t)x2(t) + y1(t)y2(t) + z1(t)z2(t).

Taking into account the limit relations (2) and the theorem on the arith-
metic properties of the limit of numerical functions, we obtain that the right-
hand side of the resulting equality approaches the expression a1b1+a2b2+a3b3.
This expression is the coordinate form of the scalar product (a, b). �

Differentiable vector functions

Continuity and differentiability
of vector functions 2.10A/14:24 (06:37)

Definition.
The vector function r(t) is called continuous at the point t0 ∈ [α, β] if

limt→t0 r(t) = r(t0).
Using the criterion for the convergence of a vector function in terms of

its coordinate functions, it is easy to show that all the properties previously

https://www.youtube.com/watch?v=Q6sxEiXVzhc&t=08m31s
https://www.youtube.com/watch?v=Q6sxEiXVzhc&t=14m24s
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established for continuous numerical functions remain valid for continuous
vector functions.

In particular, arithmetic properties are satisfied for continuous vector func-
tions. One of these properties is the following: if the vector functions r1(t) and
r2(t) are continuous at the point t0, then their scalar product

(
r1(t), r2(t)

)
is

a continuous numerical function at the point t0.
Definition.
If there exists a limit lim∆x→0

1
∆x

(
r(t0+∆x)−r(t0)

)
for the vector function

r(t), then this limit is called the derivative of the vector function r at the
point t0 and is denoted by r′(t0).

It follows from the criterion for the convergence of a vector function in
terms of its coordinate functions that the derivative of the vector function
r(t) at t0 exists if and only if there exist derivatives of its coordinate functions
x(t), y(t), z(t); moreover, the following equality holds:

r′(t0) =
(
x′(t0), y

′(t0), z
′(t0)

)
.

Therefore, we can give the following definition of the differentiability of
a vector function: a vector function is called differentiable at the point t0 if
all its coordinate functions are differentiable at this point.

Arithmetic properties of differentiable
vector functions 2.10A/21:01 (05:13)

Most of the properties previously established for differentiable numerical
functions remain valid for differentiable vector functions. In particular, arith-
metic properties are fulfilled for them.

Theorem (on arithmetic properties of differentiable vec-
tor functions).

Let the vector functions r1, r2 and the numerical function f be differen-
tiable at the point t0. Then the vector functions r1+r2, fr1 and the numerical
function (r1, r2) are also differentiable at the point t0 and the following rela-
tions hold:(

r1(t0) + r2(t0)
)′

= r′1(t0) + r′2(t0),(
f(t0)r1(t0)

)′
= f ′(t0)r1(t0) + f(t0)r

′
1(t0),(

r1(t0), r2(t0)
)′

=
(
r′1(t0), r2(t0)

)
+
(
r1(t0), r

′
2(t0)

)
.

https://www.youtube.com/watch?v=Q6sxEiXVzhc&t=21m01s
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Proof.
As in the case of the theorem on the arithmetic properties of the limit

of vector functions, it suffices to use the coordinate representations of all
expressions and take into account that the differentiability of a vector function
is equivalent to the differentiability of its coordinate functions. Let us prove,
for example, the last relation using the same notation for coordinate functions
as in the theorem on arithmetic properties of the limit of vector functions (in
further transformations we omit the argument t0 for brevity):(

r1(t0), r2(t0)
)′

=
(
x1x2 + y1y2 + z1z2

)′
=

=
(
x1x2

)′
+
(
y1y2

)′
+
(
z1z2

)′
=

= x′1x2 + x1x
′
2 + y′1y2 + y1y

′
2 + z′1z2 + z1z

′
2 =

=
(
x′1x2 + y′1y2 + z′1z2

)
+
(
x1x

′
2 + y1y

′
2 + z1z

′
2

)
=

=
(
r′1(t0), r2(t0)

)
+
(
r1(t0)r

′
2(t0)

)
.

The remaining relations are proved similarly. �

Lagrange’s theorem for vector functions

Violation of the equality from Lagrange’s
theorem in the case of vector functions 2.10A/26:14 (06:35)

Not all properties of numerical differentiable functions are satisfied in the
case of vector functions. In particular, the equality from Lagrange’s theorem
for numerical functions does not hold for vector functions.

Recall Lagrange’s theorem for numerical functions. If the function f is
continuous on the segment [a, b] and differentiable on the interval (a, b), then
there exists a point ξ ∈ (a, b) for which the following equality holds:

f(b)− f(a) = f ′(ξ)(b− a). (3)

This equality, generally speaking, does not hold for differentiable vector
functions. To do this, it is enough to give an example of a vector function for
which this equality is not true.

Consider the vector function r(t) = (cos t, sin t), t ∈ [0, 2π]. All values
of this vector function lie on one plane, therefore, we use two coordinate
functions to define it.

The endpoints of the vectors r(t) lie on the unit circle with the center at
the origin (0, 0). The conditions of Lagrange’s theorem related to continuity
and differentiability are satisfied, since they are satisfied for the coordinate
functions cos t and sin t.

https://www.youtube.com/watch?v=Q6sxEiXVzhc&t=26m14s
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Further, r(0) = r(2π) = (1, 0), so the difference r(2π) − r(0) is a zero
vector. If equality (3) holds for the function r, then this would mean that
there exists a point ξ ∈ (0, 2π) at which the value of the vector function r′(ξ)
is also equal to the zero vector. But such a point does not exist, since for any
t ∈ (0, 2π), we have

|r′(t)| = |(cos′ t, sin′ t)| = |(− sin t, cos t)| =
√

sin2 t+ cos2 t = 1.

Thus, |r′(t)| 6= 0 for any t ∈ (0, 2π), therefore, equality (3) is not true for
the function r.

A version of Lagrange’s theorem for vector functions
2.10A/32:49 (10:25), 2.10B/00:00 (03:45)

However, for vector functions, the “weakened” version of Lagrange’s theo-
rem holds, which contains the inequality instead of equality (3).

Theorem (Lagrange’s theorem for vector functions).
Let the vector function r(t) be continuous on the segment [α, β] and dif-

ferentiable on the interval (α, β). Then there exists a point ξ ∈ (α, β) for
which the following inequality holds:

|r(β)− r(α)| ≤ |r′(ξ)| (β − α). (4)

Proof.
We introduce the auxiliary numerical function ϕ(t) =

(
r(β)− r(α), r(t)

)
.

The function ϕ(t) satisfies all the conditions of Lagrange’s theorem for numer-
ical functions on the segment [α, β] (this follows from the above properties
of continuous and differentiable vector functions). Therefore, there exists
a point ξ ∈ (α, β) for which the equality holds:

ϕ(β)− ϕ(α) = ϕ′(ξ)(β − α). (5)

Given the definition of the function ϕ(t) and the properties of the scalar
product, the left-hand side of the last equality can be represented as follows:

ϕ(β)− ϕ(α) =
(
r(β)− r(α), r(β)

)
−
(
r(β)− r(α), r(α)

)
=

=
(
r(β)− r(α), r(β)− r(α)

)
= |r(β)− r(α)|2.

Find the value of ϕ′(ξ) using the formula for the derivative of the scalar
product:

ϕ′(ξ) =
(
r(β)− r(α), r(ξ)

)′
=

=
(
(r(β)− r(α))′, r(ξ)

)
+
(
r(β)− r(α), r′(ξ)

)
=

=
(
0, r(ξ)

)
+
(
r(β)− r(α), r′(ξ)

)
=
(
r(β)− r(α), r′(ξ)

)
.

https://www.youtube.com/watch?v=Q6sxEiXVzhc&t=32m49s
https://www.youtube.com/watch?v=xb8oN2tz4Lw&t=00m01s
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Thus, equality (5) can be rewritten in the following form:

|r(β)− r(α)|2 =
(
r(β)− r(α), r′(ξ)

)
(β − α). (6)

Note that since the left-hand side of the equality is non-negative and the
difference β − α is positive, the scalar product

(
r(β) − r(α), r′(ξ)

)
is also

non-negative.
Let us estimate this scalar product from above using the well-known

Cauchy–Bunyakovsky inequality, which means that, for any vectors a and b,
the estimate

∣∣(a, b)∣∣ ≤ |a| · |b| holds:(
r(β)− r(α), r′(ξ)

)
≤ |r(β)− r(α)| · |r′(ξ)|.

This estimate and equality (6) imply the estimate

|r(β)− r(α)|2 ≤ |r(β)− r(α)| · |r′(ξ)| (β − α).

If the value |r(β)− r(α)| is 0, then the resulting estimate (4) is obviously
satisfied. If the value is not equal to 0, then both sides of the last equality
can be divided by this value and as a result we obtain the estimate (4). �

Curves in three-dimensional space. Rectifiable curves

Simple curves 2.10B/03:45 (05:36)

Definition.
Let the vector function r(t) act from [α, β] to r([α, β]) and be contin-

uous and one-to-one. Recall that the one-to-one condition implies that
r(t1) 6= r(t2) for t1 6= t2.

We denote by M(t) the point that is the endpoint of the radius vector
r(t): r(t) = OM(t). Then, due to the continuity of the vector function r(t),
the set of endpoints of the vector function r(t), when t changes from α to β,
will be a continuous line starting at the point M(α) and ending at the point
M(β) and, due to the one-to-one property of the vector function r(t), this
line will not have self-intersections. This set of points is called an oriented
simple curve Γ specified by a vector function r on the segment [α, β] (Fig. 16):

Γ =
{
M(t) : r(t) = OM(t), t ∈ [α, β]

}
.

The pointM(α) is called the starting point of the curve Γ, the pointM(β)
is called its ending point.

As a rule, we will omit the word “oriented”.

https://www.youtube.com/watch?v=xb8oN2tz4Lw&t=03m45s


9. Curves and calculating their length 113

Fig. 16. The oriented simple curve Γ

Remark.
If the vector function r(t) is not one-to-one, then the line consisting of

points M(t) will have self-intersections. However, if there are a finite set
of such intersections, then this line can always be represented as the union
of a finite number of oriented simple curves, each of which corresponds to
the values of t from some segment [αi, βi] embedded in [α, β]. Thus, finding
formulas for the length of a simple curve, we can apply these results to a wider
class of curves having a finite number of self-intersections.

Rectifiable curve and its length 2.10B/09:21 (07:27)

Consider a simple curve Γ specified by the vector function r(t) for
t ∈ [α, β]. This curve has the starting point A and the ending point B. Let T
be a partition of the segment [α, β]: α = t0 < t1 < · · · < tn−1 < tn = β. The
partition T corresponds to points on the curve Γ as follows: M0 = M(t0) = A,
M1 = M(t1), . . . , Mn−1 = M(tn−1), Mn = M(tn) = B.

Consider a polyline (a polygonal chain) with vertices at the points Mi,
i = 0, . . . , n (see the left-hand part of Fig. 17). The length LT of this polyline
is equal to

LT =
n∑
i=1

|Mi−1Mi| =
n∑
i=1

|r(ti)− r(ti−1)|.

Fig. 17. The simple curve Γ and associated polylines

https://www.youtube.com/watch?v=xb8oN2tz4Lw&t=09m21s
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Note that if we add new points to the partition T , then, due to the triangle
inequality, the length of the polyline can either remain unchanged or increase
(see the right-hand part of Fig. 17).

Definition.
If the set of LT values for all possible partitions of T is bounded from

above, then the curve Γ is called rectifiable and its length L(Γ) is defined as
follows:

L(Γ)
def
= sup

T
LT .

We accept without proof the following important property of the length
of a curve.

Theorem (on the additivity of the length of a curve).
If the curve Γ is rectifiable and some point M ′ divides it into two parts Γ1

and Γ2, then the curves Γ1 and Γ2 are also rectifiable and the following relation
holds:

L(Γ) = L(Γ1) + L(Γ2).

This property is called the additivity of the curve length. Its proof is given,
for example, in [18, Ch. 4, Sec. 22.5].

Properties of continuously differentiable curves

The theorem on the rectifiability
of a continuously differentiable curve 2.10B/16:48 (10:04)

It turns out that it is sufficient for the rectifiability of a curve that the vec-
tor function specifying it is continuously differentiable on [α, β]. Recall that
the condition of continuously differentiability means that the vector function
has a continuous derivative.

A curve defined by a continuously differentiable vector function is called
continuously differentiable (or smooth).

Theorem (on the rectifiability of a continuously differen-
tiable curve).

If the curve Γ is specified by the continuously differentiable vector function
r(t) for t ∈ [α, β], then it is rectifiable and the following estimate holds for
its length L(Γ):

L(Γ) ≤ max
t∈[α,β]

|r′(t)| · (β − α). (7)

https://www.youtube.com/watch?v=xb8oN2tz4Lw&t=16m48s
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Proof.
It is enough for us to prove that the value on the right-hand side of (7) is

an upper bound for the length of any polyline associated with the curve Γ.
Consider some partition T of the segment [α, β] and the polyline

M0M1 . . .Mn determined by this partition.
Using Lagrange’s theorem for vector functions, we can estimate the length

of the segment Mi−1Mi, i = 1, . . . , n, as follows:

|Mi−1Mi| = |r(ti)− r(ti−1)| ≤ |r′(ξi)| (ti − ti−1).

Here ξi is some point lying on the interval (ti−1, ti).
Since, by condition, the vector function r(t) is continuously differentiable,

the vector function r′(t) and its absolute value |r′(t)| are continuous on [α, β].
Therefore, the function |r′(t)| takes its maximum value on the segment [α, β]
and, for any point ξ ∈ [α, β], we obtain

|r′(ξ)| ≤ max
t∈[α,β]

|r′(t)|.

Thus, the following estimate holds for the length |Mi−1Mi|:

|Mi−1Mi| ≤ max
t∈[α,β]

|r′(t)| (ti − ti−1).

Summarize these inequalities for i = 1, . . . , n:
n∑
i=1

|Mi−1Mi| ≤ max
t∈[α,β]

|r′(t)|
n∑
i=1

(ti − ti−1).

On the left-hand side we got the length LT of the polyline. If we write the
summands of the sum on the right-hand side in the reverse order, then it is
easy to verify that only two summands remain:

n∑
i−1

(ti−ti−1) = tn−tn−1 +tn−1−tn−2 + · · ·+t1−t0 = tn−t0 = β−α.

Consequently, for any partition T , we get the estimate

LT ≤ max
t∈[α,β]

|r′(t)| (β − α).

So, we have proved that the set of all values LT is bounded from above
by the indicated quantity, which implies both the rectifiability of the Γ curve
and the estimate (7), since the obtained upper bound maxt∈[α,β] |r′(t)| (β−α)
cannot be less than the least upper bound of supT LT equal to L(Γ). �
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Theorem on the derivative for the length
of the initial part of a curve 2.10B/26:52 (14:04)

We continue the consideration of continuously differentiable curves. As
before, we assume that the curve Γ is specified by a continuously differentiable
vector function r(t) defined on [α, β] and this curve has the starting point A
and the ending point B.

For the curve Γ, we introduce an auxiliary function s(t) equal to the length
of the part of the curve that starts at A and ends at M(t). This initial part
of the original curve is rectifiable by virtue of the additivity theorem for the
curve length.

Obviously, s(α) = 0, s(β) = L(Γ). In addition, the function s(t) is
increasing.

Theorem (on the derivative for the length of the initial
part of a curve).

For a continuously differentiable curve Γ, the function s(t) is also contin-
uously differentiable and, for any point t ∈ [α, β], the formula holds:

s′(t) = |r′(t)|. (8)
Proof.
We choose some point t0 ∈ [α, β] and prove formula (8) for this point.

The point t0 corresponds to the point M(t0) on the curve Γ. In addition, we
choose some nonzero increment ∆t (which can be both positive and negative)
and consider the point M(t0 + ∆t) (Fig. 18).

The part of the curve between the points M(t0) and M(t0 + ∆t) has
a length equal to |s(t0 + ∆t)− s(t0)|. The difference s(t0 + ∆t) − s(t0) is
positive if ∆t > 0 and negative if ∆t < 0.

Fig. 18. Points M(t0), M(t0 + ∆t) of the curve Γ

We write the formula for the length of the segment M(t0)M(t0 + ∆t)
taking into account that the corresponding vector is the difference of the
vectors r(t0 + ∆t) and r(t0):

https://www.youtube.com/watch?v=xb8oN2tz4Lw&t=26m52s
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|M(t0)M(t0 + ∆t)| = |r(t0 + ∆t)− r(t0)|.
Since the length of the curve located between the points M(t0) and

M(t0 + ∆t) does not exceed the length of the segment M(t0)M(t0 + ∆t),
the following inequality holds:

|r(t0 + ∆t)− r(t0)| ≤ |s(t0 + ∆t)− s(t0)|.
By P (∆t), we denote the segment between the points t0 and t0 + ∆t:

P (∆t) = [t0, t0 + ∆t] if ∆t > 0 and P (∆t) = [t0 + ∆t, t0] if ∆t < 0.
Using estimate (7) from the previous theorem, we can estimate the value

|s(t0 + ∆t)− s(t0)| as follows:
|s(t0 + ∆t)− s(t0)| ≤ max

t∈P (∆t)
|r′(t)| · |∆t|.

So, we have a double inequality:

|r(t0 + ∆t)− r(t0)| ≤ |s(t0 + ∆t)− s(t0)| ≤ max
t∈P (∆t)

|r′(t)| · |∆t|.

Since ∆t 6= 0, we can divide all parts of this double inequality by |∆t|:
|r(t0 + ∆t)− r(t0)|

|∆t|
≤ |s(t0 + ∆t)− s(t0)|

|∆t|
≤ max

t∈P (∆t)
|r′(t)|. (9)

In the expression on the left, we can move the number ∆t under the sign
of absolute value:

|r(t0 + ∆t)− r(t0)|
|∆t|

=
∣∣∣ 1

∆t

(
r(t0 + ∆t)− r(t0)

)∣∣∣.
Thus, the left-hand expression is the length of the vector

1
∆t

(
r(t0 + ∆t)− r(t0)

)
.

In the expression in the middle part of estimate (9), we can omit the signs
of absolute value, since, as we noted earlier, the expression s(t0 + ∆t)− s(t0)
and the increment ∆t have the same signs and therefore their ratio is positive:

|s(t0 + ∆t)− s(t0)|
|∆t|

=
s(t0 + ∆t)− s(t0)

∆t
.

Since the function |r′(t)| is continuous and therefore, by virtue of the sec-
ond Weierstrass theorem, it takes its maximum value on the segment P (∆t)
at some point ξ ∈ P (∆t), the expression on the right-hand side of (9) can be
represented as follows:

max
t∈P (∆t)

|r′(t)| = |r′(ξ)|.

Given the indicated transformations, the double inequality (9) takes the
following form:
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∣∣∣ 1

∆t

(
r(t0 + ∆t)− r(t0)

)∣∣∣ ≤ s(t0 + ∆t)− s(t0)
∆t

≤ |r′(ξ)|. (10)

If ∆t approaches 0, then the left-hand side of the double inequality (10)
approaches |r′(t0)| (this follows directly from the definition of the derivative
of a vector function). The right-hand side of the double inequality (10) ap-
proaches the same limit, since, as ∆t→ 0, the segment P (∆t) “contracts” to
the point t0 and therefore the point ξ ∈ P (∆t) also approaches the point t0.

Thus, both the left-hand side and the right-hand side of the double inequal-
ity (10) approach the same value |r′(t0)|, therefore, by the theorem on passing
to the limit to inequalities, the middle part of inequality also approaches the
same value:

lim
∆t→0

s(t0 + ∆t)− s(t0)
∆t

= |r′(t0)|.

But the limit indicated on the left is equal to the derivative of the function
s(t) at the point t0. So, we simultaneously proved both the differentiability
of the function s(t) at an arbitrary point t0 ∈ [α, β] and the validity of
formula (8) for this point.

The fact that the function s′(t) is continuous follows from equality (8),
since the function |r′(t)| has the same property. �

Versions of the formula for finding the length of a curve
Formula for the length of a curve
specified by a vector function 2.10B/40:56 (03:02)

Let us integrate the proved equality (8) from α to β (the integrals exist,
since the integrands are continuous):∫ β

α

s′(t) dt =

∫ β

α

|r′(t)| dt.

Since the function s(t) is the antiderivative of the function s′(t), the left-
hand side of the last equality can be transformed by the Newton–Leibniz
formula as follows:∫ β

α

s′(t) dt = s(β)− s(α) = L(Γ)− 0 = L(Γ).

Thus, we have obtained the basic formula for the length of the curve Γ
specified by the continuously differentiable vector function r(t) on the seg-
ment [α, β]:

L(Γ) =

∫ β

α

|r′(t)| dt. (11)

https://www.youtube.com/watch?v=xb8oN2tz4Lw&t=40m56s
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Formulas for the length of a curve specified
in the Cartesian coordinate system 2.11A/00:00 (04:25)

We obtain several versions of formula (11), in which various methods for
specifying the vector function r(t) are used.

If the vector function r(t) is defined by its coordinate functions(
x(t), y(t), z(t)

)
, then its derivative can be obtained by differentiating these

coordinate functions: r′(t) =
(
x′(t), y′(t), z′(t)

)
. Considering the vector

length formula, we obtain the following version of formula (11):

L(Γ) =

∫ β

α

√(
x′(t)

)2
+
(
y′(t)

)2
+
(
z′(t)

)2
dt.

Note that if the curve Γ is specified by a set of coordinate functions(
x(t), y(t), z(t)

)
for t ∈ [α, β], then they say that it is represented in para-

metric form with the parameter t.
If the vector function r(t) takes values on the plane, then two coordinate

functions are enough to define it: r(t) =
(
x(t), y(t)

)
(in this case, we can

assume that the points of the curve lie on the plane OXY and their third
coordinate is 0). Therefore, for the length of plane curves represented in
parametric form, we obtain the following formula:

L(Γ) =

∫ β

α

√(
x′(t)

)2
+
(
y′(t)

)2
dt. (12)

A continuously differentiable curve Γ on a plane can also be defined as
a graph of some continuously differentiable function: y = f(x), x ∈ [α, β].
This graph consists of points

(
x, f(x)

)
, so the vector function r(t) that spec-

ifies the curve Γ can be defined as follows: r(t) =
(
t, f(t)

)
, t ∈ [α, β]. Since

x(t) = t, y(t) = f(t), the integrand in formula (12) takes the form√(
x′(t)

)2
+
(
y′(t)

)2
=

√
(t′)2 +

(
f ′(t)

)2
=

√
1 +

(
f ′(t)

)2.

Substituting this expression into formula (12), we obtain a version of the
formula for the length of a plane curve represented in the form of a graph
y = f(x). In this version, it is convenient to use the variable x as an integra-
tion parameter:

L(Γ) =

∫ β

α

√
1 +

(
f ′(x)

)2
dx.

https://www.youtube.com/watch?v=J29z4Sog7WE&t=00m01s
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Formula for the length of a curve specified
in the polar coordinate system 2.11A/04:25 (06:33)

Let us consider one more way of specifying a curve Γ: when it is represented
as a graph of a function in the polar coordinate system. In this case, the
equation of the graph of the function has the form ρ = f(ϕ), ϕ ∈ [α, β],
where ρ is the distance from the origin, ϕ is the angle from the coordinate
OX axis, and the function f(ϕ) is continuously differentiable on [α, β].

We start by finding the parametric representation of the Γ curve in the
Cartesian coordinate system, i. e., by finding its coordinate functions x(t),
y(t). To do this, we use the relation between the polar (ρ, ϕ) and the Carte-
sian (x, y) coordinates: x = ρ cosϕ, y = ρ sinϕ. If we take the polar angle ϕ
as the parameter, then we get

x(ϕ) = ρ cosϕ = f(ϕ) cosϕ, y(ϕ) = ρ sinϕ = f(ϕ) sinϕ. (13)

In formula (12), the expression
(
x′(t)

)2
+
(
y′(t)

)2 is under the root sign.
Replace the argument t with ϕ in this expression, substitute the values x(ϕ)
and y(ϕ) defined by formulas (13), and transform the resulting expression by
differentiating the products and applying the formula (a+b)2 = a2 +2ab+b2:(

x′(ϕ)
)2

+
(
y′(ϕ)

)2
=
(
(f(ϕ) cosϕ)′

)2
+
(
(f(ϕ) sinϕ)′

)2
=

=
(
f ′(ϕ) cosϕ+ f(ϕ)(cosϕ)′

)2
+
(
f ′(ϕ) sinϕ+ f(ϕ)(sinϕ)′

)2
=

=
(
f ′(ϕ) cosϕ− f(ϕ) sinϕ

)2
+
(
f ′(ϕ) sinϕ+ f(ϕ) cosϕ

)2
=

=
(
f ′(ϕ)

)2
cos2 ϕ− 2f(ϕ)f ′(ϕ) cosϕ sinϕ+ f 2(ϕ) sin2 ϕ+

+
(
f ′(ϕ)

)2
sin2 ϕ+ 2f(ϕ)f ′(ϕ) cosϕ sinϕ+ f 2(ϕ) cos2 ϕ =

=
(
f ′(ϕ)

)2
+ f 2(ϕ).

At the final stage of the transformations, we twice used the Pythagorean
trigonometric identity sin2 ϕ+ cos2 ϕ = 1.

Substituting the transformed expression into formula (12), we obtain the
formula for the length of the curve represented in the form of a graph ρ = f(ϕ)
in the polar coordinate system:

L(Γ) =

∫ β

α

√(
f ′(ϕ)

)2
+ f 2(ϕ) dϕ.

https://www.youtube.com/watch?v=J29z4Sog7WE&t=04m25s


10. Improper integrals:
definition and properties

Tasks leading to the notion
of an improper integral 3.8B/00:00 (04:13)

Starting to study a definite integral, we considered the problem of finding
the area of a curvilinear trapezoid defined using some continuous function f
on the segment [a, b]. We further proved that to solve this problem, it is
necessary to calculate the integral

∫ b
a f(x) dx.

Now suppose that the function f is defined and continuous on the entire
positive semiaxis OX and it is positive and decreasing on this semiaxis. Is it
possible to determine the area of the infinite regionD bounded by the positive
semiaxis OX, the line x = 0, and the graph y = f(x)?

Let us choose some point c > 0 and consider the part of the region D

located to the left of the line x = c. This part is a curvilinear trapezoid
defined on the segment [0, c] and its area is Φ(c) =

∫ c
0 f(x) dx.

As the value of c increases, the area of Φ(c) will increase too. If there
exists a limit Φ(c) as c→ +∞, then it is natural to consider this limit as the
area of an infinite region D.

Consider another example. Suppose now that the function f is defined and
continuous on the half-interval (0, b], takes positive values on it and increases
unlimitedly as x→ +0.

In this case, we get an infinite regionD bounded by the segment [0, b] of the
axis OX, the lines x = 0 and x = b, and the graph y = f(x). To determine
the area of the region D, we can choose the point c ∈ (0, b) and consider the
part of the region D bounded by the vertical lines x = c and x = b. This
part is a curvilinear trapezoid and its area is Φ(c) =

∫ b
c f(x) dx.

If there exists a limit Φ(c) as c → +0, then this limit can be considered
as the area of the infinite region D.

These examples show that improper integrals can be of two types: integrals
over an infinite integration interval of a bounded function and integrals over
a finite interval, but of a function that is unbounded on a given interval.
In any of these cases, the passing to limit is used to determine the improper
integral.

https://www.youtube.com/watch?v=3r3u9nmPvQI&t=00m01s
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Definitions of an improper integral

Improper integral
over a semi-infinite interval 3.8B/04:13 (10:02)

Definition 1 (definition of an improper integral over a semi-
infinite interval).

Let a function f be defined on the set [a,+∞) and integrable on any
segment [a, c], c > a. If there exists a finite limit of the integral

∫ c
a f(x) dx

as c→ +∞, then they say that there exists an improper integral
∫ +∞
a f(x) dx

and its value is assumed to be equal to this limit:∫ +∞

a

f(x) dx
def
= lim

c→+∞

∫ c

a

f(x) dx.

In this case, they say that the improper integral
∫ +∞
a f(x) dx converges.

If the limit limc→+∞
∫ c
a f(x) dx does not exist or is equal to infinity, then

they say that the improper integral
∫ +∞
a f(x) dx diverges.

An improper integral over a semi-infinite interval of the form (−∞, b] is
defined in a similar way.

Examples.
1. Consider the integral

∫ +∞
1

dx
xα , α ∈ R.

We choose the value c > 1 and find the integral over a finite segment:∫ c

1

dx

xα
=


x−α+1

−α + 1

∣∣∣∣c
1

=
c−α+1

−α + 1
− 1

−α + 1
, α 6= 1,

lnx|c1 = ln c, α = 1.

The function ln c approaches infinity as c → +∞. The function c−α+1

approaches infinity as c → +∞ if α < 1 and approaches 0 if α > 1. Con-
sequently, the initial improper integral diverges for α ≤ 1 and converges for
α > 1 and, for the converging integral, the formula holds:∫ +∞

1

dx

xα
= lim

c→+∞

( c−α+1

−α + 1
− 1

−α + 1

)
=

1

α− 1
, α > 1.

2. Consider the integral
∫ +∞

0 e−x dx. In this case, for the segment [0, c],
we have∫ c

0

e−x dx = −e−x
∣∣c
0

= −e−c + 1.

Hence,∫ +∞

0

e−x dx = lim
c→+∞

(−e−c + 1) = 1.

https://www.youtube.com/watch?v=3r3u9nmPvQI&t=04m13s
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Improper integral for an unbounded function and the definition
of an improper integral in the general case 3.8B/14:15 (09:12)

Definition 2 (definition of an improper integral for an un-
bounded function).

Let the function f be defined on the half-interval [a, b) and integrable on
any segment [a, c], a < c < b. If there exists a finite limit of the integral∫ c
a f(x) dx as c→ b− 0, then they say that there exists an improper integral∫ b
a f(x) dx and its value is assumed to be equal to this limit:∫ b

a

f(x) dx
def
= lim

c→b−0

∫ c

a

f(x) dx.

In this case, they also say that the improper integral
∫ b
a f(x) dx converges.

If the limit limc→b−0

∫ c
a f(x) dx does not exist or is equal to infinity, then

they say that the improper integral
∫ b
a f(x) dx diverges.

The improper integral for the function defined on the half-interval (a, b] is
defined in a similar way.

Example.
Consider the integral

∫ 1

0
dx
xα , α ∈ R. Obviously, for α ≤ 0, this integral is

an usual (proper) integral, since the function 1
xα in this case is defined and

continuous on the entire segment [0, 1] . The value of the integral for α < 0
is equal to∫ 1

0

dx

xα
=

x−α+1

−α + 1

∣∣∣∣1
0

=
1

1− α
.

The formula
∫ 1

0
dx
xα = 1

1−α is also valid for the case α = 0.
For α > 0, we have an improper integral, since the function 1

xα is un-
bounded in a neighborhood of the point 0. So, we choose the value c ∈ (0, 1)
and find the integral over the finite segment:∫ 1

c

dx

xα
=


x−α+1

−α + 1

∣∣∣∣1
c

=
1

−α + 1
− c−α+1

−α + 1
, α 6= 1,

lnx|1c = − ln c, α = 1.

The function − ln c approaches infinity as c → +0. The function c−α+1

approaches infinity as c → +0 if α > 1 and approaches 0 if α < 1. Con-
sequently, the initial improper integral diverges for α ≥ 1 and converges for
0 < α < 1 and the formula holds for the converging integral:∫ 1

0

dx

xα
= lim

c→+0

( 1

−α + 1
− c−α+1

−α + 1

)
=

1

1− α
, 0 < α < 1.

https://www.youtube.com/watch?v=3r3u9nmPvQI&t=14m15s
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So, the integral
∫ 1

0
dx
xα exists for α < 1, it is equal to 1

1−α , and, for
0 < α < 1, it must be understood in an improper sense.

In the future, it will be convenient for us to simultaneously consider im-
proper integrals over semi-infinite intervals and improper integrals of un-
bounded functions. So, let us give a general definition of an improper integral.

Definition 3 (the definition of an improper integral in the
general case).

Let the function f be defined on the half-interval [a, b) and integrable on
any segment [a, c], a < c < b. The point b is either finite or equal to +∞. If
there exists a finite limit of the integral

∫ c
a f(x) dx as c → b − 0, then they

say that there exists an improper integral
∫ b
a f(x) dx and its value is assumed

to be equal to this limit:∫ b

a

f(x) dx
def
= lim

c→b−0

∫ c

a

f(x) dx.

In this case, they also say that the improper integral
∫ b
a f(x) dx converges.

If the limit limc→b−0

∫ c
a f(x) dx does not exist or is equal to infinity, then

they say that the improper integral
∫ b
a f(x) dx diverges.

An improper integral with a singularity at the left endpoint a of the in-
tegration interval is defined in a similar way; the left endpoint may be equal
to −∞.

If an improper integral has a singularity at both endpoints of the integra-
tion interval (a, b), then it is considered as the sum of the integrals over the
intervals (a, d] and [d, b) for some point d ∈ (a, b) and is convergent if and
only if improper integrals converge over each of the intervals (a, d] and [d, b).
We return to the discussion of integrals with several singularities at the end
of the next chapter.

Properties of improper integrals

Linearity of the improper integral
with respect to the integrand 3.8B/23:27 (05:12)

Theorem 1 (on the linearity of an improper integral with
respect to integrand).

Let the functions f and g be defined on [a, b), α, β ∈ R. Let there exist
improper integrals

∫ b
a f(x) dx and

∫ b
a g(x) dx. Then there exists an improper

integral
∫ b
a

(
αf(x) + βg(x)

)
dx and the following formula holds:

https://www.youtube.com/watch?v=3r3u9nmPvQI&t=23m27s
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∫ b

a

(
αf(x) + βg(x)

)
dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx. (1)

Proof.
Let c ∈ (a, b). From the definition of the improper integral, we obtain that

there exist integrals
∫ c
a f(x) dx and

∫ c
a g(x) dx. Then, due to the linearity of

the usual (proper) definite integral with respect to integrands, the integral∫ c
a

(
αf(x) + βg(x)

)
dx also exists and the equality holds:∫ c

a

(
αf(x) + βg(x)

)
dx = α

∫ c

a

f(x) dx+ β

∫ c

a

g(x) dx.

In the resulting equality, we pass to the limit as c → b − 0. By the
definition of an improper integral, the limits of

∫ c
a f(x) dx and

∫ c
a g(x) dx

exist and are equal to
∫ b
a f(x) dx and

∫ b
a g(x) dx, respectively. Using the

arithmetic properties of the limit, we obtain that the limit on the left-hand
side also exists and is equal to α

∫ b
a f(x) dx+ β

∫ b
a g(x) dx.

Thus, we proved that the integral
∫ b
a

(
αf(x)+βg(x)

)
dx converges and we

also proved formula (1). �

Additivity of an improper integral with respect
to the integration interval and change
of variables in an improper integral 3.8B/28:39 (05:47)

Theorem 2 (on the additivity of an improper integral with
respect to the integration interval).

Let the function f be defined on [a, b) and there exists an improper integral∫ b
a f(x) dx. Then, for any point d ∈ (a, b), the improper integral

∫ b
d f(x) dx

converges and the equality holds:∫ b

a

f(x) dx =

∫ d

a

f(x) dx+

∫ b

d

f(x) dx.

The proof of this theorem is carried out similarly to the proof of Theorem 1,
using the additivity property of the usual definite integral with respect to the
integration segment and arithmetic properties of the limit. �

Theorem 3 (on the change of variables in an improper inte-
gral).

Let the function f be defined on [a, b) and there exists an improper integral∫ b
a f(x) dx. Let the function ϕ act from [α, β) on [a, b), be continuously differ-
entiable on [α, β), ϕ′(t) > 0 for t ∈ [α, β), ϕ(α) = a and limt→β−0 ϕ(t) = b.
Then there exists an improper integral

∫ β
α f
(
ϕ(t)

)
ϕ′(t) dt and the equality

holds:

https://www.youtube.com/watch?v=3r3u9nmPvQI&t=28m39s
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∫ b

a

f(x) dx =

∫ β

α

f
(
ϕ(t)

)
ϕ′(t) dt. (2)

Proof1.
Let γ ∈ (α, β). Then, by the theorem on the change of variables in a usual

(proper) definite integral, the equality holds:∫ ϕ(γ)

a

f(x) dx =

∫ γ

α

f
(
ϕ(t)

)
ϕ′(t) dt. (3)

The left-hand side of equality (3) can be represented as a superposition,
where the external function has the argument c and the internal function has
the argument γ:∫ ϕ(γ)

a

f(x) dx =
(∫ c

a

f(x) dx
)
◦ ϕ(γ).

The conditions of the theorem imply the following limit equalities:
limγ→β−0 ϕ(γ) = b, limc→b−0

∫ c
a f(x) dx =

∫ b
a f(x) dx, and ϕ(t) 6= b when

t ∈ [α, β). Thus, all the conditions of the superposition limit theorem
are satisfied and, by virtue of this theorem, the limit of the superposition∫ ϕ(γ)

a f(x) dx as γ → β − 0 is equal to the limit of the external function:

lim
γ→β−0

∫ ϕ(γ)

a

f(x) dx = lim
c→b−0

∫ c

a

f(x) dx =

∫ b

a

f(x) dx.

Therefore, the limit of the right-hand side of equality (3) as γ → β − 0

also exists and is equal to
∫ b
a f(x) dx.

Thus, we proved that the improper integral
∫ β
α f
(
ϕ(t)

)
ϕ′(t) dt converges

and we also obtained formula (2). �

Integration formula by parts for improper integrals.
Theorem on the coincidence of the integral
in the proper and improper sense 3.8B/34:26 (07:19)

Theorem 4 (on integration by parts of an improper inte-
gral).

Let the functions u and v be defined and continuously differentiable on
[a, b) and there exists a limit limx→b u(x)v(x). Then the improper integrals∫ b
a uv

′ dx and
∫ b
a u
′v dx either both converge or both diverge, and if they

converge, then the following relation holds, which is called the integration
formula by parts for improper integrals:

1There is no proof of this theorem in video lectures.

https://www.youtube.com/watch?v=3r3u9nmPvQI&t=34m26s
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∫ b

a

uv′ dx = (uv)|ba −
∫ b

a

u′v dx.

In this formula, the notation (uv)|ba means the following difference:
limx→b u(x)v(x)− u(a)v(a).

Proof.
The proof of this theorem is carried out similarly to the proof of Theorem 1,

using the integration formula by parts for the usual definite integral and
arithmetic properties of the limit. �

Theorem 5 (on the coincidence of the integral in the proper
and improper sense).

If the function f is defined and integrable on the interval [a, b], then the
following equality holds, where the usual (proper) integral is indicated on the
left-hand side:∫ b

a

f(x) dx = lim
c→b−0

∫ c

a

f(x) dx. (4)

Thus, if a proper integral exists, then it coincides with the corresponding
integral understood in an improper sense (i. e., determined by passing to the
limit).

Proof.
The integral

∫ c
a f(x) dx, which is considered as a function Φ(c) of the

argument c, is an integral with a variable upper limit:

Φ(c) =

∫ c

a

f(x) dx.

Since, by condition, the function f is integrable over the segment [a, b], we
obtain, by virtue of the properties of the integral with a variable upper limit,
that the function Φ(c) is continuous on this segment. Hence,

lim
c→b−0

Φ(c) = Φ(b).

Taking into account the definition of the function Φ(c), we obtain the
relation (4). �



11. Absolute and conditional convergence
of improper integrals

Cauchy criterion for the convergence
of an improper integral 3.9A/00:00 (10:08)

Theorem (Cauchy criterion for the convergence of an im-
proper integral).

Let the function f be defined on the interval [a, b) and there exists the
integral

∫ c
a f(x) dx for any point c ∈ (a, b). The improper integral

∫ b
a f(x) dx

converges if and only if the following condition is satisfied:

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,∣∣∣∫ c′′

c′
f(x) dx

∣∣∣ < ε. (1)

Proof.
Let us introduce the auxiliary function Φ(c) =

∫ c
a f(x) dx. According

to the definition of an improper integral, the convergence of the integral∫ b
a f(x) dx is equivalent to the existence of the limit of the function Φ(c) as
c→ b− 0.

By virtue of the Cauchy criterion for the existence of a function limit, the
limit of Φ(c) as c → b − 0 exists if and only if the following condition is
satisfied:

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,

|Φ(c′′)− Φ(c′)| < ε. (2)

Let us transform the difference Φ(c′′)− Φ(c′):

Φ(c′′)− Φ(c′) =

∫ c′′

a

f(x) dx−
∫ c′

a

f(x) dx =

=

∫ c′

a

f(x) dx+

∫ c′′

c′
f(x) dx−

∫ c′

a

f(x) dx =

∫ c′′

c′
f(x) dx.

After substituting the found expression for the difference Φ(c′′) − Φ(c′)
into condition (2), we obtain condition (1).

https://www.youtube.com/watch?v=at_eysCbc_M&t=00m01s
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Thus, condition (1) is equivalent to the existence of the limit limc→b−0 Φ(c)
and the existence of this limit is equivalent to the convergence of the inte-
gral

∫ b
a f(x) dx, therefore the condition (1) is necessary and sufficient for the

convergence of this integral. �

Absolute convergence
of improper integrals 3.9A/10:08 (06:46)

Definition.
Let the function f be defined on the interval [a, b). The improper integral∫ b

a f(x) dx is called absolutely convergent if the integral
∫ b
a |f(x)| dx converges.

Theorem (on the convergence of an absolutely convergent
integral).

If the improper integral
∫ b
a f(x) dx absolutely converges, then it converges.

Remark.
The converse is not true: we will show later that a convergent improper in-

tegral is not necessarily absolutely convergent. Thus, the property of absolute
convergence is stronger than the property of usual convergence.

Proof.
We are given that the integral

∫ b
a |f(x)| dx converges, and we need to prove

that the integral
∫ b
a f(x) dx converges.

Since the integral
∫ b
a |f(x)| dx converges, by the necessary condition of the

Cauchy criterion for improper integrals, we get

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,∣∣∣∫ c′′

c′
|f(x)| dx

∣∣∣ < ε. (3)

Since c′ < c′′, the last inequality in condition (3) can be rewritten without
specifying the external absolute value sign on the left-hand side:∫ c′′

c′
|f(x)| dx < ε. (4)

Recall the property of the integral of the absolute value of a function:∣∣∣∫ c′′

c′
f(x) dx

∣∣∣ ≤ ∫ c′′

c′
|f(x)| dx. (5)

Estimates (4) and (5) imply the following estimate:∣∣∣∫ c′′

c′
f(x) dx

∣∣∣ < ε. (6)

https://www.youtube.com/watch?v=at_eysCbc_M&t=10m08s
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Thus, we can use (6) as the last inequality in condition (3):

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,
∣∣∣∫ c′′

c′
f(x) dx

∣∣∣ < ε.

This means, due to the sufficient condition of the Cauchy criterion for
improper integrals, that the integral

∫ b
a f(x) dx converges. �

Properties of improper integrals
of non-negative functions

Criterion for the convergence of improper
integrals of non-negative functions 3.9A/16:54 (10:00)

In this section, we consider improper integrals of non-negative functions.
Since the absolute value of the function is non-negative, all the results ob-
tained in this section can also be used to study the absolute convergence of
improper integrals of functions taking both negative and positive values.

Theorem (criterion for the convergence of improper inte-
grals of non-negative functions).

Let a function f be defined on [a, b) and f(x) ≥ 0 for any value x ∈ [a, b).
Suppose that, for any c ∈ [a, b), there exists an integral

∫ c
a f(x) dx. Then the

improper integral
∫ b
a f(x) dx converges if and only if the set of values of all

integrals
∫ c
a f(x) dx is bounded from above:

∃M > 0 ∀ c ∈ [a, b)

∫ c

a

f(x) dx ≤M . (7)

Proof.
We introduce an auxiliary function Φ(c) =

∫ c
a f(x) dx.

The inequality f(x) ≥ 0, which holds, by condition, for all x ∈ [a, b),
implies the inequality

∫ c′′
c′ f(x) dx ≥ 0 for any c′, c′′ ∈ [a, b) such that c′ < c′′.

Therefore, for c′ < c′′, we have

Φ(c′′) =

∫ c′′

a

f(x) dx =

∫ c′

a

f(x) dx+

∫ c′′

c′
f(x) dx =

= Φ(c′) +

∫ c′′

c′
f(x) dx ≥ Φ(c′).

We obtain that, for all c′ < c′′, the estimate Φ(c′) ≤ Φ(c′′) is true. This
means that the function Φ(c) is non-decreasing on the interval [a, b).

1. Sufficiency. Given: condition (7) is satisfied. Prove: the integral∫ b
a f(x) dx converges.

https://www.youtube.com/watch?v=at_eysCbc_M&t=16m54s
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Condition (7) means that the function Φ(c) is bounded from above on
the interval [a, b). Thus, the function Φ(c) is non-decreasing and bounded
from above on the interval [a, b), therefore, by virtue of the theorem on the
limit of a monotonous and upper-bounded function, there exists a limit of the
function Φ(c) as c→ b− 0 (equal to supc∈[a,b) Φ(c)). It remains to note that
the existence of this limit is equivalent to the convergence of the improper
integral

∫ b
a f(x) dx. The sufficiency is proven.

2. Necessity. Given: the integral
∫ b
a f(x) dx converges. Prove: condi-

tion (7) is satisfied.
As noted above, if the integral

∫ b
a f(x) dx converges, then there exists

a limit limc→b−0 Φ(c) = M . Since the function Φ(c) is non-decreasing, we
obtain that, for all c′, c′′ ∈ [a, b) such that c′ < c′′, the inequality holds:

Φ(c′) ≤ Φ(c′′).

In this inequality, we pass to the limit as c′′ → b − 0. By virtue of the
theorem on passing to the limit in the inequalities, the following inequality
holds for any c′ ∈ [a, b):

Φ(c′) ≤M .

Substituting the definition of the function Φ into this inequality, we obtain
the inequality from condition (7). �

The comparison test 3.9A/26:54 (10:35)

Theorem (the comparison test for improper integrals of
non-negative functions).

Let the functions f and g be defined on the interval [a, b) and the double
inequality 0 ≤ f(x) ≤ g(x) holds for any x ∈ [a, b). Suppose that, for any
c ∈ [a, b), there exist integrals

∫ c
a f(x) dx and

∫ c
a g(x) dx. Then the following

two statements are true.
1. If the improper integral

∫ b
a g(x) dx converges, then the integral∫ b

a f(x) dx also converges.
2. If the improper integral

∫ b
a f(x) dx diverges, then the integral

∫ b
a g(x) dx

also diverges.
Proof.
1. Let the integral

∫ b
a g(x) dx converge. Then, by the necessary condition

of the previous criterion, we obtain

∃M > 0 ∀ c ∈ [a, b)

∫ c

a

g(x) dx ≤M . (8)

https://www.youtube.com/watch?v=at_eysCbc_M&t=26m54s
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Since f(x) ≤ g(x) for all x ∈ [a, b), a similar inequality holds for the
proper integrals:∫ c

a

f(x) dx ≤
∫ c

a

g(x) dx. (9)

Combining estimates (8) and (9), we obtain∫ c

a

f(x) dx ≤
∫ c

a

g(x) dx ≤M .

Thus, condition (8) is also satisfied for the integral
∫ c
a f(x) dx. Therefore,

by virtue of a sufficient part of the previous criterion, the integral
∫ b
a f(x) dx

converges.
2. Let the integral

∫ b
a f(x) dx diverge.

If we assume that the integral
∫ b
a g(x) dx converges, then by the already

proved statement 1, the integral
∫ b
a f(x) dx should also converge. But this

contradicts the condition. Therefore, the assumption made is false and the
integral

∫ b
a g(x) dx diverges. �

Remark.
Obviously, the theorem remains valid if the functions f and g satisfy the

double inequality 0 ≤ f(x) ≤ Cg(x) with some constant C > 0 on the
interval [a, b).

Corollary of the comparison test 3.9A/37:29 (04:25)

Corollary.
Let the functions f and g be defined on the interval [a, b) and be non-

negative on this interval. Let f(x) ∼ g(x) as x→ b− 0. Then the integrals∫ b
a f(x) dx and

∫ b
a g(x) dx either both converge or both diverge.

Proof2.
The equivalence of the functions f and g as x→ b−0 means that in some

left-hand neighborhood U−b of the point b, the relation f(x) = α(x)g(x)
holds, where α(x)→ 1 as x→ b− 0.

Since limx→b−0 α(x) = 1, we can choose a neighborhood V −b ⊂ U−b , in
which the double inequality holds for the function α(x):

1− 1

2
< α(x) < 1 +

1

2
.

We multiply all parts of this inequality by g(x) and take into account that
the equality f(x) = α(x)g(x) is true in the neighborhood V −b :

2There is no proof of the corollary in video lectures.

https://www.youtube.com/watch?v=at_eysCbc_M&t=37m29s
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(
1− 1

2

)
g(x) < α(x)g(x) <

(
1 +

1

2

)
g(x),

1

2
g(x) < f(x) <

3

2
g(x). (10)

Choosing some value B ∈ V −b , we obtain that inequality (10) holds for all
x ∈ [B, b).

Suppose that the integral
∫ b
B f(x) dx converges. Then, taking into ac-

count statement 1 of the previous theorem, the remark, and the estimate
g(x) < 2f(x), which follows from the left-hand side of (10), we obtain that the
integral

∫ b
B g(x) dx also converges. If we assume that the integral

∫ b
B g(x) dx

converges, then from the right-hand side of (10) (i. e., f(x) < 3
2 g(x)), it

follows that the integral
∫ b
B f(x) dx also converges.

On the other hand, if we assume that the integral
∫ b
B g(x) dx diverges,

then, taking into account statement 2 of the previous theorem, the remark,
and the estimate g(x) < 2f(x), which follows from the left-hand side of (10),
we obtain that the integral

∫ b
B f(x) dx also diverges, and if we assume that the

integral
∫ b
B f(x) dx diverges, then it follows from the right-hand side of (10)

that the integral
∫ b
B g(x) dx also diverges.

So, we have proved that the improper integrals
∫ b
B f(x) dx and

∫ b
B g(x) dx

either both converge or both diverge. Taking into account the theorem on the
additivity of an improper integral with respect to the integration interval, we
obtain that the same statement holds for the initial integrals

∫ b
a f(x) dx and∫ b

a g(x) dx. �

Examples of using the comparison test 3.9B/00:00 (08:23)

1. Consider the integral
∫ +∞

1
sinx
x2 dx.

For the absolute value of the integrand, the following estimate holds:∣∣∣sinx
x2

∣∣∣ ≤ 1

x2
.

Earlier, we proved that the integral
∫ +∞

1
1
x2 dx converges. Therefore, the

integral
∫ +∞

1

∣∣ sinx
x2

∣∣ dx also converges by the comparison test. And this, in
turn, means that the initial integral converges absolutely.

In a similar way, one can prove that absolute convergence holds for the
integral

∫ +∞
1

sinx
xα dx for any α > 1.

2. Consider the integral
∫ +∞

2
1

lnx dx.
For any x > 1, the double estimate 0 < lnx < x is valid. It follows that

1
x <

1
lnx . Earlier, we proved that the integral

∫ +∞
1

1
x dx diverges. Obviously,

https://www.youtube.com/watch?v=dVh4k6yr8O8&t=00m01s
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the integral
∫ +∞

2
1
x dx also diverges. Then the initial integral

∫ +∞
2

1
lnx dx also

diverges by the comparison test.
3. Consider the integral

∫ +∞
1

1
xα+sinx dx, α > 1.

Let us show that the integrand is equivalent to the function 1
xα as x→ +∞:

lim
x→+∞

1
xα+sinx

1
xα

= lim
x→+∞

xα

xα + sinx
= lim

x→+∞

1

1 + sinx
xα

= 1.

So, we have proved that 1
xα+sinx ∼

1
xα , x→ +∞.

Since the integral
∫ +∞

1
1
xα dx converges for α > 1, we obtain from the

corollary of the comparison test that the initial integral also converges.

Conditional convergence
of improper integrals 3.9B/08:23 (15:56)

Definition.
The improper integral

∫ b
a f(x) dx is called conditionally convergent if this

integral converges and the integral
∫ b
a |f(x)| dx diverges. In other words,

the integral converges conditionally if it converges, but it is not absolutely
convergent.

It is clear that conditional convergence may hold only for integrals whose
integrands change sign.

Example.
Consider the integral

∫ +∞
1

sinx
x dx and show that it converges conditionally.

We begin by proving the convergence of this integral and consider the
proper integral with integration limits from 1 to c, where c > 1. We use
the integration formula by parts, setting u = 1

x , dv = sinx dx (in this case,
v = − cosx, du = − 1

x2 dx):∫ c

1

sinx

x
dx = −cosx

x

∣∣∣c
1
−
∫ c

1

cosx

x2
dx. (11)

The integral
∫ c

1
cosx
x2 dx converges (moreover, it absolutely converges). This

can be proved by the comparison test (see example 1 from the previous sec-
tion). Thus, the second term on the right-hand side of (11) has a finite limit
as c→ +∞. Let us transform the first term:

https://www.youtube.com/watch?v=dVh4k6yr8O8&t=08m23s
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−cosx

x

∣∣∣c
1

= −cos c

c
+

cos 1

1
.

The limit of this expression as c→ +∞ also exists and is equal to cos 1.
Since the right-hand side of equality (11) has a finite limit as c → +∞,

we conclude that the left-hand side also has a finite limit. We have proved
that the integral

∫ +∞
1

sinx
x dx converges.

It remains for us to show that the integral
∫ +∞

1

∣∣ sinx
x

∣∣ dx diverges. We can
move the absolute value sign to the numerator, since the denominator of the
integrand is positive:∫ +∞

1

∣∣∣sinx
x

∣∣∣ dx =

∫ +∞

1

| sinx|
x

dx.

The function |sinx| can be estimated from below by the function sin2 x:
|sinx| ≥ sin2 x for any x ∈ R. Therefore, for any x ≥ 1, the estimate holds:

sin2 x

x
≤ | sinx|

x
.

If we prove that the integral
∫ +∞

1
sin2 x
x dx diverges, then the integral∫ +∞

1

∣∣ sinx
x

∣∣ dx will diverge as well.

So, it remains for us to prove the divergence of the integral
∫ +∞

1
sin2 x
x dx.

We consider the proper integral with integration limits from 1 to c, where
c > 1, and transform it using the formula sin2 x = 1

2(1− cos 2x):∫ c

1

sin2 x

x
dx =

1

2

∫ c

1

1− cos 2x

x
dx =

1

2

∫ c

1

1

x
dx− 1

2

∫ c

1

cos 2x

x
dx.

The second integral on the right-hand side of the last equality converges
to a finite limit as c → +∞. This can be proved using the same method of
integration by parts, which we previously applied in the study of the integral∫ c

1
sinx
x dx.

The first integral on the right-hand side equals ln |c| and therefore it ap-
proaches +∞ as c→ +∞. Thus, the limit of the right-hand side is +∞, so
the limit of the left-hand side is also +∞. We have proved that the improper
integral

∫ +∞
1

sin2 x
x dx diverges.

Therefore, the integral
∫ +∞

1

∣∣ sinx
x

∣∣ dx also diverges by the comparison test.
The conditional convergence of the initial integral

∫ +∞
1

sinx
x dx is proved.
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Dirichlet’s test for conditional convergence
of an improper integral

Formulation of Dirichlet’s test 3.9B/24:19 (06:36)

Theorem (Dirichlet’s test for conditional convergence of
an improper integral).

Let the functions f and g be defined on the interval [a, b) and satisfy the
following conditions:

1) the function f is continuous on [a, b), and the integral
∫ c
a f(x) dx is

uniformly bounded for all c ∈ (a, b), i.e.,

∃M > 0 ∀ c ∈ (a, b)
∣∣∣∫ c

a

f(x) dx
∣∣∣ ≤M ;

2) the function g is continuously differentiable on [a, b), and g(c)
monotonously approaches 0 as c→ b− 0 (the monotonicity condition means
that g′(c) preserves the sign for all c ∈ (a, b)).

Then the improper integral
∫ b
a f(x)g(x) dx converges (generally speaking,

conditionally).

Proof of Dirichlet’s test 3.9B/30:55 (13:14)

We introduce an auxiliary function Φ(c) =
∫ c
a f(x) dx. By condition 1,

this function is uniformly bounded on (a, b):

∃M > 0 ∀ c ∈ (a, b) |Φ(c)| ≤M . (12)

In addition, the function Φ(c) is differentiable on (a, b) as an integral
with a variable upper limit and the continuous integrand f , and the equality
Φ′(c) = f(c) holds.

Therefore, the proper integral
∫ c
a f(x)g(x) dx can be represented in the

following form:∫ c

a

f(x)g(x) dx =

∫ c

a

Φ′(x)g(x) dx.

The resulting integral can be transformed by the integration formula by
parts, setting u = g(x), dv = Φ′(x) dx, whence v = Φ(x):∫ c

a

Φ′(x)g(x) dx = Φ(x)g(x)
∣∣c
a
−
∫ c

a

Φ(x)g′(x) dx =

= Φ(c)g(c)− Φ(a)g(a)−
∫ c

a

Φ(x)g′(x) dx. (13)

https://www.youtube.com/watch?v=dVh4k6yr8O8&t=24m19s
https://www.youtube.com/watch?v=dVh4k6yr8O8&t=30m55s
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Since the function Φ(c) is bounded (see (12)) and the function g(c) ap-
proaches 0 as c→ b−0 by condition 2, we obtain that the first term Φ(c)g(c)
of the right-hand side approaches 0 as c→ b− 0. The second term Φ(a)g(a)
does not depend on the parameter c.

It remains to show that the integral
∫ c
a Φ(x)g′(x) dx also has a finite limit

as c→ b− 0, i. e., that the improper integral
∫ b
a Φ(x)g′(x) dx converges.

We prove the convergence of the integral
∫ b
a Φ(x)g′(x) dx using the Cauchy

criterion for the convergence of the improper integral.
However, we first use the Cauchy criterion for the existence of a function

limit. By condition 2, the function g(c) has a limit as c → b − 0. By virtue
of the necessary part of the Cauchy criterion for the existence of a function
limit, this means the following:

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,

|g(c′′)− g(c′)| < ε

M
. (14)

In inequality (14), we used the constant M from estimate (12).
According to the Cauchy criterion, to prove the convergence of the integral∫ b

a Φ(x)g′(x) dx, it suffices to establish the following fact:

∀ ε > 0 ∃B ∈ (a, b) ∀ c′, c′′, B < c′ < c′′ < b,∣∣∣∫ c′′

c′
Φ(x)g′(x) dx

∣∣∣ < ε. (15)

We choose an arbitrary value ε > 0, get the value B ∈ (a, b) from condi-
tion (14), and show that estimate (15) holds for this value B. To do this, we
transform the integral

∣∣∫ c′′
c′ Φ(x)g′(x) dx

∣∣ using the theorem on the integral
of the absolute value of a function and estimate (12):∣∣∣∫ c′′

c′
Φ(x)g′(x) dx

∣∣∣ ≤ ∫ c′′

c′
|Φ(x)|·|g′(x)| dx ≤M

∫ c′′

c′
|g′(x)| dx. (16)

Since, by condition 2, the derivative g′(x) preserves the sign on (a, b), we
can move the absolute value sign outside the integral sign in the integral∫ c′′
c′ |g

′(x)| dx:∫ c′′

c′
|g′(x)| dx =

∣∣∣∫ c′′

c′
g′(x) dx

∣∣∣.
Indeed, if the derivative g′(x) is always positive, then the absolute value

can be omitted, and if the derivative g′(x) is always negative, then the minus
sign can be taken out of the integral sign, the positive function remains under
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the integral sign, and the external minus can be removed using the external
operation of taking the absolute value.

The integral on the right-hand side of the last equality can be transformed
according to the Newton–Leibniz formula:∫ c′′

c′
g′(x) dx = g(c′′)− g(c′).

Thus, the chain of inequalities (16) can be continued as follows:

M

∫ c′′

c′
|g′(x)| dx ≤M |g(c′′)− g(c′)|.

Since the values of c′ and c′′ are chosen so that condition (14) is satisfied,
the expression M |g(c′′) − g(c′)| is estimated by ε. Taking into account that
the transformations in the chain of inequalities (16) started with the integral∣∣∫ c′′
c′ Φ(x)g′(x) dx

∣∣, we finally obtain the estimate∣∣∣∫ c′′

c′
Φ(x)g′(x) dx

∣∣∣ < ε.

Thus, condition (15) is satisfied. Therefore, by virtue of a sufficient part of
the Cauchy criterion for the convergence of the improper integral, the integral∫ b
a Φ(x)g′(x) dx converges.
We have proved that all terms on the right-hand side of equality (13) have

a finite limit as c→ b− 0. This means that the integral
∫ c
a f(x)g(x) dx also

has a finite limit and therefore the initial improper integral
∫ b
a f(x)g(x) dx

converges. �

Integrals with several singularities 3.10A/00:00 (11:35)

Let the function f be defined on the interval (a, b) and either the end-
points of this interval are points at infinity or the function is unbounded in a
neighborhood of these endpoints (or a combination of these situations takes
place). Then the improper integral

∫ b
a f(x) dx, which has singularities at both

endpoints of the integration interval, can be represented as the sum of the
improper integrals considered above with unique singularity:∫ b

a

f(x) dx =

∫ d

a

f(x) dx+

∫ b

d

f(x) dx. (17)

Here d is some point belonging to the interval (a, b). If both integrals
on the right-hand side of equality (17) converge, then the initial integral∫ b
a f(x) dx is also convergent and its value is equal to the sum of the values of

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=00m01s
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the integrals on the right-hand side. If at least one integral on the right-hand
side diverges, then the initial integral is divergent too.

The same can be done if the singularity arises at some internal point of the
integration interval. Let the function f be defined on the set [a, b] \ {d} and
be unbounded in a neighborhood of the point d. Then the integral

∫ b
a f(x) dx

must be understood as an improper integral defined by the same relation (17),
in which the improper integrals on the right-hand side have unique singularity
at the point d.

In this case, given the definition of an improper integral, the value of the
integral

∫ b
a f(x) dx (provided that it converges) will be equal to the sum of

the following limits:∫ b

a

f(x) dx = lim
c→d−0

∫ c

a

f(x) dx+ lim
c′→d+0

∫ b

c′
f(x) dx.

The rate at which the point c approaches d from the left and the rate at
which the point c′ approaches d from the right are not related in any way:
these limits must be considered independently of each other.

If we define an improper integral with a singularity at one internal point
in this way, then the integral

∫ 1

−1
1
x dx (with a singularity at 0) will diverge,

since the integral
∫ 1

0
1
x dx diverges:∫ 1

0

1

x
dx = lim

ε→+0

∫ 1

ε

1

x
dx = lim

ε→+0
(ln |x|)

∣∣∣1
ε

= lim
ε→+0

(− ln |ε|) = +∞.

Similarly, we can establish that the integral
∫ 0

−1
1
x dx also diverges:∫ 0

−1

1

x
dx = lim

ε→−0

∫ ε

−1

1

x
dx = lim

ε→−0
(ln |x|)

∣∣∣ε
−1

= lim
ε→−0

ln |ε| = −∞.

However, it is easy to see that we would get a finite limit value if this limit
was calculated not for two integrals separately, but simultaneously for the
sum of the integrals

∫ −ε
−1

1
x dx+

∫ 1

ε
1
x dx as ε→ +0:

lim
ε→+0

(∫ −ε
−1

1

x
dx+

∫ 1

ε

1

x
dx
)

= lim
ε→+0

(ln | − ε| − ln |ε|) = lim
ε→+0

0 = 0.

The main feature here is that the parameter ε approaches a singular point
on the left and right at the same rate, which allows us to eliminate two
infinitely growing terms.

Such a type of convergence of an improper integral with a singularity at
an internal point is called convergence in the sense of the principal value. We
give a general definition of this type of convergence.



140 M.E.Abramyan. Lectures on integral calculus and series theory

Definition.
Let the function f be defined on the set [a, b] \ {d} and be unbounded

in a neighborhood of the point d. The improper integral
∫ b
a f(x) dx is

said to converge in the sense of the principal value (or in the sense of the
Cauchy principal value) if there exists a finite limit on the sum of the inte-
grals

∫ d−ε
a f(x) dx +

∫ b
d+ε f(x) dx as ε → +0. For this limit, the notation

(v. p.)
∫ b
a f(x) dx is used:

(v. p.)
∫ b

a

f(x) dx
def
= lim

ε→+0

(∫ d−ε

a

f(x) dx+

∫ b

d+ε

f(x) dx
)
.

Thus, the previously obtained result for the integral of the function 1
x on

the segment [−1, 1] can be written as follows:

(v. p.)
∫ 1

−1

1

x
dx = 0.

There is an extensive theory related to the convergence of improper inte-
grals in the sense of the Cauchy principal value, but we will not study this
type of convergence in this book.



12. Numerical series

Numerical series: definition and examples

Definition of a numerical series 3.10A/11:35 (05:39)

Recall how the finite sum of terms is written using the summation sym-
bol

∑
:

n∑
k=1

ak = a1 + a2 + · · ·+ an.

If the symbol ∞ is indicated in the notation of the sum instead of the
finite number n, then this notation can be considered as a formal notation of
the sum of an infinite number of terms (such a construction is called a formal
sum):

∞∑
k=1

ak = a1 + a2 + · · ·+ ak + . . .

The expression
∑∞

k=1 ak is called a numerical series, and the value ak is
called a common term of the series. Thus, the series of numbers

∑∞
k=1 ak is

the formal sum of all elements of the sequence {ak} (the elements are taken
in ascending order of their indices).

Under additional conditions, a specific numerical value (called the sum of
a series) can be associated with a numerical series. Consider the finite sum

Sn =
n∑
k=1

ak.

This sum is called the partial sum of the series
∑∞

k=1 ak; it exists for any
number n ∈ R. Thus, we get a sequence of partial sums {Sn}.

If there exists a finite limit S of the sequence {Sn} as n → ∞, then
the numerical series

∑∞
k=1 ak is called convergent and the limit S is called the

sum of this numerical series. If the series converges, then its notation
∑∞

k=1 ak
usually means the value of its sum, i. e., the limit S (just as the notation of
an improper integral means the limit value of usual proper integrals):

∞∑
k=1

ak
def
= lim

n→∞

n∑
k=1

ak.

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=11m35s


142 M.E.Abramyan. Lectures on integral calculus and series theory

If the sequence of partial sums {Sn} has no limit or has an infinite limit,
then the series

∑∞
k=1 ak is called divergent; in this case, the sum of the series

is not defined (as well as the value of the divergent improper integral).
We emphasize that, in any case, the notation

∑∞
k=1 ak can be considered

as a formal sum of an infinite number of terms, regardless of whether this
formal notation corresponds to some numerical value or not.

As a summation parameter, the symbols i and j are often used along with
the symbol k.

The initial value of the summation parameter does not have to be 1. Series
with a summation parameter starting with 0 are often considered. Obviously,
if the series

∑∞
k=1 ak converges, then the series

∑∞
k=n0

ak also converges for
any n0 ∈ N.

Example of a numerical series: the sum
of the elements of a geometric progression 3.10A/17:14 (10:21)

Let q 6= 0 be an arbitrary real number. Consider a series with the common
term qk:

∞∑
k=0

qk = 1 + q + q2 + · · ·+ qk + . . .

This series is the formal sum of all terms of the geometric progression
with 1 as the first term and q as the ratio.

Recall the formula for the sum of the initial terms of such a geometric
progression (provided that q 6= 1):

Sn =
n∑
k=0

qk =
1− qn+1

1− q
.

In this case, Sn denotes the sum of (n + 1) initial terms of the geometric
progression. It is clear that if q = 1, then Sn = n+ 1.

If |q| < 1, then limn→∞ Sn = 1
1−q . If |q| ≥ 1, then the limit of the sequence

{Sn} as n → ∞ is either infinite or (for q = −1) does not exist (since, for
q = −1, the sequence {qn} has the form {1,−1, 1,−1, . . . } and therefore the
sequence {Sn} is equal to {1, 0, 1, 0, . . . }).

So, if |q| ≥ 1, then the series
∑∞

k=0 q
k diverges, and if |q| < 1, then the

series
∑∞

k=0 q
k converges and its sum is 1

1−q :
∞∑
k=0

qk =
1

1− q
, |q| < 1, q 6= 0.

This formula is called the formula of the sum of an infinitely decreasing
geometric progression.

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=17m14s
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Cauchy criterion for the convergence of a numerical
series and a necessary condition for its convergence

Cauchy criterion for the convergence
of a numerical series 3.10A/27:35 (07:57)

Theorem (Cauchy criterion for the convergence of a nu-
merical series).

The series
∑∞

k=1 ak converges if and only if the following condition is sat-
isfied:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N
∣∣∣ m+p∑
k=m+1

ak

∣∣∣ < ε. (1)

Proof.
Let Sn =

∑n
k=1 ak be a partial sum of the initial series. A series converges

if and only if the sequence of partial sums {Sn} is convergent.
For the sequence {Sn}, we write the condition from the Cauchy criterion

for the convergence of a sequence:
∀ ε > 0 ∃N ∈ N ∀m1,m2 > N |Sm2

− Sm1
| < ε.

If we put m1 = m, m2 = m + p for some p ∈ N, then the last condition
can be rewritten in the following form:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N |Sm+p − Sm| < ε. (2)
Let us transform the difference Sm+p−Sm taking into account the formula

for partial sums:

Sm+p−Sm =

m+p∑
k=1

ak−
m∑
k=1

ak =
m∑
k=1

ak+

m+p∑
k=m+1

ak−
m∑
k=1

ak =

m+p∑
k=m+1

ak.

Substituting the obtained expression for the difference Sm+p − Sm into
condition (2), we obtain condition (1).

So, we have shown that condition (1) is necessary and sufficient for the
convergence of the sequence {Sn}, and the convergence of this sequence takes
place if and only if the initial series converges. �

A necessary condition for the convergence
of a numerical series 3.10A/35:32 (04:58)

Corollary (a necessary condition for the convergence
of a numerical series).

If the series
∑∞

k=1 ak converges, then its common term ak approaches zero:

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=27m35s
https://www.youtube.com/watch?v=RuNzgI_hUCk&t=35m32s
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lim
k→∞

ak = 0.

Remarks.
1. This condition means that if the common term of a series does not

approach 0, then the series is not convergent. Thus, it makes it easy to prove
the divergence of many series. However, it should be emphasized that this
condition is not a sufficient condition for convergence: from the fact that
the common term of a series approaches 0, it does not follow that the series
converges (we will give the corresponding examples later).

2. A similar condition for improper integrals over a semi-infinite inter-
val, generally speaking, does not hold. There exist conditionally convergent
improper integrals of the form

∫ +∞
a f(x) dx for which the integrand f(x)

does not approach zero as x → +∞. An example of such an integral is∫ +∞
1 sin ex dx. It is easy to prove the convergence of this integral by changing
the variable t = ex, since, as a result of this changing, the integral will take
the form

∫ +∞
e

sin t
t dt. At the same time, if the function f(x) is non-negative

and non-increasing on the interval [a,+∞), then the convergence of the inte-
gral

∫ +∞
a f(x) dx implies that limx→+∞ f(x) = 0 (this fact follows from the

integral convergence test considered in the next chapter).
Proof.
Since the initial series converges, condition (1) of the Cauchy criterion

for the convergence of a numerical series is fulfilled for it. We put p = 1
in this condition (this can be done, since it is allowed to take any p ∈ N
in condition (1)):

∀ ε > 0 ∃N ∈ N ∀m > N
∣∣∣ m+1∑
k=m+1

ak

∣∣∣ < ε. (3)

Since
∑m+1

k=m+1 ak = am+1, the last inequality takes the form |am+1| < ε.
Thus, condition (3) coincides with the definition (in the language ε–N) of

a convergent sequence {ak} in the case when its limit is 0. �

Absolutely convergent numerical series and arithmetic
properties of convergent numerical series

Absolutely convergent
numerical series 3.10A/40:30 (01:44), 3.10B/00:00 (03:09)

Definition.
The series

∑∞
k=1 ak absolutely converges if the series

∑∞
k=1 |ak| converges.

https://www.youtube.com/watch?v=RuNzgI_hUCk&t=40m30s
https://www.youtube.com/watch?v=PcIYNHo15_Y&t=00m01s
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Theorem (on the convergence of an absolutely convergent
numerical series).

If the series absolutely converges, then it is convergent.
Proof.
Let the series

∑∞
k=1 ak absolutely converge. This means that the series∑∞

k=1 |ak| converges.
Therefore, by virtue of the necessary part of the Cauchy criterion for the

convergence of a numerical series, condition (1) is satisfied:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N
m+p∑

k=m+1

|ak| < ε.

The sum
∑m+p

k=m+1 |ak| can be estimated from below using the following
absolute value property (which is a generalization of the triangle inequality
for the case of the sum of n terms):∣∣∣ m+p∑

k=m+1

ak

∣∣∣ ≤ m+p∑
k=m+1

|ak|.

Since the right-hand side of the last inequality is bounded from above by ε,
the same estimate holds for the left-hand side of the inequality:∣∣∣ m+p∑

k=m+1

ak

∣∣∣ < ε.

This inequality coincides with condition (1) of the Cauchy criterion for
the convergence of the numerical series

∑∞
k=1 ak. Therefore, by virtue of

a sufficient part of the Cauchy criterion, this series converges. �

Arithmetic properties
of convergent numerical series 3.10B/03:09 (08:19)

Theorem (on arithmetic properties of convergent numeri-
cal series).

Let
∑∞

k=1 ak and
∑∞

k=1 bk be convergent series with sums Sa and Sb, re-
spectively. Let α, β ∈ R.

Then the series
∑∞

k=1(αak +βbk) also converges and its sum is αSa+βSb.
Thus, for convergent series, the same arithmetic transformations can be

used as for finite sums:
∞∑
k=1

(αak + βbk) = α
∞∑
k=1

ak + β
∞∑
k=1

bk. (4)

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=03m09s
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In addition, if the initial series converge absolutely, then the series∑∞
k=1(αak + βbk) also converges absolutely.
Proof.
Let us introduce partial sums:

S ′n =
n∑
k=1

ak, S ′′n =
n∑
k=1

bk, Sn =
n∑
k=1

(αak + βbk).

Obviously, for these finite sums, the equality holds:

Sn =
n∑
k=1

(αak + βbk) = α
n∑
k=1

ak + β
n∑
k=1

bk = αS ′n + βS ′′n.

Since, by condition, limn→∞ S
′
n = Sa, limn→∞ S

′′
n = Sb, we obtain, by

arithmetic properties of the limit of a sequence, that the limit Sn as n→∞
exists and is equal to αSa + βSb. Thus, we simultaneously proved the con-
vergence of the series

∑∞
k=1(αak + βbk) and formula (4).

To prove the absolute convergence of the series
∑∞

k=1(αak + βbk) in the
case when the initial series absolutely converge, we use the Cauchy criterion.

For α = β = 0, the statement is obvious; therefore, we will assume that
|α| + |β| 6= 0. Let us choose the value ε > 0. For absolutely convergent
initial series, by virtue of the Cauchy criterion, the following conditions are
satisfied:

∃N1 ∈ N ∀m > N1 ∀ p ∈ N
m+p∑

k=m+1

|ak| <
ε

|α|+ |β|
,

∃N2 ∈ N ∀m > N2 ∀ p ∈ N
m+p∑

k=m+1

|bk| <
ε

|α|+ |β|
.

If we put N = max {N1, N2}, then the following estimate will be true for
any m > N and p ∈ N:

m+p∑
k=m+1

|αak + βbk| ≤
m+p∑

k=m+1

(|α| · |ak|+ |β| · |bk|) =

= |α|
m+p∑

k=m+1

|ak|+ |β|
m+p∑

k=m+1

|bk| < |α| ·
ε

|α|+ |β|
+ |β| · ε

|α|+ |β|
= ε.

So, we have proved that, for the series
∑∞

k=1 |αak + βbk|, condition (1) of
the Cauchy criterion is fulfilled. Therefore, this series converges, which means
that the series

∑∞
k=1(αak + βbk) converges absolutely. �



13. Convergence tests for numerical series
with non-negative terms

Comparison test

Criterion for convergence of numerical series
with non-negative terms 3.10B/11:28 (07:21)

Theorem (criterion for convergence of numerical series
with non-negative terms).

Let all terms of the series
∑∞

k=1 ak be non-negative:

∀ k ∈ N ak ≥ 0.

Then this series converges if and only if the set of values of its partial sums∑n
k=1 ak is bounded from above:

∃M > 0 ∀n ∈ N
n∑
k=1

ak ≤M . (1)

Proof.
Consider the sequence of partial sums Sn =

∑n
k=1 ak. Since all the terms ak

are non-negative, we obtain that this sequence is non-decreasing:

∀n ∈ N Sn+1 =
n+1∑
k=1

ak =
n∑
k=1

ak + an+1 ≥
n∑
k=1

ak = Sn.

When studying the limit of a sequence, we proved that a non-decreasing
sequence converges if and only if it is bounded from above.

Thus, the condition (1), which means that the partial sums Sn (with non-
negative terms) are bounded from above, is equivalent to the convergence of
the sequence {Sn}, and the convergence of this sequence is equivalent to the
convergence of the numerical series. �

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=11m28s
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Comparison test for numerical series 3.10B/18:49 (06:49)

Theorem (comparison test for numerical series).
Let

∑∞
k=1 ak and

∑∞
k=1 bk be series for which the following condition holds:

∃m ∈ N ∀ k ≥ m 0 ≤ ak ≤ bk.

Then two statements are valid.
1. If the series

∑∞
k=1 bk converges, then the series

∑∞
k=1 ak also converges.

2. If the series
∑∞

k=1 ak diverges, then the series
∑∞

k=1 bk also diverges.
Proof.
Since the convergence of the series

∑∞
k=1 ak is equivalent to the convergence

of the series
∑∞

k=m ak and the same fact is true for series with terms bk, it is
enough to prove the theorem for the series

∑∞
k=m ak and

∑∞
k=m bk, all terms

of which are non-negative and satisfy the inequality ak ≤ bk.
1. If the series

∑∞
k=m bk converges, then, by the criterion for the conver-

gence of numerical series with non-negative terms, we have

∃M > 0 ∀n ∈ N, n ≥ m,

n∑
k=m

bk ≤M .

Then, due to the inequality ak ≤ bk, we obtain that a similar estimate is
also valid for partial sums of the series

∑∞
k=m ak:

n∑
k=m

ak ≤
n∑

k=m

bk ≤M .

Therefore, by the same criterion, the series
∑∞

k=m ak converges.
2. Let the series

∑∞
k=m ak diverge.

If we assume that the series
∑∞

k=m bk converges, then, by already proved
statement 1, the series

∑∞
k=m ak should also converge. But this fact contra-

dicts the condition. Therefore, the assumption made is false and the series∑∞
k=m bk diverges. �
Remark.
From the comparison test for numerical series, one can obtain a corollary

similar to the corollary from the comparison test for improper integrals: if, for
all k ∈ N starting from some m, the estimates ak > 0, bk > 0 are fulfilled and
the limit relation limk→∞

ak
bk

= 1 holds, then the series
∑∞

k=1 ak and
∑∞

k=1 bk
either both converge or both diverge.

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=18m49s
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Integral test of convergence

Formulation of the integral test
of convergence 3.10B/25:38 (03:55)

Theorem (integral test of convergence).
Let the function f be defined on the set [1,+∞), be non-negative and

non-increasing, and limx→+∞ f(x) = 0.
Then the improper integral

∫ +∞
1 f(x) dx and the series

∑∞
k=1 f(k) either

both converge or both diverge.

Initial stage of the proof 3.10B/29:33 (07:07)

We choose the points k, k + 1 ∈ N and assume that the point x ∈ R is
between k and k + 1: k ≤ x ≤ k + 1. Since the function f is non-increasing,
the following double inequality holds:

f(k + 1) ≤ f(x) ≤ f(k).

Let us integrate all the terms of the resulting double inequality from k

to k + 1; this operation will not change the sign of inequality:

f(k + 1)

∫ k+1

k

dx ≤
∫ k+1

k

f(x) dx ≤ f(k + 1)

∫ k+1

k

dx.

The integrals on the left-hand and right-hand sides of this double inequality
are equal to 1:∫ k+1

k

dx = x
∣∣∣k+1

k
= k + 1− k = 1.

Thus, the double inequality takes the form

f(k + 1) ≤
∫ k+1

k

f(x) dx ≤ f(k).

Now we summarize the inequalities obtained for k = 1, . . . , n:
n∑
k=1

f(k + 1) ≤
n∑
k=1

∫ k+1

k

f(x) dx ≤
n∑
k=1

f(k).

Given the property of additivity of the integral with respect to the inte-
gration interval, the resulting double inequality can be rewritten as follows:

n∑
k=1

f(k + 1) ≤
∫ n+1

1

f(x) dx ≤
n∑
k=1

f(k).

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=25m38s
https://www.youtube.com/watch?v=PcIYNHo15_Y&t=29m33s
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Let us introduce the notation for the partial sum of the series:
Sn =

∑n
k=1 f(k). Using this notation, we finally obtain

Sn+1 − f(1) ≤
∫ n+1

1

f(x) dx ≤ Sn. (2)

The final stage of the proof 3.10B/36:40 (07:13)

Now we consider various situations related to the convergence or divergence
of the initial integral and series.

1. Let the improper integral
∫ +∞

1 f(x) dx converge. Then, by virtue of the
criterion for the convergence of improper integrals of non-negative functions,
we have

∃M > 0 ∀ c > 1

∫ c

1

f(x) dx ≤M .

Using this estimate for the integral and the left-hand side of estimate (2),
we obtain

Sn+1 − f(1) ≤
∫ n+1

1

f(x) dx ≤M .

Thus, we have proved that the partial sums of Sn are uniformly bounded:
∀n ∈ N Sn+1 ≤M + f(1).

Therefore, by the criterion for the convergence of a numerical series with
non-negative terms, the series

∑∞
k=1 f(k) converges.

2. Let the series
∑∞

k=1 f(k) converge. Then, by virtue of the criterion for
the convergence of a numerical series with non-negative terms, we have

∃M > 0 ∀n ∈ N Sn ≤M .
Choose an arbitrary real number c > 1 and consider the integral∫ c

1 f(x) dx. For any number c > 1, there exists an integer n such that
c < n+ 1. Since the function f(x) is non-negative, the estimate holds:∫ c

1

f(x) dx ≤
∫ n+1

1

f(x) dx.

Using this estimate and the right-hand side of estimate (2), we obtain∫ c

1

f(x) dx ≤
∫ n+1

1

f(x) dx ≤ Sn ≤M .

We have proved that the integrals
∫ c

1 f(x) dx are uniformly bounded:

∀ c > 1

∫ c

1

f(x) dx ≤M .

Therefore, by the criterion for the convergence of improper integrals of
non-negative functions, the integral

∫ +∞
1 f(x) dx converges.

https://www.youtube.com/watch?v=PcIYNHo15_Y&t=36m40s
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3. Let the series
∑∞

k=1 f(k) diverge. Assuming that the integral∫ +∞
1 f(x) dx converges, we obtain that, by the result already proved in sec-
tion 1, the series

∑∞
k=1 f(k) should also converge, but this contradicts the

condition. Therefore, the integral diverges.
4. Let the integral

∫ +∞
1 f(x) dx diverge. If we assume that the series∑∞

k=1 f(k) converges, then, by the result already proved in section 2, the
integral

∫ +∞
1 f(x) dx must also converge, but this contradicts the condition.

Therefore, the series diverges. �
Remark.
The limit relation limx→+∞ f(x) = 0 was not used in the proof. It is

required in order to ensure that the necessary condition for the convergence
of the series

∑∞
k=1 f(k) is satisfied, since if this condition is violated, the

series will necessarily diverge (and, as follows from the proof, the integral∫ +∞
1 f(x) dx will also diverge).

An example of applying
the integral test of convergence 3.11A/00:00 (04:49)

Earlier, we found that the improper integral
∫ +∞

1
1
xα dx converges for α > 1

and diverges for α ≤ 1. Now we can extend this result to the correspond-
ing series. For α > 0, the function f(x) = 1

xα satisfies all the conditions
of the previous theorem (it is non-negative and monotonously approaches 0
as x → +∞), therefore, by virtue of of the previous theorem, the series∑∞

k=1
1
kα converges for α > 1 and diverges for α ∈ (0, 1]. For α ≤ 0, the

series
∑∞

k=1
1
kα also diverges, since, in this case, its common term 1

kα does not
approach 0 as k → ∞ and therefore the necessary convergence condition is
not satisfied for the series. Thus, we have proved the following statement.

Theorem (on the convergence of numerical series with com-
mon terms that are power functions).

The numerical series
∑∞

k=1
1
kα converges for α > 1 and diverges for α ≤ 1.

In particular, the series
∑∞

k=1
1
k , called the harmonic series, diverges.

D’Alembert’s test and Cauchy’s test
for convergence of a numerical series

Formulation of D’Alembert’s test 3.11A/04:49 (04:01)

The tests considered in this section have no analogues for improper inte-
grals.

https://www.youtube.com/watch?v=ielvgfjqFjM&t=00m01s
https://www.youtube.com/watch?v=ielvgfjqFjM&t=04m49s
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Theorem (D’Alembert’s test for convergence of a numeri-
cal series).

Let
∑∞

k=1 ak be a series with positive terms: ∀ k ∈ N ak > 0.
1. Let the following condition be satisfied:

∃ q ∈ (0, 1) ∃m ∈ N ∀ k ≥ m
ak+1

ak
≤ q.

Then the series
∑∞

k=1 ak converges.
2. Let the following condition be satisfied:

∃m ∈ N ∀ k ≥ m
ak+1

ak
≥ 1.

Then the series
∑∞

k=1 ak diverges.

Proof of D’Alembert’s test 3.11A/08:50 (08:54)

1. Consider the terms of the initial series, starting with k = m. By
condition, am+1

am
≤ q, whence

am+1 ≤ qam.

The same inequality holds for the term am+2: am+2 ≤ qam+1. Given the
previous inequality, we obtain

am+2 ≤ qam+1 ≤ q2am.

Obviously, for the terms am+k, k ∈ N, the following estimate holds (which
can be rigorously proved by mathematical induction):

am+k ≤ qkam. (3)

Consider the series
∑∞

k=1 am+k and
∑∞

k=1 q
kam.

The first series can be rewritten in the form
∑∞

k=m+1 ak, therefore, it co-
incides with the initial series, from which m first terms are removed. So, if
the series

∑∞
k=1 am+k converges, then the initial series also converges, since

the presence or absence of a finite number of initial terms of the series does
not affect its convergence.

The second series can be transformed as follows:∑∞
k=1 q

kam = am
∑∞

k=1 q
k. Since, by condition, q ∈ (0, 1), we obtain,

by virtue of the formula for the sum of infinite geometric progression, that
the series

∑∞
k=1 q

k converges.
Considering estimate (3) and applying the comparison test for numerical

series, we obtain that the series
∑∞

k=1 am+k also converges and therefore the
initial series

∑∞
k=1 ak converges too.

https://www.youtube.com/watch?v=ielvgfjqFjM&t=08m50s
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2. As in the proof of section 1, we consider the terms of the initial series,
starting with k = m. By condition, am+1

am
≥ 1, whence

am+1 ≥ am.

Similarly, we obtain the estimate am+2 ≥ am+1 ≥ am. The same estimate
will be valid for all terms am+k for k ∈ N:

am+k ≥ am.

We have obtained that the terms of the initial series, starting with am, are
bounded from below by the positive value am. This means that the sequence
{ak} cannot approach 0 as k →∞. Indeed, choosing the number ε > 0 equal
to the minimum of a finite set of positive numbers a1, a2, . . . , am, we get that
the ε-neighborhood of zero does not contain any element of the sequence
{ak}. But, by the definition of the limit equal to A, any neighborhood of the
point A should contain all elements of the sequence except, perhaps, a finite
number of its initial elements.

Since the necessary convergence condition is not satisfied for the series∑∞
k=1 ak, this series diverges. �

The limit D’Alembert test 3.11A/17:44 (07:23)

Corollary (the limit D’Alembert test).
Let

∑∞
k=1 ak be a series with positive terms: ∀ k ∈ N ak > 0. Suppose

that there exists a limit limk→∞
ak+1

ak
= q. If q < 1, then the series

∑∞
k=1 ak

converges; if q > 1, then the series diverges.
Proof.
Using the limit definition in the language ε–N , we can write

∀ ε > 0 ∃N ∈ N ∀ k > N
∣∣∣ak+1

ak
− q
∣∣∣ < ε.

1. If q < 1, then choosing ε = 1−q
2 > 0, we get that, for all k > N , the

inequality ak+1

ak
− q < 1−q

2 holds, from which the estimate follows:

ak+1

ak
< q +

1− q
2

=
1 + q

2
= q′.

Since q < 1, we obtain that q′ < 1, therefore the condition of statement 1
of D’Alembert’s test is satisfied for the initial series. Consequently, the series
converges.

2. If q > 1, then choosing ε = q−1
2 > 0, we get that, for all k > N , the

inequality ak+1

ak
− q > −q−1

2 holds, from which the estimate follows:

https://www.youtube.com/watch?v=ielvgfjqFjM&t=17m44s
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ak+1

ak
> q − q − 1

2
=
q + 1

2
> 1.

Thus, for the initial series, the condition of statement 2 of D’Alembert’s
test is satisfied, therefore the series diverges. �

Remarks.
1. If the limit limk→∞

ak+1

ak
is 1, then nothing can be said about the con-

vergence or divergence of the series and further investigation is required.
2. If the limit limk→∞

ak+1

ak
is equal to +∞, then, by similar reasoning, we

can prove that the series diverges.

An example of applying D’Alembert’s test 3.11A/25:07 (02:48)

Consider the series
∑∞

k=0
xk

k! . Recall that, by definition, it is supposed that
0! = 1. Here x is an arbitrary real number. Denote ak = xk

k! and consider the
following limit:

lim
k→∞

ak+1

ak
= lim

k→∞

xk+1

(k+1)!

xk

k!

= lim
k→∞

xk+1k!

xk(k + 1)!
= lim

k→∞

x

k + 1
= 0.

The limit exists and its value is less than 1, therefore, due to the limit
D’Alembert test, this series converges for any value of the parameter x ∈ R.

Remark.
In what follows, we prove that the sum of the series

∑∞
k=0

xk

k! is equal to e
x.

Cauchy’s test 3.11A/27:55 (07:22)

Theorem (Cauchy’s test for convergence of a numerical
series).

Let
∑∞

k=1 ak be a series with non-negative terms: ∀ k ∈ N ak ≥ 0.
1. Let the following condition be satisfied:

∃ q ∈ (0, 1) ∃m ∈ N ∀ k ≥ m k
√
ak ≤ q.

Then the series
∑∞

k=1 ak converges.
2. Let the following condition be satisfied:

∃m ∈ N ∀ k ≥ m k
√
ak ≥ 1.

Then the series
∑∞

k=1 ak diverges.
Proof.
1. Consider the terms of the initial series, starting with k = m. By

condition, k
√
ak ≤ q; let us raise both sides of this inequality to the power of k:

ak ≤ qk. (4)

https://www.youtube.com/watch?v=ielvgfjqFjM&t=25m07s
https://www.youtube.com/watch?v=ielvgfjqFjM&t=27m55s
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Estimate (4) is valid for terms of the series
∑∞

k=m ak and
∑∞

k=m q
k. Since,

by condition, q ∈ (0, 1), we obtain, by virtue of the formula for the sum of
infinite geometric progression, that the series

∑∞
k=m q

k converges.
Taking into account estimate (4) and applying the comparison test for nu-

merical series, we obtain that the series
∑∞

k=m ak also converges and therefore
the original series

∑∞
k=1 ak converges too.

2. As in the proof of section 1, we consider the terms of the initial series,
starting with k = m. By condition, k

√
ak ≥ 1. We raise both sides of this

inequality to the power of k:
ak ≥ 1.

Arguing in the same way as in the proof of section 2 of D’Alembert’s test,
we obtain that the sequence {ak} cannot approach 0 as k →∞, and therefore
the necessary convergence condition is not satisfied for the series

∑∞
k=1 ak. So,

this series diverges. �
Corollary (the limit Cauchy test).
Let

∑∞
k=1 ak be a series with non-negative terms: ∀ k ∈ N ak ≥ 0. Sup-

pose that there exists a limit limk→∞ k
√
ak = q. If q < 1, then the series∑∞

k=1 ak converges; if q > 1, then the series diverges.
The proof is carried out in the same way as the proof of the limit

D’Alembert test. �
Remarks.
1. If the limit limk→∞ k

√
ak is 1, then nothing can be said about the

convergence or divergence of the series and further investigation is required.
2. If the limit limk→∞ k

√
ak is equal to +∞, then we can prove that the

series diverges.

An example of applying Cauchy’s test 3.11A/35:17 (06:06)

Consider the series
∑∞

k=1

(
1 + 1

k

)−k2. Denote ak =
(
1 + 1

k

)−k2 and consider
the following limit:

lim
k→∞

k
√
ak = lim

k→∞

k

√(
1 +

1

k

)−k2
= lim

k→∞

(
1 +

1

k

)−k
=

1

e
.

In the last step, we used the second remarkable limit limk→∞
(
1 + 1

k

)k
= e.

Thus, the limit limk→∞ k
√
ak exists and its value 1

e is less than 1. Therefore,
by virtue of the limit Cauchy test, this series converges.

Note that the series
∑∞

k=1

(
1 + 1

k

)−k diverges, since its common term(
1 + 1

k

)−k does not approach 0 as k → ∞ (as shown above, the limit of
the common term is 1

e).

https://www.youtube.com/watch?v=ielvgfjqFjM&t=35m17s


14. Alternating series
and conditional convergence

Alternating series

Definition of conditional convergence,
alternating series, and the Leibniz series 3.11B/00:00 (04:22)

Definition 1.
The series

∑∞
k=1 ak is called conditionally convergent if it converges and

the series
∑∞

k=1 |ak| diverges. Thus, a convergent series is called conditionally
convergent if it does not converge absolutely.

Such a situation is possible only when the terms of a series have different
signs.

Definition 2.
A series of the form

∑∞
k=1(−1)k+1ak is called an alternating series, if all

elements of the sequence {ak} have the same sign.
Definition 3.
An alternating series

∑∞
k=1(−1)k+1ak is called the Leibniz series, if the

sequence {ak} monotonously approaches zero as k →∞.
Remarks.
1. When studying Leibniz series of the form

∑∞
k=1(−1)k+1ak, we assume,

for definiteness, that ak > 0, k ∈ N (in this case, the sequence {ak} is
a non-increasing sequence approaching zero).

2. The “Leibniz series” notion is also referred to the alternating series of
a special form

∑∞
k=1

(−1)k+1

2k−1 , which was studied by G.W.Leibniz (he proved
that the sum of this series is equal to π

4 ).

Theorem on the convergence
of the Leibniz series 3.11B/04:22 (11:11)

Theorem (on the convergence of the Leibniz series).
The Leibniz series

∑∞
k=1(−1)k+1ak converges.

https://www.youtube.com/watch?v=l1j-OAwBM5w&t=00m01s
https://www.youtube.com/watch?v=l1j-OAwBM5w&t=04m22s
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Proof.
Consider the partial sums of the Leibniz series with an even number of

terms:

S2n =
2n∑
k=1

(−1)k+1ak = a1 − a2 + a3 − a4 + · · ·+ a2n−1 − a2n. (1)

We place parentheses on the right-hand side of equality (1) as follows:

S2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n).

Since the sequence {ak} is non-increasing, we obtain that each expression
in parentheses is non-negative: a2k−1 − a2k ≥ 0, k = 1, 2, . . . Hence,

S2n+2 = S2n + (a2n+1 − a2n+2) ≥ S2n.

This estimate means that the sequence of partial sums {S2n} is non-
decreasing.

Now we put parentheses in (1) in another way:

S2n = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n.

Since, as before, each expression in parentheses is non-negative, we obtain
that the sum S2n is estimated from above by the value a1:

S2n ≤ a1.

Thus, the sequence {S2n} is not only non-decreasing, but also bounded
from above. Then, by virtue of the convergence theorem for monotone
bounded sequences, the sequence {S2n} has a finite limit S:

lim
n→∞

S2n = S.

Consider the partial sums of the Leibniz series with an odd number of
terms: S2n+1. For them, the following equality holds:

S2n+1 = S2n + a2n+1. (2)

We have already proved that S2n → S as n→∞. In addition, a2n+1 → 0
as n → ∞, since by condition ak → 0 as k → ∞ and thus the subsequence
{a2n+1} of the sequence {ak} must also converge to this limit by the theorem
on the limit of subsequences of a converging sequence.

Therefore, the right-hand side of equality (2) has a limit S, so the left-hand
side approaches the same limit.

So, we have proved that S2n → S as n → ∞ and S2n+1 → S as n → ∞.
This means that the entire sequence {Sn} converges to the limit S, since any
neighborhood of the point S contains all elements of the sequence {Sn} (with
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even and odd indices), with the possible exception of some finite number of
its initial elements.

The convergence of the sequence of partial sums {Sn} to a finite limit
means that the corresponding series

∑∞
k=1(−1)k+1ak converges. �

Remark.
The theorem on the convergence of the Leibniz series guarantees only its

conditional convergence. For example, the series
∑∞

k=1
(−1)k+1

k is a Leibniz
series, however, we previously established that the harmonic series

∑∞
k=1

1
k ,

consisting of absolute values of terms of the initial series, is divergent. In
what follows, we will prove that the sum of the series

∑∞
k=1

(−1)k+1

k is equal
to ln 2.

Estimation of the Leibniz series
in terms of its partial sums 3.11B/15:33 (14:19)

Theorem (on the estimation of the Leibniz series in terms
of its partial sums).

Let
∑∞

k=1(−1)k+1ak = S be the Leibniz series and Sn =
∑n

k=1(−1)k+1ak
be its partial sums. Then, for any k ∈ N, the following estimate holds:

|S − Sk| ≤ ak+1. (3)

Proof.
In the proof of the previous theorem, we established that the sequence

{S2n} is non-decreasing and has a limit S. This means that the following
equality holds for all n ∈ N:

S2n ≤ S. (4)

On the other hand, the sequence {S2n+1} is non-increasing since

S2n+1 = a1 − (a2 − a3)− · · · − (a2n−2 − a2n−1)− (a2n − a2n+1) ≥
≥ a1 − (a2 − a3)− · · · − (a2n−2 − a2n−1) = S2n−1.

In addition, its limit is also equal to S. Therefore, the equality holds for
all n ∈ N:

S ≤ S2n+1. (5)

Let us subtract S2n from both sides of inequality (5):

S − S2n ≤ S2n+1 − S2n = a2n+1. (6)

It follows from inequality (4) that S − S2n ≥ 0. Therefore, inequality (6)
can be rewritten in the form

https://www.youtube.com/watch?v=l1j-OAwBM5w&t=15m33s
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|S − S2n| ≤ a2n+1.

We have obtained estimate (3) for the case of even k.
Now we turn to inequality (4) and subtract S2n−1 from both its parts:

S2n − S2n−1 ≤ S − S2n−1.

Since S2n − S2n−1 = −a2n, this inequality can be transformed as follows:

S2n−1 − S ≤ a2n. (7)

It follows from inequality (5) that S2n−1−S ≥ 0. Therefore, inequality (7)
can be rewritten in the form

|S2n−1 − S| ≤ a2n.

We have obtained estimate (3) for the case of odd k.
Thus, estimate (3) is proved for all positive integers k. �

Dirichlet’s test and Abel’s test for conditional
convergence of a numerical series

Dirichlet’s test for conditional convergence
of a numerical series 3.11B/29:52 (04:29), 3.12A/00:00 (03:18)

Theorem (Dirichlet’s test for conditional convergence of
a numerical series).

Let the following conditions be satisfied for the series
∑∞

k=1 akbk:
1) ∃M ∀n ∈ N

∣∣∑n
k=1 ak

∣∣ ≤M ;
2) bk → 0 as k →∞, {bk} is monotone.
Then the series

∑∞
k=1 akbk converges (generally speaking, conditionally).

Proof3.
Let us show that, for the series

∑∞
k=1 akbk, the condition for the Cauchy

criterion for the convergence of a numerical series is fulfilled. For this, we will
obtain an estimate for the sum

∣∣∑m+p
k=m+1 akbk

∣∣ when m, p ∈ N.
First, let us transform the sum

∑m+p
k=m+1 akbk using the auxiliary notation

An =
∑n

k=1 ak:
m+p∑

k=m+1

akbk =

m+p∑
k=m+1

(Ak − Ak−1)bk =

m+p∑
k=m+1

Akbk −
m+p∑

k=m+1

Ak−1bk =

=

m+p+1∑
k=m+2

Ak−1bk−1 −
m+p∑

k=m+1

Ak−1bk =

3There is no proof of this theorem in video lectures.

https://www.youtube.com/watch?v=l1j-OAwBM5w&t=29m52s
https://www.youtube.com/watch?v=vlcY9UpBHGg&t=00m01s
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= Am+pbm+p +

m+p∑
k=m+2

Ak−1bk−1 −
m+p∑

k=m+2

Ak−1bk − Ambm+1 =

= Am+pbm+p +

m+p∑
k=m+2

Ak−1(bk−1 − bk)− Ambm+1.

Let us estimate the value
∣∣∑m+p

k=m+1 akbk
∣∣ using condition 1 of the theorem,

from which it follows that |Ak| ≤M for k ∈ N:∣∣∣ m+p∑
k=m+1

akbk

∣∣∣ =
∣∣∣Am+pbm+p +

m+p∑
k=m+2

Ak−1(bk−1 − bk)− Ambm+1

∣∣∣ ≤
≤M |bm+p|+M

m+p∑
k=m+2

|bk−1 − bk|+M |bm+1|. (8)

Since, by condition 2 of the theorem, the sequence {bk} monotonously
approaches 0, we obtain that all the differences bk−1− bk have the same sign.
Therefore, in the sum

∑m+p
k=m+2 |bk−1 − bk|, the absolute value sign can be

moved outside the sum sign:
m+p∑

k=m+2

|bk−1 − bk| =
∣∣∣ m+p∑
k=m+2

(bk−1 − bk)
∣∣∣ =

= |(bm+1 − bm+2) + (bm+2 − bm+3) + · · ·+ (bm+p−1 − bm+p)| =
= |bm+1 − bm+p| ≤ |bm+1|+ |bm+p|.

Now we substitute the estimate for
∑m+p

k=m+2 |bk−1− bk| into inequality (8):∣∣∣ m+p∑
k=m+1

akbk

∣∣∣ ≤M |bm+p|+M(|bm+1|+ |bm+p|) +M |bm+1| =

= 2M(|bm+1|+ |bm+p|).
It remains to use the condition bk → 0 as k → ∞, which can be written

as follows:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N |bm+p| <
ε

4M
.

For
∣∣∑m+p

k=m+1 akbk
∣∣, we finally get∣∣∣ m+p∑

k=m+1

akbk

∣∣∣ ≤ 2M(|bm+1|+ |bm+p|) < 2M
( ε

4M
+

ε

4M

)
= ε.

We have proved that the Cauchy criterion condition is satisfied for the
initial series:
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∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N
∣∣∣ m+p∑
k=m+1

akbk

∣∣∣ < ε.

Therefore, the series
∑∞

k=1 akbk converges. �

Examples of applying Dirichlet’s test 3.12A/03:18 (11:41)

1. Once again, let us turn to the Leibniz series and write it in the following
form:

∑∞
k=1(−1)k+1bk. By the definition of the Leibniz series, two conditions

are satisfied for the sequence {bk}: bk → 0 as k → ∞, {bk} is monotone.
Thus, the condition 2 of Dirichlet’s test is satisfied for {bk}. Also we can
take the sequence

{
(−1)k+1

}
as the sequence {ak}. Obviously, this sequence

satisfies condition 1 of Dirichlet’s test:

∀n ∈ N
∣∣∣ n∑
k=1

ak

∣∣∣ = |1− 1 + 1− 1 + ...| ≤ 1.

Thus, the convergence of the Leibniz series follows directly from the Dirich-
let’s test.

2. Consider the following series:
∑∞

k=1
sin kx
kα , x ∈ R, α > 0. If α > 1,

then this series converges absolutely for any x ∈ R, since, in this case, the
absolute value of its common term can be estimated as follows:∣∣∣sin kx

kα

∣∣∣ ≤ 1

kα
.

Earlier, when discussing the integral convergence test, we established that
the series

∑∞
k=1

1
kα converges for α > 1. Therefore, using the comparison test,

we obtain that the series
∑∞

k=1

∣∣ sin kx
kα

∣∣ also converges, which means that the
series

∑∞
k=1

sin kx
kα converges absolutely.

Consider the case α ∈ (0, 1] and show that in this case all conditions of
Dirichlet’s test are satisfied for the series

∑∞
k=1

sin kx
kα .

First, we discard the case of x = 2πm, m ∈ Z, since in this case all terms
of the series turn to 0 and therefore the sum of the series is also 0.

We take 1
kα as bk, since it is obvious that the sequence

{
1
kα

}
is monotone

(decreasing) and approaches zero as k →∞. We take sin kx as ak and show
that condition 1 of Dirichlet’s test is satisfied for partial sum

∑n
k=1 sin kx.

To do this, we transform this partial sum by multiplying and dividing the
common term by 2 sin x

2 (this factor is not equal to 0, since we assume that
x 6= 2πm, m ∈ Z ):

n∑
k=1

2 sin kx sin x
2

2 sin x
2

=
1

2 sin x
2

n∑
k=1

2 sin kx sin
x

2
. (9)

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=03m18s
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Let us transform the product of the sines sin kx sin x
2 according to the

formula 2 sinα sin β = cos(α− β)− cos(α + β):
n∑
k=1

2 sin kx sin
x

2
=

n∑
k=1

(
cos
(
kx− x

2

)
− cos

(
kx+

x

2

))
=

= cos
x

2
− cos

3x

2
+ cos

3x

2
− cos

5x

2
+ · · ·+

+ cos
(2n− 1)x

2
− cos

(2n+ 1)x

2
= cos

x

2
− cos

(2n+ 1)x

2
.

Now let us transform the last difference using the formula
cosα− cos β = 2 sin β+α

2 sin β−α
2 :

cos
x

2
− cos

(2n+ 1)x

2
= 2 sin

(n+ 1)x

2
sin

nx

2
.

Substituting the resulting expression into the right-hand side of (9), we
finally obtain

n∑
k=1

sin kx =
1

2 sin x
2

· 2 sin
(n+ 1)x

2
sin

nx

2
=

sin (n+1)x
2 sin nx

2

sin x
2

.

This implies the following estimate for partial sum
∑n

k=1 sin kx, n ∈ N:∣∣∣ n∑
k=1

sin kx
∣∣∣ ≤ 1∣∣sin x

2

∣∣ .
Thus, condition 1 of Dirichlet’s test is also satisfied, and the series∑∞
k=1

sin kx
kα is convergent for α ∈ (0, 1]. However, for these values of α,

convergence is conditional.

The proof of the absence
of absolute convergence 3.12A/14:59 (06:03)

The fact that the series
∑∞

k=1
sin kx
kα is not absolutely convergent for

α ∈ (0, 1] is proved in the same way as a similar fact for the improper inte-
gral

∫ +∞
1

sinx
x dx. First of all, recall the estimate for the function sin kx

kα ; this
estimate is valid for all k and x:∣∣∣sin kx

kα

∣∣∣ ≥ sin2 kx

kα
. (10)

Let us prove that the series
∑∞

k=1
sin2 kx
kα diverges. To do this, consider its

partial sum and transform it as follows:
n∑
k=1

sin2 kx

kα
=

n∑
k=1

1− cos 2kx

2kα
=

1

2

n∑
k=1

1

kα
− 1

2

n∑
k=1

cos 2kx

kα
. (11)

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=14m59s
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The second term on the right-hand side of (11) has a finite limit as n→∞,
since the series

∑∞
k=1

cos 2kx
kα converges (this fact can be proved in the same

way as the convergence of the series
∑∞

k=1
sin kx
kα ). The first term on the right-

hand side of (11) approaches infinity as n → ∞, since the series
∑∞

k=1
1
kα

diverges for α ∈ (0, 1].
Therefore, the right-hand side of equality (11) has an infinite limit as

n → ∞, this is also true for the left-hand side, so the series
∑∞

k=1
sin2 kx
kα

diverges. Using the comparison test, we obtain from estimate (10) that the
series

∑∞
k=1

∣∣ sin kx
kα

∣∣ also diverges. So, for α ∈ (0, 1], the initial series
∑∞

k=1
sin kx
kα

converges conditionally.

Abel’s test for conditional convergence
of a numerical series 3.12A/21:02 (06:58)

Theorem (Abel’s test for conditional convergence of a nu-
merical series).

Let the following conditions be satisfied for a series
∑∞

k=1 akbk:
1) the series

∑∞
k=1 ak converges;

2) the sequence {bk} is monotone and bounded.
Then the series

∑∞
k=1 akbk converges (generally speaking, conditionally).

Remark.
If we compare Dirichlet’s test and Abel’ test, then it can be noted that in

Abel’s test, condition 1 is stronger (since the convergence of the corresponding
series is required instead of uniformly boundedness of its partial sums) and
condition 2 is weaker (since it is not necessary that the sequence {bk} had
a zero limit).

Proof.
By virtue of the theorem on monotone and bounded sequences, the se-

quence {bk} has a finite limit: bk → c as k →∞.
We transform the partial sum of the initial series as follows:

n∑
k=1

akbk =
n∑
k=1

ak(bk − c+ c) =
n∑
k=1

ak(bk − c) + c

n∑
k=1

ak. (12)

The second term on the right-hand side of (12) has a finite limit as n→∞,
since, by condition 1, the series

∑∞
k=1 ak converges.

The first term on the right-hand side of (12) is a partial sum of the series∑∞
k=1 ak(bk − c), which converges according to Dirichlet’s test. Indeed, con-

dition 1 of Dirichlet’s test follows from condition 1 of Abel’s test, since if the

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=21m02s
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series
∑∞

k=1 ak converges, then its partial sums are uniformly bounded. Con-
dition 2 of Dirichlet’s test follows from condition 2 of Abel’s test and the fact
that limk→∞ bk = c, since in this case the sequence {bk − c} monotonously
approaches zero as k →∞. So, the first term on the right-hand side of (12)
also has a finite limit.

Therefore, the partial sums
∑n

k=1 akbk also have a finite limit, and the
initial series converges. �

Additional remarks on absolutely
and conditionally convergent series 3.12A/28:00 (07:07)

The question arises: will the sum of the convergent series
∑∞

k=1 ak change
if the order of its terms is changed? For example, it is possible to organize the
summation, for which, after each term ak of the initial series with an odd index
(a1, a3, a5, . . . ), several terms with even indices will follow, and their amount
will increase by 1 each time (a1+a2+a3+a4+a6+a5+a8+a10+a12+a7+. . . ) or
it will double each time (a1+a2+a3+a4+a6+a5+a8+a10+a12+a14+a7+. . . ).

It turns out that, for an absolutely convergent series, its sum does not
change with any change in the order of its terms. However, for a conditionally
convergent series, this statement is false.

Moreover, if the series conditionally converges, then, by rearranging its
terms, it can be achieved that the resulting series converges to any pre-selected
number A ∈ R or diverges. This fact is called the Riemann theorem on
conditionally convergent series (its proof is given, for example, in [18, Ch. 8,
Sec. 41.4]).

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=28m01s
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Pointwise and uniform convergence of a functional
sequence and a functional series

Functional sequence and functional series,
their pointwise convergence 3.12A/35:07 (10:52)

Definition.
A functional sequence {fn(x)} is a sequence of functions fn(x) defined on

a set E.
If we choose some point x0 ∈ E and substitute it in all the functions fn(x),

then we get the numerical sequence {fn(x0)}. It is said that the functional
sequence {fn(x)} converges at the point x0 ∈ E if the numerical sequence
{fn(x0)} converges.

It is said that the functional sequence {fn(x)} converges on the set E if
it converges at all points x0 ∈ E (notation fn(x)

E→ f(x), n → ∞). Thus,
the limit of a functional sequence converging on the set E is some function
defined on this set.

A functional series is a series
∑∞

k=1 uk(x) with terms that are functions
defined on a set E.

If the functional sequence of partial sums Sn(x) =
∑n

k=1 uk(x) converges
on the set E to the function S(x), then they say that the functional series∑∞

k=1 uk(x) converges on the set E. Moreover, the function S(x) is called
the sum of the convergent functional series

∑∞
k=1 uk(x), and in this case the

notation
∑∞

k=1 uk(x) usually means the sum S(x) of the series:
∞∑
k=1

uk(x) = S(x).

For functional series, as well as for numerical ones, the concepts of abso-
lute and conditional convergence can be introduced: the series

∑∞
k=1 uk(x)

absolutely converges on E if the series
∑∞

k=1 |uk(x)| converges on this set; the
series

∑∞
k=1 uk(x) conditionally converges on E if it converges on this set but

its convergence is not absolute.

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=35m07s
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The considered type of convergence of functional sequences and series on
some set is called pointwise convergence. The definition of pointwise conver-
gence of the functional sequence {fn(x)} on the set E to the function f(x)
can be written as follows, using the language ε–N :

∀x ∈ E ∀ ε > 0 ∃N ∈ N ∀n > N |fn(x)− f(x)| < ε. (1)
However, another type of convergence can be defined for functional se-

quences and series. This type of convergence allows a more detailed study
of the properties of the limits of functional sequences and sums of functional
series.

Uniform convergence
of the functional sequence 3.12B/00:00 (03:57)

Definition.
It is said that the functional sequence {fn(x)} uniformly converges on the

set E to the function f(x) (notation fn(x)
E

⇒ f(x), n→∞) if the following
condition is true:

∀ ε > 0 ∃N ∈ N ∀n > N ∀x ∈ E |fn(x)− f(x)| < ε. (2)
Thus, with uniform convergence, the number N is selected only by the

value of ε and does not depend on the choice of the point x ∈ E. Note
that the same differences hold for the concepts of continuity and uniform
continuity of a function on a set (see [1, Ch. 13]).

Criterion for uniform convergence of a functional
sequence in terms of the supremum limit 3.12B/03:57 (10:28)

Theorem (criterion for uniform convergence of a func-
tional sequence in terms of the supremum limit).

The functional sequence {fn(x)} converges uniformly on the set E to the
function f(x) if and only if the following limit relation holds:

lim
n→∞

sup
x∈E
|fn(x)− f(x)| = 0. (3)

Remark.
Relation (3) can be verified if the limit function f(x) has already been

found. Thus, this relation makes it relatively easy to establish both the
presence and absence of uniform convergence, provided that pointwise con-
vergence is already established.

https://www.youtube.com/watch?v=PRXEFme2sV0&t=00m01s
https://www.youtube.com/watch?v=PRXEFme2sV0&t=03m57s
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Proof.
1. Necessity. Given: condition (2) is satisfied. Prove: the limit relation (3)

holds.
We rewrite condition (2) with a slight change in the last inequality:

∀ ε > 0 ∃N ∈ N ∀n > N ∀x ∈ E |fn(x)− f(x)| < ε

2
. (4)

Since the condition is satisfied for all x ∈ E, we obtain that the set of all
values |fn(x)− f(x)| is bounded from above and ε

2 is its upper bound. Since
the supremum is the least upper bound, the following estimate holds:

sup
x∈E
|fn(x)− f(x)| ≤ ε

2
< ε.

Thus, condition (4) implies the following condition:

∀ ε > 0 ∃N ∈ N ∀n > N sup
x∈E
|fn(x)− f(x)| < ε. (5)

We obtained a definition in the language ε - N of the fact that the limit
of the sequence {supx∈E |fn(x)− f(x)|} as n → ∞ is 0. The necessity is
proven.

2. Sufficiency. Given: the limit relation (3) holds. Prove: condition (2) is
satisfied.

Relation (3) can be written in the language ε–N in the form (5).
The condition supx∈E |fn(x)− f(x)| < ε, by the definition of supremum,

implies an estimate that holds for all x ∈ E:

|fn(x)− f(x)| ≤ sup
x∈E
|fn(x)− f(x)| < ε.

Replacing in condition (5) the estimate supx∈E |fn(x)− f(x)| < ε with
the resulting estimate ∀x ∈ E |fn(x)− f(x)| < ε, we obtain (2), i. e., the
definition of the uniform convergence of the sequence {fn(x)}. �

Examples of applying the criterion for uniform
convergence of a functional sequence 3.12B/14:25 (14:47)

Consider the sequence of functions fn(x) = xn on the set E = [0, 1].
Obviously, for any point x ∈ [0, 1), there exists a limit limn→∞ x

n = 0,
and the limit is 1 for x = 1: limn→∞ 1n = 1 (Fig. 19).

https://www.youtube.com/watch?v=PRXEFme2sV0&t=14m25s
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Fig. 19. Graphs y = xn, n = 1, 2, 5, 25

Thus, the functional sequence {xn} converges on the set [0, 1] to the limit
function

f(x) =

{
0, x ∈ [0, 1),
1, x = 1.

Let us study the question of the uniform convergence of this sequence.
To do this, we use the previously proven criterion and find the limit of the
expression supx∈E |fn(x)− f(x)| = supx∈[0,1] |xn − f(x)|. At the point x = 1,
the value of difference |xn − f(x)| is 0 since f(1) = 1. Therefore, it suffices
to find the value of the supremum on the half-interval [0, 1), where f(x) = 0.
Thus, we get the following chain of equalities:

sup
x∈[0,1]

|xn − f(x)| = sup
x∈[0,1)

|xn − 0| = sup
x∈[0,1)

xn.

For any n ∈ N, the function xn has the least upper bound 1 on the half-
interval [0, 1), although this value is not reached. This fact follows from the
limit relation limx→1 x

n = 1, which means that the function xn takes values
arbitrarily close to 1 on the half-interval [0, 1). So, we have proved that the
following relation holds for any n ∈ N:

sup
x∈[0,1]

|xn − f(x)| = 1.

When passing to the limit as n→∞, this result will not change:

lim
n→∞

sup
x∈[0,1]

|xn − f(x)| = 1.

Thus, the limit is not equal to 0; therefore, by virtue of the criterion, the
convergence of the sequence {xn} on the segment [0, 1] is not uniform.

Remarks.
1. In what follows, we prove that if a sequence of functions continuous

on the set E converges uniformly on this set to some function f(x), then



15. Functional sequences and series 169

the limit function f(x) is also continuous. This fact immediately implies the
absence of uniform convergence for the considered sequence of functions xn

continuous on the set [0, 1], since its limit function is not continuous (it has
a discontinuity of the first kind at point 1).

2. If we consider the half-interval E = [0, 1), then in this case the se-
quence {xn} will approach the function f(x), which is identically equal to 0.
Thus, the limit function is continuous on the set E. Nevertheless, the con-
vergence on the half-interval [0, 1) is not uniform either, since we have al-
ready established that supx∈[0,1) |xn− f(x)| = supx∈[0,1) x

n = 1 and therefore
limn→∞ supx∈[0,1) |xn − f(x)| = 1 6= 0.

3. If we consider the segment [0, q] for q < 1 as the set E, then the sequence
{xn} will converge uniformly on this segment to the function f(x) ≡ 0.
Indeed, in this case we have

sup
x∈[0,q])

|xn − f(x)| = sup
x∈[0,q]

xn = qn.

Since qn → 0 as n → 0, we obtain that condition (3) of the criterion is
satisfied, so the convergence of the sequence {xn} is uniform. Convergence
remains uniform even in the case of the half-interval [0, q) for q < 1.

Uniform convergence of a functional series
and a criterion for uniform convergence
of a series in terms of the supremum limit 3.12B/29:12 (05:20)

Definition.
It is said that the functional series

∑∞
k=1 uk(x) converges uniformly

on the set E to the function S(x) (notation
∑∞

k=1 uk(x)
E

⇒ S(x)) if
the sequence of partial sums

{∑n
k=1 uk(x)

}
converges uniformly to S(x):∑n

k=1 uk(x)
E

⇒ S(x), n→∞.
In the language ε–N , the definition of uniform convergence of a functional

series is as follows. The series
∑∞

k=1 uk(x) converges uniformly on the set E
to the function S(x) if the condition holds:

∀ ε > 0 ∃N ∈ N ∀n > N ∀x ∈ E
∣∣∣ n∑
k=1

uk(x)− S(x)
∣∣∣ < ε.

Using the previously proved criterion for uniform convergence of a func-
tional sequence, we can immediately obtain a similar criterion for uniform
convergence of a functional series.

https://www.youtube.com/watch?v=PRXEFme2sV0&t=29m12s
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Theorem (criterion for uniform convergence of a func-
tional series in terms of the supremum limit).

The functional series
∑∞

k=1 uk(x) converges uniformly on the set E to the
function S(x) if and only if the following limit relation holds:

lim
n→∞

sup
x∈E

∣∣∣ n∑
k=1

uk(x)− S(x)
∣∣∣ = 0.

Cauchy criterion for the uniform convergence
of a functional sequence and a functional series

Formulation of the Cauchy criterion for uniform
convergence of a functional sequence 3.12B/34:32 (04:54)

Theorem (Cauchy criterion for uniform convergence
of a functional sequence).

The functional sequence {fn(x)} converges uniformly on the set E if and
only if the following condition is satisfied:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N ∀x ∈ E

|fm(x)− fm+p(x)| < ε. (6)

Proof of the Cauchy criterion for uniform
convergence of a functional sequence 3.13A/00:00 (10:53)

1. Necessity. Given: the functional sequence {fn(x)} converges uniformly
on the set E. Prove: condition (6) is satisfied.

Let the sequence {fn(x)} converge uniformly to the function f(x). We
rewrite the definition of uniform convergence (2) with a slight change in the
last inequality (note that the same version of condition (2) was also used to
prove the necessity for the criterion for uniform convergence in terms of the
supremum limit):

∀ ε > 0 ∃N ∈ N ∀n > N ∀x ∈ E |fn(x)− f(x)| < ε

2
.

Then, for any m > N , p ∈ N, x ∈ E, we have

|fm(x)− f(x)| < ε

2
,

|fm+p(x)− f(x)| < ε

2
.

https://www.youtube.com/watch?v=PRXEFme2sV0&t=34m32s
https://www.youtube.com/watch?v=pJywld91FOs&t=00m01s
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Let us transform the difference |fm(x)− fm+p(x)| using the last two esti-
mates:

|fm(x)− fm+p(x)| = |fm(x)− f(x) + f(x)− fm+p(x)| ≤

≤ |fm(x)− f(x)|+ |f(x)− fm+p(x)| < ε

2
+
ε

2
= ε.

Thus, condition (6) is satisfied and the necessity is proven.
2. Sufficiency. Given: condition (6) is satisfied. Prove: the functional

sequence {fn(x)} converges uniformly on the set E.
First, we prove that the sequence {fn(x)} converges pointwise on the set E.

We choose some value x0 ∈ E. From condition (6), we obtain:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N |fm(x0)− fm+p(x0)| < ε

This condition coincides with the Cauchy criterion condition for the con-
vergence of the numerical sequence {fn(x0)}. It follows from this criterion
that the numerical sequence {fn(x0)} has a limit; denote it by f(x0). Since
the choice of x0 ∈ E is arbitrary, we obtain that the functional sequence
{fn(x0)} converges on the set E to some function f(x). It remains to prove
that the convergence to the function f(x) is uniform.

We rewrite condition (6) with a slight change in the last inequality:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N ∀x ∈ E

|fm(x)− fm+p(x)| < ε

2
. (7)

Since this condition is satisfied for any p ∈ N, we can pass to the limit
as p → ∞. Taking into account the pointwise convergence of the sequence
{fn(x)} already proved, we get that fm+p(x)→ f(x). Therefore, the inequal-
ity |fm(x) − fm+p(x)| < ε

2 , by virtue of the theorem on passing to the limit
in inequalities, takes the following form:

|fm(x)− f(x)| ≤ ε

2
< ε.

Thus, as a result of passing to the limit as p → ∞, condition (7) is
transformed as follows:

∀ ε > 0 ∃N ∈ N ∀m > N ∀x ∈ E |fm(x)− f(x)| < ε.

We obtained a version of condition (2) from the definition of uniform con-
vergence (its only difference from (2) is the use of the symbol m instead of
the symbol n). Therefore, the sequence {fn(x)} converges uniformly on E to
f(x). �
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Cauchy criterion for uniform convergence
of a functional series 3.13A/10:53 (03:41)

Corollary (Cauchy criterion for uniform convergence of
a functional series).

The functional series
∑∞

k=1 uk(x) converges uniformly on the set E if and
only if the following condition is satisfied:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N ∀x ∈ E∣∣∣ m+p∑
k=m+1

uk(x)
∣∣∣ < ε. (8)

Proof.
Consider the sequence of partial sums of the initial series:

{Sn(x)} =
{∑n

k=1 uk(x)
}
. The difference |Sm+p(x) − Sm(x)| for this

sequence can be written as follows:

|Sm+p(x)− Sm(x)| =
∣∣∣m+p∑
k=1

uk(x)−
m∑
k=1

uk(x)
∣∣∣ =

∣∣∣ m+p∑
k=m+1

uk(x)
∣∣∣.

Thus, condition (6) of the Cauchy criterion for uniform convergence of the
functional sequence {Sn(x)} coincides with condition (8). Therefore, condi-
tion (8) holds if and only if the sequence {Sn(x)} converges uniformly on E.
It remains to note that the uniform convergence of the series

∑∞
k=1 uk(x)

is equivalent to the uniform convergence of the sequence of its partial sums
{Sn(x)}. �

Tests of uniform convergence of functional series

Weierstrass test 3.13A/14:34 (12:01)

Theorem (Weierstrass test for uniform convergence
of a functional series).

Let the functional series
∑∞

k=1 uk(x) be defined on the set E and the
following condition holds for its terms:

∃N ′ ∈ N ∀ k > N ′ ∀x ∈ E |uk(x)| ≤ ak. (9)
If the numerical series

∑∞
k=1 ak converges, then the initial functional series∑∞

k=1 uk(x) converges absolutely and uniformly on E. In English, this test is
also called the Weierstrass M-test.

https://www.youtube.com/watch?v=pJywld91FOs&t=10m53s
https://www.youtube.com/watch?v=pJywld91FOs&t=14m34s
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Proof.
Let us write the condition for the Cauchy criterion for a convergent nu-

merical series
∑∞

k=1 ak:

∀ ε > 0 ∃N ′′ ∈ N ∀m > N ′′ ∀ p ∈ N
m+p∑

k=m+1

ak < ε. (10)

In the last inequality, we do not use the sign of the absolute value operation,
since, by virtue of (9), all terms ak are non-negative.

If we now put N = max{N ′, N ′′} and use condition (9), then, for any
m > N , p ∈ N, and x ∈ E, we get

m+p∑
k=m+1

|uk(x)| ≤
m+p∑

k=m+1

ak < ε.

So, we have obtained that the following condition follows from condi-
tions (9) and (10):

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N ∀x ∈ E
m+p∑

k=m+1

|uk(x)| < ε.

By the Cauchy criterion for uniform convergence of a functional series, this
condition is sufficient for the uniform convergence of the series

∑∞
k=1 |uk(x)|.

We proved that the initial series
∑∞

k=1 uk(x) converges absolutely on E.
It remains to note that the convergence of the initial series is uniform.

Indeed, the condition of the Cauchy criterion of uniform convergence is also
satisfied for the initial series, since the following estimate holds:∣∣∣ m+p∑

k=m+1

uk(x)
∣∣∣ ≤ m+p∑

k=m+1

|uk(x)| < ε. �

Example.
Consider the series

∑∞
k=1

sin kx
k2 . For its common term, the following esti-

mate is true:

∀ k ∈ N ∀x ∈ R
∣∣∣sin kx
k2

∣∣∣ ≤ 1

k2
.

Since the numerical series
∑∞

k=1
1
k2 converges, we conclude, by the Weier-

strass test, that the functional series
∑∞

k=1
sin kx
k2 converges absolutely and

uniformly on the entire real axis R.
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Dirichlet’s test and Abel’s test 3.13A/26:35 (07:50)

Theorem (Dirichlet’s test for uniform convergence of
a functional series).

Let the functional series
∑∞

k=1 uk(x)vk(x) be defined on E and the follow-
ing conditions are satisfied for it:

1) ∃M ∀n ∈ N ∀x ∈ E
∣∣∑n

k=1 uk(x)
∣∣ ≤M ;

2) vk(x)
E

⇒ 0 as k →∞, the numerical sequence {vk(x)} is monotone for
any x ∈ E.

Then the series
∑∞

k=1 uk(x)vk(x) converges uniformly on E (the conver-
gence is, generally speaking, conditional).

Proof4.
Introducing the auxiliary notation Un(x) =

∑n
k=1 uk(x) and carrying out

the same reasoning as at the beginning of the proof of Dirichlet’s test for
the convergence of a numerical series, we can obtain the following estimate,
which holds for any m, p ∈ N and x ∈ E:∣∣∣ m+p∑

k=m+1

uk(x)vk(x)
∣∣∣ ≤ 2M(|vm+1(x)|+ |vm+p(x)|).

Now we use the condition that the sequence {vk(x)} converges uniformly
on the set E to 0, and write this condition in the following form:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N ∀x ∈ E |vm+p(x)| < ε

4M
.

For
∣∣∑m+p

k=m+1 uk(x)vk(x)
∣∣, we finally get∣∣∣ m+p∑

k=m+1

uk(x)vk(x)
∣∣∣ ≤ 2M(|vm+1(x)|+ |vm+p(x)|) <

< 2M
( ε

4M
+

ε

4M

)
= ε.

Thus, we have proved that the condition for uniform convergence on E
from the Cauchy criterion is satisfied for the initial series:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N ∀x ∈ E∣∣∣ m+p∑
k=m+1

uk(x)vk(x)
∣∣∣ < ε. �

We also give the formulation of Abel’s test for the uniform convergence of
a functional series (for the proof, see, for example, [18, Ch. 9, Sec. 42.4]).

4There is no proof of this theorem in video lectures.

https://www.youtube.com/watch?v=pJywld91FOs&t=26m35s
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Theorem (Abel’s test for uniform convergence of a func-
tional series).

Let the functional series
∑∞

k=1 uk(x)vk(x) be defined on E and the follow-
ing conditions are satisfied for it:

1) the series
∑n

k=1 uk(x) converges uniformly on E;
2) the sequence {vk(x)} is monotone for any x ∈ E and is also uniformly

bounded:

∃M > 0 ∀ k ∈ N ∀x ∈ E |vk(x)| ≤M .

Then the series
∑∞

k=1 uk(x)vk(x) converges uniformly on E (the conver-
gence is, generally speaking, conditional).



16. Properties of uniformly converging
sequences and series

Continuity of the uniform limit

Formulation of the theorem
on the continuity of the uniform limit 3.13A/34:25 (09:02)

Theorem (on the continuity of the uniform limit of a func-
tional sequence with continuous elements).

Let the functional sequence {fn(x)} converge uniformly on the segment
[a, b] to the function f(x). Suppose that the function fn(x) is continuous on
[a, b] for any n ∈ N. Then the limit function f(x) is also continuous on [a, b].

Remarks.
1. If the convergence is not uniform, then the statement of the theorem

may not hold. Earlier we gave an example of a sequence of continuous func-
tions {xn}. This sequence is not uniformly convergent on the segment [0, 1],
but converges pointwise on this segment. The limit of this (not uniformly
converging) sequence is a function that has a discontinuity of the first kind
at point 1.

2. This theorem means that, for a uniformly converging sequence of
continuous functions, we can swap two limit operations: as n → ∞ and
as x → x0, where x0 is some point of the segment [a, b]. Indeed, due to
the continuity of the functions fn(x) and the limit function f(x), we have
limx→x0 fn(x) = fn(x0), limx→x0 f(x) = f(x0); due to the convergence of the
functional sequence, we have limn→∞ fn(x) = f(x), therefore the following
chain of equalities holds:

lim
n→∞

lim
x→x0

fn(x) = lim
n→∞

fn(x0) = f(x0) = lim
x→x0

f(x) = lim
x→x0

lim
n→∞

fn(x).

We emphasize that the indicated inversion of the limits can be performed
only if the initial sequence of continuous functions is uniformly convergent,
since only uniform convergence ensures the continuity of the limit function.

https://www.youtube.com/watch?v=pJywld91FOs&t=34m25s
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Proof of the theorem
on the continuity of the uniform limit 3.13B/00:00 (13:55)

It is enough for us to prove that the limit function f(x) is continuous at
some arbitrarily chosen point x0 ∈ [a, b].

Let us give the definition of the function f(x) continuous at the point x0

in the language ε–δ:

∀ ε > 0 ∃ δ > 0 ∀x ∈ [a, b], |x−x0| < δ, |f(x)−f(x0)| < ε. (1)

Now we write down the conditions that the initial sequence {fn(x)} sat-
isfies. Firstly, this sequence converges uniformly on the set [a, b] to the func-
tion f(x). We write this fact in the language ε–N for the previously selected
value ε:

∃N ∈ N ∀n > N ∀x ∈ [a, b] |fn(x)− f(x)| < ε

3
. (2)

We choose some value n0 > N . For this value n0 and for any x ∈ [a, b],
by virtue of (2), the estimate holds:

|fn0(x)− f(x)| < ε

3
. (3)

Since the previously selected point x0 also belongs to the segment [a, b],
a similar estimate is fulfilled for it:

|fn0(x0)− f(x0)| <
ε

3
. (4)

Secondly, by condition, the functions fn, n ∈ N, are continuous at the
point x0. Therefore, the function fn0 is also continuous at the point x0. We
write this fact in the language ε–δ for the previously selected value ε:

∃ δ > 0 ∀x ∈ [a, b], |x− x0| < δ, |fn0(x)− fn0(x0)| <
ε

3
. (5)

So, we got that, for the chosen value ε > 0, there exists a value δ > 0 (spec-
ified in condition (5)) such that estimates (3), (4), and (5) are simultaneously
fulfilled for all x ∈ [a, b], |x− x0| < δ.

We transform the expression |f(x)− f(x0)| using these three estimates:

|f(x)− f(x0)| =
= |f(x)− fn0(x) + fn0(x)− fn0(x0) + fn0(x0)− f(x0)| ≤
≤ |f(x)− fn0(x)|+ |fn0(x)− fn0(x0)|+ |fn0(x0)− f(x0)| <

<
ε

3
+
ε

3
+
ε

3
= ε.

Thus, we have shown that condition (1) is satisfied. Therefore, the limit
function f is continuous at an arbitrary point x0 of the segment [a, b]. �

https://www.youtube.com/watch?v=cyHCvVqlDGw&t=00m01s
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Corollary for functional series 3.13B/13:55 (09:55)

Corollary (on the continuity of the sum of a uniformly
converging functional series with continuous terms).

Let the series
∑∞

k=1 uk(x) uniformly converge on the segment [a, b] to the
function S(x). Let all terms of the series uk(x) be continuous functions on the
segment [a, b]. Then the sum of the series S(x) is also a continuous function
on this segment.

Remark.
This corollary can also be interpreted in terms of a swap of two limit

operations. Namely, we choose the point x0 ∈ [a, b] and consider the following
limit: limx→x0

∑∞
k=1 uk(x). This limit is understood as the limit of the sum

of a converging series: limx→x0 S(x).
Since, according to the corollary, the sum S(x) is a continuous function

on [a, b], the last limit is equal to the value of the function S at the point x0.
But the value of S(x0) is the sum of the series

∑∞
k=1 uk(x0). If we now use

the continuity of the functions uk, the last series can be written in the form∑∞
k=1 limx→x0 uk(x).
Removing the intermediate transformations, we obtain the following rela-

tion:

lim
x→x0

∞∑
k=1

uk(x) =
∞∑
k=1

lim
x→x0

uk(x). (6)

This relation means that in the case of a uniformly converging series with
continuous terms, the limit as x → x0 can be moved under the infinite sum
sign or taken out of it. This makes it possible in some cases to more simply
calculate the limit of the sum of a uniformly converging series: instead of
finding an expression for the sum of the initial functional series and passing
to the limit in this expression (i. e., performing the actions in the left-hand
side of (6)), it often turns out to be easier to find the limit for the terms
of this series and then find the sum of the resulting numerical series (i. e.,
perform the actions in the right-hand side of (6)).

Note also that a special justification of reversing the limit sign and the
summation sign is required only in the case of infinite sums. If we replace
the series with a finite sum of the form

∑n
k=1 uk(x) in relation (6), then the

validity of this relation will immediately follow from the fact that the finite
sum of continuous functions is a continuous function.

https://www.youtube.com/watch?v=cyHCvVqlDGw&t=13m55s
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Proof.
By definition, the function S(x) is the limit of a sequence of partial sums

Sn(x) =
∑n

k=1 uk(x). The uniform convergence of the series means that the
sequence {Sn(x)} converges to S(x) uniformly on [a, b].

In addition, the partial sum Sn(x) is a continuous function as a finite sum
of continuous functions uk(x).

So, all the conditions of the previous theorem are satisfied for the sequence
{Sn(x)}: it converges uniformly on [a, b] to S(x) and its elements are contin-
uous functions on this segment. Applying this theorem, we obtain that the
limit function S(x) is also continuous on [a, b]. �

Integration of functional sequences and series

Formulation of the theorem
on the integration of a functional sequence 3.13B/23:50 (03:57)

Theorem (on the integration of a uniformly converging
functional sequence).

Let the functional sequence {fn(x)} converge uniformly on the segment
[a, b] to the function f(x). Let the function fn(x) be continuous on [a, b] for
any n ∈ N. Let x0 ∈ [a, b].

Then the functional sequence
{∫ x

x0
fn(t) dt

}
is defined on the segment [a, b]

and converges uniformly on this segment to the function
∫ x
x0
f(t) dt:∫ x

x0

fn(t) dt
[a,b]

⇒
∫ x

x0

f(t) dt, n→∞. (7)

Remarks.
1. All the integrals mentioned in the theorem exist, since the integrands

are continuous: the functions fn(x) are continuous by condition, the limit
function f(x) is continuous by virtue of the previous theorem.

2. The result of the theorem can be reformulated in terms of reversing the
limit operation and the integration operation:

lim
n→∞

∫ x

x0

fn(t) dt =

∫ x

x0

f(t) dt =

∫ x

x0

lim
n→∞

fn(t) dt.

Proof of the theorem
on the integration of a functional sequence 3.13B/27:47 (06:14)

Let us write the condition for uniform convergence of the initial sequence
{fn(x)} in the language ε–N :

https://www.youtube.com/watch?v=cyHCvVqlDGw&t=23m50s
https://www.youtube.com/watch?v=cyHCvVqlDGw&t=27m47s
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∀ ε > 0 ∃N ∈ N ∀n > N ∀x ∈ [a, b]

|fn(x)− f(x)| < ε

b− a
. (8)

For definiteness, we assume that the estimate x0 < x holds.
Consider the difference

∣∣∫ x
x0
fn(t) dt −

∫ x
x0
f(t) dt

∣∣ and transform it as fol-
lows: ∣∣∣∫ x

x0

fn(t) dt−
∫ x

x0

f(t) dt
∣∣∣ =

∣∣∣∫ x

x0

(
fn(t)− f(t)

)
dt
∣∣∣ ≤

≤
∫ x

x0

|fn(t)− f(t)| dt.

We use estimate (8), which is valid for any t, since t ∈ [x0, x] ⊂ [a, b], and
the corollary of the theorem on integration of a positive continuous function:∫ x

x0

|fn(t)− f(t)| dt < ε

b− a
· (x− x0) ≤

ε

b− a
· (b− a) = ε.

So, we have proved that the following condition is satisfied for the sequence{∫ x
x0
fn(t) dt

}
:

∀ ε > 0 ∃N ∈ N ∀n > N ∀x ∈ [a, b]∣∣∣∫ x

x0

fn(t) dt−
∫ x

x0

f(t) dt
∣∣∣ < ε.

This means that the sequence
{∫ x

x0
fn(t) dt

}
converges uniformly on [a, b]

and the limit relation (7) holds. �

Formulation of the corollary
on the integration of a functional series 3.14A/00:00 (08:28)

Corollary (on the integration of a uniformly converging
functional series).

Let the series
∑∞

k=1 uk(x) converge uniformly on the segment [a, b] to the
function S(x). Let all terms of the series uk(x) be continuous functions on the
segment [a, b]. Then the series

∑∞
k=1

∫ x
x0
uk(t) dt converges uniformly on [a, b]

to the integral
∫ x
x0
S(t) dt for any point x0 ∈ [a, b].

Remarks.
1. All the integrals mentioned in the corollary exist because the integrands

are continuous: the functions uk(x) are continuous by condition, the limit
function S(x) is continuous by virtue of the corollary of the theorem on the
continuity of the uniform limit.

https://www.youtube.com/watch?v=lkbV5-3O7Ps&t=00m01s
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2. The result of the corollary can be reformulated in terms of reversing
the operation of infinite summation and the integration operation. If we start
with the integral of the sum of the series

∫ x
x0

(∑∞
k=1 uk(t)

)
dt and take into

account that the sum of the series is a function S(t), then this integral will
take the form

∫ x
x0
S(t) dt. But by virtue of the corollary, it is equal to the

sum of the series
∑∞

k=1

∫ x
x0
uk(t) dt. Thus, we obtain the following equality:∫ x

x0

( ∞∑
k=1

uk(t)
)
dt =

∞∑
k=1

∫ x

x0

uk(t) dt. (9)

This equality means that the sign of the integral can be taken out of
the sign of an infinite sum (or moved under its sign) if the series converges
uniformly. Note that in the case of a finite sum, this property immediately
follows from the additivity property of a definite integral with respect to the
integrand.

Relation (9) allows, in some cases, to simplify finding the integral of the
sum of the series (the left-hand side of equality (9)) if it is easier to integrate
the terms of the initial series at first and then find the sum of the resulting
series. Sometimes relation (9) simplifies finding the sum of a series consisting
of integrals (the right-hand side of (9)) if it is easier to find the sum of a series
containing integrands, and then integrate the found sum.

Proof of the corollary
on the integration of a functional series 3.14A/08:28 (04:38)

By definition, the function S(x) is the limit of a sequence of partial sums
Sn(x) =

∑n
k=1 uk(x). The uniform convergence of the series means that

the sequence {Sn(x)} converges to S(x) uniformly on [a, b]. In addition,
the partial sums of Sn(x) are continuous on [a, b] as finite sums of continuous
functions and, by the corollary of the theorem on the continuity of the uniform
limit, the function S(x) is also continuous.

Then the sequence of partial sums σn(x) =
∑n

k=1

∫ x
x0
uk(t) dt can be trans-

formed as follows, using the additivity property of a definite integral with
respect to the integrand:

σn(x) =
n∑
k=1

∫ x

x0

uk(t) dt =

∫ x

x0

( n∑
k=1

uk(t)
)
dt =

∫ x

x0

Sn(t) dt. (10)

Since the sequence {Sn(x)} satisfies all the conditions of the theorem on
integrating a uniformly converging functional sequence, we obtain that the
sequence

{∫ x
x0
Sn(t) dt

}
is also uniformly convergent on [a, b] and its limit

https://www.youtube.com/watch?v=lkbV5-3O7Ps&t=08m28s
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is equal to the function
∫ x
x0
S(t) dt. Then the same is true for the sequence

{σn(x)} from the left-hand side of equality (10).
Thus, we have proved that the sequence of partial sums

σn(x) =
∑n

k=1

∫ x
x0
uk(t) dt converges uniformly on [a, b] to the function∫ x

x0
S(t) dt. By definition, this means that the series

∑∞
k=1

∫ x
x0
uk(t) dt

converges uniformly on [a, b] to the same function. �

Differentiation of functional sequences and series

Formulation of the theorem on the differentiation
of a functional sequence 3.14A/13:06 (06:39)

Theorem (on differentiation of a functional sequence).
Let the functional sequence {fn(x)} contain continuously differentiable

functions on [a, b].
Let the sequence of derivatives of these functions {f ′n(x)} converge uni-

formly on [a, b] to some function ϕ(x).
Suppose, in addition, that there exists a point x0 ∈ [a, b] such that the

numerical sequence {fn(x0)} converges to some number f0.
Then the functional sequence {fn(x)} converges uniformly on the segment

[a, b] to the function f(x), the function f(x) is continuously differentiable
on [a, b], and the equality holds:

f ′(x) = ϕ(x). (11)

Remark.
The result of the theorem can be reformulated in terms of reversing the

limit operation and the differentiation operation:(
lim
n→∞

fn(x)
)′

= f ′(x) = ϕ(x) = lim
n→∞

f ′n(x).

Such a transformation is valid only if the sequence {f ′n(x)} is uniformly
convergent.

Proof of the theorem on the differentiation
of a functional sequence 3.14A/19:45 (07:29)

Since, by condition, the sequence {f ′n(x)} converges uniformly to the func-
tion ϕ(x) and the functions f ′n(x) are continuous, we can apply the theorem
on the integration of a uniformly converging functional sequence and obtain,
as a result, the following limit relation:

https://www.youtube.com/watch?v=lkbV5-3O7Ps&t=13m06s
https://www.youtube.com/watch?v=lkbV5-3O7Ps&t=19m45s
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∫ x

x0

f ′n(t) dt
[a,b]

⇒
∫ x

x0

ϕ(t) dt, n→∞. (12)

Here the point x0 is chosen so that the sequence {fn(x0)} is convergent
(this point exists by condition).

Using the Newton–Leibniz formula, the left-hand side of the limit rela-
tion (12) can be transformed as follows:∫ x

x0

f ′n(t) dt = fn(x)− fn(x0).

Thus, the limit relation (12) can be rewritten in the form

lim
n→∞

(
fn(x)− fn(x0)

)
=

∫ x

x0

ϕ(t) dt. (13)

Moreover, the convergence is uniform on [a, b].
We represent the left-hand side of equality (13) in the form of a difference

of limits:

lim
n→∞

(
fn(x)− fn(x0)

)
= lim

n→∞
fn(x)− lim

n→∞
fn(x0). (14)

Since the limit on the left-hand side of (14) exists (and is equal to∫ x
x0
ϕ(t) dt) and, by condition, the second limit on the right-hand side of (14)

also exists (and is equal to f0 ), we conclude, due to the arithmetic properties
of the limits, that the first limit on the right-hand side also exists and the
equality holds:

lim
n→∞

fn(x) = lim
n→∞

(
fn(x)− fn(x0)

)
+ lim

n→∞
fn(x0) =

∫ x

x0

ϕ(t) dt+ f0.

In addition, since the sequence {fn(x)− fn(x0)} converges uniformly on
[a, b] and the sequence {fn(x0)} is a numerical sequence, we obtain that the
sequence {fn(x)} also converges uniformly on [a, b].

So, we have proved the validity of the following limit relation:

fn(x)
[a,b]

⇒
∫ x

x0

ϕ(t) dt+ f0, n→∞.

It remains for us to prove that the limit function f(x) =
∫ x
x0
ϕ(t) dt+ f0 is

continuously differentiable on [a, b] and equality (11) holds for it. These facts
follow from the properties of an integral with a variable upper limit. Indeed,
the function ϕ(x) is continuous on [a, b] as the uniform limit of the sequence
of continuous functions f ′n(x), therefore, the integral with a variable upper
limit of the function ϕ(x) is a continuously differentiable function and its
derivative is equal to the integrand ϕ(x):
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f ′(x) =
(∫ x

x0

ϕ(t) dt+ f0

)′
= ϕ(x) + 0 = ϕ(x). �

Formulation of the corollary
on the differentiation of a functional series 3.14A/27:14 (04:20)

Corollary (on the differentiation of a functional series).
Let all the terms of the functional series

∑∞
k=1 uk(x) be continuously dif-

ferentiable functions on the segment [a, b].
Let the series

∑∞
k=1 u

′
k(x) converge uniformly on [a, b] to the function σ(x).

Suppose that there exists a point x0 ∈ [a, b] such that the numerical series∑∞
k=1 uk(x0) converges to some number S0.
Then the series

∑∞
k=1 uk(x) converges uniformly on [a, b] to the function

S(x), the sum S(x) is a continuously differentiable function, and the equality
holds:

S ′(x) = σ(x). (15)

Remark.
The result of the corollary can be reformulated in terms of reversing the

operation of infinite summation and the differentiation operation. If we start
with a series

∑∞
k=1 u

′
k(t) containing derivatives and take into account that

the sum of this series is a function σ(x), which, by virtue of (15) is equal to
S ′(x), i. e., the derivative of the sum of the series

∑∞
k=1 uk(t), then, omitting

the intermediate transformations, we obtain the following equality:
∞∑
k=1

u′k(t) =
( ∞∑
k=1

uk(t)
)′
. (16)

This equality means that the sign of the derivative can be taken out of the
sign of an infinite sum (or moved under its sign) if the series containing the
derivatives converges uniformly. Note that in the case of a finite sum, this
property immediately follows from the arithmetic properties of derivatives.

Relation (16) allows, in some cases, to simplify finding the sum of a series
containing derivatives (the left-hand side of equality (16)) if it is easier to
find the sum of a series containing the initial functions, and then differentiate
this sum. Sometimes this relation simplifies the differentiation of the sum of
a series (the right-hand side of (16)) if it is easier to differentiate the terms
of the initial series at first and then find the sum of the series containing
derivatives.

https://www.youtube.com/watch?v=lkbV5-3O7Ps&t=27m14s
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Proof of the corollary
on the differentiation of a functional series 3.14A/31:34 (06:26)

By the definition of convergence of a series, the function σ(x) is the limit
of a sequence of partial sums σn(x) =

∑n
k=1 u

′
k(x). The uniform convergence

of the series means that the sequence {σn(x)} converges to σ(x) uniformly
on [a, b]. In addition, the partial sums σn(x) are continuous on [a, b] as finite
sums of continuous functions.

If we additionally define a sequence of partial sums for the initial series
Sn(x) =

∑n
k=1 uk(x), then, firstly, these partial sums will be continuously

differentiable functions on [a, b] as finite sums of continuously differentiable
functions, secondly, the relation S ′n(x) = σn(x) will be satisfied, by the arith-
metic properties of derivatives, and thirdly, for a point x0 ∈ [a, b], the numer-
ical sequence {Sn(x0)} will converge to S0 by condition.

Thus, all the conditions of the theorem on the differentiation of functional
sequences are satisfied for the sequence {Sn(x)} (in particular, the sequence
{S ′n(x)} converges uniformly to σ(x)). Therefore, the sequence {Sn(x)} con-
verges uniformly on [a, b] to a continuously differentiable function S(x) and
relation (15) holds for this function. By the definition of a uniformly converg-
ing functional series, we obtain that the initial series

∑∞
k=1 uk(x) converges

uniformly on [a, b] to the function S(x). �

https://www.youtube.com/watch?v=lkbV5-3O7Ps&t=31m34s
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Power series: definition
and Abel’s theorems on its convergence

Definition of a power series 3.14A/38:00 (03:19)

Definition.
A power series is a functional series of the form

∞∑
k=0

ck(x− x0)
k. (1)

The point x0 ∈ R is called the center of the series (1), the numbers ck ∈ R
for k = 0, 1, 2, . . . are called the coefficients of the series (1), and x is a vari-
able.

Thus, a power series is a functional series whose terms are power functions.
The partial sums Sn(x) of the power series are polynomials of formal degree n:

Sn(x) =
n∑
k=0

ck(x− x0)
k.

By changing the variables t = x − x0 (i. e., by performing a shift by x0),
we can transform series (1) to the following form (with the original variable
name x):

∞∑
k=0

ckx
k.

The properties of a series centered at point 0 and a series of general form (1)
are similar, so, in what follows, we will mainly consider power series centered
at zero.

Formulation of the first Abel theorem 3.14B/00:00 (04:18)

Theorem (the first Abel theorem on the convergence of
a power series).

If the power series
∑∞

k=0 ckx
k converges at x = x0, then it converges ab-

solutely on the interval (−|x0|, |x0|) and converges uniformly on any segment
[−|x0|+ δ, |x0| − δ] for δ > 0.

https://www.youtube.com/watch?v=lkbV5-3O7Ps&t=38m01s
https://www.youtube.com/watch?v=uOH9-hFgtbM&t=00m01s
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Proof of the first Abel theorem 3.14B/04:18 (12:36)

Since the series
∑∞

k=0 ckx
k
0 converges, we obtain, by the necessary condition

for the convergence of a numerical series, that ckxk0 → 0 as k →∞ .
Since the sequence

{
ckx

k
0

}
converges, it is bounded:

∃M > 0 ∀ k ∈ N |ckxk0| ≤M . (2)

Using estimate (2), let us transform the expression |ckxk| as follows:

|ckxk| =
∣∣∣ck( x

x0

)k
xk0

∣∣∣ = |ckxk0| ·
∣∣∣ x
x0

∣∣∣k ≤M
∣∣∣ x
x0

∣∣∣k.
Denote q =

∣∣ x
x0

∣∣. We finally get the estimate

|ckxk| ≤Mqk. (3)

Let |x| < |x0|. Then q ∈ (0, 1) and therefore the series
∑∞

k=0Mqk is
convergent. Then, by the comparison criterion for numerical series, the se-
ries

∑∞
k=0 |ckxk| also converges. So, we have proved that the initial series∑∞

k=0 ckx
k converges absolutely at x when |x| < |x0|.

Note that we cannot state that the series
∑∞

k=0 |ckxk| is uniformly conver-
gent for |x| < |x0| by the Weierstrass convergence criterion, since the value
of q in the expression Mqk from (3) depends on x and therefore it cannot be
argued that the terms |ckxk| of the functional series are uniformly estimated
by terms of a convergent numerical series. However, the required estimate
can be obtained by reducing the initial interval.

Assume that |x| ≤ |x0| − δ. In this case, the expression |ckxk| can be
estimated from above as follows:

|ckxk| = |ckxk0| ·
∣∣∣ x
x0

∣∣∣k ≤M
∣∣∣x0 − δ
x0

∣∣∣k.
Denote q0 =

∣∣x0−δ
x0

∣∣. This value does not depend on x and belongs to
the interval (0, 1). Thus, the numerical series

∑∞
k=0Mqk0 does not depend

on x and converges, therefore, due to the Weierstrass convergence criterion,
it follows from the obtained estimate |ckxk| ≤Mqk0 that the functional series∑∞

k=0 |ckxk| converges uniformly for |x| ≤ |x0| − δ. �

Formulation of the second Abel theorem 3.14B/16:54 (04:55)

Theorem (the second Abel theorem on the convergence of
a power series).

For any power series
∑∞

k=0 ckx
k, there exists a value R ∈ [0,+∞)∪{+∞}

such that the series converges absolutely on the interval (−R,R) and diverges
outside the segment [−R,R].

https://www.youtube.com/watch?v=uOH9-hFgtbM&t=04m18s
https://www.youtube.com/watch?v=uOH9-hFgtbM&t=16m54s
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Remarks.
1. The number R is called the radius of convergence of the power series∑∞
k=0 ckx

k, the interval (−R,R) is called its interval of convergence. In par-
ticular, if R = 0, then the series converges only for x = 0 and the interval of
convergence reduces to a single point 0. If R = +∞, then the series converges
for any values of x ∈ R and the interval of convergence coincides with the
entire real axis.

2. By virtue of the first Abel theorem, uniform convergence of a power se-
ries takes place on any segment [a, b] embedded in the interval of convergence
of this power series.

First stage of the proof 3.14B/21:49 (14:27)

We introduce the set of non-negative x such that the series
∑∞

k=0 ckx
k

converges at these points: K =
{
x ≥ 0 :

∑∞
k=0 ckx

k converges
}
. This set is

nonempty, since it includes point 0.
If K = {0}, then the statement of the theorem holds for R = 0.
If K 6= {0}, then two cases are possible.
1. The set K is bounded from above:

∃M > 0 ∀x ∈ K x ≤M .

Then we take the least upper boundary of the setK as R: R = supK > 0.
Let x ∈ (0, R). By definition of the least upper bound, we get

∀ ε > 0 ∃x0 ∈ K x0 > R− ε.
Let ε = R−x

2 . For this value of ε, we get that there exists x0 ∈ K such
that x0 > R − R−x

2 = R+x
2 > x. Since x0 ∈ K, the series converges at the

point x0 and we obtain, according to the first Abel theorem, that the series
converges absolutely on the interval (−x0, x0) and therefore at the point x
because 0 < x < x0. Since the choice of x ∈ (0, R) is arbitrary, we conclude
that the series converges absolutely on the interval (−R,R).

Now let x > R. If we assume that the series converges at the point x, then
this will contradict the definition of the least upper boundary R, since, for
any point x′ > 0 at which the series converges, the estimate x′ ≤ R should
be true. Therefore, the series diverges at any point x > R.

If we consider x < −R and assume that the series converges at x, then,
by the first Abel theorem, the series will converge absolutely at any point x′

between x and −R and therefore at any point x′′ = |x′| ∈ (R, |x|). But we
have already established that the series cannot converge at the point x′′ > R.
This means that the series diverges at any point x < −R.

https://www.youtube.com/watch?v=uOH9-hFgtbM&t=21m49s
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So, we have proved the theorem for the case when the set K is bounded
from above.

Second stage of the proof 3.14B/36:16 (04:58)

2. It remains to consider the case when the set K is not bounded from
above:

∀M > 0 ∃x0 ∈ K x0 > M . (4)

Let x > 0. Then, for this value of x, by virtue of (4), there exists a point
x0 ∈ K such that the estimate x0 > x holds. Since x0 ∈ K, the series
converges at the point x0. Therefore, by the first Abel theorem, the series
converges absolutely at the points x′ when |x′| < x0 and therefore at the
chosen point x, as well as at the point −x. Since the choice of the point x is
arbitrary, we conclude that the series converges at all points of the real axis;
therefore, we can take +∞ as R. �

Remark.
The second Abel theorem can be obviously generalized to the case of

power series of the form
∑n

k=0 ck(x − x0)
k, where x0 6= 0. In this case,

there also exists a radius of convergence R, and the interval of convergence
is (x0−R, x0 +R). This interval of convergence reduces to a single point x0

when R = 0 and coincides with the entire real axis when R = +∞.
After the existence of the radius of convergence R of a power series is

established, we can ask a natural question about how to find this radius. It
turns out that there exists a formula that allows us to determine the value
of the radius of convergence from the coefficients ck of a given power series.
However, in order to give this formula, we need to introduce additional con-
cepts related to the sequence limit. The following section is devoted to the
description of these concepts.

Limit inferior and limit superior of a sequence

Partial limits of a sequence 3.14B/41:14 (05:05)

From the previously considered properties of subsequences (the Bolzano–
Weierstrass theorem and its corollary given in [1, Ch. 7]), it follows that any
sequence contains a subsequence having a finite or infinite limit. Moreover, if
the initial sequence converges, then all its subsequences converge to the same
limit. If the sequence is not convergent but it is bounded, then a convergent

https://www.youtube.com/watch?v=uOH9-hFgtbM&t=36m16s
https://www.youtube.com/watch?v=uOH9-hFgtbM&t=41m14s
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subsequence can be extracted from it. Finally, if a sequence is unbounded,
then a subsequence having an infinite limit can be extracted from it.

So, for any sequence, the set of its subsequences having a finite or infinite
limit is nonempty. Let us define the set K({xn}) of limits of such subse-
quences for the sequence {xn}:

K({xn}) =
{
x ∈ R ∪ {+∞,−∞} : ∃ {xnk} lim

k→∞
xnk = x

}
.

For any sequence {xn}, we have K({xn}) 6= ∅.
Elements of the set K({xn}) are called the partial limits of the se-

quence {xn}.
If the sequence {xn} converges to the limit A, then the set K({xn}) con-

sists of a single element A. For example, K(
{

1
n

}
) = {0}.

When studying sequences, we gave examples of sequences that have no
limit: an = (−1)n and bn = n(−1)n. The elements of the first sequence take
alternating values −1 and 1, and the elements of the second sequence take
values 1, 2, 1/3, 4, 1/5, 6, . . . , i. e., elements with odd indices approach 0
and elements with even indices approach +∞. Thus, K({an}) = {−1, 1},
K({bn}) = {0,+∞}.

Note that one can construct examples of sequences {xn} such that the set
K({xn}) contains an infinite number of elements.

Limit superior and limit inferior
of a sequence 3.15A/00:00 (08:30)

Definition.
The limit superior of the sequence {xn} (the notation limn→∞ xn) is

supK({xn}) if the set K({xn}) is bounded from above. If the set K({xn}) is
not bounded from above (in particular, if it contains the element +∞), then
the limit superior is equal to +∞.

The limit inferior of the sequence {xn} (the notation limn→∞ xn) is called
inf K({xn}) if the set K({xn}) is bounded from below. If the set K({xn}) is
not bounded from below (in particular, if it contains the element −∞), then
the limit inferior is equal to −∞.

Limit superior and limit inferior exist for all sequences and coincide if and
only if the sequence has a finite limit or an infinite limit +∞ or −∞; in this
case, the usual limit, limit superior, and limit inferior are the same.

https://www.youtube.com/watch?v=gvKZiJVjOhE&t=00m01s
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Cauchy–Hadamard formula for the radius
of convergence of a power series

Formulation of the Cauchy–Hadamard
theorem 3.15A/08:30 (04:04)

Theorem (Cauchy–Hadamard theorem on the radius of con-
vergence of a power series).

The radius R of convergence of the power series
∑∞

n=0 cnx
n can be found

by the formula

R =
1

α
, α = lim

n→∞
n
√
|cn|. (5)

It is assumed that R = 0 if α = +∞ and R = +∞ if α = 0. Formula (5)
is called the Cauchy–Hadamard formula.

Remark.
In formula (5), the coefficients cn are considered starting from n = 1, since

a root of degree zero is not defined.

Proof of the Cauchy–Hadamard theorem 3.15A/12:34 (13:25)

We give a proof for the special case when the sequence {|cn|} has a usual
limit (finite or infinite). The proof for the general case is given, for example,
in [4, Ch. 11, Sec. 380].

So, suppose the sequence {|cn|} has a limit α:

lim
n→∞

n
√
|cn| = α ∈ R ∪ {+∞}. (6)

Let us consider three cases.
1. 0 < α < +∞. In this case, formula (5) does not require special

interpretations.
We want to prove two facts: if |x| < R, then the initial series

∑∞
n=0 cnx

n

converges, if |x| > R, then the initial series diverges.
We choose some point x0 and consider the numerical series

∑∞
n=1 |cnxn0 |

denoting its common term by an: an = |cnxn0 |.
To study the convergence of this series, we use the limit Cauchy test.

Recall its formulation: if there exists a limit limn→∞ n
√
an = q for the series∑∞

n=1 an, then the series converges if q < 1 and diverges if q > 1.
Let us find the value of q, provided that an = |cnxn0 | and the limit rela-

tion (6) holds:

q = lim
n→∞

n

√
|cnxn0 | = lim

n→∞
|x0| n
√
|cn| = |x0| lim

n→∞
n
√
|cn| = |x0|α.

https://www.youtube.com/watch?v=gvKZiJVjOhE&t=08m30s
https://www.youtube.com/watch?v=gvKZiJVjOhE&t=12m34s
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Thus, q = |x0|α. Therefore, if |x0| < R, i. e., |x0| < 1
α , then q = |x0|α < 1

and, by the limit Cauchy test, the series
∑∞

n=1 |cnxn0 | converges. If |x0| > R,
then q = |x0|α > 1 and, by the same test, the series

∑∞
n=1 |cnxn0 | diverges.

Thus, the value R = 1
α is the radius of convergence of the series∑∞

n=1 |cnxn0 |, and the same result is true for the initial series
∑∞

n=0 cnx
n
0 , since,

according to the second Abel theorem, the power series converges absolutely
on the convergence interval.

2. α = 0. We show that in this case R = +∞, i. e., the initial series
converges at any point x ∈ R.

We choose some point x0 ∈ R, consider the numerical series
∑∞

n=1 |cnxn0 |,
and find the value q for it:

q = lim
n→∞

n

√
|cnxn0 | = lim

n→∞
|x0| n
√
|cn| = |x0| lim

n→∞
n
√
|cn| = 0.

Thus, q = 0 < 1 and, by the limit Cauchy test, the series
∑∞

n=1 |cnxn0 |
converges for any point x0 ∈ R. So, the initial series

∑∞
n=0 cnx

n
0 converges

absolutely for any point x0 ∈ R and therefore R = +∞.
3. α = +∞. We show that in this case R = 0, i. e., the initial series

diverges at any point x 6= 0.
We choose some point x0 6= 0, consider the numerical series

∑∞
n=1 |cnxn0 |,

and find the value q for it:

q = lim
n→∞

n

√
|cnxn0 | = lim

n→∞
|x0| n
√
|cn| = |x0| lim

n→∞
n
√
|cn| = +∞.

Taking into account the remark on the limit Cauchy test in the case
q = +∞, we obtain that the series

∑∞
n=1 |cnxn0 | diverges for any point x0 6= 0.

So, the initial series
∑∞

n=0 cnx
n
0 also diverges for any point x0 6= 0 and there-

fore R = 0. �

Examples of application
of the Cauchy–Hadamard formula 3.15A/25:59 (09:37)

1. Consider the power series
∑∞

n=1
xn

n . In this case, cn = 1
n . Since

limn→n
n

√
1
n = 1 (see the convergence theorem for the sequence { n

√
n} in

[1, Ch. 5]), we obtain that α = 1, R = 1. Therefore, this series converges
absolutely for |x| < 1 and diverges for |x| > 1.

Let us analyze the convergence of this series for |x| = 1. In the case of
x = 1, we get the harmonic series

∑∞
n=1

1
n , which is divergent. In the case of

x = −1, we get a convergent alternating series
∑∞

n=1
(−1)n

n .
Thus, the domain of convergence of the power series

∑∞
n=1

xn

n is the half-
interval [−1, 1).

https://www.youtube.com/watch?v=gvKZiJVjOhE&t=25m59s
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2. Consider the power series
∑∞

n=1
x2n

2n . In this case, the sequence {cn} is
not convergent. Indeed, let us write out the initial terms of this series:

∞∑
n=1

x2n

2n
=
x2

2
+
x4

4
+
x6

6
+ . . .

We obtain that the coefficient c1 (i. e., the coefficient of the first power
of x) is 0, the coefficient c2 is 1

2 , the coefficient c3 is 0, and so on. The formula
for the coefficients cn takes the form

cn =


1

n
, n = 2k,

0, n = 2k − 1, k = 1, 2, . . .

Therefore, the sequence
{

n
√
cn
}
contains the following elements:

{ n
√
cn} =

{
0,

1√
2
, 0,

1
4
√

4
, 0,

1
6
√

6
, . . .

}
.

This sequence has no limit, since there exist an infinite number of elements
of this sequence in any neighborhood of points 0 and 1. We can also say that
the sequence

{
n
√
cn
}
has two partial limits: 0 and 1.

However, according to the general Cauchy–Hadamard formula, we can
determine the radius of convergence of a power series if we find the limit
superior of the sequence

{
n
√
cn
}
, which always exists. In our case, the limit

superior is 1; it is the limit of a subsequence containing elements with even
indices:

lim
n→∞

n
√
cn = lim

k→∞

1
2k
√

2k
= 1.

Therefore, by the Cauchy–Hadamard theorem, the radius of convergence
of the series

∑∞
n=1

x2n

2n is equal to 1.
Note that this series diverges at both endpoints of the convergence interval

(−1, 1), since, for the value x = 1 and for the value x = −1, we get the same
series

∑∞
n=1

1
2n , which differs from the harmonic series only by the factor 1

2 .
Remark.
The Cauchy–Hadamard formula can also be used to find the radius of

convergence R of power series of the form
∑n

k=0 ck(x − x0)
k, where x0 6= 0,

since the radius of convergence is determined by the coefficients ck only and
does not depend on the center x0.
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Properties of power series

Continuity of the sum of a power series 3.15A/35:36 (08:26)

In all the theorems of this section, we consider the power series
n∑
k=0

ckx
k. (7)

We assume that series (7) has a radius of convergence R > 0 (the case
R = +∞ is also allowed). We denote the sum of this series by S(x). This
sum is defined for all x ∈ (−R,R).

Remark.
All the results obtained in this section remain valid for power series of the

form
∑n

k=0 ck(x−x0)
k, where x0 6= 0. Recall that the convergence interval has

the form (x0 −R, x0 +R) for such series, where the radius of convergence R
can be found by the Cauchy–Hadamard formula.

Theorem 1 (on the continuity of the sum of a power series).
The function S(x) is continuous on the convergence interval (−R,R).
Proof.
Let x0 ∈ (−R,R). Choose a segment [−R + ε, R − ε] containing the

point x0 and nested in the convergence interval (−R,R):

x0 ∈ [−R + ε, R− ε] ⊂ (−R,R).

As ε, we can take R−|x0|
2 . In the caseR = +∞, we can consider an arbitrary

segment of the real axis containing the point x0.
Using the first and second Abel theorems, we obtain that series (7) con-

verges uniformly on the segment [−R + ε, R − ε]. In addition, the general
term of the series (7) has the form ckx

k and therefore is a continuous func-
tion. These two facts imply, by virtue of the theorem on the continuity of
the uniform limit, that the limit function S(x) is continuous on the segment
[−R + ε, R − ε]; therefore, it is continuous at the point x0 belonging to this
segment.

Since the point x0 ∈ (−R,R) was chosen arbitrarily, we obtain that the
function S(x) is continuous on the entire convergence interval (−R,R). �

Integration of a power series 3.15B/00:00 (13:22)

Theorem 2 (on the integration of a power series).
Series (7) can be term-by-term integrated on any segment nested in the

convergence interval (−R,R), i. e., to find the integral of the sum S(x) of

https://www.youtube.com/watch?v=gvKZiJVjOhE&t=35m36s
https://www.youtube.com/watch?v=JzgBm_z7OqI&t=00m01s
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series (7), it suffices to find the sum of the series whose terms are the integrals
of the terms of the initial series. Moreover, the radius of convergence of the
integrated series coincides with the radius of convergence of the initial series.

Proof.
First, we prove that the radius of convergence R′ of the integrated series

is equal to the radius of convergence R of the initial series (7).
Let |x| < R. For definiteness, we will perform integration from 0 to x.

Consider the following series obtained by term-by-term integration of se-
ries (7):

∞∑
k=0

∫ x

0

ckt
k dt =

∞∑
k=0

ck
k + 1

xk+1 = c0x+
c1

2
x2 +

c2

3
x3 + . . .

Denote by dk the coefficient of xk in the resulting series: dk = ck−1
k .

To find the radius of convergence R′ of the integrated power series, we use
the Cauchy–Hadamard formula:

1

R′
= lim

n→∞
n
√
|dn| = lim

n→∞
n

√
|cn−1|
n

=
limn→∞

n
√
|cn−1|

limn→∞
n
√
n

.

In the denominator, we indicated the usual limit, since the sequence { n
√
n}

is convergent. The limit of this sequence is 1. We transform the numerator
as follows:

lim
n→∞

n
√
|cn−1| = lim

n→∞
|cn−1|

1
n−1

n−1
n = lim

n→∞

(
n−1
√
|cn−1|

)n−1
n

.

By the Cauchy–Hadamard formula, we get limn→∞
n−1
√
|cn−1| = 1

R , the
limit of the exponent n−1

n , as n→∞, is 1. Thus, the limit of the numerator
is 1

R and finally we get
1

R′
= lim

n→∞
n
√
|dn| =

1

R
.

So, we have proved that the radii of convergence R′ and R coincide.
To complete the proof of the theorem, it remains for us to prove that the

sign of the integral can be moved under the sign of an infinite sum:∫ x

0

S(t) dt =

∫ x

0

( ∞∑
k=0

ckt
k
)
dt =

∞∑
k=0

∫ x

0

ckt
k dt.

This formula is valid by virtue of the corollary on the integration of a uni-
formly converging functional series, since all conditions of this corollary are
fulfilled: the initial series (7) converges uniformly on the segment [0, x] nested
in the convergence interval (−R,R) and, in addition, all terms of the initial
series (7) are continuous functions on this segment. �
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Differentiation of a power series 3.15B/13:22 (12:46)

Now we turn to the differentiation operation and consider the series ob-
tained by term-by-term differentiation of the initial series (7):

∞∑
k=0

(ckx
k)′ =

∞∑
k=1

kckx
k−1. (8)

In this case, the summation starts with k = 1, since when differentiat-
ing the first term c0, which does not depend on x, we get 0. If dk is the
coefficient for the degree xk of the differentiated series, then it follows from
formula (8) that dk−1 = kck, whence dk = (k+ 1)ck+1. Let us find the radius
of convergence R′ of the power series (8) by the Cauchy–Hadamard formula:

1

R′
= lim

n→∞
n
√
|dn| = lim

n→∞

(
(n+ 1)|cn+1|

) 1
n =

= lim
n→∞

(
n+1
√
n+ 1

)n+1
n · lim

n→∞

(
n+1
√
|cn+1|

)n+1
n

. (9)

The first limit on the right-hand side of (9) is 1, since both the limit
of the base n+1

√
n+ 1 and the limit of the exponent n+1

n are 1 as n → ∞.
For the second limit, we obtain that the exponent n+1

n approaches 1 and
limn→∞

n+1
√
|cn+1| = 1

R by the Cauchy–Hadamard formula, where R is the
radius of convergence of the initial series (7). Thus, the right-hand side of
equality (9) approaches 1

R .
So, we have proved that 1

R′ = 1
R . This means that series (8) obtained by

formal differentiation of the terms of the initial series (7) has the same radius
of convergence as the initial series.

Theorem 3 (on the differentiation of a power series).
Series (7) can be term-by-term differentiated at any point in the conver-

gence interval (−R,R), i. e., to find the derivative of the sum S(x) of the
series (7), it suffices to find the sum of the series whose members are the
derivatives of the terms of the initial series. Moreover, the radius of conver-
gence of the differentiated series coincides with the radius of convergence of
the initial series.

Proof.
We have already proved the statement about the coincidence of the con-

vergence radii.
It remains to prove that the sign of differentiation can be moved under the

sign of an infinite sum:

https://www.youtube.com/watch?v=JzgBm_z7OqI&t=13m22s
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S ′(x) =
( ∞∑
k=0

ckx
k
)′

=
∞∑
k=0

(
ckx

k
)′

=
∞∑
k=1

kckx
k−1 .

This statement is true by virtue of the corollary on the differentiation
of the functional series, since all conditions of this corollary are fulfilled: the
formally differentiated series (8) uniformly converges on any segment nested in
the convergence interval (−R,R), all the terms of the series (8) are continuous
functions, and the initial series (7) also converges uniformly on this segment
(note that, in the indicated corollary, it was only required that the initial
series converge at one point). �

After differentiating the series (8) composed of differentiated members
of the initial series (7) we obtain a power series with the same radius of
convergence. The sum of this series will be the second derivative S ′′(x) of the
sum of the initial series. Such a process can be continued infinitely. Therefore,
the following statement holds.

Corollary (on the infinite differentiability of a power se-
ries).

The sum S(x) of power series (7) is an infinitely differentiable function
on the convergence interval; to find its derivative of order m, it is enough to
find the sum of the series obtained from the initial series by differentiating
its terms the required number of times:

S(m)(x) =
( ∞∑
k=0

ckx
k
)(m)

=
∞∑
k=m

(
ckx

k
)(m).



18. Taylor series

Real analytic functions and their
expansions into Taylor series 3.15B/26:08 (13:22)

Definition.
A function f is called a real analytic function on the interval (x0−R, x0+R)

if it can be expanded on this interval into a convergent power series centered
at x0:

f(x) =
∞∑
k=0

ck(x− x0)
k. (1)

From representation (1), using the theorem on differentiation of a power
series and the corollary on infinite differentiability of a power series, we
obtain that the analytic function is infinitely differentiable on the interval
(x0 −R, x0 +R).

Let us express the coefficients ck of the series (1) in terms of the values of
the function f and its derivatives.

If we substitute the value x = x0 in relation (1), then in this case all terms
vanish except the term for k = 0, therefore relation (1) with x = x0 will take
the form

f(x0) = c0.

So, the coefficient c0 is equal to the value of the function f at the point x0.
From the theorem on differentiation of a power series it follows that the

derivative of the function f(x) at any point x ∈ (x0−R, x0 +R) can be found
by means of the term-by-term differentiation of the power series (1):

f ′(x) =
( ∞∑
k=0

ck(x− x0)
k
)′

=
∞∑
k=1

kck(x− x0)
k−1 =

= c1 + 2c2(x− x0) + 3c3(x− x0)
2 + . . . (2)

Substituting the value x = x0 into relation (2), we obtain the following
equality:

f ′(x0) = c1.

https://www.youtube.com/watch?v=JzgBm_z7OqI&t=26m08s
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Thus, the coefficient c1 is equal to the value of the first derivative of the
function f at the point x0.

Differentiating equality (2), we obtain the relation defining the second
derivative of the function f in the form of a power series:

f ′′(x) =
∞∑
k=2

k(k − 1)ck(x− x0)
k−2 =

= 2c2 + 3 · 2c3(x− x0) + 4 · 3c4(x− x0)
2 + . . . (3)

Let us substitute the value x = x0 in relation (3):

f ′′(x0) = 2c2.

Thus, c2 = f ′′(x0)
2 .

Now we obtain a representation of the third derivative of the function f
in the form of a power series:

f ′′′(x) =
∞∑
k=3

k(k − 1)(k − 2)ck(x− x0)
k−3 =

= 3 · 2c3 + 4 · 3 · 2c4(x− x0) + 5 · 4 · 3c5(x− x0)
2 + . . . (4)

Substitute the value x = x0 in relation (4):

f ′′′(x0) = 3 · 2c3.

In this case, the factorial appears in the denominator of the coefficient c3

representation: c3 = f ′′′(x0)
3! .

It is easy to verify that a formula of the form f (k)(x0)
k! remains valid for any

coefficient ck. Moreover, it will also be true for the initial coefficient of the
series, since the function f is considered to be the derivative f (0) and the
value 0! is considered equal to 1.

Let us formulate the obtained results as a theorem.
Theorem (on the properties of a real analytic function).
If the function f is a real analytic function on the interval (x0−R, x0 +R),

then it is infinitely differentiable on this interval and is expanded on this
interval into the power series with coefficients that are determined by the
values of the function f and its derivatives at the point x0 as follows:

ck =
f (k)(x0)

k!
, k = 0, 1, 2, . . .

Substituting the found values of the coefficients ck into relation (1), we get
the equality that holds for all x ∈ (x0 −R, x0 +R):
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f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)

k. (5)

The series on the right-hand side of equality (5) is called the Taylor series
of the function f .

In contrast to the expansion of functions considered earlier by Taylor’s
formula (see [1, Ch. 22]), the sum in (5) includes an infinite number of terms
but there is no remainder term.

A special case of the Taylor series is a series centered at the point x0 = 0
and converging on the interval (−R,R):

f(x) =
∞∑
k=0

f (k)(0)

k!
xk.

Real analytic functions and the property
of infinite differentiability

An example of an infinitely differentiable function
that does not expand into a Taylor series 3.16A/00:00 (15:20)

If a function is expanded into a Taylor series on a certain interval, then,
by virtue of the properties of power series, it is infinitely differentiable on this
interval. The converse is not true.

Consider the function f(x) = e−
1
x2 defined on the set R \ {0} and define

it as 0 at zero:

f(x) =

{
e−

1
x2 , x 6= 0,

0, x = 0.

This function is infinitely differentiable at any point x 6= 0 as a superposi-
tion of infinitely differentiable elementary functions. Let us show that it has
the same property at zero. First of all, we prove its continuity at this point.
To do this, we find the limit of the function f(x) as x→ 0:

lim
x→0

f(x) = lim
x→0

e−
1
x2 = lim

t→∞
e−t

2

= 0.

When calculating the limit, we made the variable change t = 1
x . Note that

the notation t→∞ for real numbers t means that the parameter t can take
values that infinitely approach both −∞ and +∞. However, in any case, the
value −t2 approaches −∞ and so we obtain a limit equal to 0. Thus, the
limit of the function at zero coincides with its value at this point; this means
that the function f is continuous at the point 0.

https://www.youtube.com/watch?v=jM7_Gc7vThE&t=00m01s
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Now we show that the function f is differentiable at the point 0 and its
derivative f ′ is continuous at the given point.

To find the derivative of the function f at the point x 6= 0, it suffices to
use the theorem on the derivative of the superposition and formulas for the
derivatives of the corresponding elementary functions:

f ′(x) =
(
e−

1
x2
)′

= e−
1
x2 · 2

x3
, x 6= 0. (6)

To find f ′(0), we need to use the definition of the derivative:

f ′(0) = lim
x→0

f(x)− f(0)

x
= lim

x→0

e−
1
x2

x
= lim

t→∞

e−t
2

1
t

= lim
t→∞

t

et2
= 0.

The limit is 0, since the exponential function et2 grows at infinity faster
than any power function including the linear function t.

We proved that the function f is differentiable at the point 0 and its
derivative at this point is 0. It remains to show that the function f ′ is
continuous at the point 0. To do this, we find the limit f ′(x) as x→ 0 using
the previously obtained formula (6):

lim
x→0

f ′(x) = lim
x→0

2e−
1
x2

x3
= lim

t→∞

2t3

et2
= 0.

In this case, we again used the fact that the exponential function grows at
infinity faster than any power function.

So, we have proved that the function is continuously differentiable at the
point 0 and f ′(0) = 0.

To study the second derivative of the function f , we need to investigate
the first derivative of the function f ′, for which we already have the following
representation:

f ′(x) =

 e−
1
x2 · 2

x3
, x 6= 0,

0, x = 0.

At all points except the point 0, the second derivative can be found by
differentiation formulas:

f ′′(x) =
(
e−

1
x2 · 2

x3

)′
= e−

1
x2 ·
( 2

x3

)2

+e−
1
x2 ·
(
− 6

x4

)
= e−

1
x2

( 4

x6
− 6

x4

)
.

Thus, the derivative f ′′(x) can be represented as e−
1
x2P6

(
1
x

)
, where P6(t)

is a polynomial of degree 6. It follows from this representation that the limit
f ′′(x) as x→ 0 is 0:

lim
x→0

f ′′(x) = lim
x→0

e−
1
x2P6

(1

x

)
= lim

t→∞

P6(t)

et2
= 0.
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At the point 0, the second derivative also exists and is equal to zero:

f ′′(0) = lim
x→0

f ′(x)− f ′(0)

x
= lim

x→0

2e
− 1
x2

x3

x
= lim

x→0

2e−
1
x2

x4
= lim

t→∞

2t4

et2
= 0.

Using the method of mathematical induction, we can prove for the func-
tion f that its derivative of any order k is representable for x 6= 0 in the form
f (k)(x) = P ( 1

x)e−
1
x2 , where P (t) is some polynomial. Using this representa-

tion and finding limits similar to those given above, we can prove that, at the
point 0, there exist derivatives of f of any order that are equal to zero.

So, the function f is infinitely differentiable on the set R, and all its
derivatives at the point 0 are equal to zero. If the function f were expanded
into a Taylor series in a certain interval (−R,R) with a center at the point
x0 = 0, then this would mean that the function f is identically equal to zero
on this interval:

f(x) =
∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=0

0

k!
xk = 0.

But from the definition of the function f , it follows that it is nonzero
at any point x 6= 0. The obtained contradiction means that the function f
does not expand into a Taylor series in a neighborhood of zero, i. e., it is
not a real analytic function in this neighborhood. Note that the function f
expands into a Taylor series in a neighborhood of any point x 6= 0.

We have shown that there exist infinitely differentiable functions that can-
not be expanded into a Taylor series.

Additional remarks on the properties
of the considered function 3.16A/15:20 (03:39)

The reason for the “bad” behavior of the function e−
1
x2 in a neighborhood

of the point 0 becomes more clear if we consider this function not on the real
axis but on a complex plane consisting of numbers of the form z = x + iy,
where x, y ∈ R and i is the imaginary unit for which the relation i2 = −1
holds. We do not even need to specify how the function ez behaves for complex
numbers. It is enough to note that if we consider the numbers z = iy, where
y ∈ R, and find the limit as y → 0, then, for the function f(z), we get

lim
y→0

e
− 1

(iy)2 = lim
y→0

e
1
y2 = lim

t→∞
et

2

= +∞.

Therefore, the point 0 on the complex plane is a singular point for the
function e−

1
z2 . This circumstance is the reason that in a neighborhood of zero

https://www.youtube.com/watch?v=jM7_Gc7vThE&t=15m20s
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this function does not expand into a Taylor series neither on the complex
plane, nor on the real axis.

Sufficient condition for the existence of a Taylor series.
Expansions of exponent, sine, and cosine
into a Taylor series
Relationship between the existence of a Taylor series
and the behavior of the remainder term
of Taylor’s formula 3.16A/18:59 (06:28)

Suppose that the function f is infinitely differentiable in a neighborhood of
the point x0. Then, for the function f , Taylor’s formula holds for any n ∈ N
(see [1, Ch. 22]):

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)

k + rn(x0, x).

Here rn(x0, x) is the remainder term of Taylor’s formula. Recall the repre-
sentation of the remainder term in the Lagrange form. In this representation,
the point ξ appears; this is some point located between x0 and x:

rn(x0, x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1. (7)

We rewrite Taylor’s formula in the following form:

rn(x0, x) = f(x)−
n∑
k=0

f (k)(x0)

k!
(x− x0)

k.

If the remainder term vanishes as n→∞ for all x from some neighborhood
of the point x0, then the limit of the right-hand side of the equality also exists
and is equal to 0, i. e., there exists a limit of partial sums

∑n
k=0

f (k)(x0)
k! (x−x0)

k

as n→∞ and this limit is f(x).
But the limit of partial sums, by definition, is the sum of the power series∑∞
k=0

f (k)(x0)
k! (x−x0)

k. Thus, in this case, the function f expands into a Taylor
series in some neighborhood of the point x0:

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)

k.

Therefore, if we succeed in formulating the condition under which the
remainder term of Taylor’s formula vanishes as n → ∞ on some interval,
then this condition will be sufficient for the function to expand into a Taylor
series on this interval.

https://www.youtube.com/watch?v=jM7_Gc7vThE&t=18m59s
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Sufficient condition for the existence
of a Taylor series 3.16A/25:27 (08:54)

Theorem (on a sufficient condition for the existence of
a Taylor series).

Let the function f be infinitely differentiable on the interval (x0−R, x0+R)
and let the condition for uniform boundedness of the derivatives of the func-
tion f of all orders on this interval be fulfilled:

∃M > 0 ∀ k ∈ N ∀x ∈ (x0 −R, x0 +R) |f (k)(x)| ≤M . (8)

Then the function f expands into a Taylor series on the interval
(x0 −R, x0 +R).

Remark.
It follows from this theorem that the function e−

1
x2 considered in the pre-

vious example does not satisfy condition (8) in a neighborhood of the point 0,
since if it satisfies this condition, then it would expand into a Taylor series
in this neighborhood, but we proved that this is not true. Therefore, it can
be stated that, for any interval (−R,R), the set of all derivatives of a given
function is not bounded, i. e., for any value M > 0, there exists a point
x ∈ (−R,R) and an order of derivative k such that the value |f (k)(x)| is
greater than M .

Proof.
We show that, under condition (8), the remainder term of the Taylor

formula rn(x0, x) vanishes as n→∞ for all x ∈ (x0 − R, x0 + R). As noted
above, this ensures the existence of a Taylor series for the function f on
a given interval.

If x ∈ (x0 − R, x0 + R), then using the representation of the remainder
term in the Lagrange form (7) and condition (8), we obtain the following
estimate for rn(x0, x):

|rn(x0, x)| = |f
(n+1)(ξ)|

(n+ 1)!
|x− x0|n+1 <

MRn+1

(n+ 1)!
. (9)

In this estimate, we took into account that the point ξ is located between x0

and x and therefore also belongs to the interval (x0 −R, x0 +R).
The right-hand side of estimate (9) does not depend on x and vanishes

as n → ∞, since the factorial (n + 1)! grows faster than any exponential
function Rn+1 (see the theorem on the convergence of the sequence

{
qn

n!

}
in [1, Ch. 5]). Thus, we have proved that limn→∞ rn(x0, x) = 0 for any
x ∈ (x0 − R, x0 + R); therefore, the function f expands into a Taylor series
on the interval (x0 −R, x0 +R). �

https://www.youtube.com/watch?v=jM7_Gc7vThE&t=25m27s
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Taylor series expansion
of exponent, sine, and cosine 3.16A/34:21 (09:28)

1. Consider the function ex in some neighborhood of the point 0:
x ∈ (−R,R), R > 0. This is an infinitely differentiable function, and its
derivatives of any order coincide with the initial function:

(ex)(k) = ex, k ∈ N.

Therefore, all derivatives are uniformly estimated by the value eR on the
interval (−R,R):

|(ex)(k)| = |ex| < eR.

Thus, all the conditions of the previous theorem are satisfied; therefore, the
function ex expands into a Taylor series on the interval (−R,R). Given Tay-
lor’s formula centered at point 0 for the function ex, we obtain the following
expansion of this function into a Taylor series:

ex =
∞∑
k=0

xk

k!
. (10)

Since the value R > 0 can be chosen arbitrarily, the expansion (10) is
valid for any point x ∈ R. Consequently, the radius of convergence of this
power series is +∞ (note that this result can also be obtained by the Cauchy–
Hadamard formula).

2. Consider the functions sinx and cosx in some neighborhood of the
point 0: x ∈ (−R,R), R > 0. These are infinitely differentiable functions,
and the following formulas are valid for their derivatives of any order:

(sinx)(k) = sin
(
x+

kπ

2

)
, (cosx)(k) = cos

(
x+

kπ

2

)
, k ∈ N.

All derivatives of these functions are estimated by 1 for any x ∈ R:

|(sinx)(k)| =
∣∣∣sin(x+

kπ

2

)∣∣∣ ≤ 1, |(cosx)(k)| =
∣∣∣cos

(
x+

kπ

2

)∣∣∣ ≤ 1.

By the previous theorem, the functions sinx and cosx expand in the
Taylor series on the interval (−R,R) for any R > 0. Given Taylor’s formulas
centered at point 0 for the functions sinx and cosx, we obtain the following
expansions:

sinx =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
, cosx =

∞∑
k=0

(−1)kx2k

(2k)!
.

These expansions are valid for any point x ∈ R, the radius of convergence
of the obtained power series is +∞.

https://www.youtube.com/watch?v=jM7_Gc7vThE&t=34m21s
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Taylor series expansion
of a power function 3.16B/00:00 (04:25)

When considering Taylor’s formula for a power function of the form
(1 + x)α, α ∈ R, we noted that Taylor’s formula for this function is de-
fined only for |x| < 1. It is natural to expect that a similar restriction will
occur for the expansion of this function into a Taylor series. Terms of the
series can be obtained from the corresponding Taylor’s formula:

1 + αx+
α(α− 1)

2
x2 +

α(α− 1)(α− 2)

3!
x3 + · · · =

= 1 +
∞∑
k=1

α . . . (α− k + 1)

k!
xk. (11)

Theorem (on the expansion of a power function into a Tay-
lor series).

The power function (1 + x)α expands into the Taylor series (11) on the
interval (−1, 1):

(1 + x)α = 1 +
∞∑
k=1

α . . . (α− k + 1)

k!
xk. (12)

Proof5.
First, we investigate the convergence of series (11) for a fixed value of x.

To do this, we use the limit D’Alembert test. Denote the common term
of the series by ak = α...(α−k+1)

k! xk and find the limit limk→∞
∣∣ak+1

ak

∣∣ under
the assumption that ak 6= 0 for all k ∈ N (note that the situation ak = 0 is
possible only for α ∈ N; in this case, the Taylor series turns into a polynomial
of finite degree α):

lim
k→∞

∣∣∣ak+1

ak

∣∣∣ = lim
k→∞

∣∣∣ α . . . (α− k)xk+1 · k!

(k + 1)! · α . . . (α− k + 1)xk

∣∣∣ =

= lim
k→∞

|α− k|
k + 1

· |x| = |x|.

Thus, according to the limit d’Alembert test, series (11) converges for
|x| < 1 and diverges for |x| > 1.

To prove that the series (11) converges to the function (1+x)α for |x| < 1,
it suffices to show that, for these values of x, we have the limit relation
limn→∞ rn(x0, x) = 0, where rn(x0, x) is the remainder term in the corre-
sponding Taylor’s formula with n terms.

5There is no proof of this theorem in video lectures.

https://www.youtube.com/watch?v=8Js_Dl29pX0&t=00m01s
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We use the representation of the remainder term in the Cauchy form:

rn(x0, x) =
f (n+1)

(
x0 + θ(x− x0)

)
(1− θ)n

n!
(x− x0)

n+1.

Here θ is some value lying in the range from 0 to 1.
For the function f(x) = (1 + x)α, in the case x0 = 0, we get

rn(0, x) =
α . . . (α− n)(1 + θx)α−n−1(1− θ)n

n!
xn+1 =

=
((α− 1) . . .

(
α− 1− (n− 1)

)
n!

xn
)
×

×
(
αx(1 + θx)α−1

)
· (1− θ)n

(1 + θx)n
. (13)

The expression bn(x) = (α−1)...(α−1−(n−1))
n! xn is a common term of the se-

ries (11) corresponding to the exponent (α−1). We have already proved that
this series converges for |x| < 1, therefore, due to the necessary convergence
condition, bn(x)→ 0 as n→∞ for all |x| < 1.

Thus, in order to prove that rn(0, x) vanishes as n → ∞, it suffices to
establish the boundedness of the two remaining factors on the right-hand
side of equality (13).

The first of these factors is αx(1 + θx)α−1. It does not depend on n and
is bounded for any |x| < 1.

The second of the factors is (1−θ)n
(1+θx)n . Note that the following estimate holds

for any |x| < 1:

1 + θx ≥ 1− θ|x| > 1− θ.

Using this estimate, we obtain∣∣∣ (1− θ)n

(1 + θx)n

∣∣∣ < ∣∣∣1− θ
1− θ

∣∣∣n = 1.

So, the first factor on the right-hand side of (13) vanishes, the other two
are bounded, therefore rn(0, x0) also vanishes as n→∞ for any |x| < 1. This
means that the series (11) converges to the function (1 + x)α for |x| < 1. �
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Taylor series expansions of the logarithm and arcsine

Taylor series expansion of the logarithm 3.16B/04:25 (10:55)

Having the expansion of a power function into a Taylor series (12), we can
easily obtain expansions for other elementary functions using theorems on the
integration of a power series.

Theorem (on the expansion of the logarithm into a Taylor
series).

The function ln(1 +x) expands in the following Taylor series on the inter-
val (−1, 1):

ln(1 + x) = x− x2

2
+
x3

3
− · · · =

∞∑
k=1

(−1)k+1xk

k
. (14)

Proof.
Find the derivative of the function ln(1 + x):(

ln(1 + x)
)′

=
1

1 + x
.

The derivative is a power function of the form (1 + x)α for α = −1. This
function expands into the Taylor series (12) on the interval (−1, 1). Note that
the required expansion can be obtained in a simpler way using the formula of
the sum of the terms of an infinite geometric progression with the ratio (−x):

1

1 + x
=

∞∑
k=0

(−x)k =
∞∑
k=0

(−1)kxk.

We integrate both sides of this equality from 1 to x assuming that |x| < 1:∫ x

0

1

1 + t
dt =

∫ x

0

∞∑
k=0

(−1)ktk dt.

The left-hand side of the resulting equality is∫ x

0

1

1 + t
dt = ln |1 + t|

∣∣x
0

= ln |1 + x| = ln(1 + x). (15)

On the right-hand side, we can use the theorem on the integration of
a power series and move the sign of the integral under the sign of the infinite
sum: ∫ x

0

∞∑
k=0

(−1)ktk dt =
∞∑
k=0

∫ x

0

(−1)ktk dt =
∞∑
k=0

(−1)k
tk+1

k + 1

∣∣∣x
0

=

https://www.youtube.com/watch?v=8Js_Dl29pX0&t=04m25s
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=
∞∑
k=0

(−1)k
xk+1

k + 1
=

∞∑
k=1

(−1)k+1xk

k
. (16)

By virtue of the theorem on the integration of a power series, the radius
of convergence of the series obtained on the right-hand side of equality (16)
coincides with the radius of convergence of the initial series.

Equating the expressions in the right-hand sides of equalities (15) and (16),
we obtain the proved equality (14). �

Taylor series expansion of the arcsine 3.16B/15:20 (13:03)

Now consider the function arcsinx. This function is differentiable on the
interval (−1, 1). Find its derivative:

(arcsinx)′ =
1√

1− x2
= (1− x2)−

1
2 .

This derivative can be represented as (1− t)α, where t = x2 and α = −1
2 .

Given the expansion of the power function in the Taylor series (12), we
obtain (

1 + (−t)
)− 1

2 = 1 +
(
−1

2

)
(−t) +

(
−1

2

)(
−3

2

) 1

2!
(−t)2+

+
(
−1

2

)(
−3

2

)(
−5

2

) 1

3!
(−t)3 + · · · =

= 1 +
t

2
+

1 · 3
22 · 2!

t2 +
1 · 3 · 5
23 · 3!

t3 + · · · =

= 1 +
∞∑
k=1

1 · 3 · · · (2k − 1)

2k · k!
tk.

The resulting expression can be simplified by using the double factorial
function, which is denoted by n!! and is equal to the product of all numbers
from 1 to n of the same parity as the number n: n!! = n(n − 2)(n − 4) . . .
For example, 5!! = 5 · 3 · 1 = 15, 6!! = 6 · 4 · 2 = 48.

In our case, 1 · 3 · · · (2k − 1) = (2k − 1)!! and, in addition,
2k · k! = (2 · 1)(2 · 2) · · · (2 · k) = (2k)!!. Using double factorials and taking
into account that t = x2, we obtain the Taylor series for the function 1√

1−x2
for |x| < 1:

1√
1− x2

= 1 +
∞∑
k=1

(2k − 1)!!

(2k)!!
x2k. (17)

Now we integrate both sides of equality (17) from 0 to x for |x| < 1:

https://www.youtube.com/watch?v=8Js_Dl29pX0&t=15m20s
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∫ x

0

(1− t2)−
1
2 dt = x+

∫ x

0

∞∑
k=1

(2k − 1)!!

(2k)!!
t2k dt.

On the left-hand side, we get arcsinx, on the right-hand side, we apply
the theorem on the integration of a power series and move the sign of the
integral under the sign of the infinite sum:

x+

∫ x

0

∞∑
k=1

(2k − 1)!!

(2k)!!
t2k dt = x+

∞∑
k=1

∫ x

0

(2k − 1)!!

(2k)!!
t2k dt =

= x+
∞∑
k=1

(2k − 1)!!

(2k)!!
· x

2k+1

2k + 1
.

The resulting power series converges for |x| < 1 and is equal to the function
arcsinx. Thus, we have proved the following theorem.

Theorem (on the expansion of the arcsine into a Taylor se-
ries).

The function arcsinx expands into a Taylor series on the interval (−1, 1):

arcsinx = x+
∞∑
k=1

(2k − 1)!!

(2k)!!
· x

2k+1

2k + 1
.

Additional remarks 3.16B/28:23 (06:25)

1. Acting in a similar way, we can obtain the Taylor series expansion for
the function arctanx on the interval (−1, 1). To do this, it is sufficient to find
the derivative (arctanx)′ = 1

1+x2 = (1 + x2)−1, expand the power function
(1 + x2)−1 into a Taylor series, and then integrate both sides of the resulting
equality.

2. If we have some Taylor series and it is required to determine a func-
tion that expands into this series, then sometimes it is possible to solve this
problem by performing term-by-term integration of the initial series. If, as
a result of integration, a series arises corresponding to some known func-
tion f(x), then this means, by virtue of the theorem on the differentiation
of a power series, that the initial series corresponds to the function f ′(x).
Another way to solve this problem is the term-by-term differentiation of the
initial series and finding the function g(x) corresponding to the differentiated
series. In this case, the initial series will correspond to the function obtained
by integrating the function g(x). All considered series will have the same
interval of convergence.

https://www.youtube.com/watch?v=8Js_Dl29pX0&t=28m23s
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3. Having the expansion of the function into a Taylor series, we can find
approximate values of this function by calculating some initial number of
terms of this series. To estimate the error of the found approximation, we
can use, for example, the estimate of the remainder term of the corresponding
Taylor’s formula. For various classes of functions, there exist other types of
their expansion into series that converge in one sense or another. In the case
of periodic functions, their expansions into the Fourier series are widely used.
This kind of functional series is studied in the two final chapters of this book.



19. Fourier series in Euclidean space

Real Euclidean space and its properties

Definition of a real Euclidean space 3.17A/00:00 (07:51)

Definition.
A real Euclidean space E is a linear space equipped with the scalar product

operation.
Recall the definition of a linear space. This is a nonempty set of elements

(vectors) equipped with the operation f + g of addition of vectors f and g
and the operation αf of multiplication of a vector f by a real number α. The
operations introduced satisfy the following axioms (called axioms of a linear
space):

L1) ∀ f, g ∈ E f + g = g + f ,

L2) ∀ f, g, h ∈ E (f + g) + h = f + (g + h),

L3) ∃0 ∈ E ∀ f ∈ E f + 0 = 0 + f = f ,

L4) ∀ f ∈ E ∃ (−f) ∈ E f + (−f) = 0,

L5) ∀α, β ∈ R ∀ f ∈ E α(βf) = (αβ)f ,

L6) ∀ f ∈ E 1 · f = f ,

L7) ∀α, β ∈ R ∀ f ∈ E (α + β)f = αf + βf ,

L8) ∀α ∈ R ∀ f, g ∈ E α(f + g) = αf + αg.

The element 0 ∈ E from the axiom L3 is called the zero vector of the
space E; the element −f from the axiom L4 is called the opposite vector to
the vector f . To distinguish between the number 0 and the zero vector 0, we
will use a bold face for the zero vector. The difference f − g of the vectors is
understood as the sum of the vector f and the vector opposite to the vector g:
f − g def

= f + (−g).
The scalar product operation (f, g) associates the vectors f, g ∈ E with

a real number and satisfies the following axioms (called axioms of the scalar
product):

S1a) ∀ f ∈ E (f, f) ≥ 0,
S1b)

(
(f, f) = 0

)
⇔ (f = 0),

https://www.youtube.com/watch?v=yT2KwZh8XVQ&t=00m01s
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S2) ∀ f, g ∈ E (f, g) = (g, f),
S3) ∀ f, g, h ∈ E α, β ∈ R (αf + βg, h) = α(f, h) + β(g, h).
Remark.
An example of a real Euclidean space is the set of vectors on the plane.

For them, the scalar product is defined by the formula (a, b) = |a| · |b| cosϕ,
where ϕ denotes the angle between the vectors a and b.

In what follows, we will usually omit the word “real” in the name of a real
Euclidean space.

Norm of a vector and its properties 3.17A/07:51 (10:05)

Taking into account the axiom S1a of the scalar product, we can introduce
such a characteristic of the vector f from the Euclidean space E as the norm
(notation ‖f‖). The norm of the vector f ∈ E is defined as follows:

‖f‖ def
=
√

(f, f) = (f, f)
1
2 .

It follows from the axiom S1a that the norm of a vector always exists and is
non-negative. From the axiom S1b, it follows that the norm ‖f‖ is 0 if and
only if the vector f coincides with the zero vector 0.

Remark.
In the case of the Euclidean space of vectors on the plane, the norm is the

usual length of a vector.
Theorem (Cauchy–Bunyakovsky inequality for the norm of

a vector).
For the norm of vectors of Euclidean space, the following inequality holds

(this inequality is called the Cauchy–Bunyakovsky inequality):
∀ f, g ∈ E |(f, g)| ≤ ‖f‖ · ‖g‖. (1)

Proof.
We choose an arbitrary real number λ and consider the following scalar

square: (λf + g, λf + g). By virtue of the axiom S1a, this scalar square is
non-negative:

(λf + g, λf + g) ≥ 0. (2)
Let us transform this scalar product using the axioms S2 and S3:

(λf + g, λf + g) = λ2(f, f) + λ(g, f) + λ(f, g) + (g, g) =

= λ2(f, f) + 2λ(f, g) + (g, g).
We have obtained a quadratic equation for the number λ. It follows from

inequality (2) that this equation has at most one real root. This means that
the discriminant D of the equation is non-positive:

https://www.youtube.com/watch?v=yT2KwZh8XVQ&t=07m51s
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D = (f, g)2 − (f, f) · (g, g) ≤ 0.

Rewriting the last inequality in the form (f, g)2 ≤ (f, f) ·(g, g), extracting
the square root from both sides, and taking into account the definition of the
norm of a vector, we obtain inequality (1). �

Using inequality (1), we can prove that the triangle inequality holds for
the norm of a vector.

Theorem (triangle inequality for the norm of a vector).
For the norm of a vector in Euclidean space, the triangle inequality holds:

∀ f, g ∈ E ‖f + g‖ ≤ ‖f‖+ ‖g‖. (3)

Proof.
By definition, we have

‖f + g‖2 = (f + g, f + g).

We transform the right-hand side of the equality using the axioms S2
and S3:

(f + g, f + g) = |(f + g, f + g)| = |(f, f) + 2(f, g) + (g, g)| ≤

≤ (f, f) + 2|(f, g)|+ (g, g) = ‖f‖2 + 2|(f, g)|+ ‖g‖2.

Now we use estimate (1):

‖f‖2 + 2|(f, g)|+ ‖g‖2 ≤ ‖f‖2 + 2‖f‖ · ‖g‖+ ‖g‖2 =
(
‖f‖+ ‖g‖

)2.

Thus, we have proved the following estimate:

‖f + g‖2 ≤
(
‖f‖+ ‖g‖

)2.

Taking the square root of both sides of the last inequality, we obtain esti-
mate (3). �

Metric and definition of the limit
of a sequence in Euclidean space 3.17A/17:56 (06:48)

Using the norm of a vector, we can define yet another characteristic of
vectors in Euclidean space called the metric: ρ(f, g)

def
= ‖f − g‖. It is easy to

prove that a metric so defined satisfies the following properties (called axioms
of a metric space):

https://www.youtube.com/watch?v=yT2KwZh8XVQ&t=17m56s
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M1a) ∀ f, g ∈ E ρ(f, g) ≥ 0,

M1b)
(
ρ(f, g) = 0

)
⇔ (f = g),

M2) ∀ f, g ∈ E ρ(f, g) = ρ(g, f),

M3) ∀ f, g, h ∈ E ρ(f, h) ≤ ρ(f, g) + ρ(g, h).

In particular, the axiom M3 immediately follows from the triangle inequal-
ity:

ρ(f, h) = ‖f − h‖ = ‖f − g + g − h‖ = ‖(f − g) + (g − h)‖ ≤

≤ ‖f − g‖+ ‖g − h‖ = ρ(f, g) + ρ(g, h).

Thus, any Euclidean space is a metric space. The value ρ(f, g) determines
the measure of proximity of the vectors f and g (in other words, this is the
distance between the vectors in a given space).

Using the concept of metric, we can define the limit of a sequence of
elements of a metric (in our case, Euclidean) space.

Definition.
Let {fn} be a sequence of vectors of the Euclidean space E. It is said

that the limit of a given sequence as n → ∞ is equal to the vector f ∈ E
if limn→∞ ρ(fn, f) = 0. We denote this fact as follows: limn→∞ fn = f

or fn → f as n→∞.
We define the limit for the sequence of vectors of the space E through

the limit of the numerical sequence {ρ(fn, f)}. This makes it easy to prove
many properties of the limit of a sequence of vectors using the already proven
properties of the limit of a numerical sequence.

Given the definition of a metric, we obtain that fn → f as n→∞ if

lim
n→∞
‖fn − f‖ = 0. (4)

Using the definition of the norm, we can reformulate the definition of the
limit of a sequence of vectors of Euclidean space in terms of the limit of
a numerical sequence defined by the scalar product: fn → f as n→∞ if

lim
n→∞

(fn − f, fn − f) = 0.

Of all the above versions of the definition of the limit in Euclidean space,
the definition (4) based on the norm is the most suitable for what follows. If
the limit relation (4) holds, then they say that the sequence {fn} converges
to the vector f in the norm of the Euclidean space E.
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Fourier series with respect to an orthonormal sequence
of vectors in Euclidean space

Definition of an orthonormal sequence
and Fourier series 3.17A/24:44 (06:35)

Hereinafter, we will consider sequences with elements indexed from zero.
The set of non-negative integer indices will be denoted by N0. Thus,
N0 = {0} ∪ N.

Definition.
Consider the sequence of vectors {ψk}, k ∈ N0, in the Euclidean space E.

A sequence {ψk} is called an orthonormal sequence of vectors, or an orthonor-
mal system of vectors, if the equality holds for any indices i, j ∈ N0:

(ψi, ψj) =

{
1, i = j,

0, i 6= j.

We assume that the orthonormal sequence has already been chosen; there-
fore, we will not explicitly indicate the dependence on this sequence in the
notation introduced below.

Remark.
Orthonormal sequences exist only in the infinite-dimensional Euclidean

spaces. In finite-dimensional spaces, the number of orthonormal vectors can-
not exceed the dimension of the space; therefore, any systems of orthonormal
vectors are finite (for example, in the space of vectors on a plane, any or-
thonormal system consists of no more than two vectors).

Let f ∈ E. We define the following numerical sequence: {fk}, where
fk = (f, ψk), k ∈ N0. This set of numbers is called the Fourier coefficients of
the vector f with respect to the orthonormal system {ψk}.

The formal series
∑∞

k=0 fkψk is called the Fourier series corresponding to
the vector f :

f ∼
∞∑
k=0

fkψk. (5)

The Fourier series is formal, since we do not yet discuss the question of
its convergence (and we do not even determine how to understand its conver-
gence). That is why the symbol ∼ is used in relation (5) instead of the equal
sign.

If we consider the partial sum of the Fourier series Sn(f) =
∑n

k=0 fkψk
for any n ∈ N0, then this sum will be some vector of the space E. Thus,

https://www.youtube.com/watch?v=yT2KwZh8XVQ&t=24m44s
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the sequence of partial sums of the Fourier series {Sn(f)} is a sequence of
vectors of the Euclidean space E. The partial sums of the Fourier series will
be called partial Fourier sums, or simply Fourier sums.

Formulation of the extremal property
of Fourier sums 3.17A/31:19 (03:28)

Theorem (on the extremal property of Fourier sums).
Let f be some vector of the Euclidean space E, {ψk} be an orthonormal

sequence in E, {ak} be arbitrary numerical sequence. Then, for any n ∈ N0,
the following relation holds:

min
ak,k=0,...,n

∥∥∥f − n∑
k=0

akψk

∥∥∥ =
∥∥∥f − n∑

k=0

fkψk

∥∥∥.
Thus, the Fourier sum Sn(f) =

∑n
k=0 fkψk has the following extremal

property: it is the best approximation for the vector f (in the norm of the
space E) among all linear combinations

∑n
k=0 akψk of the system of orthonor-

mal vectors ψk, k = 0, . . . , n.

Proof of the extremal property
of Fourier sums 3.17A/34:47 (11:23)

We perform the following transformations using the definition of the norm
and axioms of the scalar product:∥∥∥f − n∑

k=0

akψk

∥∥∥2

=
(
f −

n∑
k=0

akψk, f −
n∑

m=0

amψm

)
= (f, f)−

−
(
f,

n∑
m=0

amψm

)
−
( n∑
k=0

akψk, f
)

+
( n∑
k=0

akψk,
n∑

m=0

amψm

)
=

= ‖f‖2 −
n∑

m=0

am(f, ψm) −
n∑
k=0

ak(ψk, f) +
n∑
k=0

n∑
m=0

akam(ψk, ψm).

(6)

The scalar product does not depend on the order of the factors; therefore,
we can combine the first and second sums on the right-hand side of equal-
ity (6). In addition, we take into account that the scalar product (f, ψk) is
the Fourier coefficient fk of the vector f . By virtue of the orthonormality of
the system of vectors {ψk}, only terms with k = m remain in the last sum of
the right-hand side of (6); moreover, (ψk, ψk) = 1. As a result, the right-hand
side of (6) takes the form ‖f‖2 − 2

∑n
k=0 akfk +

∑n
k=0 a

2
k.

https://www.youtube.com/watch?v=yT2KwZh8XVQ&t=31m19s
https://www.youtube.com/watch?v=yT2KwZh8XVQ&t=34m47s
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We continue the transformation by adding two zero-sum terms to the re-
sulting expression:

‖f‖2 − 2
n∑
k=0

akfk +
n∑
k=0

a2
k +

n∑
k=0

f 2
k −

n∑
k=0

f 2
k =

= ‖f‖2 +
n∑
k=0

(a2
k − 2akfk + f 2

k )−
n∑
k=0

f 2
k =

= ‖f‖2 +
n∑
k=0

(ak − fk)2 −
n∑
k=0

f 2
k . (7)

Since
∑n

k=0(ak − fk)2 ≥ 0, the expression on the right-hand side of equal-
ity (7) will have a minimum value when this sum is equal to zero; this is
equivalent to the equalities ak = fk, k = 0, . . . , n.

Thus, the minimum value of the expression
∥∥f −∑n

k=0 akψk
∥∥2 is achieved

when ak = fk, k = 0, . . . , n. Therefore, the same result is true for the initial
expression

∥∥f −∑n
k=0 akψk

∥∥. �
Bessel’s inequality 3.17B/00:00 (06:08)

In the process of proving the extremal property of Fourier sums, we got
the following relation:∥∥∥f − n∑

k=0

fkψk

∥∥∥2

= ‖f‖2 −
n∑
k=0

f 2
k . (8)

Since the left-hand side of equality (8) is non-negative, the same is true
for the right-hand side:

‖f‖2 −
n∑
k=0

f 2
k ≥ 0.

Therefore, sums
∑n

k=0 f
2
k can be estimated from above for any n ∈ N0:

n∑
k=0

f 2
k ≤ ‖f‖2.

We have proved that the partial sums of the series
∑∞

k=0 f
2
k with non-

negative terms are uniformly bounded from above. Therefore, by the criterion
for the convergence of numerical series with non-negative terms, the series∑∞

k=0 f
2
k converges and the same estimate holds for its sum:
∞∑
k=0

f 2
k ≤ ‖f‖2. (9)

Estimate (9) is called Bessel’s inequality.

https://www.youtube.com/watch?v=vnHwF6qCLRU&t=00m01s
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So, although we have not yet considered the convergence of the formal
Fourier series

∑∞
k=0 fkψk in the space E, we have established that, for any

vector f ∈ E, the numerical series, whose terms are the squares of the Fourier
coefficients fk, is convergent and its sum is estimated from above by ‖f‖2.

In addition, the convergence of the series
∑∞

k=0 f
2
k implies, by the necessary

condition of convergence, that f 2
k → 0 as k →∞. Therefore, the same limit

relation holds for the Fourier coefficients fk:

∀ f ∈ E lim
k→∞

fk = 0.

Fourier series over a complete orthonormal
sequence of vectors

Complete sequence in Euclidean space 3.17B/06:08 (04:59)

Definition.
A sequence {ψk} of vectors of the Euclidean space E is called a complete

sequence, or a complete system, if any vector of a given space can be ap-
proximated arbitrarily closely by a linear combination of a finite number of
elements of this sequence:

∀ f ∈ E ∀ ε > 0 ∃n ∈ N ∃ ak, k = 0, . . . , n,∥∥∥f − n∑
k=0

akψk

∥∥∥ < ε.

Remark.
In the case of finite-dimensional space, complete systems consist of a finite

number of vectors, any complete system forms the basis of this space, and
any vector can be represented as a linear combination of basis vectors. The
number of vectors in the complete system is equal to the dimension of space.
For example, in the space of vectors on the plane, any two non-collinear
vectors form a basis.

Parseval’s identity for Fourier coefficients with
respect to a complete orthonormal sequence 3.17B/11:07 (13:40)

Theorem (on Fourier coefficients with respect to a com-
plete orthonormal sequence).

If the orthonormal sequence {ψk} of vectors of the Euclidean space E
is complete, then, for any vector f ∈ E, the following equality holds (this
equality is called Parseval’s identity):

https://www.youtube.com/watch?v=vnHwF6qCLRU&t=06m08s
https://www.youtube.com/watch?v=vnHwF6qCLRU&t=11m07s
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∞∑
k=0

f 2
k = ‖f‖2. (10)

Proof.
Since we have already established that Bessel’s inequality (9) holds for any

orthonormal sequence, it remains for us to prove that the opposite inequality
holds for a complete orthonormal sequence:

‖f‖2 ≤
∞∑
k=0

f 2
k . (11)

We choose an arbitrary vector f ∈ E and some value ε > 0. Since the
sequence {ψk} is complete, there exists a number n ∈ N and coefficients ak,
k = 0, . . . , n, such that the estimate holds:∥∥∥f − n∑

k=0

akψk

∥∥∥ < ε. (12)

In this estimate, the value n and the coefficients ak, generally speaking,
depend on ε.

By virtue of the theorem on the extremal property of Fourier sums, the
following estimate holds for any coefficients ak, k = 0, . . . , n:∥∥∥f − n∑

k=0

fkψk

∥∥∥ ≤ ∥∥∥f − n∑
k=0

akψk

∥∥∥.
From this estimate and (12), the following estimate can be obtained:∥∥∥f − n∑

k=0

fkψk

∥∥∥ < ε. (13)

In estimate (13), only n depends on ε.
Now consider the norm of the vector f and transform it using the triangle

inequality as follows:

‖f‖ =
∥∥∥f − n∑

k=0

fkψk +
n∑
k=0

fkψk

∥∥∥ ≤ ∥∥∥f − n∑
k=0

fkψk

∥∥∥+
∥∥∥ n∑
k=0

fkψk

∥∥∥.
The first term on the right-hand side of the last inequality is estimated

from above by the value ε. Let us transform the second term:∥∥∥ n∑
k=0

fkψk

∥∥∥ =
( n∑
k=0

fkψk,
n∑

m=0

fmψm

) 1
2

=

=
( n∑
k=0

n∑
m=0

fkfm(ψk, ψm)
) 1

2

=
( n∑
k=0

f 2
k

) 1
2

.
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Given that the series
∑∞

k=0 f
2
k converges and consists of non-negative

terms, the expression
(∑n

k=0 f
2
k

) 1
2 can be estimated from above by the value(∑∞

k=0 f
2
k

) 1
2 . So, we got the estimate

‖f‖ < ε+
( ∞∑
k=0

f 2
k

) 1
2

. (14)

Since estimate (14) is valid for any ε > 0, we can pass to the limit as
ε→ 0. As a result, estimate (14) is transformed into the following non-strict
inequality:

‖f‖ ≤
( ∞∑
k=0

f 2
k

) 1
2

.

Having squared both terms of this inequality, we obtain inequality (11).
The required estimate (10) follows from Bessel’s inequality (9) and inequal-
ity (11). �

Interpretation of Parseval’s identity as a generalization
of the Pythagorean theorem 3.17B/24:47 (02:38)

Parseval’s identity (10) can be considered as a generalization of the
Pythagorean theorem to the case of infinite-dimensional Euclidean spaces.
Indeed, consider the vector a on the plane and find its expansion in two
orthonormal vectors i and j:

a = α1i+ α2j. (15)

The vector a forms the hypotenuse of a right triangle with the legs α1i

and α2j. Then, by virtue of the Pythagorean theorem, we have

|a|2 = α2
1 + α2

2. (16)

In addition, performing scalar multiplication of both terms of the equal-
ity (15) by i and j and using the orthonormality of the vectors i and j, we
get α1 = (a, i), α2 = (a, j). Thus, equality (16), which follows from the
Pythagorean theorem, can be rewritten in the form

|a|2 = (a, i)2 + (a, j)2.

The resulting equality is a finite-dimensional analogue of Parseval’s iden-
tity.

https://www.youtube.com/watch?v=vnHwF6qCLRU&t=24m47s
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Theorem on the convergence of a Fourier series with
respect to a complete orthonormal sequence 3.17B/27:25 (08:11)

Once again, we turn to equality (8):∥∥∥f − n∑
k=0

fkψk

∥∥∥2

= ‖f‖2 −
n∑
k=0

f 2
k .

If we assume that the orthonormal sequence {ψk} is complete and pass to
the limit as n approaches infinity, then, by virtue of Parseval’s identity, the
right-hand side of this equality approaches zero. Then the left-hand side of
the equality also approaches zero. Thus, for the Fourier series by a complete
orthonormal sequence, the following limit relation holds:

lim
n→∞

∥∥∥f − n∑
k=0

fkψk

∥∥∥ = 0. (17)

The limit relation (17) means, by definition, that the sequence of partial
sums Sn(f) =

∑n
k=0 fkψk of the Fourier series converges to the vector f in

the norm of the space E:

lim
n→∞

Sn(f) = f .

According to the definition of a convergent series, this means that the
Fourier series can be considered not as formal series, but as a converging
series in the space E, and its sum is the vector f :

f =
∞∑
k=0

fkψk.

In this case, we can already replace the symbol ∼ with an equal sign =.
So, we have proved the following theorem.

Theorem (on the convergence of a Fourier series with
respect to a complete orthonormal sequence in Euclidean
space).

If the orthonormal sequence {ψk} of vectors in the Euclidean space E
is complete, then, for any vector f ∈ E, its Fourier series

∑∞
k=0 fkψk with

respect to this sequence converges to the vector f in the norm of the space E,
i. e., the limit relation (17) is satisfied.

Thus, we have established a number of facts related to Fourier series for
abstract real Euclidean space. If we now consider specific realizations of a real
Euclidean space defining the set of vectors and the required operations on this
set, in particular, the scalar product, then we can immediately extend all the

https://www.youtube.com/watch?v=vnHwF6qCLRU&t=27m25s
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facts established earlier to this space including the fact of the normwise con-
vergence of the Fourier series (provided that a complete orthonormal sequence
of vectors is selected in this space).

We are interested in the space of integrable functions with standard opera-
tions of addition and multiplication by a number and with the scalar product
defined through the integration operation. The properties of such space and
the associated Fourier series will be discussed in the next, final chapter.



20. Fourier series in the space
of integrable functions

Euclidean space of integrable functions

Definition of the Euclidean space
of integrable functions 3.18A/00:00 (07:21)

Definition.
We introduce the space of functions R([a, b]) defined and Riemann inte-

grable on the segment [a, b]. This is a linear space with operations of adding
functions and multiplying a function by a number. These operations result
in integrable functions and satisfy all axioms of linear space.

The scalar product in the space R([a, b]) is defined as follows:

∀ f, g ∈ R([a, b]) (f, g)
def
=

∫ b

a

f(x)g(x) dx. (1)

In the definition of a scalar product, we use the operation of multiplication
of functions. The product of integrable functions is an integral function;
therefore, the scalar product is defined for all elements of the space R([a, b]).

Let us verify that axioms S1–S3 are satisfied for the scalar product intro-
duced in this way. Axiom S3 immediately follows from the linearity of the
integral with respect to integrands:

∀ f, g, h ∈ R([a, b]) ∀α, β ∈ R

(αf + βg, h) =

∫ b

a

(
αf(x) + βg(x)

)
h(x) dx =

= α

∫ b

a

f(x)h(x) dx+ β

∫ b

a

g(x)h(x) dx = α(f, h) + β(g, h).

Axiom S2 also holds:

∀ f, g ∈ R([a, b])

(f, g) =

∫ b

a

f(x)g(x) dx =

∫ b

a

g(x)f(x) dx = (g, f).

Axiom S1a holds by virtue of the theorem on the non-negativeness of the
integral of the non-negative function:

https://www.youtube.com/watch?v=2_hb1tefg7U&t=00m01s
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∀ f ∈ R([a, b]) (f, f) =

∫ b

a

f 2(x) dx ≥ 0.

However, the axiom S1b may not hold: if the function f is integrable on
the segment [a, b], then the condition (f, f) = 0 is not equivalent to the fact
that f(x) vanishes on this segment. We can consider a function that vanishes
at all points of the segment [a, b], except for a finite number of points at which
it is equal to 1. This function is integrable, but the integral of f 2(x) on the
segment [a, b] will be zero.

Ways to satisfy the axiom associated
with the zero scalar product 3.18A/07:21 (07:46)

This problem can be solved in two ways.
Method 1.
We can narrow the class of functions under consideration and restrict our-

selves, for example, to the class C([a, b]) of all functions continuous on the
segment [a, b] with the same scalar product (1). In this case, the axiom S1b
holds by virtue of the theorem on the integral of a positive continuous func-
tion: if the function is continuous and non-negative on the segment [a, b] and
takes a positive value at least at one point, then the integral of this function
on the segment [a, b] is positive. Thus, the equality

∫ b
a f

2(x) dx = 0 in this
case will be equivalent to the identity f(x) ≡ 0.

Method 2.
Instead of the integrable functions themselves, we can consider the classes

of equivalent integrable functions as elements of the space R([a, b]).
The class H0 containing all functions equivalent to the function f(x) ≡ 0

is defined as follows:

H0
def
=

{
f :

∫ b

a

f 2(x) dx = 0

}
.

This class is considered as the zero element of the space R([a, b]). Func-
tions f and g belong to the same class H (i. e., are equivalent) if f − g ∈ H0.
In particular, functions f and g will be equivalent if they differ only in a fi-
nite number of points of the segment [a, b]. It is easy to show that with such
a definition of equivalent functions, the entire set of functions integrable on
[a, b] splits into pairwise disjoint equivalence classes such that any integrable
function belongs to exactly one class.

If f ∈ Hf , g ∈ Hg, then the sum of the classes Hf + Hg, by definition, is
the class containing the function f + g, the product of αHf of the class Hf

https://www.youtube.com/watch?v=2_hb1tefg7U&t=07m21s
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by a number α is the the class containing the function αf , and the scalar
product of the classes is (Hf , Hg)

def
=
∫ b
a f(x)g(x) dx. It can be shown that so

defined operations are well posed, i. e., they do not depend on the choice of
“representatives” of the source classes, and all the required axioms are fulfilled
for them including the axiom S1b.

When considering the elements of such a space, we can still use the notation
of some function f from the class Hf instead of this class itself and suppose
that this notation means any function equivalent to f .

We assume that we modified the definition of the Euclidean spaceR([a, b])
using method 2. Note that this modification will not affect the following
definitions, but it is required to justify many important facts related to the
properties of the Euclidean space (for example, the property of the uniqueness
of the limit of a sequence converging in the norm of this space).

Norm in the space of integrable functions 3.18A/15:07 (01:07)

Having the scalar product, we can define the norm of the function
f ∈ R([a, b]):

‖f‖ def
=
√

(f, f) =
(∫ b

a

f 2(x) dx
) 1

2

.

The Cauchy–Bunyakovsky inequality and the triangle inequality hold for
such a norm, since in the previous chapter we proved the validity of these
inequalities for an arbitrary Euclidean space.

Constructing an orthonormal sequence
of integrable functions

A sequence of trigonometric functions
and a proof of its orthogonality 3.18A/16:14 (08:26)

We choose the segment [−π, π] as the integration segment and introduce
the following sequence of functions: {sin kx, cos kx}, k = 0, 1, . . .

First, we show that this system is orthogonal, i. e., the scalar product of
any two different functions from a given system vanishes. To prove this fact,
we will use the following trigonometric identities:

sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
, (2)

cosx cos y =
1

2

(
cos(x− y) + cos(x+ y)

)
, (3)

https://www.youtube.com/watch?v=2_hb1tefg7U&t=15m07s
https://www.youtube.com/watch?v=2_hb1tefg7U&t=16m14s
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sinx cos y =
1

2

(
sin(x− y) + sin(x+ y)

)
. (4)

Let us prove, for example, the orthogonality of the functions sin k1x and
cos k2x with different coefficients k1 and k2 using formula (4):∫ π

−π
sin k1x cos k2x dx =

=
1

2

(∫ π

−π
sin(k1 − k2)x dx+

∫ π

−π
sin(k1 + k2)x dx

)
= 0.

The equality to zero of the obtained integrals follows from two facts: the
integrands sin(k1 + k2)x and sin(k1 − k2)x are odd; the integral of an odd
function over a symmetric segment vanishes. There is no need to even use the
formula (4), since it can be noted that the initial integrand is an odd function
(as a product of the odd function sin k1x and the even function cos k2x).

We simultaneously proved the orthogonality of the functions sin kx and the
constant 1 (which is also included in this system of functions, since cos kx ≡ 1
when k = 0).

The orthogonality of the functions sin kx and cos kx for the same coeffi-
cient k = 1, 2, . . . is proved similarly.

Now we prove the orthogonality of the functions cos k1x and cos k2x for
k1 6= k2 using formula (3):∫ π

−π
cos k1x cos k2x dx =

=
1

2

(∫ π

−π
cos(k1 − k2)x dx+

∫ π

−π
cos(k1 + k2)x dx

)
=

=
1

2

(sin(k1 − k2)x

k1 − k2

∣∣∣π
−π

+
sin(k1 + k2)x

k1 + k2

∣∣∣π
−π

)
= 0.

This result follows from the equality sin kπ = 0, k ∈ Z. We simultaneously
proved the orthogonality of the functions cos kx, k 6= 0, and the constant 1.

In the same way, using formula (2), the orthogonality of the functions
sin k1x and sin k2x may be proved for k1 6= k2.

Normalization of the obtained sequence
of trigonometric functions 3.18A/24:40 (07:23)

We have proved that the sequence of functions {sin kx, cos kx},
k = 0, 1, . . . , is orthogonal in the space R([−π, π]). It remains to trans-
form it into an orthonormal sequence.

https://www.youtube.com/watch?v=2_hb1tefg7U&t=24m40s
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To do this, we use the normalization operation applicable for any nonzero
vector f of an arbitrary Euclidean space E. If f 6= 0, then the vector 1

‖f‖f
has the norm 1:∥∥∥∥ 1

‖f‖
f

∥∥∥∥ =
1

‖f‖
· ‖f‖ = 1.

In our case, all functions of the sequence are nonzero, except for the func-
tion sin kx for k = 0, which we will not consider hereinafter.

First, we normalize the constant function cos 0x ≡ 1. For this function,
we have

‖1‖ =
(∫ π

−π
dx
) 1

2

=
√

2π.

Therefore, we must take the function 1√
2π

as the first element of an or-
thonormal sequence.

Now we normalize the function sin kx, k ∈ N:

‖sin kx‖ =
(∫ π

−π
sin2 kx dx

) 1
2

.

Find the integral using the formula sin2 kx = 1
2(1− cos 2kx):∫ π

−π
sin2 kx dx =

1

2

∫ π

−π
(1− cos 2kx) dx =

x

2

∣∣∣π
−π
− 1

2
· sin 2kx

2k

∣∣∣π
−π

.

The second term on the right-hand side of the last equality is 0, the first
term is π. Thus, the functions sin kx√

π
should be taken as normalized sine

functions.
Similarly, we can normalize the functions cos kx, k ∈ N, using the formula

cos2 kx = 1
2(1 + cos 2kx) and taking into account that the integral of cos 2kx

over the segment [−π, π] vanishes.
Thus, we get the following orthonormal sequence of functions:{
1√
2π
, cos kx√

π
, sin kx√

π

}
, k ∈ N. Here the parameter k does not take the value 0:

we must indicate the constant function separately, since it has a different
normalizing factor.

Orthonormal sequence of functions
for an arbitrary segment 3.18A/32:03 (08:49)

A similar sequence of orthonormal functions can be defined on any segment
[a, b]. To do this, we use trigonometric functions with a period equal to the
length of this segment.

https://www.youtube.com/watch?v=2_hb1tefg7U&t=32m03s
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In the case of the space R([−l, l]), the period must be equal to 2l, so
we need to take the sequence

{
sin πkx

l , cos πkx
l

}
, k = 0, 1, . . . , as the initial

orthogonal sequence. For example, for the function f(x) = sin πkx
l , we have

f(x+ 2l) = sin
πk(x+ 2l)

l
= sin

(πkx
l

+ 2πk
)

= sin
πkx

l
= f(x).

Proving the orthogonality of a given sequence and normalizing its nonzero
elements is performed in the same way as in the case of the sequence consid-
ered above for the space R([−π, π]).

In the case of the segment [a, b], we should consider the sequence of func-
tions

{
sin 2πkx

b−a , cos 2πkx
b−a
}
, k = 0, 1, . . . , and normalize its nonzero elements.

These functions will have a period (b− a).
In order to simplify the proof of orthogonality and the calculation of nor-

malization coefficients in the space R([a, b]), it is convenient to transform the
corresponding integrals by replacing the original integration segment [a, b]
with the segment

[
−b−a

2 , b−a2

]
which has the same length, but is symmetrical

with respect to the origin. This transformation can be performed by corol-
lary 3 on the integration of periodic functions from the theorem on the change
of variables in a definite integral.

Constructing a formal Fourier series
for integrable functions

Fourier coefficients and Fourier series
for integrable functions 3.18B/00:00 (08:57)

Given an orthonormal sequence
{

1√
2π
, cos kx√

π
, sin kx√

π

}
, k ∈ N, we can find

the Fourier coefficients for any function f ∈ R([−π, π]):

ã0 =
1√
2π

∫ π

−π
f(x) dx;

ãk =
1√
π

∫ π

−π
f(x) cos kx dx, k ∈ N;

b̃k =
1√
π

∫ π

−π
f(x) sin kx dx, k ∈ N.

Thus, the formal Fourier series for the function f with respect to a given
orthonormal sequence has the form

f(x) ∼ ã0√
2π

+
∞∑
k=1

( ãk√
π

cos kx+
b̃k√
π

sin kx
)
. (5)

https://www.youtube.com/watch?v=yJqsGKaYgmw&t=00m01s
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Bessel’s inequality for the Fourier coefficients will be as follows:

ã2
0 +

∞∑
k=1

(ã2
k + b̃2

k) ≤
∫ π

−π
f 2(x) dx. (6)

Recall that we have the square of the norm ‖f‖ on the right-hand side of
inequality (6).

The series indicated on the left-hand side of (6) is a convergent numerical
series. It follows from the convergence of this numerical series that its common
term should approach zero: (ã2

k+b̃2
k)→ 0 as k →∞. Therefore, the following

limit relations hold for any integrable function f :

lim
k→∞

∫ π

−π
f(x) cos kx dx = 0,

lim
k→∞

∫ π

−π
f(x) sin kx dx = 0.

Another representation of the Fourier series 3.18B/08:57 (09:54)

Representation (5) of the Fourier series can be simplified by using the
following set of coefficients:

a0 =
1

π

∫ π

−π
f(x) dx;

ak =
1

π

∫ π

−π
f(x) cos kx dx, k ∈ N; (7)

bk =
1

π

∫ π

−π
f(x) sin kx dx, k ∈ N.

Let us express the initial Fourier coefficients ãk, b̃k in terms of the corre-
sponding new coefficients ak, bk:

√
2πã0 = πa0, ã0 =

πa0√
2π

=

√
π

2
a0;

√
πãk = πak, ãk =

πak√
π

=
√
πak, k ∈ N;

√
πb̃k = πbk, b̃k =

πbk√
π

=
√
πbk, k ∈ N.

In the formal Fourier series (5), we replace the coefficients ãk, b̃k with
formulas containing the coefficients ak, bk:

https://www.youtube.com/watch?v=yJqsGKaYgmw&t=08m57s
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1√
2π

√
π

2
a0 +

∞∑
k=1

(√πak√
π

cos kx+

√
πbk√
π

sin kx
)
.

In the resulting representation of the Fourier series, we can reduce all
factors of the form

√
π. Finally we get

f(x) ∼ a0

2
+
∞∑
k=1

(ak cos kx+ bk sin kx). (8)

Also we can transform Bessel’s inequality (6) in a similar way:

π

2
a2

0 +
∞∑
k=1

(πa2
k + πb2

k) ≤
∫ π

−π
f 2(x) dx,

a2
0

2
+
∞∑
k=1

(a2
k + b2

k) ≤
1

π

∫ π

−π
f 2(x) dx. (9)

Formulas (7)–(9), as the simplest ones, are traditionally used when writing
the Fourier formal series (and related relations) for integrable functions. It
should be noted that, in all these formulas, the factor 1

π is indicated before the
integral sign, and an additional factor 1

2 appears before the terms containing
the coefficient a0.

Convergence of the Fourier series in mean square
in the case of periodic continuous functions

Weierstrass theorems
on uniform approximation 3.18B/18:51 (08:15)

The question arises when the formal Fourier series for the function f con-
verges to this function (and in what sense this convergence should be under-
stood).

Let us study the convergence of the Fourier series in the norm of the space
of integrable functions R([−π, π]). In this case, the following theorem will
help us (we accept this theorem without proof; see its proof, for example,
in [18, Ch. 14, Sec. 69.1]).

Theorem (Weierstrass theorem on the uniform approxima-
tion of continuous periodic functions by trigonometric poly-
nomials).

Any continuous 2π-periodic function f can be uniformly approximated
with arbitrary accuracy on the segment [−π, π] by trigonometric polynomials
Tn(x) = α0 +

∑n
k=1(αk cos kx+ βk sin kx):

https://www.youtube.com/watch?v=yJqsGKaYgmw&t=18m51s
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∀ ε > 0 ∃Tn(x) sup
x∈[−π,π]

|f(x)− Tn(x)| < ε. (10)

Remark.
There is a similar statement about the uniform approximation of a function

continuous on the segment [a, b] by the usual polynomials Pn(x) =
∑n

k=0 ckx
k:

∀ ε > 0 ∃Pn(x) sup
x∈[a,b]

|f(x)− Pn(x)| < ε.

This statement is called the Weierstrass theorem on the uniform approxi-
mation of continuous functions by polynomials (see, for example, [18, Ch. 14,
Sec. 69.2]).

Convergence of the Fourier series
for continuous periodic functions 3.18B/27:06 (13:15)

If the function f can be approximated by the trigonometric polynomials
Tn(x) uniformly on the segment [−π, π], then it can be approximated by the
same polynomials in the norm of the space R([−π, π]).

Indeed, let us write the estimate (10) in a slightly modified form:

sup
x∈[−π,π]

|f(x)− Tn(x)| < ε√
2π

. (11)

Then, for the norm of the difference f −Tn in the space R([−π, π]), using
the corollary of the theorem on the comparison of integrals and estimate (11),
we have

‖f − Tn‖ =
(∫ π

−π

(
f(x)− Tn(x)

)2
dx
) 1

2 ≤

≤
(

sup
x∈[−π,π]

(
f(x)− Tn(x)

)2 · 2π
) 1

2

=

= sup
x∈[−π,π]

|f(x)− Tn(x)| ·
√

2π <
ε√
2π
·
√

2π = ε.

Thus, we have proved that the following condition is satisfied:

∀ ε > 0 ∃Tn(x) ‖f − Tn‖ < ε. (12)

This condition means that the function f can be approximated with any
accuracy by trigonometric polynomials in the norm of the space R([−π, π]).
The approximation in the norm of the space R([−π, π]) is also called the
mean-square approximation.

So, we have proved that any continuous 2π-periodic function can be
approximated with any accuracy in the norm of the space R([−π, π]) by

https://www.youtube.com/watch?v=yJqsGKaYgmw&t=27m06s
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a trigonometric polynomial, i. e., by some linear combination of functions
from the orthonormal sequence

{
1√
2π
, cos kx√

π
, sin kx√

π

}
, k ∈ N.

Therefore, if we consider the subspace of the spaceR([−π, π]) of all contin-
uous 2π-periodic functions, then, for this subspace, the considered orthonor-
mal sequence will be complete. This immediately implies, by virtue of the
theorem on the convergence of the Fourier series by a complete orthonormal
sequence in Euclidean space, that the Fourier series (8) of any continuous
2π-periodic function f converges to this function in the norm of the space
R([−π, π]), i. e., in mean square.

In the next section, we show that our orthonormal sequence of trigono-
metric functions is complete in the wider subspace of the space R([−π, π]),
namely, in the subspace of all piecewise continuous functions. Thus, we jus-
tify the convergence of the Fourier series in mean square for all piecewise
continuous functions.

Convergence of the Fourier series in mean square
in the case of piecewise continuous functions

Formulation of the theorem on the approximation
of a piecewise continuous function 3.19A/00:00 (02:51)

Definition.
A piecewise continuous function on the segment [a, b] is a function that

is continuous at all points of a given segment except for a finite number of
discontinuity points of the first kind.

It follows from the additivity property of the integral with respect to the
integration segment that any piecewise continuous function on the segment
[a, b] is integrable on this segment.

Theorem (on mean-square approximation of a piecewise con-
tinuous function by trigonometric polynomials).

For any piecewise continuous function f defined on the segment [−π, π]
and for any value ε > 0, there exists a trigonometric polynomial Tn(x) such
that ‖f − Tn‖ < ε. Given the definition of a norm in the space R([−π, π]),
this inequality can be rewritten as follows:(∫ π

−π

(
f(x)− Tn(x)

)2
dx
) 1

2

< ε.

https://www.youtube.com/watch?v=Y6ftB0rijqk&t=00m01s
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First stage of the proof 3.19A/02:51 (12:07)

For simplicity, we consider a function f that has one discontinuity point of
the first kind x = 0, although the same result can be obtained for a function
with any finite number of discontinuity points. In addition, we assume that
the inequality f(−π) 6= f(π) holds for this function.

The idea of the proof is to transform the function f into a continuous 2π-
periodic function by means of a “small” change to the given function (from
the point of view of the norm in R([−π, π])) and then to apply the Weier-
strass theorem on uniform approximation by trigonometric polynomials to
this transformed function.

Choose some small value δ > 0 and define an auxiliary function f̃δ:

f̃δ(x) =


f(π) +

f(−π + δ)− f(π)

δ
(x+ π), x ∈ [−π,−π + δ),

f(δ)− f(−δ)− f(δ)

2δ
(x− δ), x ∈ (−δ, δ), (13)

f(x), x ∈ [−π + δ,−δ] ∪ [δ, π].

The function f̃δ differs from the initial function f only on the intervals
[−π,−π + δ) and (−δ, δ); the new function is linear on these intervals. The
function f̃δ is continuous at all points of the segment [−π, π] and, moreover,
its values coincide at the points −π and π (and are equal to f(π)). Thus, the
function f̃δ can be extended to the entire real axis R resulting in a continuous
2π-periodic function on R.

Second stage of the proof 3.19A/14:58 (06:33)

We assume that the estimate |f(x)| ≤M , x ∈ [−π, π], holds for the initial
function f . Then the same estimate holds for the function f̃δ, and we obtain
an estimate for the difference between the functions f and f̃δ:

∀x ∈ [−π, π] |f(x)− f̃δ(x)| ≤ |f(x)|+ |f̃δ(x)| ≤ 2M . (14)

Given (13) and (14), we can estimate the square of the norm ‖f − f̃δ‖:

‖f − f̃δ‖2 =

∫ π

−π

(
f(x)− f̃δ(x)

)2
dx =

=

∫ −π+δ

−π

(
f(x)− f̃δ(x)

)2
dx+

∫ δ

−δ

(
f(x)− f̃δ(x)

)2
dx ≤

≤ (2M)2δ + (2M)2 · 2δ = 12M 2δ.

https://www.youtube.com/watch?v=Y6ftB0rijqk&t=02m51s
https://www.youtube.com/watch?v=Y6ftB0rijqk&t=14m58s
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So, we have obtained the following estimate for the norm ‖f − f̃δ‖:
‖f − f̃δ‖ ≤ 2

√
3M
√
δ. (15)

Third stage of the proof 3.19A/21:31 (06:13)

Let us choose some value ε > 0 and put δ = ε2

48M2 . Then estimate (15)
takes the form

‖f − f̃δ‖ ≤ 2
√

3M · ε

4
√

3M
=
ε

2
. (16)

Now we apply the Weierstrass theorem on the uniform approximation of
a continuous periodic function by trigonometric polynomials to the function f̃δ
using the previously selected value ε:

∃Tn(x) sup
x∈[−π,π]

|f̃δ(x)− Tn(x)| < ε

2
√

2π
.

Using the same reasoning as in passing from (11) to (12), we get an esti-
mate for the norm ‖f̃δ − Tn‖:

‖f̃δ − Tn‖ <
ε

2
. (17)

Combining estimates (16) and (17) and using the triangle inequality for
the norm, we finally obtain

‖f − Tn(x)‖ = ‖f − f̃δ + f̃δ − Tn(x)‖ ≤

≤ ‖f − f̃δ‖+ ‖f̃δ − Tn(x)‖ < ε

2
+
ε

2
= ε. �

Convergence of the Fourier series
for piecewise continuous functions 3.19A/27:44 (07:41)

The proved theorem means that if in the space R([−π, π]) we consider the
subspace of all piecewise continuous functions, then, for this subspace, the
orthonormal sequence

{
1√
2π
, cos kx√

π
, sin kx√

π

}
, k ∈ N, will be complete.

Thus, the previously obtained result on the convergence in mean square
of the Fourier series for continuous 2π-periodic functions can be generalized
to the case of piecewise continuous functions.

Theorem (on the convergence in mean square of the
Fourier series for piecewise continuous functions).

The Fourier series (8) of any piecewise continuous function f converges to
this function with respect to the norm of the space R([−π, π]), i. e., in mean
square:

https://www.youtube.com/watch?v=Y6ftB0rijqk&t=21m31s
https://www.youtube.com/watch?v=Y6ftB0rijqk&t=27m44s
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lim
n→∞

∫ π

−π

(
f(x)− a0

2
−
∞∑
k=1

(ak cos kx+ bk sin kx)
)2

dx = 0.

In addition, for any piecewise continuous functions, Bessel’s inequality (9)
turns into Parseval’s identity:

a2
0

2
+
∞∑
k=1

(a2
k + b2

k) =
1

π

∫ π

−π
f 2(x) dx.

Pointwise convergence
of the Fourier series 3.19A/35:25 (04:58)

In this section, we briefly consider the pointwise convergence of the Fourier
series (8). This type of convergence means that there exists a limit of partial
sums of the Fourier series Sn(x) = a0

2 +
∑n

k=1(ak cos kx+bk sin kx) as n→∞
at any point x ∈ [−π, π].

It is clear that pointwise convergence does not follow from the mean-square
convergence. Therefore, we can expect that pointwise convergence will take
place for a narrower class of functions (compared to the class of piecewise
continuous and even continuous 2π-periodic functions). There are several
classes of functions with the required properties; we will consider only one of
them, which can be described in a very simple way.

Definition.
A function f is called piecewise continuously differentiable on the segment

[a, b] if it is piecewise continuous and also has a continuous derivative on each
interval of continuity (moreover, the function has one-sided derivatives at the
endpoints of each such interval).

We give the following theorem without proof (see, for example, [9, Ch. 8,
Sec. 5.6]).

Theorem (on the pointwise convergence of the Fourier se-
ries).

Let the function f be piecewise continuously differentiable on [−π, π].
Then its Fourier series converges at any point of the given segment and the
following equalities hold for the limit of partial sums Sn(x) of the Fourier
series:

lim
n→∞

Sn(x) =
f(x+ 0) + f(x− 0)

2
, x ∈ (−π, π);

lim
n→∞

Sn(±π) =
f(−π + 0) + f(π − 0)

2
.

https://www.youtube.com/watch?v=Y6ftB0rijqk&t=35m25s
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Recall that f(x + 0) means the right-hand limit of the function f at the
point x and f(x − 0) means its left-hand limit. Thus, at all points of the
continuity of the function f , the Fourier series converges to this function.

Uniform convergence of the Fourier series

Formulation of the theorem on the uniform
convergence of the Fourier series 3.19B/00:00 (05:26)

We have two main facts so far: the mean-square convergence of the Fourier
series for piecewise continuous functions and the pointwise convergence of the
Fourier series for piecewise continuously differentiable functions. Now let us
turn to the question for which subspace of the space of integrable functions
R([−π, π]) there exists uniform convergence of the Fourier series. The answer
to this question is given by the following theorem.

Theorem (on the uniform convergence of the Fourier se-
ries).

Let the function f be a 2π-periodic function that is differentiable on [−π, π]
and let its derivative be piecewise continuous. Then the Fourier series of the
function f converges to this function uniformly on [−π, π]:

Sn(x)
[−π,π]

⇒ f(x), n→∞.
Before proving this theorem, we formulate and prove an auxiliary lemma

that generalizes the integration formula by parts for a definite integral to
a wider class of functions.

Lemma (generalization of the integration formula by
parts)6.

Suppose that the functions u and v are differentiable on the segment [a, b]
and their derivatives are piecewise continuous. Then the integration formula
by parts holds for them:∫ b

a

uv′ dx = u(x)v(x)
∣∣∣b
a
−
∫ b

a

u′v dx. (18)

Proof.
Earlier, we proved the integration formula by parts under the assump-

tion that the functions u and v are continuously differentiable on the entire
segment [a, b] (see the corresponding theorem in Chapter 7 and the remark
to it). The lemma to be proved states that the integration formula by parts

6There is no statement and proof of this lemma in video lectures.

https://www.youtube.com/watch?v=5UJfMwBOpx4&t=00m01s
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remains valid if the derivatives of the functions u and v have a finite number
of discontinuities of the first kind.

We assume that the function u′(x) has a unique discontinuity at the point
c ∈ (a, b) and the function v′(x) has a unique discontinuity at the point
d ∈ (a, b), moreover, c < d (the case with several discontinuities can be
analyzed in a similar way).

On the segments [a, c], [c, d], [d, b], the functions u and v are continu-
ous and have derivatives defined on the corresponding intervals, and these
derivatives can be defined by continuity at the endpoints of the correspond-
ing segments, since one-sided limits exist at discontinuity points of the first
kind. Therefore, on these segments, all the conditions of the original theorem
on integration by parts are satisfied and therefore the equalities hold:∫ c

a

uv′ dx = u(c)v(c)− u(a)v(a)−
∫ c

a

u′v dx,∫ d

c

uv′ dx = u(d)v(d)− u(c)v(c)−
∫ d

c

u′v dx,∫ b

d

uv′ dx = u(b)v(b)− u(d)v(d)−
∫ b

d

u′v dx.

If we summarize the obtained equalities and use the property of addi-
tivity of the integrals with respect to the integration segment (see the re-
mark on the first theorem on the additivity of a definite integral in Chap-
ter 6), then we get

∫ b
a uv

′ dx on the left-hand side and we get the expres-
sion u(b)v(b)− u(a)v(a)−

∫ b
a u
′v dx on the right-hand side. Formula (18) is

proved. �
Now let us prove the theorem.

First stage of the proof 3.19B/05:26 (13:35)

We begin by proving the uniform convergence of the Fourier series on the
segment [−π, π].

Recall the formula for partial Fourier sums:

Sn(x) =
a0

2
+

n∑
k=1

(ak cos kx+ bk sin kx).

By virtue of the Weierstrass uniform convergence test, it suffices to esti-
mate the common term of the Fourier series (ak cos kx+ bk sin kx) by a value
independent of x and being a common term of some convergent numerical
series.

https://www.youtube.com/watch?v=5UJfMwBOpx4&t=05m26s
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The following obvious estimate holds:

|ak cos kx+ bk sin kx| ≤ |ak|+ |bk|. (19)

Therefore, to prove the uniform convergence of the Fourier series, it suffices
to prove that the numerical series

∑∞
k=1(|ak|+ |bk|) converges.

Note that although the convergence of the series
∑∞

k=1(a
2
k + b2

k) follows
from Bessel’s inequality (9), this fact does not guarantee the convergence of
the series

∑∞
k=1(|ak| + |bk|). For example, we know that the series

∑∞
k=1

1
k2

converges but the series
∑∞

k=1
1
k diverges.

Let us transform the coefficients ak and bk using the properties of the
function f . We start with the coefficients ak:

ak =
1

π

∫ π

−π
f(x) cos kx dx.

Since the function f is differentiable and its derivative is piecewise contin-
uous, we can apply the integration formula by parts (18) by setting u = f(x),
dv = cos kx dx, whence v = sin kx

k :

ak =
1

π

(f(x) sin kx

k

∣∣∣π
−π
−
∫ π

−π

f ′(x) sin kx

k
dx
)
.

The term f(x) sin kx
k

∣∣∣π
−π

vanishes due to the fact that the function f(x) sin kx

has the period 2π (in addition, we can see that sin(−πk) = sinπk = 0). Thus,
we get

ak = −1

π

∫ π

−π

f ′(x) sin kx

k
dx = −1

k

(1

π

∫ π

−π
f ′(x) sin kx dx

)
.

The expression in parentheses indicated on the right-hand side of the ob-
tained equality is the Fourier coefficient corresponding to the function sin kx
for the function f ′(x). To distinguish this coefficient from the coefficient bk
of the initial function f , we denote it by b′k:

b′k =
1

π

∫ π

−π
f ′(x) sin kx dx.

So, we got the following equality:

|ak| =
|b′k|
k

. (20)

Similarly, we can transform the coefficient bk:
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bk =
1

π

∫ π

−π
f(x) sin kx dx =

=
1

π

(
−f(x) cos kx

k

∣∣∣π
−π

+

∫ π

−π

f ′(x) cos kx

k
dx
)

=

=
1

k

(1

π

∫ π

−π
f ′(x) cos kx dx

)
.

The expression f(x) cos kx
k

∣∣∣π
−π

vanishes due to the 2π-periodicity of the func-

tion f(x) cos kx. Denoting a′k = 1
π

∫ π
−π f

′(x) cos kx dx, we obtain

|bk| =
|a′k|
k

. (21)

Applying equalities (20) and (21), we can rewrite estimate (19) as follows:

|ak cos kx+ bk sin kx| ≤ |a
′
k|+ |b′k|
k

. (22)

Second stage of the proof 3.19B/19:01 (04:48)

Using the relation xy ≤ 1
2(x2 +y2), which is valid for any real x and y and

can be obtained from the obvious inequality (x + y)2 ≥ 0, we estimate the
right-hand side of equality (22):

|a′k|+ |b′k|
k

=
|a′k|
k

+
|b′k|
k
≤ 1

2

(
(a′k)

2 +
1

k2

)
+

1

2

(
(b′k)

2 +
1

k2

)
=

=
1

2

(
(a′k)

2 + (b′k)
2
)

+
1

k2
.

The estimate (22) takes the form

|ak cos kx+ bk sin kx| ≤ 1

2

(
(a′k)

2 + (b′k)
2
)

+
1

k2
.

On the right-hand side of the estimate, we got the common term of the con-
verging number series. Indeed, we previously established the convergence of
the series

∑∞
k=1

1
k2 ; the series

1
2

∑∞
k=1

(
(a′k)

2 + (b′k)
2
)
converges due to Bessel’s

inequality for the Fourier coefficients of the function f ′(x).
Therefore, according to the Weierstrass test, the initial Fourier series for

the function f converges uniformly:

Sn(x)
[−π,π]

⇒ S(x), n→∞.
Moreover, the function S(x) is continuous on [−π, π] as the sum of a uni-

formly converging functional series with continuous terms.

https://www.youtube.com/watch?v=5UJfMwBOpx4&t=19m01s
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Third stage of the proof 3.19B/23:49 (10:00)

It remains for us to prove that the sum of the Fourier series S(x) coincides
with the function f(x) on the segment [−π, π].

Recall that, by virtue of the criterion for uniform convergence of the func-
tional series in terms of the supremum limit, the following limit relation is
fulfilled:

lim
n→∞

sup
x∈[−π,π]

|S(x)− Sn(x)| = 0.

We write this relation in the language ε–N :

∀ ε > 0 ∃N1 ∈ N ∀n > N1 sup
x∈[−π,π]

|S(x)− Sn(x)| < ε

2
√

2π
.

Therefore, for all x ∈ [−π, π], the estimate holds:

|S(x)− Sn(x)| < ε

2
√

2π
.

We square both parts of this estimate, integrate from −π to π, and then
extract the square root from both parts:(∫ π

−π
|S(x)− Sn(x)|2 dx

) 1
2

<
(ε2 · 2π

4 · 2π

) 1
2

=
ε

2
.

The resulting relation means that the following condition is true for the
norm ‖S − Sn‖ in the space R([−π, π]):

∀ ε > 0 ∃N1 ∈ N ∀n > N1 ‖S − Sn‖ <
ε

2
. (23)

On the other hand, the function f , which, by condition, is continuous on
the segment [−π, π], belongs to the subspace of all piecewise continuous func-
tions defined on [−π, π]; therefore, by the mean-square convergence theorem
of the Fourier series, the sequence of partial Fourier sums {Sn(x)} converges
to the function f in the norm of the space R([−π, π]):

lim
n→∞
‖f − Sn‖ = 0.

This fact can be written as follows:

∀ ε > 0 ∃N2 ∈ N ∀n > N2 ‖f − Sn‖ <
ε

2
. (24)

From conditions (23) and (24), we obtain that the following estimate is
satisfied for all n > max{N1, N2}:

‖f − S‖ = ‖f − Sn + Sn − S‖ ≤

≤ ‖f − Sn‖+ ‖Sn − S‖ <
ε

2
+
ε

2
= ε.

https://www.youtube.com/watch?v=5UJfMwBOpx4&t=23m49s
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The resulting estimate ‖f − S‖ < ε is independent of n and is valid for
any ε > 0. When ε→ 0, we get

‖f − S‖ = 0.

Given the definition of the norm, the last equality can be written in the
form (∫ π

−π

(
f(x)− S(x)

)2
dx
) 1

2

= 0 .

The functions f and S are continuous on [−π, π], so the integrand(
f(x) − S(x)

)2 is continuous and non-negative. If it has a positive value
at least at one point of the segment [−π, π], then its integral must be positive
by the theorem on the integral of a positive continuous function. Therefore,
the integrand is identically equal to zero: |f(x)− S(x)|2 ≡ 0. It follows that
S(x) = f(x) for all x ∈ [−π, π]. �

Decreasing rate of Fourier coefficients
for differentiable functions 3.19B/33:49 (06:32)

Let the function f be 2π-periodic and differentiable up to the order n,
let its derivatives f ′, . . . , f (n−1) be 2π-periodic and the derivative f (n) be
piecewise continuous.

In the proof of the previous theorem, we have obtained relations (20)
and (21) connecting the Fourier coefficients ak, bk of the function f with the
Fourier coefficients a′k, b

′
k of its derivative f ′ (provided that the function f

is 2π-periodic and has a piecewise continuous derivative). We can combine
these relations in the form of the following equality:

|ak|+ |bk| =
1

k
(|a′k|+ |b′k|), k ∈ N. (25)

Since in our case the derivative f ′ is also 2π-periodic and differentiable,
we can use a similar equality for its coefficients and relate these coefficients
to the coefficients a′′k, b

′′
k of the function f ′′:

|a′k|+ |b′k| =
1

k
(|a′′k|+ |b′′k|), k ∈ N. (26)

Combining equalities (25) and (26), we obtain

|ak|+ |bk| =
1

k2
(|a′′k|+ |b′′k|), k ∈ N.

Repeating these steps and expressing the coefficients a(m−1)
k , b(m−1)

k of the
function f (m−1) in terms of the coefficients a(m)

k , b(m)
k of its derivative f (m)

https://www.youtube.com/watch?v=5UJfMwBOpx4&t=33m49s
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for m = 3, . . . , n − 1, we finally obtain the following equality relating the
coefficients ak, bk of the initial function f and the coefficients a(n)

k , b(n)
k of its

derivative f (n):

|ak|+ |bk| =
1

kn
(|a(n)

k |+ |b
(n)
k |), k ∈ N.

Moreover, the relation limn→∞(|a(n)
k | + |b

(n)
k |) = 0 follows from Bessel’s

inequality for the Fourier series of the function f (n).
Thus, we have proved the following theorem.
Theorem (on the rate of decrease of Fourier coefficients

for differentiable functions).
If the function f is 2π-periodic and n times differentiable, its derivatives

f ′, . . . , f (n−1) are also 2π-periodic, and the derivative f (n) is piecewise contin-
uous, then the following limit relations are valid for the Fourier coefficients
of the function f :

ak = o
( 1

kn

)
, bk = o

( 1

kn

)
, k →∞.

Thus, the better the differential properties of the function f , the faster
its Fourier coefficients decrease, which allows the use of partial sums of the
Fourier series with fewer terms for a good approximation of such functions.
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Abel first theorem on the convergence
of a power series, 186
Abel second theorem on the convergence
of a power series, 187
Abel’s test for conditional convergence
of a numerical series, 163
Abel’s test for uniform convergence
of a functional series, 175
Alternating series, 156
Antiderivative, 13
Axioms

of a linear space, 212
of a metric space, 214
of the scalar product, 212

Bessel’s inequality
for integrable functions, 230, 231
for vectors of the real Euclidean

space, 218
binomial differential, 38

Cauchy criterion for the convergence
of a numerical series, 143

Cauchy criterion for the convergence
of an improper integral, 128

Cauchy criterion for uniform convergence
of a functional sequence, 170

Cauchy criterion for uniform convergence
of a functional series, 172

Cauchy’s test for convergence
of a numerical series, 154

limit Cauchy test, 155
Cauchy–Bunyakovsky inequality

for the norm of a vector, 213
Cauchy–Hadamard formula for the radius

of convergence of a power
series, 191

Circular cylinder, its volume, 101
Cuboid, its volume, 98
Curve, 112

continuously differentiable
(smooth), 114

rectifiable curve, its length, 114

Curvilinear trapezoid, its area, 44, 90

D’Alembert’s test for convergence
of a numerical series, 152

limit D’Alembert test, 153
Darboux upper and lower integrals, 52
Darboux upper and lower sum, 48
Definite integral, 46, 66

additivity with respect
to the integration segment, 65, 66

change of variables, 82
formula of integration by parts, 85, 237
integration formula by parts, 85
linearity with respect

to the integrand, 61
Derivative of a vector function, 109
Dirichlet function, 55
Dirichlet’s test for conditional convergence

of a numerical series, 159
Dirichlet’s test for conditional convergence

of an improper integral, 136
Dirichlet’s test for uniform convergence

of a functional series, 174

Ellipse, its area, 94
Euler’s substitutions, 39

Figure (on the plane), 87
cell figure, its area, 87
squarable figure, its area, 88

Formula for the length of the curve
in the Cartesian coordinate system, 119
in the polar coordinate system, 120
specified by a vector function, 118

Formula of the sum of an infinitely
decreasing geometric
progression, 142

Fourier coefficients
of a vector of the real Euclidean

space, 216
of an integrable function, 229, 230
rate of decrease for differentiable

functions, 243
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Fourier series
convergence in the norm (mean-square

convergence), 222, 233, 235
of a vector of the real Euclidean

space, 216
of an integrable function, 229, 231
pointwise convergence, 236
uniform convergence, 237

Fourier sum, 217
Function

piecewise continuously
differentiable, 236

Riemann integrable, 46
function

piecewise continuous, 233
Functional sequence, 165

pointwise convergence, 166
uniform convergence, 166

Functional series, 165
absolute and conditional

convergence, 165
pointwise convergence, 166
uniform convergence, 169

Improper integral
absolute convergence, 129
additivity with respect

to the integration interval, 125
change of variables, 125
conditional convergence, 134
convergence in the sense of the Cauchy

principal value, 140
definition in the general case, 124
for an unbounded function, 123
formula of integration by parts, 126
linearity with respect

to the integrand, 124
over a semi-infinite interval, 122
with several singularities, 138

Indefinite integral, 14
additivity, 15
change of variables, 17
formula of integration by parts, 19
homogeneity, 16
linearity, 16
table of indefinite integrals, 14

Integral
definite, see Definite integral
improper, see Improper integral
indefinite, see Indefinite integral
with a variable upper limit, 76

Integral sum, 46
Integrand, 14

Lagrange’s theorem for vector
functions, 111

Leibniz series, 156
Limit

of a sequence of vectors
of the Euclidean space, 215

of a vector function, 106
limit Cauchy test for convergence

of a numerical series, 155
limit D’Alembert test for convergence

of a numerical series, 153

Method of equating coefficients, 23

Newton–Leibniz formula, 81
Norm

of a vector, 213
of an integrable function, 226

Normalization of a vector, 228
Numerical series, 141

a necessary condition
for the convergence, 143

absolute convergence, 144
conditional convergence, 156

Oscillation of a function, 58

Parseval’s identity
for piecewise continuous functions, 236
for vectors of the real Euclidean

space, 219
Partial fractions, 23
Partial sum of the series, 141
Partition, 45

mesh, 46
refinement, 50

Polynomial in n variables, 37
Polynomial in two variables, 28
Power series, 186

radius of convergence and interval
of convergence, 188
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Primitive function, see Antiderivative
Pythagorean theorem, 221

Rational function, 22
of n variables, 37

Rational function of two variables, 28
real analytic function, 198
Rectangle, its area, 87
Rectangular parallelepiped, its area, see

Cuboid, its volume
Riemann integral, see Definite integral
Riemann theorem on conditionally

convergent series, 164

Sample, 46
Scalar product

in the space of integrable functions, 224
Scalar product, its axioms, 212
Sector

circular, its area, 95
curvilinear, its area, 95

Sequence
complete, 219
functional, see Functional sequence
limit superior and limit inferior, 190
orthogonal sequence of trigonometric

functions, 226
orthonormal in Euclidean space, 216
orthonormal sequence of trigonometric

functions, 228
partial limits, 190

Series
Fourier series, see Fourier series
functional, see Functional series
harmonic, 151
numerical, see numerical series
power series, see Power series
Taylor series, see Taylor series

Solid (in three-dimensional space), 98
cell solid, its volume, 99
cubable solid, its volume, 99
cylindrical solid, its volume, 100
solid of revolution, its volume, 102

Space
linear, its axioms, 212
metric, its axioms, 214
of integrable functions, 224, 225
real Euclidean, 212

Tangent half-angle substitution, see
Universal trigonometric
substitution

Taylor series, 200
expansion of (1 + x)α, 206
expansion of arcsinx, 210
expansion of ln(1 + x), 208
expansion of ex, 205
expansions of sinx and cosx, 205

Theorem
a criterion for the convergence

of a vector function in terms
of its coordinate functions, 107

a necessary condition
for integrability, 47

a necessary condition
for the convergence of a numerical
series, 143

Abel’s test for conditional convergence
of a numerical series, 163

Abel’s test for uniform convergence
of a functional series, 175

Cauchy criterion for the convergence
of a numerical series, 143

Cauchy criterion for the convergence
of an improper integral, 128

Cauchy criterion for uniform
convergence of a functional
sequence, 170

Cauchy criterion for uniform
convergence of a functional
series, 172

Cauchy’s test for convergence
of a numerical series, 154

Cauchy–Bunyakovsky inequality
for the norm of a vector, 213

Cauchy–Hadamard theorem
on the radius of convergence
of a power series, 191

comparison test for numerical
series, 148

corollaries of the theorem on the change
of variables in a definite integral, 83

corollary of the comparison test
for improper integrals, 132

corollary of the integrability criterion
in terms of Darboux sums, 55
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corollary of the theorem
on the comparison of integrals, 68

corollary of the theorem
on the existence of an antiderivative
for a continuous function, 81

corollary of the theorem on the integral
of a positive continuous
function, 70

criterion for convergence of numerical
series with non-negative terms, 147

criterion for the convergence
of improper integrals
of non-negative functions, 130

criterion for the cubability of a solid, 99
criterion for the squarability

of a figure, 89
criterion for uniform convergence

of a functional sequence in terms
of the supremum limit, 166

criterion for uniform convergence
of a functional series in terms
of the supremum limit, 170

D’Alembert’s test for convergence
of a numerical series, 152

Dirichlet’s test for conditional
convergence of a numerical
series, 159

Dirichlet’s test for conditional
convergence of an improper
integral, 136

Dirichlet’s test for uniform convergence
of a functional series, 174

integrability criterion in terms
of Darboux sums, 52

integrability theorem for continuous
functions, 58

integrability theorem for monotone
functions, 60

integral test of convergence, 149
Lagrange’s theorem for vector

functions, 111
lemma on generalization

of the integration formula
by parts, 237

on a sufficient condition
for the existence of a Taylor
series, 204

on antiderivatives of a given
function, 13

on arithmetic properties of convergent
numerical series, 145

on arithmetic properties
of differentiable vector
functions, 109

on arithmetic properties of the limit
of vector functions, 108

on differentiation of a functional
sequence, 182

on differentiation of a functional
series, 184

on Fourier coefficients with respect
to a complete orthonormal
sequence, 219

on integrability of the product
of integrable functions, 62

on integrability on a nested segment, 64
on integration by parts of a definite

integral, 85
on integration by parts of an improper

integral, 126
on linearity of a definite integral with

respect to the integrand, 61
on mean-square approximation

of a piecewise continuous function
by trigonometric polynomials, 233

on the additivity of an improper
integral with respect
to the integration interval, 125

on the additivity of the length
of a curve, 114

on the area of a curvilinear sector, 96
on the area of a curvilinear

trapezoid, 90
on the area of a figure with

two curvilinear boundary parts, 93
on the change of variables, 17
on the change of variables in a definite

integral, 82
on the change of variables

in an improper integral, 125
on the coincidence of the integral

in the proper and improper
sense, 127

on the comparison of integrals, 68



250 M.E.Abramyan. Lectures on integral calculus and series theory

on the continuity of an integral with
a variable upper limit, 76

on the continuity of the sum of a power
series, 194

on the continuity
of the sum of a uniformly
converging functional series with
continuous terms, 178

on the continuity of the uniform limit
of a functional sequence with
continuous elements, 176

on the convergence in mean square
of the Fourier series for piecewise
continuous functions, 235

on the convergence of a Fourier series
with respect to a complete
orthonormal sequence in Euclidean
space, 222

on the convergence of an absolutely
convergent integral, 129

on the convergence of an absolutely
convergent numerical series, 145

on the convergence of numerical series
with common terms that are power
functions, 151

on the convergence of the Leibniz
series, 156

on the derivative for the length
of the initial part of a curve, 116

on the differentiability of an integral
with a variable upper limit
and a continuous integrand, 78

on the differentiation of a power
series, 196

on the estimation of the Leibniz series
in terms of its partial sums, 158

on the existence of an antiderivative
for a continuous function, 80

on the expansion of a power function
into a Taylor series, 206

on the expansion of the arcsine into
a Taylor series, 210

on the expansion of the logarithm into
a Taylor series, 208

on the extremal property of Fourier
sums, 217

on the factorization of a real
polynomial, 22

on the infinite differentiability
of a power series, 197

on the integral of a positive continuous
function, 69

on the integral of the absolute value
of a function, 70

on the integration of a power series, 194
on the integration of a rational

function, 27
on the integration of a uniformly

converging functional sequence, 179
on the integration of a uniformly

converging functional series, 180
on the linearity of an improper integral

with respect to integrand, 124
on the non-negativity of the integral

of a non-negative function, 67
on the partial fraction decomposition

of a real rational function, 22
on the pointwise convergence

of the Fourier series, 236
on the properties of a real analytic

function, 199
on the rate of decrease of Fourier

coefficients for differentiable
functions, 243

on the rectifiability of a continuously
differentiable curve, 114

on the uniform convergence
of the Fourier series, 237

on the volume of a cylindrical solid, 100
on the volume of a solid

of revolution, 102
on the volume of a solid with given

cross-sectional areas, 104
on the well-posedness of the definition

of the cubable solid volume, 99
on the well-posedness of the definition

of the squarable figure area, 88
the comparison test for improper

integrals of non-negative
functions, 131

the first Abel theorem
on the convergence of a power
series, 186
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the first mean value theorem, 72
the first theorem on the additivity

of a definite integral with respect
to the integration segment, 65

the fundamental theorem
of calculus, 81

the second Abel theorem
on the convergence of a power
series, 187

the second mean value theorem, 73
the second theorem on the additivity

of a definite integral with respect
to the integration segment, 66

the third mean value theorem, 74
triangle inequality for the norm

of a vector, 214
Weierstrass test for uniform

convergence of a functional
series, 172

Weierstrass theorem on the uniform
approximation of continuous
periodic functions by trigonometric
polynomials, 231

Triangle inequality for the norm
of a vector, 214

Universal trigonometric substitution, 28

Vector function, 106
continuous, 108
differentiable, 109
its coordinate functions, 107

Weierstrass test for uniform convergence
of a functional series, 172

Weierstrass theorem on the uniform
approximation of continuous
functions by polynomials, 232

Weierstrass theorem on the uniform
approximation of continuous
periodic functions by trigonometric
polynomials, 231





 


	Contents
	Preface
	Video lectures
	1. Antiderivative and indefinite integral
	Definition of an antiderivative and indefinite integral
	Table of indefinite integrals
	The simplest properties of an indefinite integral
	Change of variables in an indefinite integral
	Formula of integration by parts

	2. Integration of rational functions
	Partial fraction decomposition of a rational function
	Methods for finding the decomposition of a rational function
	Integration of terms in the partial fraction decomposition of a rational function
	Theorem on the integration of a rational function

	3. Integration of trigonometric functions
	Rational expressions for trigonometric functions
	Universal trigonometric substitution
	Features of the use of universal trigonometric substitution
	Other types of variable change for trigonometric expressions

	4. Integration of irrational functions
	Integration of a rational function with an irrational argument
	Generalization to the case of several irrational arguments
	Integration of the binomial differential
	Euler's substitutions

	5. Definite integral and Darboux sums
	Definite integral
	Darboux sums and Darboux integrals
	Integrability criterion in terms of Darboux sums

	6. Classes of integrable functions. Properties of a definite integral
	Classes of integrable functions
	Integral properties associated with integrands
	Properties associated with integration segments
	Estimates for integrals
	Mean value theorems for definite integrals

	7. Integral with a variable upper limit. Newton-Leibniz formula
	Integral with a variable upper limit
	Newton-Leibniz formula
	Additional techniques for calculating definite integrals

	8. Calculation of areas and volumes
	Quadrable figures on a plane
	Area of a curvilinear trapezoid and area of a curvilinear sector
	Volume calculation

	9. Curves and calculating their length
	Vector functions and their properties
	Differentiable vector functions
	Lagrange's theorem for vector functions
	Curves in three-dimensional space. Rectifiable curves
	Properties of continuously differentiable curves
	Versions of the formula for finding the length of a curve

	10. Improper integrals: definition and properties
	Tasks leading to the notion of an improper integral
	Definitions of an improper integral
	Properties of improper integrals

	11. Absolute and conditional convergence of improper integrals
	Cauchy criterion for the convergence of an improper integral
	Absolute convergence of improper integrals
	Properties of improper integrals of non-negative functions
	Conditional convergence of improper integrals
	Dirichlet's test for conditional convergence of an improper integral
	Integrals with several singularities

	12. Numerical series
	Numerical series: definition and examples
	Cauchy criterion for the convergence of a numerical series and a necessary condition for its convergence
	Absolutely convergent numerical series and arithmetic properties of convergent numerical series

	13. Convergence tests for numerical series with non-negative terms
	Comparison test
	Integral test of convergence
	D'Alembert's test and Cauchy's test for convergence of a numerical series

	14. Alternating series and conditional convergence
	Alternating series
	Dirichlet's test and Abel's test for conditional convergence of a numerical series
	Additional remarks on absolutely and conditionally convergent series

	15. Functional sequences and series
	Pointwise and uniform convergence of a functional sequence and a functional series
	Cauchy criterion for the uniform convergence of a functional sequence and a functional series
	Tests of uniform convergence of functional series

	16. Properties of uniformly converging sequences and series
	Continuity of the uniform limit
	Integration of functional sequences and series
	Differentiation of functional sequences and series

	17. Power series
	Power series: definition and Abel's theorems on its convergence
	Limit inferior and limit superior of a sequence
	Cauchy-Hadamard formula for the radius of convergence of a power series
	Properties of power series

	18. Taylor series
	Real analytic functions and their expansions into Taylor series
	Real analytic functions and the property of infinite differentiability
	Sufficient condition for the existence of a Taylor series. Expansions of exponent, sine, and cosine into a Taylor series
	Taylor series expansion of a power function
	Taylor series expansions of the logarithm and arcsine

	19. Fourier series in Euclidean space
	Real Euclidean space and its properties
	Fourier series with respect to an orthonormal sequence of vectors in Euclidean space
	Fourier series over a complete orthonormal sequence of vectors

	20. Fourier series in the space of integrable functions
	Euclidean space of integrable functions
	Constructing an orthonormal sequence of integrable functions
	Constructing a formal Fourier series for integrable functions
	Convergence of the Fourier series in mean square in the case of periodic continuous functions
	Convergence of the Fourier series in mean square in the case of piecewise continuous functions
	Pointwise convergence of the Fourier series
	Uniform convergence of the Fourier series
	Decreasing rate of Fourier coefficients for differentiable functions

	References
	Index

