Algorithms and Data Structures
Module 2

Lecture &
Greedy algorithms.
Minimum Spanning Tree Problem.
Prim’s algorithm.

MST: algorithms

A greedy strategy: start with an empty subgraph; add
the lightest edge such that it does not create a cycle on
the subgraph (the lightest safe edge).

* Kruskal’s algorithm: build a spanning forest, adding
edges until there is one component (tree).

* Prim’s algorithm: build the tree, adding edges until it
spans the graph.

MST: algorithms

R R

Kruskal’s algorithm
http://jeffe.cs.illinois.edu/teaching/algorithms/

Prim’s algorithm

Given a connected graph G(V,E), |[V| = n, |E| = m.
1. TWp, Ep):Ve={sLE =0
2. Array C[1..n], P[1..n].
* C[s] = 0; P[s]=s.
* Foreachv € V\V;: Clv] = w(s,v); Plv] =s
3. While VT * V:
* Find v € V\V: v has minimum C|v]
* Add v to V; add (P|v],v) to Er
 Update C&P(v).

Prim’s algorithm

Update C&P(v)
For each (v,u) € E:
if u € V\Vy and Clu] > w(v, u):
Clu] = w(v,u)

Plu]l =v
@)i 1 @ l
/D) *p) (©HD

5

Prim’s algorithm

Prim’s algorithm

Given a connected graph G(V,E), |[V| = n, |E| = m.
1. TWrEr):Vy ={shEr=0
2. Array C[1..n], P[1..n].

* C[s] = 0;P[1..n]=s.

* Foreachv € V\V;: Clv] = w(s,v); Plv] =s

3. WhileVy #V: n-1 iterations
* Find v € V\V7: v has minimum C|v] 277
* Add v to V; add (P|v],v) to Er 0(1)

 Update C&P(v). P77

Prim’s algorithm

Let us evaluate the total complexity of Update C&P
calls. Actually, we update C[] and P[] at most one
time for each edge => the total complexity is O(m).

The complexity of searching for the closest v € IV\V
depends on the implementation.

Prim’s algorithm

1)

2)

Naive implementation: scan V\V; and search for the
minimum value of C|v]. Each scan needs 0 (n) time

=> the total time complexity is O(m + n?) = 0(n?).
Use a priority queue for keeping C|v] and getting the
minimum value at each iteration. The total complexity
depends on the priority queue implementation:

a) Binary heap: O(m logn)

b) Fibonacci heap: O(m + nlogn)

Priority queue: definition

* Priority queue is an abstract data structure which allows to efficiently
append new items and select an item with the highest priority.

* ‘Priority’ means numeric values attached to items.

* ‘The highest’ means either ‘the maximum’ or ‘the minimum’ value of
priority. Priority queue must be build as either ‘max’ or ‘min’ priority
gueue; for a max-priority queue one can select an item with the
maximum priority and cannot select the minimum priority item, and

vice versa.
* Priority queue is not a queue...

Priority queue: definition

Priority queue is an abstract data structure which efficiently
implements operations:

e Tnit (n) -—initialize an empty priority queue with n possible items.
e Build (S) — build priority queue containing items of S.

e Add (x, prior) —add item x with priority prior to the priority
gueue.

* GetMin () / GetMax () — get the item with the highest priority.
e DelMin () / DelMax () — delete the item with the highest priority.

" ChangePriority(x, new prior) -change the priority of x
to new_prior.

Priority queue: definition

For Prim’s algorithm we apply:
* At the initialization phase:
v Add(x,prior) — n times

* At the main phase:
v'GetMin() — n times
v'ChangePriority(x,new_priority) — O(m) times.

Priority queue: implementation

We will study and analyze several ways to implement a priority
queue:

* Array-based implementations
v'Linear (unsorted) array
v'Sorted array
v'Dynamic linked sorted list

* Tree-like data structures

v'Binary search tree
v'2-3 tree
v'Binary heap

Priority queue: array-based implementation

Unsorted array:
* Add (x, prior) —appendtothe endofarray. O(1)
* GetMin () —scan the array for the most prioritized item. O (n)

* DelMin () —locate the most prioritized item and remove it (shift the
tail of the array to the left). O(n)

* ChangePriority(x, new prior) —locateitem xin the array
and change its priority. O(n)

Total complexity: O(mn)

Priority queue: array-based implementation

Sorted array:

* Add (x, prior) —insertx to the proper position. O(n)

* GetMin () —get the first item. O(1)

* DelMin ()—delete the first item, shift other items to the left. O(n)

* ChangePriority(x, new prior) —locateitem xin the array,
remove it and insert to the new position. O(n)

Total complexity: O (mn)

Priority queue: array-based implementation

Dynamic linked sorted list:

* Add (x, prior) —insertx to the proper position. O(n)
* GetMin () —get the firstitem. O(1)

* DelMin ()—delete the first item. O(1)

* ChangePriority(x, new prior) —locateitem xin the array,
remove it and insert to the new position. O(n)

Total complexity: O(mn)

Priority queue: binary search tree

Binary tree is a graph for which the following conditions hold:
a) Itisatree (=connected acyclic graph).
b) One vertex is marked as the root of the tree.

c) Each vertex has 0-2 children. Vertices with no children are
called leaves.

d) For each non-leaf vertex, its children are marked as the /eft
child and the right child. Even if there is only one child, its
either the left or the right one.

Height of a binary tree is the maximum length of a path from a
leaf to the root.

u.parent

u.letftt

u.right

Priority queue: binary search tree

Binary search tree (BST) is a binary tree for which the following
conditions hold:

a) Each vertex of BST keeps an item with attached numeric key.

b) BST property holds for each vertex with key K:
* All vertices in the left subtree keep keys which are less than K.

* All vertices in the right subtree keep keys which are greater than
or equal to K.

Priority queue: binary search tree

% o %

Priority queue: binary search tree

A helper function Find (K) :
1. Start from the root (current vertex = root of the BST).
2. |If current vertex’s key = K then key is found.

3. Elseif current vertex’s key is greater than K then move to the left child
(current vertex = left child).

4. Else move to the right child (current vertex = right child).
Repeat steps 2-4 until key is found or a leaf is reached.

6. Return ‘true’ and the position of the found vertex or ‘false’ and the
position where the vertex would be located.

d

Time complexity: O(h), where h is the height of the BST.

Priority queue: binary search tree

Searching for key=6 (successful) Searching for key=10 (unsuccessful)

http://opendatastructures.org/

Priority gueue: binary search tree

GetMin () :start from the root and move to the leftmost vertey, i.e.
stop when the current vertex has no left child. Time complexity: O(h).

Add (x, key) : search for the position at which x would be located in
the BST, then add a new vertex to this position.

Time complexity: O(h).

Priority queue: binary search tree

DelMin () : delete the leftmost vertex of the BST.
Deleting a vertex v from the BST:

 |fvisaleaf: simply remove the vertex, no additional operations
needed.

 If v has only one child: replace v with that child.

Priority queue: binary search tree

Deleting a vertex v from the BST:

 If v has two children:
o Find the leftmost vertex w within the right subtree.
o Move vertex w to the position of v.

Time complexity: O(h).

Priority queue: binary search tree

Summary of time complexity for BST: GetMin, DelMin, Add have
time complexity O(h), where h is the height of the BST.

Height is O(logn) on average but O(n) in the worst case ®

@
@ @
D ® ®® @ @
© @ @
®

Heaps

A heap is a data structure which efficiently implements a
priority queue with O(1) time complexity for GetMin () and
O(logn) time complexity for De1Min ().

Heaps are implemented as tree-based data structures for
which all vertices store item+key pairs and the following heap
condition holds: the key of any non-root vertex is not less (not
greater, for maximizing heaps) than the key of its parent.
Hence the minimum key item is always stored in the root.

Prim’s algorithm

Given a connected graph G(V,E), |[V| = n, |E| = m.
1. TWp, Ep):Ve={sLE =0
2. Array C[1..n], P[1..n].
* C[s] = 0; P[s]=s.
* Foreachv € V\V;: Clv] = w(s,v); Plv] =s
3. While VT * V:
* Find v € V\V: v has minimum C|v]
* Add v to V; add (P|v],v) to Er
 Update C&P(v).

27

Prim’s algorithm

processed not-yet-processed
Update C&P(v)
For each (v,u) € E: v, VA
if u € V\Vy and Clu] > w(v, u): O 3 V-V,
Clu] = w(v,u) ! — 1
Plul =v 2y

If we use a heap for storing C|u],
the time complexity is O(m -logn).

28

