
Algorithms and Data Structures

Module 2

Lecture 11
‘Divide-and-Conquer’ strategy.

MergeSort.

Greedy algorithms (reminder)

Key characteristics of a greedy algorithm:

•Can solve an optimization problem.

•Builds solution iteratively, adding one element after
another.

•At each step, adds the element which is the best at
the current situation.

•Does not revise the decisions (one-pass algorithm).

2

Divide-and-Conquer strategy

A ‘Divide-and-Conquer’ strategy:

1. Divide the given instance of the problem into several
independent smaller instances of the same problem. Division
does not necessarily means dividing the dataset into disjoint
datasets; it can mean a more general sort of reduction.

2. Solve all smaller instances. Usually we recursively use the
same algorithm for solving smaller instances.

3. Combine the solutions of the smaller instances into the
solution of the initial problem instance.

3

Divide-and-Conquer strategy

A ‘Divide-and-Conquer’ algorithm is usually implemented as
a recursive function.

The run of a recursive algorithm

can be represented

as a recursion tree.

4

MergeSort

Task: given an array 𝐴[0. . 𝑛 − 1], sort it in ascending order.

MergeSort:

1.[Divide] Divide the array into two
subarrays each of size approximately
𝑛/2.

2.[Solve] Recursively sort both
subarrays, using MergeSort.

3.[Combine] Merge the sorted subarrays
into the resulting sorted array.

5

MergeSort: steps’ implementation

Divide:

Just divide the array 𝐴[0. . 𝑛 − 1] into two subarrays.

This can be made in an ‘in-place’ manner if we let the

subarrays to be the segments 𝐴 0. .
𝑛

2
− 1 and 𝐴

𝑛

2
. . 𝑛 − 1 .

Time complexity: 𝑂(1).

6

MergeSort: steps’ implementation

Solve:

Recursive call the MergeSort procedure.
!! For any recursive procedure we must provide a non-recursive
branch. For MergeSort, we process short arrays non-
recursively. Options:
• For cases 𝑛 = 0 and 𝑛 = 1 no sorting needed.
• For small arrays (say, 𝑛 ≤ 100) running non-recursive sorting

procedure (e.g. bubble sort) is more efficient.

Time complexity: depends on complexity of the ‘Combine’ step.

7

MergeSort: steps’ implementation

Combine:

Given two sorted subarrays, how can we get one single sorted
array? We compare the first items of subarrays.

8

MergeSort: steps’ implementation

Combine:

We put the least item to the target array and move the
pointer in it’s subarray to the next position.

9

MergeSort: steps’ implementation

Combine:

Then we repeat this procedure…

10

MergeSort: steps’ implementation

Combine:

… until one of the subarrays becomes empty.

11

MergeSort: steps’ implementation

Combine:

As a result we get the sorted array!

12

MergeSort: time complexity

Let’s evaluate the total time complexity of the MergeSort
procedure.

Divide: takes 𝑂 1 time.

Solve: ???

Combine: takes 𝑂 𝑛 comparisons and assignments.

Let 𝑇 𝑛 be the time complexity of merge sorting for an array of
size 𝑛.

13

MergeSort: time complexity

Let 𝑇 𝑛 be the time complexity of merge sorting for an array
of size 𝑛.

𝑇 𝑛 = ቐ
𝑐, 𝑓𝑜𝑟 𝑛 = 1

2𝑇
𝑛

2
+ 𝑑𝑛, 𝑓𝑜𝑟 𝑛 > 1

After solving this recurrence, we get 𝑇 𝑛 = 𝑂(𝑛 ⋅ log2 𝑛).

14

Divide-and-Conquer: Master theorem

Consider a recursive algorithm of this form:

procedure p(input x of size n):

if n < some constant k:

Solve x directly without recursion

else:

Create a subproblems of x, each having size n/b

Call procedure p recursively on each subproblem

Combine the results from the subproblems

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

15

𝒇(𝒏)

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Divide-and-Conquer: Master Theorem

Time complexity of this procedure is

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛

The Master Theorem: there are 3 cases:

1) If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎+𝜀 for some constant 𝜀 > 0, and 𝑓 𝑛 satisfies the regularity condition,

then 𝑇 𝑛 = Θ(𝑓 𝑛).

2) If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎 (log 𝑛)𝑘 for 𝑘 ≥ 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 (log 𝑛)𝑘+1).

3) If 𝑓 𝑛 = Ω 𝑛log𝑏 𝑎−𝜀 for some constant 𝜀 > 0, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎).

The regularity condition: 𝑎 ⋅ 𝑓
𝑛

𝑏
≤ 𝑐 ⋅ 𝑓(𝑛) for some constant 𝑐 < 1 and all sufficiently large 𝑛.

16

Divide-and-Conquer: Master Theorem

There is a simplified version of the Master Theorem for the case
𝑓 𝑛 = 𝑂 𝑛 .

The Master Theorem (simplified version): there are 3 cases:

1) If 𝑎 < 𝑏 , then 𝑇 𝑛 = Θ(𝑛).

2) If 𝑎 = 𝑏, then 𝑇 𝑛 = Θ(𝑛 log 𝑛).

3) If 𝑎 > 𝑏, then 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎).

17

Divide-and-Conquer: Master Theorem

Let’s consider the simplified case. For simplicity let 𝑛 = 𝑏𝑘.

𝑇 𝑛 = ቐ
𝑐, 𝑓𝑜𝑟 𝑛 = 1

𝑎𝑇
𝑛

𝑏
+ 𝑑𝑛, 𝑓𝑜𝑟 𝑛 > 1

Hence, 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑑𝑛 = 𝑎 𝑎𝑇

𝑛

𝑏2
+ 𝑑 ⋅

n

𝑏
+ 𝑑𝑛 = 𝑎2 ⋅ 𝑇

𝑛

𝑏2
+ 𝑑𝑛 ⋅

𝑎

𝑏
+ 1 = ⋯ = 𝑎𝑘 ⋅ 𝑇

𝑛

𝑏𝑘
+ 𝑑𝑛 ⋅ σ𝑖=0

𝑘−1 𝑎

𝑏

𝑖
= 𝑎𝑘𝑐 + 𝑑𝑛 ⋅ σ𝑖=0

𝑘−1 𝑎

𝑏

𝑖
.

18

Divide-and-Conquer: Master Theorem

𝑇 𝑛 = ⋯ = 𝑎𝑘𝑐 + 𝑑𝑛 ⋅ σ𝑖=0
𝑘−1 𝑎

𝑏

𝑖
.

Case 1: 𝑎 < 𝑏

In this case σ𝑖=0
𝑘−1 𝑎

𝑏

𝑖
⟶ 𝑐𝑜𝑛𝑠𝑡, hence 𝑇 𝑛 = Θ 𝑎𝑘 + Θ 𝑛 =

Θ 𝑏𝑘 + Θ 𝑛 = Θ 𝑛 .

19

Divide-and-Conquer: Master Theorem

𝑇 𝑛 = ⋯ = 𝑎𝑘𝑐 + 𝑑𝑛 ⋅ σ𝑖=0
𝑘−1 𝑎

𝑏

𝑖
.

Case 2: 𝑎 = 𝑏

In this case
𝑎

𝑏
= 1 and σ𝑖=0

𝑘−1 𝑎

𝑏

𝑖
= 𝑘, hence 𝑇 𝑛 = Θ 𝑎𝑘 +

Θ 𝑛 ⋅ 𝑘 = Θ 𝑛 + Θ(𝑛 ⋅ log 𝑛) = Θ 𝑛 log 𝑛 .

20

Divide-and-Conquer: Master Theorem

𝑇 𝑛 = ⋯ = 𝑎𝑘𝑐 + 𝑑𝑛 ⋅ σ𝑖=0
𝑘−1 𝑎

𝑏

𝑖
.

Case 3: 𝑎 > 𝑏

Treat σ𝑖=0
𝑘−1 𝑎

𝑏

𝑖
as the partial sum of the geometric sequence: σ𝑖=0

𝑘−1 𝑎

𝑏

𝑖
=

𝑎

𝑏

𝑘
−1

𝑎

𝑏
−1

=⋅

𝑎𝑘−𝑏𝑘

𝑎−𝑏

1

𝑏𝑘
= Θ

𝑎𝑘

𝑏𝑘
. Recall that 𝑏𝑘 = 𝑛, hence 𝑇 𝑛 = 𝑎𝑘𝑐 + 𝑑𝑛 ⋅ σ𝑖=0

𝑘−1 𝑎

𝑏

𝑖
= 𝑎𝑘𝑐 + 𝑑𝑛 ⋅

Θ
𝑎𝑘

𝑛
= 𝑎𝑘𝑐 + Θ 𝑎𝑘 = Θ 𝑎𝑘 = Θ 𝑎log𝑏 𝑛 = Θ(𝑛log𝑏 𝑎).

21

Divide-and-Conquer: Master Theorem

22

