Algorithms and Data Structures

Module 2

Lecture 10
‘Divide-and-Conquer’ strategy.
Multiplication.

Multiplication problem

Given two integer numbers x and y, calculate z = x - y.

Numbers can be represented in either decimal or
binary form.

Multiplication: standard algorithm

23958233

X 5830
00000000 (= 23,958,233 X 0)
71874699 (= 23,958,233 X 30)
191665864 (= 23,958,233 X 800)
+ 119791165 (= 23,958,233 x 5,000)
139676498390 (= 139,676,498, 390)

Time complexity: (O(n) multiplications + 0(n) additions) - n = 0(n?) for multiplying n-digit
numbers.

Multiplication: Divide-and-Conquer

Lets apply ‘Divide-and-Conquer’ approach to the problem of

multiplication.

a b 2395
0000

Thus,z = x -y = (102a +b) - (102¢ + d) = 10"ac + 102(ad +

10™2q + b
10™2¢ + d

X
Y

Multiplication: Divide-and-Conquer

Z=XxX-y= (105a + b) : (1056 + d) = 10"ac + 102(ad + bc) + bd.
We have 4 multiplications and 3 additions.
We can use a recursive function to compute the product.

Function RecursiveProduct (x,y,n):
1. Base case: if n<2 then return x-y.
2. Divide the factors into parts: a,b,cd.
3. Recursively calculate:

p = RecursiveProduct(a,c,n/2

q = RecursiveProduct(a,d,n/2
(b,c,n/2
(

s = RecursiveProduct (b,d,n/2

r = RecursiveProduct

)
)
)
)

4. Return 10"p + 102(q + 1) +s.

Multiplication: Divide-and-Conquer

Z=X'y = (105(1 + b) - (1056 + d) = 10"ac + 10z2(ad + bc) + bd.
Let T (n) denote the time for multiplying two n-digit numbers.
We have 4 multiplications and 3 additions in each recursive call.

Each multiplication takes T (g) time, each addition takes O(n) time.
Thus, T(n) = 4T (%) + 0(n).

Divide-and-Conquer: Master Theorem
(simplified version)

The Master Theorem (simplified version): if T'(n) satisfies the following
recurrence

fc, for n=1

— n
I (n) <a-T(—)+d-n, for n>1
\

b
Then there are 3 cases:

1) Ifa<b,thenT(n) = 60(n).
2) Ifa=b,thenT(n) = O(nlogn).
3) Ifa > b, then T(n) = O(n'°8r 9),

Multiplication: Divide-and-Conquer

InT(n) = 4-T(§) + O(n) we have:a = 4,b = 2.
Thus: T(n) = ©(n'°8r 2) = @(n!°824) = O(n?).

This version of Divide-and-Conquer algorithm does not reduce the
overall time complexity. ®

But the Master Theorem gives us the cue: to reduce time complexity,
we need to reduce the number of multiplications, even at the expense
of increasing the number of additions.

Multiplication: Karatsuba’s algorithm

Standard multiplication scheme:

Z=X'y = (105a + b) : (1050 + d) = 10"ac + 10z(ad + bc) + bd.
We have 4 multiplications and 3 additions.

Karatsuba’s multiplication scheme:
z=x-y=10"ac + 102((a®B)(c ¥ @) = ac =bd) + bd =
10"ac + 105((a +b)(c+d) —ac — bd) + bd.

This scheme has 3 multiplications and 6 additions/subtractions.

Multiplication: Karatsuba’s algorithm

The time complexity of Karatsuba’s algorithm:
T(n) =3 T(g) + 0(n).
Thus:a = 3,b = 2 =>T(n) = 0(n!°8» 2) = @(n'°823) = E(n1:584%),

10

Fast exponentiation

After the problem of multiplication, let us consider the exponentiation
problem.

Problem: given integers x and n, calculate y = x™".

The naive algorithm:
Yy =X
for 1=2 to n:
y=Y-x;

return vy.
Time complexity: O (n) multiplications.

11

Fast exponentiation

Time complexity of the naive algorithm: O (n) multiplications.

For numeric exponentiation, the complexity of one multiplication
operation grows with the size of y. But there are many practical
problems for which the complexity of a multiplication operation

depends on the size of x only: matrix multiplication, multiplication in
modular arithmetic, etc.

Can we calculate powers with less than O (n) multiplications?

12

Fast exponentiation

Let’s consider binary representation of n:
L-1

n=Zni-2i,

i=0
where L = [log, n], n; € {0,1}.

L—

n;=1
This expression contains only L = logz n operations of squaring.

Thus,

Fast exponentiation

L
xnz‘ ‘xz

n;=1
The ‘exponentiation by squaring’ algorithm:
y=1;
S=2Xx;

for 1=0 to L-1:
if nj=1 then y=vy-s;
S=S§-S;

return vy.

Time complexity: O (logn) multiplications.

14

Fast exponentiation

We can rewrite this algorithm in a recursive form:

FastExponentiationRecursive (x,n)
1f n=1 than return x;
else
s = FastExponentiationRecursive (x,|n/2]):
1f n 1s even than return s§s-S;
else return S-S-X.

Time complexity: O (logn) multiplications.

15

Matrix multiplication

Let us consider one more multiplication problem.
Problem: given two n X n matrices X and Y, calculate their dot-

productZ =X Y.

Direct calculation
n

Zij = Z Xik * Ykj

k=1
needs O0(n?) time (n® entries, each entry is calculated in O(n) time).

16

Matrix multiplication

Let us apply the ‘Divide-and-Conquer’ approach.
We represent both tables in block form:

x=(c p)¥=(s)

n .
where A4, ..., H are > X > matrices.

The direct formula leads to the form
< v_(AE+B G A-F+B-H
- \ C-E+D-G C-F+D-H

which also has 0(n®) time complexity, since T(n) = 8- T (S) + 0(n).

17

Matrix multiplication: Strassen algorithm

Strassen algorithm calculates block matrix multiplication using 7
(instead of 8) submatrix multiplications:

P, =A-(F—-H)
P,=(A+B)-H
P;=(C+D)-E
P,=D-(G—E)
P;=(A+D)-(E+H)
Ps=(B—D) (G +H)
P.=(A-C) - (E+F).

x-x - (

X

C.-E+D-G|C-F+D-H
P;+ P, —Py+ P | P+ P

A-E+B-G A-F+B-H)

Ps;+ Py ‘P, +P;—-P3—P;

)

18

Matrix multiplication: Strassen algorithm

The complexity of Strassen algorithm can be expressed as

T(n) = 7-T(g) + 0(n).

Thus, T(n) = 0(n!°827) = 0(n28074),

19

