
Algorithms and Data Structures

Module 2

Lecture 10
‘Divide-and-Conquer’ strategy.

Multiplication.

Multiplication problem

Given two integer numbers 𝑥 and 𝑦, calculate 𝑧 = 𝑥 ⋅ 𝑦.

Numbers can be represented in either decimal or
binary form.

2

Multiplication: standard algorithm

23958233

× 5830

———————————————

00000000 (= 23,958,233 × 0)

71874699 (= 23,958,233 × 30)

191665864 (= 23,958,233 × 800)

+ 119791165 (= 23,958,233 × 5,000)

———————————————

139676498390 (= 139,676,498,390)

Time complexity: 𝑂 𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑂 𝑛 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ⋅ 𝑛 = 𝑂 𝑛2 for multiplying n-digit
numbers.

3

Multiplication: Divide-and-Conquer

Lets apply ‘Divide-and-Conquer’ approach to the problem of
multiplication.

23958233 10𝑛/2𝑎 + 𝑏
00005830 10𝑛/2𝑐 + 𝑑

Thus, 𝑧 = 𝑥 ⋅ 𝑦 = 10
𝑛

2𝑎 + 𝑏 ⋅ 10
𝑛

2𝑐 + 𝑑 = 10𝑛𝑎𝑐 + 10
𝑛

2ሺ𝑎𝑑 +

4

Multiplication: Divide-and-Conquer

𝑧 = 𝑥 ⋅ 𝑦 = 10
𝑛

2𝑎 + 𝑏 ⋅ 10
𝑛

2𝑐 + 𝑑 = 10𝑛𝑎𝑐 + 10
𝑛

2 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑.
We have 4 multiplications and 3 additions.
We can use a recursive function to compute the product.

Function RecursiveProduct(x,y,n):

1. Base case: if 𝑛 < 2 then return 𝑥 ⋅ 𝑦.

2. Divide the factors into parts: 𝑎, 𝑏, 𝑐, 𝑑.

3. Recursively calculate:

p = RecursiveProduct(a,c,n/2)

q = RecursiveProduct(a,d,n/2)

r = RecursiveProduct(b,c,n/2)

s = RecursiveProduct(b,d,n/2)

4. Return 10𝑛𝑝 + 10
𝑛

2 𝑞 + 𝑟 + s.
5

Multiplication: Divide-and-Conquer

𝑧 = 𝑥 ⋅ 𝑦 = 10
𝑛

2𝑎 + 𝑏 ⋅ 10
𝑛

2𝑐 + 𝑑 = 10𝑛𝑎𝑐 + 10
𝑛

2 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑.

Let 𝑇ሺ𝑛) denote the time for multiplying two n-digit numbers.
We have 4 multiplications and 3 additions in each recursive call.

Each multiplication takes 𝑇
𝑛

2
time, each addition takes 𝑂ሺ𝑛) time.

Thus, 𝑇 𝑛 = 4 ⋅ 𝑇
𝑛

2
+ 𝑂ሺ𝑛).

6

Divide-and-Conquer: Master Theorem
(simplified version)
The Master Theorem (simplified version): if 𝑇ሺ𝑛) satisfies the following
recurrence

𝑇 𝑛 = ቐ
𝑐, 𝑓𝑜𝑟 𝑛 = 1

𝑎 ⋅ 𝑇
𝑛

𝑏
+ 𝑑 ⋅ 𝑛, 𝑓𝑜𝑟 𝑛 > 1

Then there are 3 cases:

1) If 𝑎 < 𝑏 , then 𝑇 𝑛 = Θሺ𝑛).

2) If 𝑎 = 𝑏, then 𝑇 𝑛 = Θሺ𝑛 log 𝑛).

3) If 𝑎 > 𝑏, then 𝑇 𝑛 = Θሺ𝑛log𝑏 𝑎).

7

Multiplication: Divide-and-Conquer

In 𝑇 𝑛 = 4 ⋅ 𝑇
𝑛

2
+ 𝑂ሺ𝑛) we have: 𝑎 = 4, 𝑏 = 2.

Thus: 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 = Θ 𝑛log2 4 = Θሺ𝑛2).

This version of Divide-and-Conquer algorithm does not reduce the
overall time complexity. 

But the Master Theorem gives us the cue: to reduce time complexity,
we need to reduce the number of multiplications, even at the expense
of increasing the number of additions.

8

Multiplication: Karatsuba’s algorithm

Standard multiplication scheme:

𝑧 = 𝑥 ⋅ 𝑦 = 10
𝑛

2𝑎 + 𝑏 ⋅ 10
𝑛

2𝑐 + 𝑑 = 10𝑛𝑎𝑐 + 10
𝑛

2 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑.

We have 4 multiplications and 3 additions.

Karatsuba’s multiplication scheme:

𝑧 = 𝑥 ⋅ 𝑦 = 10𝑛𝑎𝑐 + 10
𝑛

2 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑑 =

10𝑛𝑎𝑐 + 10
𝑛

2 𝑎 + 𝑏 𝑐 + 𝑑 − 𝑎𝑐 − 𝑏𝑑 + 𝑏𝑑.

This scheme has 3 multiplications and 6 additions/subtractions.

9

Multiplication: Karatsuba’s algorithm

The time complexity of Karatsuba’s algorithm:

𝑇 𝑛 = 3 ⋅ 𝑇
𝑛

2
+ 𝑂ሺ𝑛).

Thus: 𝑎 = 3, 𝑏 = 2 => 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 = Θ 𝑛log2 3 = Θሺ𝑛1.58496).

10

Fast exponentiation

After the problem of multiplication, let us consider the exponentiation
problem.
Problem: given integers 𝑥 and 𝑛, calculate 𝑦 = 𝑥𝑛.

The naïve algorithm:
𝑦 = 𝑥;
for i=2 to n:

𝑦 = 𝑦 ⋅ 𝑥;
return y.

Time complexity: 𝑂ሺ𝑛) multiplications.

11

Fast exponentiation

Time complexity of the naïve algorithm: 𝑂ሺ𝑛) multiplications.

For numeric exponentiation, the complexity of one multiplication
operation grows with the size of 𝑦. But there are many practical
problems for which the complexity of a multiplication operation
depends on the size of 𝑥 only: matrix multiplication, multiplication in
modular arithmetic, etc.

Can we calculate powers with less than 𝑂ሺ𝑛) multiplications?

12

Fast exponentiation

Let’s consider binary representation of n:

𝑛 = ෍

𝑖=0

𝐿−1

𝑛𝑖 ⋅ 2
𝑖 ,

where 𝐿 = log2 𝑛 , 𝑛𝑖 ∈ {0,1}.

Thus,

𝑥𝑛 = 𝑥σ𝑖=0
𝐿−1 𝑛𝑖⋅2

𝑖
=ෑ

𝑖=0

𝐿−1

𝑥𝑛𝑖⋅2
𝑖
=ෑ

𝑛𝑖=1

𝑥2
𝑖

This expression contains only 𝐿 = log2 𝑛 operations of squaring.

13

Fast exponentiation

𝑥𝑛 = ෑ

𝑛𝑖=1

𝑥2
𝑖

The ‘exponentiation by squaring’ algorithm:
𝑦 = 1;
𝑠 = 𝑥;
for i=0 to L-1:

if 𝑛𝑖 = 1 then 𝑦 = 𝑦 ⋅ 𝑠;
𝑠 = 𝑠 ⋅ 𝑠;

return y.

Time complexity: 𝑂ሺlog 𝑛) multiplications.

14

Fast exponentiation

We can rewrite this algorithm in a recursive form:

FastExponentiationRecursive(x,n)

if n=1 than return x;

else

s = FastExponentiationRecursive(x, 𝑛/2);

if n is even than return 𝑠 ⋅ 𝑠;
else return 𝑠 ⋅ 𝑠 ⋅ 𝑥.

Time complexity: 𝑂ሺlog 𝑛) multiplications.

15

Matrix multiplication

Let us consider one more multiplication problem.
Problem: given two 𝑛 × 𝑛 matrices 𝑋 and 𝑌, calculate their dot-
product 𝑍 = 𝑋 ⋅ 𝑌.

Direct calculation

𝑧𝑖𝑗 = ෍

𝑘=1

𝑛

𝑥𝑖𝑘 ⋅ 𝑦𝑘𝑗

needs 𝑂ሺ𝑛3) time (𝑛2 entries, each entry is calculated in 𝑂ሺ𝑛) time).

16

Matrix multiplication

Let us apply the ‘Divide-and-Conquer’ approach.
We represent both tables in block form:

𝑋 =
𝐴 𝐵
𝐶 𝐷

, 𝑌 =
𝐸 𝐹
𝐺 𝐻

where 𝐴,… ,𝐻 are
𝑛

2
×

𝑛

2
matrices.

The direct formula leads to the form

which also has 𝑂ሺ𝑛3) time complexity, since 𝑇 𝑛 = 8 ⋅ 𝑇
𝑛

2
+ 𝑂 𝑛 .

17

Matrix multiplication: Strassen algorithm

Strassen algorithm calculates block matrix multiplication using 7
(instead of 8) submatrix multiplications:

18

Matrix multiplication: Strassen algorithm

The complexity of Strassen algorithm can be expressed as

𝑇 𝑛 = 7 ⋅ 𝑇
𝑛

2
+ 𝑂 𝑛 .

Thus, 𝑇 𝑛 = 𝑂 𝑛log2 7 = 𝑂 𝑛2.8074 .

19

