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Fibonacci numbers

Fibonacci numbers sequence:

𝐹0 = 0, 𝐹1 = 1.

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Problem: given integer n, calculate 𝐹𝑛.
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Fibonacci numbers: recursive algorithm

Naïve recursive algorithm:

FR(n):

if n=0 then return 0;

if n=1 then return 1;

else return FR(n-1)+FR(n-2).
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Fibonacci numbers: recursive algorithm

Let us evaluate the time complexity of the recursive 
function.

Let 𝑇(𝑛) be the time complexity function.

The following conditions hold:

𝑇 0 = 𝑇 1 = 𝑐𝑜𝑛𝑠𝑡.

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 𝑛 − 2 + 𝑂(1).

Thus, 𝑇 𝑛 ~𝑂(𝐹𝑛).
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Fibonacci numbers: recursive algorithm

Time complexity of the recursive algorithm: 
𝑇 𝑛 ~𝑂(𝐹𝑛).
But recall that there is a closed form for the n-th

Fibonacci number: 𝐹𝑛 =
𝜑𝑛−𝜓𝑛

5
, where 𝜑 =

1+ 5

2
, 𝜓 =

1− 5

2
. This implies that 𝐹𝑛 = 𝑂(𝜑𝑛) and thus, the 

recursive algorithm has exponential time complexity…
Is there a faster algorithm?
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Fibonacci numbers: recursive algorithm

Let’s analyze the run of the recursive algorithm for 𝐹7.
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Fibonacci numbers: recursive algorithm

We see that many values have been calculated many 
times...
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Fibonacci numbers: memoization

Since the recursive algorithm spends too much time for 
recalculating values several times, the idea is to store 
calculated values and return stored value instead of 
recalculating it. 

This technique is known as memoization (or caching).
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Fibonacci numbers: memoization

Memoization-based version of the recursive algorithm:

Fibonacci_Memo(n):

Create M[2..n] and fill it with NULL values.

Return FM(М,n).

Function FM(М,n):

if n=0 then return 0;

if n=1 then return 1;

else 

if M[n] == NULL then M[n] = FM(n-1)+FM(n-2).

return M[n].

Time complexity: 𝑂 𝑛 . So, we get an exponential speed-up!!! 
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Fibonacci numbers

Recursion makes overhead memory and time expenses…

Do we really need recursion?
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Fibonacci numbers: dynamic programming

We can see that 𝐹𝑛 can be calculated only when 𝐹2, … , 𝐹𝑛−1 are 
calculated. What if we fill the memoization table directly, in this order?

Fibonacci_DP(n):

// Creating table

Create M[0..n]

// Initialization

M[0] = 0;

M[1] = 1;

// Filling the table

for i=2 to n: M[i] = M[i-1]+M[i-2];

// Return the resulting value

return M[n].
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Fibonacci numbers: dynamic programming

This way, we get a non-recursive algorithm with 𝑂(𝑛) time complexity and 𝑂(𝑛) space complexity.

Let’s compare these two algorithms:
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Fibonacci_Memo(n):

Create M[2..n]

Fill it with NULL values.

Return FM(М,n).

Function FM(М,n):

if n=0 then return 0;

if n=1 then return 1;

else 

if M[n] == NULL then 

M[n] = FM(M,n-1)+FM(M,n-2).

return M[n].

Fibonacci_DP(n):

// Creating table

Create M[0..n]

// Initialization

M[0] = 0;

M[1] = 1;

// Filling the table

for i=2 to n: M[i] = M[i-1]+M[i-2];

// Return the resulting value

return M[n].



Fibonacci numbers: dynamic programming

We can even decrease the space complexity to 𝑂(1):

Fibonacci_DP1(n):

A = 0;

B = 1;

for i=2 to n:

C = A + B;

A = B;

B = C;

return C.
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Fibonacci numbers: dynamic programming

A general scheme of a simple version of a dynamic programming algorithm.

1. Decompose the problem into a number of smaller subproblems.

2. Create a table for keeping solutions of all subproblems.

3. For the smallest subproblems calculate the solutions directly or using a 
special algorithm.

4. Fill the table in the bottom-up manner, from the small subproblems to 
the initial problem.

5. Return one of the entries of the table as the result.
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Fibonacci numbers: dynamic programming

Do you need a dynamic algorithm for your problem?

1. Construct a recursive algorithm for the problem.

2. Evaluate the complexity of the recursive algorithm.

3. If the recursive algorithm is fast enough, that is OK ☺

4. If the recursive algorithm has exponential time complexity, analyze 
its run.

5. If the recursive algorithm recalculates solutions to the same 
subproblems for many times, apply memorization or transform it 
into a DP algorithm!
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Fibonacci numbers: dynamic programming

A meta-algorithm for transforming a recursive algorithm into a dynamic 
programming (DP) algorithm.

1. Create a table for storing solutions of subproblems.

The dimensionality of the table is equal to the number of parameters of the 
recursive function.

The size of the table in the i-th dimension is equal to the number of possible 
values of the i-th parameter.

Create a table M[0..n]
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Fibonacci numbers: dynamic programming

2.  Turn the base cases of the recursive algorithm into initial filling of 

the corresponding entries of the table.

M[0] = 0;

M[1] = 1;
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Fibonacci numbers: dynamic programming

3. Replace recursive calls with getting values from the table.

4. Replace returning solution of a subproblem with storing it to the 

table.

Put (3) and (4) within a loop.

for i=2 to n: M[i] = M[i-1]+M[i-2];
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Fibonacci numbers: dynamic programming

5.   Return the value of a proper entry of the table.

In many cases the proper entry is the entry with the biggest indices.

But there are different cases.

return M[n].
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Fibonacci numbers: dynamic programming

6. Analyze the space complexity. In many cases we do not need all 

entries till the finish, so we can reduce the amount of memory 

needed for calculations.

But there are cases for which we need the whole table to build the 

resulting solution. 

A = 0;

B = 1;

…
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