Algorithms and Data Structures
Module 3. Dynamic programming

Lecture 12
Edit distance.

The Longest Common Subsequence.

Edit distance

The notion of ‘distance’ in math is the generalization of a
‘physical distance’ (= Euclidian distance). In general,
‘distance’ (or ‘metric’) is the measure of difference

between two objects (the more is the distance, the more
different the two objects are).

Edit distance

Definition. Distance (metric) is a numerical function
d: X X X — R_ which satisfies ‘metric axioms’ for all

X,Y,Z € X:

1. d(x,y)=0 ©x=y;

2. d(x,y) = d(y,x);

3. d(x,y) <d(x,z) + d(z,vy); (triangle inequality)

Edit distance

Examples of distances are:
* Euclidian distance in R™: d(x,y) = X1, — yi)?

* Graph distance: d;(x,y) is the length (weight) of the
shortest path between vertices x and y.

* Hamming distance: if x and 7y are strings of equal length,
dy(x,y) is the number of positions in which x and y differ.

e Edit distance.

Edit distance

Definitions.

* An alphabet is a finite set of distinct elements, called
symbols or letters.

Examples: {0,1},1{0,1,2,3,4,5,6,7,8,9},{a, b, ...,z},{A,C,G, T}

* A word in alphabet A is a finite sequence (string)of symbols
of A. The symbols in a word may coincide. The order of
symbols in a word does matter.

Examples: ‘AACTAC’ is a word of length 6.

Edit distance

Let P,Q and R be sequences (words, strings) in the same
alphabet.

P='HONEY’

Q= ‘FOOD’

R ="MONEY’

Is ‘HONEY’ closer to ‘FOOD’ then to ‘MIONEY’?

Edit distance

Let P,Q and R be sequences (words, strings) in the same

alphabet. HONEY

P = ’(HONE\’(’ MONEY (1 difference)
Q= ‘FOOD

R =‘MONEY’ HONEY

(4 differences)

FO OD

Edit distance

Definition
Let P and Q be two sequences (words, strings).

The edit distance between P and Q is the minimum
number of operations required to transform P into Q (or
vice versa).

There are several versions of edit distance, differing in
the set of operations considered.

Edit distance

Definition

The Levenshtein distance is the minimum number of
insertions/deletions (indels) or substitutions required to
transform P into Q (or vice versa).

FOOD — MOOD — MOND — MONED — MONEY

http://jeffe.cs.illinois.edu/teaching/algorithms/

http://jeffe.cs.illinois.edu/teaching/algorithms/

Edit distance

Definition

The Levenshtein distance is the minimum number of
insertions/deletions (indels) or substitutions required to
transform P into Q (or vice versa).

HONEY HO NEY
FO OD COFFEE

10

Edit distance

Other possible operations:
* Transpositions: CFOFEE -> COFFEE
* Inversions: AACGATTTA -> AATTAGCTA

11

Edit distance

Let us design a DP algorithm for calculating Levenshtein
edit distance.

The 15t step: we need a recurrence for the optimal
solution (= the minimum number of operations).

To build a recurrence we need to formulate the principle
of optimality for the given problem.

12

Edit distance

Generic form of the principle of optimality: a part of an
optimal solution is an optimal solution of a subproblem.

Exam P le (http://ieffe.cs.illinois.edu/teaching/algorithms/) :

P = ‘ALGORITHM’
Q = ‘ALTRUISTIC’

13

http://jeffe.cs.illinois.edu/teaching/algorithms/

Edit distance

Let us consider an optimal alignment of these strings.
P =‘ALGORITHM’ AL GOR I T H M
Q = ‘ALTRUISTIC’ A L T RUI S TTIZC

We can formulate the principle of optimality: for all k, the
leftmost k columns of an optimal alignment represent an
optimal alignment for the corresponding prefixes of the

strings.

14

Edit distance

Let us consider an optimal alignment of these strings.
P = ‘ALGORITHM’ AL G OR I T HM
Q = ‘ALTRUISTIC’ A L T R UII S T I C

We can formulate the principle of optimality: for all k, the
leftmost k columns of an optimal alignment represent an
optimal alignment for the corresponding prefixes of the

strings.

15

Edit distance

The principle of optimality:

For all k, the leftmost k columns of an optimal
alignment represent an optimal alignment for the
corresponding prefixes of the strings.

Let 6(i,j) be the edit distance between P[1..i]| and
Q[1..j]. We need to calculate §(m,n), form = |P|,n =

Q1.

16

Edit distance

Let 6(i,j) be the edit distance between P[1..i]| and
Q[1..j].

The last column in the optimal alignment of P and Q can
represent one of the 3 situations:

1) Insertion: 6(i,j)=6(i,j — 1) + 1 AL GOR
ALTR § U

17

Edit distance

2) Deletion: §(i,j)=6(i —1,j) + 1

3) Substitution:

a) plil # qlj]: 6(i,j)=6(i—1,j — 1)
b)plil =qljl: 6(,j)=6(i—1,j—1

ALGO
ALTRU

IR

ALGO I

ALTR

Q
Q

18

Edit distance

Base cases: i = 0 orj = 0. =>one of the prefixes, or
both, are empty.

*{ = (: to transform an empty string to a string of length
j, we need j insertions => §(0,j) = j.

i =0:=>68(i,0) = i.

19

Edit distance

Recurrence:

6(1,) = A

\

where A(x,y) = {

min <

0,
1,

],
L,
(5(i,j—1))

GG —1,j—1) +Aplil.qUD,

if x =y
if x £y

€

ifi=0
if j =0
otherwise

20

Edit distance

Let us implement this recurrence in (pseudo)code.

* The recurrent function 6 (i, j) has 2 arguments => we
need a 2D table (matrix) to store the results for the

subproblems.
*D[0..m, 0..n]

21

Edit distance

* A possible order we fill in the table D depends on the
data dependencies in the recurrence.

* To calculate d[i, j], we need only values of d|i —
1,jl,d[i,j — 1] and d[i — 1,j — 1].

Ll ;LEI

.
——-
-

\%

Edit distance

// Initialization (the base cases)
for 1=0 to m: d[i1,0] = 1i;
for j=0 to n: d[0,3] = J;
// Filling the table
for 1=1 to m:
for j=1 to n:

ins = d[1,3J-1]+1

del = d[i-1,7]+1

1f pl[i]l=9[j] then sub = d[i-1,73-1]

else sub = d[i-1,3-1]+1

d[i,J] = min(ins,del, sub)

AL G ORI TH M
o123 45 6 7 89
1 012 34 5 6 78
21 0123 45 67
321 1234 456
4 3 2 2 2 2 3 4 56
5 4 3 3 3 3 3456
6 5 4 4 4 4 3 4 56
7 6 55 5 5 4 4 5 6
8 7 6 6 6 6 5 4 56
°© 8 77 7 7 6 5 56
109 8 8 8 8 7 6 6 6

N
W

Edit distance

Building an optimal alignment:

e start from the [m,n] entry (bottom-right
corner);

* move backwards to the [0,0] (top-left
corner);

 at the current entry [i,j]: compare d|i,j-
1]+1, d[i-1,j]+1, d[i-1,j-1](+1) and move to
the entry corresponding to the minimum
expression + make appropriate
operations in the alinment.

O 3 ek~ W N O
O 0 N U AW N RO M e
00BN o)}) B AN w (N =) = (Nl N
0] ~ (@) u BAN W Do = it Do Wl o
co ~J (@) wu BN W o N®] Do W Al O
oo ~ (@) wu BAN W Do W W BN w| o
~ (@) Ul AN w w w N N wl |
Y R S T . T S T S T ~ T ¥ 2 B @ NN | e
()TN 2 BN ¥ IR, N2 RN B &2 B &) I e) A o of e
o)) (o) (o)} (o) o) (o) (o) o) ~J co o) e

—
-

N
D

Edit distance

ALeoRT THW [Nl
AL TRUTISTTISTZC U2 1% 123 4567

T32112\34\456
ALGOR I THM 0,
A L T RUISTTIZC tl6 5 4744 4 455

57655554\456
ALGOR I THM T/18 7 6 6 6 6 5 4 56
ALT RUTISTTIC osssssrces

25

Edit distance

The space and time complexities are:
O(m-n).

Can we reduce the space
complexity?

AL G ORI TH M
o123 45 6 7 89
1 012 34 5 6 78
21 012 34 567
3 21 1234 456
4 3 2 2 2 23 4 56
5 4 3 3 3 3 3456
6 5 4 4 4 4 3 4 56
7 6 55 5 5 4 4 5 6
8 7 6 6 6 6 5 4 56
°© 8 77 7 7 6 5 56
109 8 8 8 8 7 6 6 6

N
(@)}

Edit distance

Q: Can we reduce the space
complexity?

A: Yes, we can— if we need the
distance only. We can keep 2 rows
instead of n rows. Thus, we reduce

the space complexity from O(m - n)
to O(m).

>

A

X

e koW

N ¢ N %)

[e

(N

O 0 3 v U b~ W

O e S "l e

G 3 O

L R A (O8] Do = = o Wl o

@ 3 O

) B SN w N} N} [\ w Al O

w3 O

U W N W W kUl

G 3 O

w o w A A o

v oW

N Oy

o)) ~| -

A e I S T - Y~ N O

“bar O NN @

(90 B

N o)) (O N o) o)) o)) N co | =

N
~N

Edit distance

Some illustrative online calculators:
https://phiresky.github.io/levenshtein-demo/

http://www.let.rug.nl/~kleiweg/lev/

28

https://phiresky.github.io/levenshtein-demo/
http://www.let.rug.nl/~kleiweg/lev/

Edit distance

Generalization of the edit distance: weights for
operations (indels, substitutions).

Special cases:

*w(indel) = +oo0; w(sub)=1 => we get Hamming
distance.

*w(indel) =0; w(sub) = +oo => we get the Longest
Common Subsequence (LCS) problem.

29

Longest Common Subsequence

Definitions

* Let P be a word (sequence). A word/sequence Q is a subsequence
of P iff Q contains some letters of P in the same order, with
possible gaps.

A formal definition. Let P = p1p, ...p, and Q = q1q5 ... ¢y, M <
n. Q is a subsequence of P iff there exists an increasing sequence
ofindices 1 < i; <i; < <y < nsuchthatq, = p;, forall
k=1,.. m.

Example: ‘LOT’ is a subsequence of ‘ALGORITHM'.

30

Longest Common Subsequence

Definitions

e Sisa common subsequence of Pand Q if S is a subsequence
of P and a subsequence of Q.

Example: ‘LOT’ is a common subsequence of ‘ALGORITHM’ and
‘SLOWEST'.

e Sis the longest common subsequence (LCS) of Pand Q if S is
a common subsequence of P and Q of the maximum length.

31

Longest Common Subsequence

ldea of a recurrence for the LCS problem.

Let P = p1py ..., and Q = q1q5 ... qp,.

The LCS of P and Q is the longest of the 3 subsequences:
I)LCS(P1P2 - Pn-1, 9192 - Gm-1) t P, it Pn = G
Z)LCS(p1p2 -+ Pn-1, 9192 - 9m)

3)LCS(p1p2 - Py 9192 - Gm—1)

32

Longest Common Subsequence

Base cases: if either of P and Q is empty, then LCS(P, Q)
IS an empty string.

The computational scheme is very similar to that of the
algorithm for edit distance.

33

Weighted edit distance

Generalization of the edit distance: weights for
operations (indels, substitutions).

In the general case, the weights for substitutions may
differ for different pairs of letters.

34

Weighted edit distance

Application

TTEwT

SeTaTT

= = =
(53

[T T e I e s T T el o Y e L I o - S B T e B B o T
T 1 T 1 T 1 T 1 | 1 .1 |

M M&h o= O M M == M= LN D ™= = = = =
L] L] [] LI]] [] L I] L I]

Lo e ot B e e e e B e B e o I e Bl e B I]
T 1 T 1 . 1 1 . 1 1 . 1 1

o B e T el e T T e T e e T o T T I e s Tl |
1 LI | LI | LI | 1 1 . 1 . 1

= = b e TSGR TR YR P e = e e e T e T
L I] 1 | I] | I] | I] | I]]]

[e T e T T Vi I L - Y T T T Tl T M T T |
1 LI | LI | 1 . 1 . 1 . 1 1 . 1 1

L= B S e Y I e = T T T I T = I T T |
1 1 | I] 1 | I] 1 | I]]

comMmumom@-oRTeTATR

[B T T o T o T B o T Sl o B o T B ™ T s T
] 1] "I | | | | | |]

— WD Y D e r— T Yy W r— R Y T o T W PFR
1 1 LI | . 1 . 1 . 1 1 . 1 1

WM S S S S e @ o

IR I TR T o I — T T B o T I R I e
T 1 1 | I] 1 | I] | I] | I]]

e e O or— o O e o o o o o o D
T 1 1 T 1 1 . 1 . 1 . 1 . 1

protein structures

comparison

Weighted edit distance

Application: error correction
* misprints (typos) of users

 errors of the optical character recognition (OCR)

software
~C o

36

Weighted edit distance

DP algorithm: modification Needleman-Wunsch
algorithm.

Why modification? The original Needleman-Wunsch
algorithm maximizes similarity instead of minimizing
distance.

37

Weighted edit distance

// Initialization (the base cases)
for 1=0 to m: d[1,0] = 1*w indel;
for j=0 to n: d[0,J] = J*w indel;
// Filling the table
for 1=1 to m:
for jJj=1 to n:

ins = d[i,j-1]+w indel

del = d[i-1,J]+w indel

sub = d[i-1,j-1]1+w sub[p[i],ql[]j]]

d[1,J] = min(ins,del, sub)

