Algorithms and Data Structures
Module 4. NP-hard problems

Lecture 13
Algorithms for NP-hard problems.
Travelling Salesman Problem.

Time complexity

Let’s recall time complexities of algorithms we studied in this course.

Algorithm Time complexity m

Binary search O(logn) 0(n)
Bubble/Insertion/Selection sort 0(n?) 0(n?)
Merge sort O(nlogn) 0(n?)
Graph connectivity components detection O(m) 0(n?)
Kruskal’s (with Union-Find Set data structure) O(mlogm) = 0(n?logn) 0(n3)
Prim’s (with binary heap as priority queue) O(m logn) = 0(n?logn) 0(n3)
Karatsuba’s integer multiplication 0(nlo823) 0(n?%)
Strassen’s matrix multiplication 0(n'o827) 0(n3)
Fast exponentiation O(logn) 0(n)

(to be continued on the next slide...)

2

Time complexity

Algorithm Time complexity m

(...continuation)

Dijkstra’s algorithm for general case O (nm) 0(n3)
Floyd-Warshall’s 0(n3) 0(n)
Needleman-Wunsch (Levenshtein’s edit distance) 0 (nm) 0(n?)
Longest common subsequence 0(nm) 0(n?)

We see that for all the above algorithms there is a constant ¢ such that
the algorithm’s time complexity is O (n°).

Such algorithms are called polynomial time algorithms.

Time complexity

For the problem of calculating Fibonacci numbers we discussed two
algorithms:

* A dynamic programming algorithm with polynomial time complexity
O(n).

* A recursive algorithm with time complexity O (¢™) for ¢ = 1+2\/§.

The recursive algorithm is not polynomial time, it is an exponential
time algorithm...

Time complexity

Let’s consider two algorithms for a problem with time complexities

O(n) and O(2™).
n O(n) 0(2")
50 1.00 sec 1 sec
51 1.02 sec 2 sec
52 1.04 sec 4 sec
60 1.20 sec 17 min
70 1.40 sec 12 days
30 1.60 sec 34 years
90 1.70 sec ~ 35 000 years

Time complexity

That is why polynomial time algorithms are called efficient, whereas
exponential time algorithms are considered inefficient.

For many problems no efficient algorithms are known... ®

Moreover, for most of these problems it was proved that if a
polynomial time algorithm would be designed for one of these

problems, this immediately imply polynomial time algorithms for all
such problems.

Such problems are called NP-hard.

Time complexity

There are thousands of NP-hard problems...

One of the most famous NP-hard problems is the Travelling Salesman
Problem (TSP).

TSP: definitions

Let G(V, E) be a connected graph, w: E — R_ be a weights function.

Definitions

* Cycle Z (path P) is called a Hamiltonian cycle (Hamiltonian path) on
G iff Z (P) contains each vertex of G exactly once.

* G(V,E)is called a Hamiltonian (semi-Hamiltonian) graph iff there is a
Hamiltonian cycle (path) on G.

* The weight of Z (or P) is defined as w(Z) =), .c,w(e) .

TSP: definitions

Nonhamiltonian graph

Hamiltonian graph

Semi-hamiltonian graph

TSP: definitions

* Decision problem: is the given graph G(V, E)
Hamiltonian?

* Search problem: build a Hamiltonian cycle on the
given graph G(V, E) (return ‘NULL if G(V, E) is not
Hamiltonian).

* Optimization problem (=TSP): build a
Hamiltonian cycle on the given graph ,
(return ‘NULL if G(V, E) is not Hamiltonian).

TSP: definitions

A graph and its optimal Hamiltonian cycle:

http://algorithmics.Isi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

11

TSP: solving

Theorem 1: TSP is NP-hard.

12

TSP: solving

Possible options for solving any NP-hard problem (e.g. TSP):

* Exactly but inefficiently:

v’exhaustive search (brute-force, backtracking)
v'smart search (branch-and-bound)

* Exactly, efficiently, but not universally:
v efficiently solvable special cases.

* Efficiently but inexactly:

v’ approximate algorithms,
v'heuristics

13

TSP: solving

Definition: TSP is called metric (MTSP) iff the weight function w: E —
R is metric.

MTSP is an important special case of TSP.

An important special case of MTSP is Euclidean TSP (ETSP): vertices are
points in R™ and w is Euclidean distance.

14

TSP: solving

Theorem 2: MTSP is also NP-hard.

Theorem 3: Even ETSP is NP-hard.

15

TSP: brute force

Brute-force (exhaustive search) approach:
* Exact

* Universal

* Easily adaptable

* Very time-consuming; prohibitive time complexity even for small (n~100)
instances.

Principal idea:

1) Generate all feasible solutions.

2) For each feasible solutions calculate its cost (weight).

3) Select the best (minimum/maximum weight) feasible solution.

16

TSP: brute force

For TSP, feasible solutions are Hamiltonian cycles (paths).
Possible representations of a Hamiltonian cycle (path):

* Vertex permutation: list the vertices in the order the cycle/path passes
them.

* Edge sequence: list the edges in the order the cycle/path passes them.

Representing a Hamiltonian cycle/path as a vertex permutation is a bit
easier, since we just need to check that all neighbors in the permutation are
neighbors (adjacent vertices) in the graph (plus, for cycle: the last vertex is
adjacent to the first one). For edge sequence representation checking
validity is more complicated.

17

TSP: brute force

So, we need to generate all n! possible vertex permutations.
In case of cycle we need to generate (n — 1)!

(F1E) AFEBCDGH

FEBCDGHA
(@ : D) EBCDGHAF
L 1 L I . (n-1)!
| For an undirected graph: only ;
H) JC/ AHGDCBEF
NG !
@ @/ ?-.I.GDCBEFA

18

TSP: brute force

Generating permutations [Lectures Notes on Algorithm Analysis and Computational
Complexity (Fourth Edition) - lan Parberry: http://ianparberry.com/books/free/license.html].

Problem: given positive integer n, generate all possible permutations of
1, ..., n.

ldea of the generation algorithm:
* CreatearrayA[1l..n].
 |nitialization: for each i: A[i] = 1.

* For each k successively swap A|k] with Ali]fori =1, ..., k.

19

TSP: brute force

) = bd]

Call: ProcessPermutations (A, k)

e 2] Do B4

iy

Function ProcessPermutations (A, k) ;

—

1123

if k = 1 then Process (A) 2[1[3

1(2]3

else 1[3[2

, 3[1]2

ProcessPermutations (A, k-1); 1132

for 1 = k-1 downto 1 do E

213|1

{ 3[2[1

swap Alk] and A[i]; [2]3]
ProcessPermutations (A, k-1); unprocessed at

swap Alk] and A[i]; i

} n=4

n=4

11234 14132
2(1(3(4 41132
112|134 114|132
11324 13142
(1|24 31|42
11324 113|142
PRSS 4| S 2 |
32|14 314|112
23|14 41312
32|14 34|1|2
[L[2]3] 1] 2
11243 123 4
21143 4121311
112143 2141311
11423 412131
4(1(121]3 4131211
11423 3141211
mEE| (72
4[211]3] 28] 1]
20413 3121411
4(2(1(3 213141

3 31241
1 23 4 1

[
b3
e
b

N
o

TSP: brute force

What the procedure Process () is for?

* Check whether the current permutation represents a feasible solution
(Hamiltonian cycle).

* If it does, yield the current feasible solution (Hamiltonian cycle),
calculate its weight and compare to the current champion.

21

TSP: brute force

Example:

* Generate 7! permutations, fix A as
the 15 vertex.

* Permutation ‘aBCDEFGH’ is feasible,
its weight is 11.

e Permutation aBCDEFHG’ is not
feasible because F and H are not
adjacent in the graph.

* Permutation ‘aFEBCHGD’ is not
feasible (doesn’t represent a
Hamiltonian cycle) because D is not
adjacent to A.

22

