
Algorithms and Data Structures
Module 4. NP-hard problems

Lecture 13
Algorithms for NP-hard problems.

Travelling Salesman Problem.

Time complexity

Let’s recall time complexities of algorithms we studied in this course.

2

Algorithm Time complexity Majorant

Binary search 𝑂 log𝑛 𝑂(𝑛)

Bubble/Insertion/Selection sort 𝑂(𝑛2) 𝑂(𝑛2)

Merge sort 𝑂 𝑛 log𝑛 𝑂(𝑛2)

Graph connectivity components detection 𝑂(𝑚) 𝑂(𝑛2)

Kruskal’s (with Union-Find Set data structure) 𝑂 𝑚 log𝑚 = 𝑂 𝑛2 log 𝑛 𝑂(𝑛3)

Prim’s (with binary heap as priority queue) 𝑂 𝑚 log𝑛 = 𝑂 𝑛2 log 𝑛 𝑂(𝑛3)

Karatsuba’s integer multiplication Θ 𝑛log2 3 𝑂(𝑛2)

Strassen’s matrix multiplication 𝑂 𝑛log2 7 𝑂(𝑛3)

Fast exponentiation 𝑂(log 𝑛) 𝑂(𝑛)

(to be continued on the next slide…)

Time complexity

We see that for all the above algorithms there is a constant c such that
the algorithm’s time complexity is 𝑂 𝑛𝑐 .

Such algorithms are called polynomial time algorithms.

3

Algorithm Time complexity Majorant

(…continuation)

Dijkstra’s algorithm for general case 𝑂 𝑛𝑚 𝑂(𝑛3)

Floyd-Warshall’s 𝑂(𝑛3) 𝑂(𝑛3)

Needleman-Wunsch (Levenshtein’s edit distance) 𝑂 𝑛𝑚 𝑂(𝑛2)

Longest common subsequence 𝑂 𝑛𝑚 𝑂(𝑛2)

Time complexity

For the problem of calculating Fibonacci numbers we discussed two
algorithms:

• A dynamic programming algorithm with polynomial time complexity
𝑂(𝑛).

• A recursive algorithm with time complexity 𝑂(𝜑𝑛) for 𝜑 =
1+ 5

2
.

The recursive algorithm is not polynomial time, it is an exponential
time algorithm…

4

Time complexity

Let’s consider two algorithms for a problem with time complexities
𝑂(𝑛) and 𝑂(2𝑛).

5

n O(n) O(2n)

50 1.00 sec 1 sec

51 1.02 sec 2 sec

52 1.04 sec 4 sec

60 1.20 sec 17 min

70 1.40 sec 12 days

80 1.60 sec 34 years

90 1.70 sec ~ 35 000 years

Time complexity

That is why polynomial time algorithms are called efficient, whereas
exponential time algorithms are considered inefficient.

For many problems no efficient algorithms are known… 

Moreover, for most of these problems it was proved that if a
polynomial time algorithm would be designed for one of these
problems, this immediately imply polynomial time algorithms for all
such problems.

Such problems are called NP-hard.

6

Time complexity

There are thousands of NP-hard problems…

One of the most famous NP-hard problems is the Travelling Salesman
Problem (TSP).

7

TSP: definitions

Let 𝐺(𝑉, 𝐸) be a connected graph, 𝑤:𝐸 ⟶ 𝑅+ be a weights function.

Definitions

• Cycle 𝑍 (path 𝑃) is called a Hamiltonian cycle (Hamiltonian path) on
𝐺 iff 𝑍 (𝑃) contains each vertex of 𝐺 exactly once.

• 𝐺(𝑉, 𝐸) is called a Hamiltonian (semi-Hamiltonian) graph iff there is a
Hamiltonian cycle (path) on 𝐺.

• The weight of 𝑍 (or 𝑃) is defined as 𝑤 𝑍 = σ𝑒∈𝑍𝑤(𝑒) .

8

TSP: definitions

9

a b

c d

a b

c d

a b

c d

Hamiltonian graph

Semi-hamiltonian graph

Nonhamiltonian graph

TSP: definitions

•Decision problem: is the given graph 𝐺(𝑉, 𝐸)
Hamiltonian?

•Search problem: build a Hamiltonian cycle on the
given graph 𝐺 𝑉, 𝐸 (return ‘NULL’ if 𝐺(𝑉, 𝐸) is not
Hamiltonian).

•Optimization problem (=TSP): build a shortest
Hamiltonian cycle on the given graph 𝐺 𝑉, 𝐸
(return ‘NULL’ if 𝐺(𝑉, 𝐸) is not Hamiltonian).

10

TSP: definitions

11

A graph and its optimal Hamiltonian cycle:

http://algorithmics.lsi.upc.edu/docs/Dasgupta-Papadimitriou-Vazirani.pdf

TSP: solving

Theorem 1: TSP is NP-hard.

12

TSP: solving

Possible options for solving any NP-hard problem (e.g. TSP):

• Exactly but inefficiently:
✓exhaustive search (brute-force, backtracking)

✓smart search (branch-and-bound)

• Exactly, efficiently, but not universally:
✓efficiently solvable special cases.

• Efficiently but inexactly:
✓approximate algorithms,

✓heuristics

13

TSP: solving

Definition: TSP is called metric (MTSP) iff the weight function 𝑤:𝐸 ⟶
𝑅+ is metric.

MTSP is an important special case of TSP.

An important special case of MTSP is Euclidean TSP (ETSP): vertices are
points in 𝑅𝑛 and 𝑤 is Euclidean distance.

14

TSP: solving

Theorem 2: MTSP is also NP-hard.

Theorem 3: Even ETSP is NP-hard.

15

TSP: brute force

Brute-force (exhaustive search) approach:
• Exact
• Universal
• Easily adaptable
• Very time-consuming; prohibitive time complexity even for small (𝑛~100)

instances.

Principal idea:
1) Generate all feasible solutions.
2) For each feasible solutions calculate its cost (weight).
3) Select the best (minimum/maximum weight) feasible solution.

16

TSP: brute force

For TSP, feasible solutions are Hamiltonian cycles (paths).

Possible representations of a Hamiltonian cycle (path):

• Vertex permutation: list the vertices in the order the cycle/path passes
them.

• Edge sequence: list the edges in the order the cycle/path passes them.

Representing a Hamiltonian cycle/path as a vertex permutation is a bit
easier, since we just need to check that all neighbors in the permutation are
neighbors (adjacent vertices) in the graph (plus, for cycle: the last vertex is
adjacent to the first one). For edge sequence representation checking
validity is more complicated.

17

TSP: brute force

So, we need to generate all 𝑛! possible vertex permutations.
In case of cycle we need to generate 𝑛 − 1 !

permutations. AFEBCDGH
FEBCDGHA
EBCDGHAF
…

For an undirected graph: only
𝑛−1 !

2
:

AHGDCBEF
HGDCBEFA
…

18

TSP: brute force

Generating permutations [Lectures Notes on Algorithm Analysis and Computational

Complexity (Fourth Edition) - Ian Parberry: http://ianparberry.com/books/free/license.html].

Problem: given positive integer 𝑛, generate all possible permutations of
1,… , 𝑛.

Idea of the generation algorithm:

• Create array A[1..n].

• Initialization: for each i: A[i] = i.

• For each k successively swap 𝐴[𝑘] with 𝐴[𝑖] for 𝑖 = 1,… , 𝑘.

19

TSP: brute force

Call: ProcessPermutations(A,k)

Function ProcessPermutations(A,k)

if k = 1 then Process(A)

else

ProcessPermutations(A, k-1);

for i = k-1 downto 1 do

{

swap A[k] and A[i];

ProcessPermutations(A, k-1);

swap A[k] and A[i];

}

20

TSP: brute force

What the procedure Process() is for?

• Check whether the current permutation represents a feasible solution
(Hamiltonian cycle).

• If it does, yield the current feasible solution (Hamiltonian cycle),
calculate its weight and compare to the current champion.

21

TSP: brute force

Example:
• Generate 7! permutations, fix A as

the 1st vertex.
• Permutation ‘aBCDEFGH’ is feasible,

its weight is 11.
• Permutation ‘aBCDEFHG’ is not

feasible because F and H are not
adjacent in the graph.

• Permutation ‘aFEBCHGD’ is not
feasible (doesn’t represent a
Hamiltonian cycle) because D is not
adjacent to A.

22

