
Инстанцирование, или инстансинг , или 
инстанцированный рендеринг

Компьютерная графика



2024 Компьютерная графика Демяненко Я.М.  ЮФУ 2



Инстанцирование, или инстанцированный рендеринг
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Другими словами, это способ выполнения одних и тех же команд рисования много раз подряд, 
причём каждая из них даёт несколько иной результат.

Это может быть очень эффективным методом рендеринга большого объема геометрии с очень 
небольшим количеством вызовов API

Инстансинг (Instancing) или Инстанцированный рендеринг (Instanced Rendering) — это техника 
оптимизации, которая позволяет отрисовать большое количество одинаковых (или почти одинаковых) 
3D-объектов (например, деревья, траву, пули, персонажей толпы) за один вызов отрисовки (draw call).

Каждый отдельный объект в такой группе называется инстансом (instance).



Что хотелось бы

Сцена, содержащую огромное количество моделей объектов, причем преимущественно 
эти модели содержат одинаковые вершинные данные, разнятся только матрицы 
трансформации, примененные к ним. 

Например, лес из 10 000 деревьев.
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Без инстансинга (Наивный подход)
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for (unsigned int ix = 0; ix < model_count; ++ix) {
// привязка VAO, текстур, установка юниформов, проч...

    DoSomePreparations();
glDrawArrays(GL_TRIANGLES, 0, vertex_count);

} 

1. Загружаете в видеопамять меш (геометрию) одного дерева.
2. В основном цикле рендеринга делаете 10 000 вызовов отрисовки (по одному на каждое дерево).
3. Перед каждым вызовом:

• Устанавливаете мировую матрицу для конкретного дерева (его позицию, поворот, масштаб).
• Устанавливаете его уникальные параметры (например, цвет листьев).
• Вызываете glDrawArrays или glDrawElements.



Проблемы

При рендере множества экземпляров одной и той же модели мы быстро достигнем бутылочного 
горлышка в плане производительности — им станет множество вызовов функций отрисовки примитивов.

По сравнению с временными затратами на непосредственный рендер, передача данных в GPU о том, что 
вы хотите что-то отрендерить, с помощью функций типа glDrawArrays или glDrawElemenets занимает 
весьма ощутимое время.

Это время уходит на подготовку, необходимую OpenGL перед непосредственным выводом данных 
вершин: передача в GPU данных о текущем буфере чтения данных, расположении и формате данных 
вершинных атрибутов и прочая, прочая.

И весь этот обмен осуществляется по относительно небыстрой шине, связующей CPU и GPU.

Складывается парадоксальная ситуация: рендер вершинных данных молниеносен, но вот передача 
команд на осуществление рендера довольно медленная.
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Цель
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Было бы здорово иметь возможность отправить необходимые данные в видеокарту однократно,
а затем всего одним вызовом попросить OpenGL осуществить рендер множества объектов, 
используя эти данные. 



Инстансинг
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Инстансинг — технология, позволяющая выводить множество объектов, используя один вызов 
функции отрисовки, что избавляет нас от лишнего обмена CPU -> GPU при рендере. 



Как работает инстансинг?
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• Инстансинг объединяет отрисовку всех инстансов в один вызов
• В видеопамять загружается всего одна копия меша (вершинные и индексные буферы) для базового объекта
• Создаётся отдельный Instance Buffer (массив данных в памяти GPU), который содержит все уникальные 

параметры для каждого инстанса. Обычно это:
• Мировая матрица (позиция, поворот, масштаб)
• Цвет или другой параметр для вариативности
• Текстура (если инстансы используют разные текстуры из атласа)

• Выполняется всего один вызов отрисовки, например, glDrawElementsInstanced. В нём указывается:
• Какую геометрию использовать (вершинный буфер модели)
• Сколько инстансов нужно отрисовать (10 000).
• Ссылку на буфер инстансов

• GPU берёт базовую геометрию и прогоняет её через вершинный шейдер для каждого инстанса.
В вершинном шейдере вы получаете доступ к буферу инстансов (обычно через атрибуты вершин или 
специальные буферы) и используете уникальные данные инстанса (его матрицу), чтобы преобразовать 
вершины.



Всё, что нужно сделать для начала использования инстансинга: 
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сменить вызовы glDrawArrays и glDrawElemenets на

glDrawArraysInstanced и glDrawElementsInstanced соответственно.

Версии, поддерживающие инстансинг, принимают один дополнительный параметр, помимо уже 
знакомых по обычным версиям функций.

Этот параметр — число экземпляров инстансинга, т.е. число отрисовываемых экземпляров 
модели.

Таким образом мы единожды передаём GPU все необходимые для рендера данные, а затем 
сообщаем ему как осуществить рендер желаемого числа экземпляров объекта всего за один 
вызов специальной функции.

И видеокарта отрисует все множество объектов без постоянного обращения к CPU.



Этого ли мы хотели?
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Выведя тысячи объектов одним и тем же образом, в одном и том же положении, мы в итоге 
все равно получим изображение единственного объекта – все экземпляры окажутся 
наложены друг на друга



Решение этой проблемы 
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Для решения этой проблемы в вершинных шейдерах доступна встроенная переменная GLSL 
gl_InstanceID.

При использовании для рендера функций, поддерживающих инстансинг, значение данной 
переменной будет увеличиваться на единицу для каждого выводимого экземпляра, начиная с нуля.

Таким образом, рендеря 43-ий экземпляр объекта, в вершинном шейдере мы получим gl_InstanceID 
равную 42.

Имея уникальный индекс, соответствующий экземпляру, мы могли бы, к примеру, использовать его 
для выборки из большого массива векторов положений, дабы осуществить рендер каждого 
экземпляра в определенном месте сцены.



Если хотим так
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Прямоугольники в 
нормализованных 
координатах 
устройства с 
помощью 
единственного 
вызова отрисовки. 

Смещение 
определяется с 
помощью выборки 
из юниформа, 
представляющего 
собой массив, 
содержащий сто 
векторов смещения.



Данные для одного прямоугольника
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float quadVertices[] = {
// координаты  // цвета

    -0.05f,  0.05f,  1.0f, 0.0f, 0.0f,
0.05f, -0.05f,  0.0f, 1.0f, 0.0f,
-0.05f, -0.05f,  0.0f, 0.0f, 1.0f,

-0.05f,  0.05f,  1.0f, 0.0f, 0.0f,
0.05f, -0.05f,  0.0f, 1.0f, 0.0f,   
0.05f,  0.05f,  0.0f, 1.0f, 1.0f

};

Каждый прямоугольник составлен из двух треугольников, что 
даёт нам шесть вершин.

Каждая вершина содержит двухкомпонентный вектор 
положения и вектор цвета. 

Размер треугольников подобран достаточно маленьким, чтобы 
корректно заполнять экран в больших количествах:



Фрагментный шейдер
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#version 330 core
out vec4 FragColor;

in vec3 fColor;

void main()  {
FragColor = vec4(fColor, 1.0);

} 

Цвет прямоугольника задает фрагментный шейдер, который просто перенаправляет полученный 
из вершинного шейдера интерполированный цвет вершины прямо на выходную переменную



Вершинный шейдер
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#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;

out vec3 fColor;

uniform vec2 offsets[100];

void main()
{

vec2 offset = offsets[gl_InstanceID];
gl_Position = vec4(aPos + offset, 0.0, 1.0);
fColor = aColor;

} 

Здесь мы объявили юниформ-массив offsets, 
содержащий сто векторов смещения.

В коде шейдера мы получаем значение 
смещения путем выборки из массива по 
значению переменной gl_InstanceID.



Заполнение массива смещений

2024 Компьютерная графика Демяненко Я.М.  ЮФУ 17

glm::vec2 translations[100];

int index = 0;
float offset = 0.1f;
for(int y = -10; y < 10; y += 2)   {

for(int x = -10; x < 10; x += 2) {
glm::vec2 translation;
translation.x = (float)x / 10.0f + offset;
translation.y = (float)y / 10.0f + offset;
translations[index++] = translation;

}
} 

Заполняется в приложении, до входа в основной цикл отрисовки



Передать данные в юниформ-массив шейдера

2024 Компьютерная графика Демяненко Я.М.  ЮФУ 18

GLint vertexColorLocation = glGetUniformLocation(shaderProgram, "offsets");
glUniform2fv (vertexColorLocation, 100, translations);

Для массивов юниформ-переменных считается, что каждый элемент массива относится к 
типу, указанному в имени команды (например, glUniform2f или glUniform2fv можно 
использовать для загрузки массива юниформ-переменных типа vec2).

Количество элементов массива юниформ-переменных, подлежащих модификации, задаётся 
параметром count

void glUniform2fv ( GLint location, GLsizei count, const GLfloat *value );



Инстанцированный рендер
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glDrawArraysInstanced или glDrawElementsInstanced для вызова инстанцированного рендера

glBindVertexArray(quadVAO);
glDrawArraysInstanced(GL_TRIANGLES, 0, 6, 100); 



Проблема
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Ограничение разрешённого объёма отправляемых шейдеру юниформ-данных



Инстанцированные массивы (instanced arrays)
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Для обычных вершинных атрибутов GLSL осуществляет выборку новых значений вершинных 
данных с каждым очередным выполнением кода вершинного шейдера.

Однако, задавая вершинный атрибут как инстанцированный массив, мы заставляем GLSL 
осуществлять выборку нового значения атрибута для каждого очередного экземпляра объекта, а 
не очередной вершины объекта.

В итоге можно использовать обычные вершинные атрибуты для данных, представленных 
повершинно, а инстанцированные массивы для данных, уникальных для экземпляра объекта.



Обновлённый код шейдера
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#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aOffset;

out vec3 fColor;

void main() {
gl_Position = vec4(aPos + aOffset, 0.0, 1.0);
fColor = aColor;

} 

Здесь мы более не используем переменную gl_InstanceID и можем напрямую 
обращаться к атрибуту aOffset, без необходимости выборки из массива.
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unsigned int instanceVBO;
glGenBuffers(1, &instanceVBO);
glBindBuffer(GL_ARRAY_BUFFER, instanceVBO);

glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec2) * 100, &translations[0], GL_STATIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0); 

Необходимо сохранить данные в объекте вершинного буфера и
настроить указатель вершинного атрибута. 



Настроить указатель вершинного атрибута и активировать атрибут
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glEnableVertexAttribArray(2);

glBindBuffer(GL_ARRAY_BUFFER, instanceVBO);

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)0);

glBindBuffer(GL_ARRAY_BUFFER, 0);

glVertexAttribDivisor(2, 1); 



Функция glVertexAttribDivisor
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Функция указывает OpenGL, когда следует осуществлять выборку нового элемента из вершинного атрибута.

glVertexAttribDivisor(2, 1); 

Первый параметр — индекс интересующего атрибута, а второй — разделитель атрибута (attribute divisor).

По умолчанию он установлен в 0, что соответствует обновлению атрибута для каждой новой обрабатываемой 
вершинным шейдером вершины.

Устанавливая этот параметр в 1, мы сообщаем OpenGL о том, что следует обновлять атрибут при рендере 
каждого последующего экземпляра.

Установив разделитель в значение 2, мы обеспечим обновление через каждые два экземпляра, и так далее.
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Попробуем постепенно уменьшать каждый прямоугольник, начиная с правого верхнего угла в 
направлении левого нижнего угла

void main() {
vec2 pos = aPos * (gl_InstanceID / 100.0);
gl_Position = vec4(pos + aOffset, 0.0, 1.0);
fColor = aColor;

} 

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aOffset;

out vec3 fColor;
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