
Инстанцирование, или инстансинг , или
инстанцированный рендеринг

Компьютерная графика

2024 Компьютерная графика Демяненко Я.М. ЮФУ 2

Инстанцирование, или инстанцированный рендеринг

2024 Компьютерная графика Демяненко Я.М. ЮФУ 3

Другими словами, это способ выполнения одних и тех же команд рисования много раз подряд,
причём каждая из них даёт несколько иной результат.

Это может быть очень эффективным методом рендеринга большого объема геометрии с очень
небольшим количеством вызовов API

Инстансинг (Instancing) или Инстанцированный рендеринг (Instanced Rendering) — это техника
оптимизации, которая позволяет отрисовать большое количество одинаковых (или почти одинаковых)
3D-объектов (например, деревья, траву, пули, персонажей толпы) за один вызов отрисовки (draw call).

Каждый отдельный объект в такой группе называется инстансом (instance).

Что хотелось бы

Сцена, содержащую огромное количество моделей объектов, причем преимущественно
эти модели содержат одинаковые вершинные данные, разнятся только матрицы
трансформации, примененные к ним.

Например, лес из 10 000 деревьев.

2024 Компьютерная графика Демяненко Я.М. ЮФУ 4

Без инстансинга (Наивный подход)

2024 Компьютерная графика Демяненко Я.М. ЮФУ 5

for (unsigned int ix = 0; ix < model_count; ++ix) {
// привязка VAO, текстур, установка юниформов, проч...

 DoSomePreparations();
glDrawArrays(GL_TRIANGLES, 0, vertex_count);

}

1. Загружаете в видеопамять меш (геометрию) одного дерева.
2. В основном цикле рендеринга делаете 10 000 вызовов отрисовки (по одному на каждое дерево).
3. Перед каждым вызовом:

• Устанавливаете мировую матрицу для конкретного дерева (его позицию, поворот, масштаб).
• Устанавливаете его уникальные параметры (например, цвет листьев).
• Вызываете glDrawArrays или glDrawElements.

Проблемы

При рендере множества экземпляров одной и той же модели мы быстро достигнем бутылочного
горлышка в плане производительности — им станет множество вызовов функций отрисовки примитивов.

По сравнению с временными затратами на непосредственный рендер, передача данных в GPU о том, что
вы хотите что-то отрендерить, с помощью функций типа glDrawArrays или glDrawElemenets занимает
весьма ощутимое время.

Это время уходит на подготовку, необходимую OpenGL перед непосредственным выводом данных
вершин: передача в GPU данных о текущем буфере чтения данных, расположении и формате данных
вершинных атрибутов и прочая, прочая.

И весь этот обмен осуществляется по относительно небыстрой шине, связующей CPU и GPU.

Складывается парадоксальная ситуация: рендер вершинных данных молниеносен, но вот передача
команд на осуществление рендера довольно медленная.

2024 Компьютерная графика Демяненко Я.М. ЮФУ 6

Цель

2024 Компьютерная графика Демяненко Я.М. ЮФУ 7

Было бы здорово иметь возможность отправить необходимые данные в видеокарту однократно,
а затем всего одним вызовом попросить OpenGL осуществить рендер множества объектов,
используя эти данные.

Инстансинг

2024 Компьютерная графика Демяненко Я.М. ЮФУ 8

Инстансинг — технология, позволяющая выводить множество объектов, используя один вызов
функции отрисовки, что избавляет нас от лишнего обмена CPU -> GPU при рендере.

Как работает инстансинг?

2024 Компьютерная графика Демяненко Я.М. ЮФУ 9

• Инстансинг объединяет отрисовку всех инстансов в один вызов
• В видеопамять загружается всего одна копия меша (вершинные и индексные буферы) для базового объекта
• Создаётся отдельный Instance Buffer (массив данных в памяти GPU), который содержит все уникальные

параметры для каждого инстанса. Обычно это:
• Мировая матрица (позиция, поворот, масштаб)
• Цвет или другой параметр для вариативности
• Текстура (если инстансы используют разные текстуры из атласа)

• Выполняется всего один вызов отрисовки, например, glDrawElementsInstanced. В нём указывается:
• Какую геометрию использовать (вершинный буфер модели)
• Сколько инстансов нужно отрисовать (10 000).
• Ссылку на буфер инстансов

• GPU берёт базовую геометрию и прогоняет её через вершинный шейдер для каждого инстанса.
В вершинном шейдере вы получаете доступ к буферу инстансов (обычно через атрибуты вершин или
специальные буферы) и используете уникальные данные инстанса (его матрицу), чтобы преобразовать
вершины.

Всё, что нужно сделать для начала использования инстансинга:

2024 Компьютерная графика Демяненко Я.М. ЮФУ 10

сменить вызовы glDrawArrays и glDrawElemenets на

glDrawArraysInstanced и glDrawElementsInstanced соответственно.

Версии, поддерживающие инстансинг, принимают один дополнительный параметр, помимо уже
знакомых по обычным версиям функций.

Этот параметр — число экземпляров инстансинга, т.е. число отрисовываемых экземпляров
модели.

Таким образом мы единожды передаём GPU все необходимые для рендера данные, а затем
сообщаем ему как осуществить рендер желаемого числа экземпляров объекта всего за один
вызов специальной функции.

И видеокарта отрисует все множество объектов без постоянного обращения к CPU.

Этого ли мы хотели?

2024 Компьютерная графика Демяненко Я.М. ЮФУ 11

Выведя тысячи объектов одним и тем же образом, в одном и том же положении, мы в итоге
все равно получим изображение единственного объекта – все экземпляры окажутся
наложены друг на друга

Решение этой проблемы

2024 Компьютерная графика Демяненко Я.М. ЮФУ 12

Для решения этой проблемы в вершинных шейдерах доступна встроенная переменная GLSL
gl_InstanceID.

При использовании для рендера функций, поддерживающих инстансинг, значение данной
переменной будет увеличиваться на единицу для каждого выводимого экземпляра, начиная с нуля.

Таким образом, рендеря 43-ий экземпляр объекта, в вершинном шейдере мы получим gl_InstanceID
равную 42.

Имея уникальный индекс, соответствующий экземпляру, мы могли бы, к примеру, использовать его
для выборки из большого массива векторов положений, дабы осуществить рендер каждого
экземпляра в определенном месте сцены.

Если хотим так

2024 Компьютерная графика Демяненко Я.М. ЮФУ 13

Прямоугольники в
нормализованных
координатах
устройства с
помощью
единственного
вызова отрисовки.

Смещение
определяется с
помощью выборки
из юниформа,
представляющего
собой массив,
содержащий сто
векторов смещения.

Данные для одного прямоугольника

2024 Компьютерная графика Демяненко Я.М. ЮФУ 14

float quadVertices[] = {
// координаты // цвета

 -0.05f, 0.05f, 1.0f, 0.0f, 0.0f,
0.05f, -0.05f, 0.0f, 1.0f, 0.0f,
-0.05f, -0.05f, 0.0f, 0.0f, 1.0f,

-0.05f, 0.05f, 1.0f, 0.0f, 0.0f,
0.05f, -0.05f, 0.0f, 1.0f, 0.0f,
0.05f, 0.05f, 0.0f, 1.0f, 1.0f

};

Каждый прямоугольник составлен из двух треугольников, что
даёт нам шесть вершин.

Каждая вершина содержит двухкомпонентный вектор
положения и вектор цвета.

Размер треугольников подобран достаточно маленьким, чтобы
корректно заполнять экран в больших количествах:

Фрагментный шейдер

2024 Компьютерная графика Демяненко Я.М. ЮФУ 15

#version 330 core
out vec4 FragColor;

in vec3 fColor;

void main() {
FragColor = vec4(fColor, 1.0);

}

Цвет прямоугольника задает фрагментный шейдер, который просто перенаправляет полученный
из вершинного шейдера интерполированный цвет вершины прямо на выходную переменную

Вершинный шейдер

2024 Компьютерная графика Демяненко Я.М. ЮФУ 16

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;

out vec3 fColor;

uniform vec2 offsets[100];

void main()
{

vec2 offset = offsets[gl_InstanceID];
gl_Position = vec4(aPos + offset, 0.0, 1.0);
fColor = aColor;

}

Здесь мы объявили юниформ-массив offsets,
содержащий сто векторов смещения.

В коде шейдера мы получаем значение
смещения путем выборки из массива по
значению переменной gl_InstanceID.

Заполнение массива смещений

2024 Компьютерная графика Демяненко Я.М. ЮФУ 17

glm::vec2 translations[100];

int index = 0;
float offset = 0.1f;
for(int y = -10; y < 10; y += 2) {

for(int x = -10; x < 10; x += 2) {
glm::vec2 translation;
translation.x = (float)x / 10.0f + offset;
translation.y = (float)y / 10.0f + offset;
translations[index++] = translation;

}
}

Заполняется в приложении, до входа в основной цикл отрисовки

Передать данные в юниформ-массив шейдера

2024 Компьютерная графика Демяненко Я.М. ЮФУ 18

GLint vertexColorLocation = glGetUniformLocation(shaderProgram, "offsets");
glUniform2fv (vertexColorLocation, 100, translations);

Для массивов юниформ-переменных считается, что каждый элемент массива относится к
типу, указанному в имени команды (например, glUniform2f или glUniform2fv можно
использовать для загрузки массива юниформ-переменных типа vec2).

Количество элементов массива юниформ-переменных, подлежащих модификации, задаётся
параметром count

void glUniform2fv (GLint location, GLsizei count, const GLfloat *value);

Инстанцированный рендер

2024 Компьютерная графика Демяненко Я.М. ЮФУ 19

glDrawArraysInstanced или glDrawElementsInstanced для вызова инстанцированного рендера

glBindVertexArray(quadVAO);
glDrawArraysInstanced(GL_TRIANGLES, 0, 6, 100);

Проблема

2024 Компьютерная графика Демяненко Я.М. ЮФУ 20

Ограничение разрешённого объёма отправляемых шейдеру юниформ-данных

Инстанцированные массивы (instanced arrays)

2024 Компьютерная графика Демяненко Я.М. ЮФУ 21

Для обычных вершинных атрибутов GLSL осуществляет выборку новых значений вершинных
данных с каждым очередным выполнением кода вершинного шейдера.

Однако, задавая вершинный атрибут как инстанцированный массив, мы заставляем GLSL
осуществлять выборку нового значения атрибута для каждого очередного экземпляра объекта, а
не очередной вершины объекта.

В итоге можно использовать обычные вершинные атрибуты для данных, представленных
повершинно, а инстанцированные массивы для данных, уникальных для экземпляра объекта.

Обновлённый код шейдера

2024 Компьютерная графика Демяненко Я.М. ЮФУ 22

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aOffset;

out vec3 fColor;

void main() {
gl_Position = vec4(aPos + aOffset, 0.0, 1.0);
fColor = aColor;

}

Здесь мы более не используем переменную gl_InstanceID и можем напрямую
обращаться к атрибуту aOffset, без необходимости выборки из массива.

2024 Компьютерная графика Демяненко Я.М. ЮФУ 23

unsigned int instanceVBO;
glGenBuffers(1, &instanceVBO);
glBindBuffer(GL_ARRAY_BUFFER, instanceVBO);

glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec2) * 100, &translations[0], GL_STATIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0);

Необходимо сохранить данные в объекте вершинного буфера и
настроить указатель вершинного атрибута.

Настроить указатель вершинного атрибута и активировать атрибут

2024 Компьютерная графика Демяненко Я.М. ЮФУ 24

glEnableVertexAttribArray(2);

glBindBuffer(GL_ARRAY_BUFFER, instanceVBO);

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)0);

glBindBuffer(GL_ARRAY_BUFFER, 0);

glVertexAttribDivisor(2, 1);

Функция glVertexAttribDivisor

2024 Компьютерная графика Демяненко Я.М. ЮФУ 25

Функция указывает OpenGL, когда следует осуществлять выборку нового элемента из вершинного атрибута.

glVertexAttribDivisor(2, 1);

Первый параметр — индекс интересующего атрибута, а второй — разделитель атрибута (attribute divisor).

По умолчанию он установлен в 0, что соответствует обновлению атрибута для каждой новой обрабатываемой
вершинным шейдером вершины.

Устанавливая этот параметр в 1, мы сообщаем OpenGL о том, что следует обновлять атрибут при рендере
каждого последующего экземпляра.

Установив разделитель в значение 2, мы обеспечим обновление через каждые два экземпляра, и так далее.

2024 Компьютерная графика Демяненко Я.М. ЮФУ 26

2024 Компьютерная графика Демяненко Я.М. ЮФУ 27

Попробуем постепенно уменьшать каждый прямоугольник, начиная с правого верхнего угла в
направлении левого нижнего угла

void main() {
vec2 pos = aPos * (gl_InstanceID / 100.0);
gl_Position = vec4(pos + aOffset, 0.0, 1.0);
fColor = aColor;

}

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aOffset;

out vec3 fColor;

2024 Компьютерная графика Демяненко Я.М. ЮФУ 28

	Слайд 1, Инстанцирование, или инстансинг , или инстанцированный рендеринг
	Слайд 2
	Слайд 3, Инстанцирование, или инстанцированный рендеринг
	Слайд 4, Что хотелось бы
	Слайд 5, Без инстансинга (Наивный подход)
	Слайд 6, Проблемы
	Слайд 7, Цель
	Слайд 8, Инстансинг
	Слайд 9, Как работает инстансинг?
	Слайд 10, Всё, что нужно сделать для начала использования инстансинга:
	Слайд 11, Этого ли мы хотели?
	Слайд 12, Решение этой проблемы
	Слайд 13, Если хотим так
	Слайд 14, Данные для одного прямоугольника
	Слайд 15, Фрагментный шейдер
	Слайд 16, Вершинный шейдер
	Слайд 17, Заполнение массива смещений
	Слайд 18, Передать данные в юниформ-массив шейдера
	Слайд 19, Инстанцированный рендер
	Слайд 20, Проблема
	Слайд 21, Инстанцированные массивы (instanced arrays)
	Слайд 22, Обновлённый код шейдера
	Слайд 23
	Слайд 24, Настроить указатель вершинного атрибута и активировать атрибут
	Слайд 25, Функция glVertexAttribDivisor
	Слайд 26
	Слайд 27
	Слайд 28

