[eomeTpunyecKkme Wwenaepsbl

KomnbtloTepHas rpadpuka



Bnepsble N0OABUANCH

* [eomeTpunyecKkue wemnaepbl bbiam BBeAeHbl KomnaHue Microsoft B DirectX10, a
3aTem bbinm gobasneHbl B Aapo OpenGL Bepcun 3.2.



MecTo B KOHTENHEepe

BeplinHHbIE Wenaepbl — ANA BEPLUUH

TeccenAuMoHHbIE Wenaepbl — ANA naTyen

feomeTpuuecKkue weinaepbl — ANA NPUMUTUBOB

PacTepusauyua

* PparmeHTHble WeKaepbl — ANA NUKCeNen



OcobeHHOCTM reoMeTpUYecKoro wenaepa

 MoeT co3aBaTb HOBblE MPMMUTUBbLI Ha OCHOBE CYLLIECTBYHOLLLMX
* MoXeT U3MEHATb TOMNONAOIMNIO0 NPUMNUTUBOB
* PaboTaet c uenbiMm NPUMUTMBAMU (TOYKAMU, TMHUAMMK, TPEYTO/IbHUKAMM)

* Heoba3aTenbHbll 3Tan KOHBeNepa



YHUKaIbHOCTb FTEOMETPUYECKUX LLENIEPOB

YHUKaNbHbIN B3rAs4 Ha MOAENb, B KOTOPOW CBA3U MeXKAy BepLUMHAMM A0CTYMHbI
pa3paboTuMKy, NO3BONAA CTPOUTb HOBbIE MEeTO/bl, OCHOBbIBAACb Ha 3TUX 3HAHUAX.



[eoMmeTpUYeCcKumn Wenaep MoxKeT U3MEHATb NPUMNTUBSI

* M3meHATb TONONOrMI0 BXOAALLMX NPUMUTUBOB.
[eoMeTpUYECKNI Wernaep MOKeT NPUHUMATb NPUMUTUBLI ID6Oro Tna, Ho

BbIBOAUTb MOXET TOJ/IbKO CMUCKU TOYEK, CTPUN NIUHUA U cTpun Tpeyro/ibHUKoOB.

e [eomeTpunYeckmu wenaep NPUHUMaeT oANH NPUMUTUB N MOXKET

nmbo YAa/IUTb €ro nNoJIHOCTbHO,
nmbo OoTNnpPaBunTb Ha BbiIXo4 OANH NI HECKOJIbKO NPNMNTNBOB
(3TO 3Ha4NT, YTO OH MOXeET BbINYCKATb U MeéHbLUE U 6onbLie BEPLUUH, YEM I'IOI'IV‘-I&ET).

3Ta cnocobHOCTb M3BECTHA Kak growing geometry.



Tvnbl NPUMUTNBOB

BxoaHble NPUMUTUBDI:

® points — TO4YKM

e |ines — AnHum

e triangles — TpeyronbHUKM

e lines_adjacency — NANMHUKU C CMEKHBIMMN BEPLUMHAMMU

e triangles_adjacency — TpeyronbHMKK C CMEXKHbIMM BEPLUMHAMMU

BbiIXoAgHbIE NPUMUTUBDI:
e points

e line_strip

e triangle_strip



Line Strip
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CTpun TpeyronbHMKOB

1 3 5 7

VAV

Ba)kHOe CBOMCTBO KacaTe/lbHO NopsAKa BHYTPU TPeYyrosibHUKa — NopsaaokK
HOMEPOB BepLUNH 0O6paTEH Yy KaXKA0ro BTOPOro TPeyrosibHUKa.

0 2

3TO 3HAYUT, YTO NOPAAJOK Takos: [0,1,2], [1,3,2], [2,3,4], [3,5,4] v T.A.
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[ToMep reoMeTprYecKoro Wwenaepa

H#version 330 core

layout (points) in;

layout (line_strip, max_vertices = 2) out;
void main() {

gl_Position =gl in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();



layout(input_primitive) in;
// TVn NpuMnNTUBA, AaHHbIe KOTOPOro NOCTYNakoT CO CTaAuUN BEPLUMHHOIO Wehaepa

points

lines

triangles
lines_adjacency

triangles_adjacency ,
1 : V;

Vi

' Vo
Va
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[TpMMep reoMmeTpUYecKoro Lwenaepa

#version 330 core
layout (points) in;

layout (line_strip, max_vertices = 2) out;
void main() {

gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();



[TonyyeHmne Tmna BXOAHbIX MPUMUTUBOB U3 VIKE CIMHKOBAHHOW
MPOrpPaMmbl

int type;

glGetProgramiv ( program, GL_GEOMETRY_INPUT_TYPE, &type );



layout(output_ primitive, max_vertices = vert _count) out;

// BbIXO,EI,HOl;'I ™n NPUMNTNBA C MAaKCMMaJ/iIbHbIM KONNMYHECTBOM BEPLLUNH

* points
* line_strip

e triangle_strip



[TpMMep reoMmeTpUYecKoro Lwenaepa

#version 330 core
layout (points) in;
layout (line_strip, max_vertices = 2) out;

void main() {

gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();



I‘Ionyqume TUMa BbIXOAOHOTO NMPUMNTNBA N MaRCUMAJIbHOTO YNCJla
BbIBOAMMDbIX BEPLWWNH N3 YKE CZIMHKOBAHHOW NPpOorpaMmmbl

int type, num;

glGetProgramiv ( program, GL_GEOMETRY_OUTPUT_TYPE, &type );
glGetProgramiv ( program, GL_GEOMETRY_VERTICES_OUT, &num );



BcTpoeHHana nepemeHHas gl in

//MpnbnnsutenbHoe npeacrasieHme

in gl_Vertex {
vecd gl_Position;
float gl_PointSize;
float gl_ClipDistancel];

gl_in(];



[TpMMep reoMmeTpUYecKoro Lwenaepa

#version 330 core
layout (points) in;

layout (line_strip, max_vertices = 2) out;
void main() {

gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();



[eomeTpuyeckumn wenaep umeeTt 40CTyN K

e uniform-nepemeHHbIM
* BbIXOAHbIM NepPeMeHHbIM BEPLUMHHOrIO LWeraepa

* TEeKCcTypam



N3 BEPLUMHHOIO B reOMEeTPUYEeCcKni

|_|YCTb B BEPLWLNHHOM meﬁp,epa nmeeTca cnenyrllad BbIXOAHAA NepemeHHaA

out vec3 normal; // normal for vertex

Toraa B reomeTpuyecKkoMm Lenaepe oHa Ao/1KHa bbiTb onncaHa cneayrowmm obpasom

in vec3 normal []; // arrays of normals for every vertex



BbIXOAHbIE NepemeHHble

Pe3ynbTathl paboTbl reOMETPMYECKOTO Wenaepa 3anncbiBatoTca B cneayowme nepemeHHble:
* gl Position,

* gl PointSize,

gl ClipDistance [],

* gl PrimitivelD,

gl Layer,

gl Viewportindex.



Kaxabiv BbizoB EmitVertex() nobaBnseTt Tekyuiee 3HayeHne B nepemeHHom gl_Position
K TEKYLWEeMY 3K3emnaapy npuMmmnTumBa.

Koraa e mbl BbidbiBaem EndPrimitive(), Bce nopoxXaeHHble BepLIMHblI OKOHYATENbHO
CBA3bIBAOTCA B YKA3aHHbIN BbIXOAHOW TN NPUMUTUBA.



[TpMMep reoMmeTpUYecKoro Lwenaepa

#version 330 core
layout (points) in;

layout (line_strip, max_vertices = 2) out;

void main() {

gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex(); // okoHYyaHne popmmnpoBaHMA BEPLLUHDI

gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);
EmitVertex(); // okoHuyaHne popmmnpoBaHMA BEPLLUHDI

EndPrimitive();



MosTopss Bbi3oBbl EndPrimitive() nocnhe oaHoro nnm 6onee Bbizosos EmitVertex()
MOXKHO NPOAONXKATb CO31aBaTb HOBblE 3K3EMMN/IAPbI NPUMUTUBOB.

KOHKpeTHO B Npumepe reHepupyeTca no ABe BEPLIMHbI, CMELLEHHbIE Ha
Hebo/bLLIOE PACCTOAHME OT MNONOXKEHMA BXOAHOM BEPLLUUHbI, @ 3aTEM BbINONHAETCH
Bbi30B EndPrimitive(), popmupyrowmin n3 atux aByx creHepupoBaHHbIX BEPLUNH
oauH line strip, coaeprKawmm ase BEPLUMHDI.



I'Ionqunm TdKUe pe3y/ibTaTbl, BbINO/IHUB BCETO J/iNLLb OANH Bbl3OB OTPUCOBKMU.

gIDrawArrays(GL_POINTS, 0, 4);
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RoMnmnnauma n NMHKOBKA

geometryShader = glCreateShader(GL_GEOMETRY_SHADER);
glShaderSource(geometryShader, 1, &gShaderCode, NULL);
glCompileShader(geometryShader);

glAttachShader(program, geometryShader);
glLinkProgram(program);



Icno/b30BaHME TeOMETPUYECKOro Wenaepa
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BxoAdHble NaHHble

float points[] = {
-0.5f, 0.5f, // BepxHsaa-neBasn
0.5f, 0.5f, // BepxHaAs-npaBas
0.5f, -0.5f, // HuxKHAs-npaBas
-0.5f, -0.5f // Hu»KHAA-neBaA



BeplnHHbIV Wenaep

#version 330 core
layout (location = 0) in vec2 aPos;

void main() {
gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0);

}



[eomeTpnyeckmnm Wwenaep, KOTOPbIM NPOCTO bepeT AaHHbIe
BXOAHOTO MPUMWUTUBA M OTMPABAAET Ha BbIXod 6€3 M3MeHEeHNI

#version 330 core
layout (points) in;
layout (points, max_vertices = 1) out;

void main() {
gl _Position =gl _in[0].gl_Position;
EmitVertex();
EndPrimitive();

}



PparMeHTHbIN Wenaep

#Hversion 330 core
out vec4 FragColor;

void main() {
FragColor = vec4(0.0, 1.0, 0.0, 1.0);
}



B Koge nporpammeol

Cospgaem VAO n VBO gna sepLlUmMHHbBIX AaHHbIX U OCYLLEeCTBAAEM peHAaep BbI30OBOM
gIDrawArrays():

shader.use();
glBindVertexArray(VAO);
glDrawArrays(GL_POINTS, 0, 4);



CTpoMM AOMUKU

[MoHagobumnTcAa cMeHUTb TUN BbIXOAHOTO NPUMNTMBA Ha triangle_strip 1 HapucoBaTb
TPW TPEYroNbHUKA: ABa ANA CO34aHUA KBAAPaTHOM OCHOBbI M OAUH ANA KPbILWK

5
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Pe3ynbTUPYIOWNN TEOMETPUYECKMM LLIENAEP

#version 330 core
layout (points) in;
layout (triangle_strip, max_vertices = 5) out;

void build_house(vec4 position) {

}

gl _Position = position + vec4(-0.2,
EmitVertex();

gl_Position = position + vec4( 0.2, -

EmitVertex();

gl_Position = position + vec4(-0.2,
EmitVertex();

gl _Position = position + vec4( 0.2,
EmitVertex();

gl _Position = position + vec4( 0.0,
EmitVertex();

EndPrimitive();

void main() {

}

build_house(gl_in[0].gl_Position);

2025

-0.2, 0.0, 0.0); // 1:bottom-left

0.2,0.0,0.0); // 2:bottom-right
0.2,0.0,0.0); // 3:top-left
0.2,0.0,0.0); // 4:top-right

0.4,0.0,0.0); //5:top
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ObBHOB/IEHHbIE AaHHbIe BEPLMH (C LBETOM)

float points[] = {
-0.5f, 0.5f, 1.0f, 0.0f, 0.0f, // BepxHAA-neBas
0.5f, 0.5f, 0.0f, 1.0f, 0.0f, // BepxHsaa-npaBas
0.5f, -0.5f, 0.0f, 0.0f, 1.0f, // HMxKHAA-npaBas

-0.5f, -0.5f, 1.0f, 1.0f, 0.0f // HMKHAA-neBaA
I



BeplwnHHbIN Wenaep Aasa nepenadm atpmbyTta UBeTa B
rEOMETPUYECKNIN LIENAEDP C MCMONb30BaHNEM MHTEPHEMCHOIO DAOKA

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;

out VS_OUT {
vec3 color;
} vs_out;

void main() {
gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0);
vs_out.color = aColor;

}



NHTEepPENCHBbIN BNOK TOTO e Tuna (HO C APYTMM MMEHEM) B
reoMmeTpuYyecKkom wengepe

in VS_OUT {
vec3 color;

} gs_in[];



out vec3 fColor;

fColor = gs_in[0].color; // ucnonbsyetcs gs_in[0] NnOCKONbKY Ha BXoAe Y HaC eANHCTBEHHas BepLIMHA
gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0); // 1:Hu»KHAs-neBas
EmitVertex();

gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0); // 2:HuXHAA-npaBas
EmitVertex();

gl_Position = position + vec4(-0.2, 0.2, 0.0, 0.0); // 3:BepxHsa-neBasn
EmitVertex();

gl _Position = position + vec4( 0.2, 0.2, 0.0, 0.0); // 4:BepxHsAa-npaBas
EmitVertex();

gl_Position = position + vec4( 0.0, 0.4,0.0, 0.0); // 5:kpbiwa
EmitVertex();

EndPrimitive();
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[TPUCBINMM KPbILWM JOMUKOB CHETOM

fColor = gs_in[0].color;

gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0); // 1:HuxHAA-neBasn
EmitVertex();

gl _Position = position + vec4( 0.2, -0.2, 0.0, 0.0); // 2:HUXKHAs-npaBas
EmitVertex();

gl_Position = position + vec4(-0.2, 0.2, 0.0, 0.0); // 3:BepxHsa-neBasn
EmitVertex();

gl _Position = position + vec4( 0.2, 0.2, 0.0, 0.0); // 4:BepxHaa-neBas
EmitVertex();

gl _Position = position + vec4( 0.0, 0.4, 0.0, 0.0); //5:kpbiwa

fColor = vec3(1.0, 1.0, 1.0);

EmitVertex();

EndPrimitive();



2025
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B3pbiBaem 0ObEKTH

[lepemelteHmne Kaxaoro
TpeyrosbHMKa BAO/1b
HanpaBaeHUA HOPMaAN C
Te4YeHnem BpeMeHMN.

B pe3ynbraTte aT0T adpPeKT AaéT
nopobue B3pbiBa 06BHEKTA,
pa3aenas ero Ha oTaesibHble
TPEeYronbHUKKU, ABUKYLLMECA NO
HanNpaB/JEHUIO CBOEro BEKTOPA
HOpPManu.

Ncnonb3oBaHume
reomeTpUYecKoro wenaepa
no3sossaeT apPekTy paboTaTh Ha
nobom obbeKTe, BHe
3aBMCMMOCTM OT €ro C0KHOCTU
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BbluncneHme BeKTopa HOPMa/n Mo TPEM BePLLUMHAM BXOAHOIO
TPEeyrosibHMKa

vec3 GetNormal() {
vec3 a = vec3(gl_in[0].gl_Position) - vec3(gl_in[1].gl_Position);
vec3 b =vec3(gl_in[2].gl_Position) - vec3(gl_in[1].gl_Position);
return normalize(cross(a, b));

}



OYHKUMA MPUHMMAET BEKTOPA HOPMaIM U MONOKEHUA BEPLLUNHbI,
a BO3BpallaeT HOBOE MNOJIOXKEeHWe BepLUMHbI,
CMelleHHoe BAO0/1b HOPpMa/un

vecd explode(vec4 position, vec3 normal) {
float magnitude = 2.0;
vec3 direction = normal * ((sin(time) + 1.0) / 2.0) * magnitude;
return position + vec4(direction, 0.0);

}



main() reomeTpn4eckoro wemnaepa

void main() {
vec3 normal = GetNormal();

gl_Position = explode(gl _in[0].gl_Position, normal);
TexCoords = gs_in[0].texCoords;

EmitVertex();

gl _Position = explode(gl_in[1].gl_Position, normal);
TexCoords = gs_in[1].texCoords;

EmitVertex();

gl_Position = explode(gl_in[2].gl_Position, normal);
TexCoords = gs_in[2].texCoords;

EmitVertex();

EndPrimitive();



Buayanmsaumsa Hopmanen
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Peanun3zauma metoaa billboarding

Billboarding - npamoyronbHUK, KOTOpPbIX BCEraa HanpaBaAeH B Kamepy.
Mpwn aBuKeHnn kamepol no cueHe billboard BpawaeTca 3a Hen Tak, YTo

BeKkTOp M3 billboard Ao Kamepbl Bcerga nepneHanKynapeH
nosepxHocTu billboard.
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MNo3nuna 6unbopaa

BekTop (0,1,0):

2025

BeKTOp 13 nosuuum billboard B kamepy

UM Kamepbl

YKeNTbll BEKTOP — pe3y/ibTaT BEKTOPHOIo Npous3BeaeHuUs

KomnbloTepHana rpadurka emaneHko A.M. OPY
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[TpouenypHaa PacTUTENbHOCTb
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[Tpobaembl NPON3BOANTENBHOCTU

e OTCyTCTBME KILWMPOBAHUA: KaXKablh NPUMNTUB 0b6pabaTbiBaeTca HE3aBUCUMO
* [lepepacxopn BepLUNH: ecK max_vertices yCTaHOBNAEH C/IMLIKOM BbICOKUM

* Pa3BeTB/1ieHUE BbINOJNHEHUA: CIOXKHbIE YCN10BUA B u.|el‘/’1,£|,epe CHUXaKoT NPon3BoanTe/ibHOCTb



PekomeHaaunMm no oNnTMmMm3aumnm

*  MMWHMMU3NPOBATbL KOJIMYECTBO FrEHEPUPYEMbIX BEPLLUH
* W36eraTb C/IOKHbIX BETBIEHUMN
*  Mcnonb3oBaTb AN HeDONbLIKX NPeobpasoBaHUM

* PaccmoTpeTb anbTepHaTMBbI (TeccensaumMoHHble Wwenaepbl, compute shaders)



Karyesble MOMEHTH!

 [eomeTpuyeckue Wwenaepbl — MOLLHbIN, HO creunPUYeCcKUm MHCTPYMEHT
* WpeanbHbl ANA NPOCTOMN reHepaumm n npeobpa3oBaHUSA reomeTpum
* TpebytoT BHUMAHUA K NPOU3BOAUTE/IBHOCTU

* [locTeneHHO 3ameHAtOTCA bonee coBpeMEHHbIMU TEXHONOTMAMU



CoBpemMeHHble TeHAEHLUWN U aNbTepHaTUBbI

Mesh Shaders (DirectX 12 Ultimate, Vulkan)

* Bbonee rmMbkas moaenb, 3aMeHsALWAA reomeTpuyeckmue/TeccensiuMoHHble Wenaepsl
e PaboTatloT c rpynnamu npuMmnMTUBOB

e Jlyywas npon3BoAUTENbHOCTb U KOHTPO/Ib

Compute-based geometry processing

* Wcnonb3oBaHue compute shaders ana cnoxKHbix reomeTpuyeckux npeobpasoBaHmi
* bOoNbWWN KOHTPOb HaA, NAaMATbIO U BbINOJIHEHNEM

* Tpebyet 60nblUE KOAA ANA UHTErpaLMmM B KOHBeep
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