
Геометрические шейдеры

Компьютерная графика



Впервые появились

• Геометрические шейдеры были введены компанией Microsoft в DirectX10, а 
затем были добавлены в ядро OpenGL версии 3.2.

Компьютерная графика Демяненко Я.М. ЮФУ 22025



Место в контейнере 

• Вершинные шейдеры — для вершин

• Тесселяционные шейдеры — для патчей

• Геометрические шейдеры — для примитивов

• Растеризация

• Фрагментные шейдеры — для пикселей

Компьютерная графика Демяненко Я.М. ЮФУ 32025



Особенности геометрического шейдера

2025 Компьютерная графика Демяненко Я.М. ЮФУ 4

• Может создавать новые примитивы на основе существующих

• Может изменять топологию примитивов

• Работает с целыми примитивами (точками, линиями, треугольниками)

• Необязательный этап конвейера



Уникальность геометрических шейдеров

Уникальный взгляд на модель, в которой связи между вершинами доступны 
разработчику, позволяя строить новые методы, основываясь на этих знаниях.

Компьютерная графика Демяненко Я.М. ЮФУ 52025



Геометрический шейдер может изменять примитивы

• Изменять топологию входящих примитивов.
Геометрический шейдер может принимать примитивы любого типа, но 
выводить может только списки точек, стрип линий и стрип треугольников.

• Геометрический шейдер принимает один примитив и может
либо удалить его полностью,
либо отправить на выход один или несколько примитивов
(это значит, что он может выпускать и меньше и больше вершин, чем получает).
Эта способность известна как growing geometry. 

Компьютерная графика Демяненко Я.М. ЮФУ 62025



Типы примитивов

2025 Компьютерная графика Демяненко Я.М. ЮФУ 7

Входные примитивы:
• points — точки
• lines — линии
• triangles — треугольники
• lines_adjacency — линии с смежными вершинами
• triangles_adjacency — треугольники с смежными вершинами

Выходные примитивы:
• points
• line_strip
• triangle_strip



Line Strip

Компьютерная графика Демяненко Я.М. ЮФУ 82025



Стрип треугольников

Важное свойство касательно порядка внутри треугольника — порядок 
номеров вершин обратен у каждого второго треугольника.

Это значит, что порядок таков: [0,1,2], [1,3,2], [2,3,4], [3,5,4] и т.д.

Компьютерная графика Демяненко Я.М. ЮФУ 92025



Пример геометрического шейдера
#version 330 core

layout (points) in;

layout (line_strip, max_vertices = 2) out;

void main() {    

    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 

    EmitVertex();

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);

    EmitVertex();

    EndPrimitive();

} 
Компьютерная графика Демяненко Я.М. ЮФУ 102025



layout(input_primitive​) in;

Компьютерная графика Демяненко Я.М. ЮФУ 11

points
lines
triangles
lines_adjacency
triangles_adjacency 

2025

// тип примитива, данные которого поступают со стадии вершинного шейдера



Пример геометрического шейдера

#version 330 core

layout (points) in;

layout (line_strip, max_vertices = 2) out;

void main() {    

    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 

    EmitVertex();

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);

    EmitVertex();

    

    EndPrimitive();

} 

Компьютерная графика Демяненко Я.М. ЮФУ 122025



Получение типа входных примитивов из уже слинкованной 
программы

2025 Компьютерная графика Демяненко Я.М. ЮФУ 13

int type;
 
glGetProgramiv ( program, GL_GEOMETRY_INPUT_TYPE, &type );



layout(output_primitive ​, max_vertices = vert_count ​) out;

• points

• line_strip

• triangle_strip

Компьютерная графика Демяненко Я.М. ЮФУ 142025

// Выходной тип примитива с максимальным количеством вершин



Пример геометрического шейдера

#version 330 core

layout (points) in;

layout (line_strip, max_vertices = 2) out;

void main() {    

    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 

    EmitVertex();

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);

    EmitVertex();

    

    EndPrimitive();

} 

Компьютерная графика Демяненко Я.М. ЮФУ 152025



Получение типа выходного примитива и максимального числа 
выводимых вершин из уже слинкованной программы

2025 Компьютерная графика Демяненко Я.М. ЮФУ 16

int type, num;

glGetProgramiv ( program, GL_GEOMETRY_OUTPUT_TYPE,  &type );
glGetProgramiv ( program, GL_GEOMETRY_VERTICES_OUT, &num );



Встроенная переменная gl_in

Компьютерная графика Демяненко Я.М. ЮФУ 17

//Приблизительное представление

in gl_Vertex {
    vec4  gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
} gl_in[]; 

2025



Пример геометрического шейдера

#version 330 core

layout (points) in;

layout (line_strip, max_vertices = 2) out;

void main() {    

    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 

    EmitVertex();

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);

    EmitVertex();

    

    EndPrimitive();

} 

Компьютерная графика Демяненко Я.М. ЮФУ 182025



Геометрический шейдер имеет доступ к

2025 Компьютерная графика Демяненко Я.М. ЮФУ 19

• uniform-переменным 
• выходным переменным вершинного шейдера
• текстурам



2025 Компьютерная графика Демяненко Я.М. ЮФУ 20

Пусть в вершинном шейдера имеется следующая выходная переменная

out vec3 normal;  // normal for vertex

Тогда в геометрическом шейдере она должна быть описана следующим образом

in vec3 normal [];  // arrays of normals for every vertex

Из вершинного в геометрический



Выходные переменные

2025 Компьютерная графика Демяненко Я.М. ЮФУ 21

Результаты работы геометрического шейдера записываются в следующие переменные:
• gl_Position, 
• gl_PointSize, 
• gl_ClipDistance [], 
• gl_PrimitiveID, 
• gl_Layer,
• gl_ViewportIndex.



Компьютерная графика Демяненко Я.М. ЮФУ 22

Каждый вызов EmitVertex() добавляет текущее значение в переменной gl_Position
к текущему экземпляру примитива.

Когда же мы вызываем EndPrimitive(), все порожденные вершины окончательно 
связываются в указанный выходной тип примитива. 

2025



Пример геометрического шейдера

#version 330 core

layout (points) in;

layout (line_strip, max_vertices = 2) out;

void main() {    

    gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0); 

    EmitVertex(); // окончание формирования вершины

    gl_Position = gl_in[0].gl_Position + vec4( 0.1, 0.0, 0.0, 0.0);

    EmitVertex(); // окончание формирования вершины

    

    EndPrimitive();

} 

Компьютерная графика Демяненко Я.М. ЮФУ 232025



Компьютерная графика Демяненко Я.М. ЮФУ 24

Повторяя вызовы EndPrimitive() после одного или более вызовов EmitVertex() 
можно продолжать создавать новые экземпляры примитивов.

Конкретно в примере генерируется по две вершины, смещенные на 
небольшое расстояние от положения входной вершины, а затем выполняется 
вызов EndPrimitive(), формирующий из этих двух сгенерированных вершин 
один line strip, содержащий две вершины.

2025



Компьютерная графика Демяненко Я.М. ЮФУ 25

Получили такие результаты, выполнив всего лишь один вызов отрисовки:

glDrawArrays(GL_POINTS, 0, 4);

2025



Компиляция и линковка

Компьютерная графика Демяненко Я.М. ЮФУ 26

geometryShader = glCreateShader(GL_GEOMETRY_SHADER);
glShaderSource(geometryShader, 1, &gShaderCode, NULL);
glCompileShader(geometryShader);  
...
glAttachShader(program, geometryShader);
glLinkProgram(program); 

2025



Использование геометрического шейдера

Компьютерная графика Демяненко Я.М. ЮФУ 272025



Входные данные

Компьютерная графика Демяненко Я.М. ЮФУ 28

float points[] = {
 -0.5f,  0.5f, // верхняя-левая

0.5f,  0.5f, // верхняя-правая
0.5f, -0.5f, // нижняя-правая
-0.5f, -0.5f  // нижняя-левая

};

2025



Вершинный шейдер

Компьютерная графика Демяненко Я.М. ЮФУ 29

#version 330 core
layout (location = 0) in vec2 aPos;

void main() {
    gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0); 
}

2025



Геометрический шейдер, который просто берет данные 
входного примитива и отправляет на выход без изменений

Компьютерная графика Демяненко Я.М. ЮФУ 30

#version 330 core
layout (points) in;
layout (points, max_vertices = 1) out;

void main() {    
    gl_Position = gl_in[0].gl_Position; 
    EmitVertex();
    EndPrimitive();
} 

2025



Фрагментный шейдер

Компьютерная графика Демяненко Я.М. ЮФУ 31

#version 330 core
out vec4 FragColor;

void main() {
    FragColor = vec4(0.0, 1.0, 0.0, 1.0);   
} 

2025



В коде программы

Компьютерная графика Демяненко Я.М. ЮФУ 32

Создаем VAO и VBO для вершинных данных и осуществляем рендер вызовом 
glDrawArrays():

shader.use();
glBindVertexArray(VAO);
glDrawArrays(GL_POINTS, 0, 4);

2025



Строим домики

Компьютерная графика Демяненко Я.М. ЮФУ 33

Понадобится сменить тип выходного примитива на triangle_strip и нарисовать 
три треугольника: два для создания квадратной основы и один для крыши

2025



Результирующий геометрический шейдер

Компьютерная графика Демяненко Я.М. ЮФУ 34

#version 330 core
layout (points) in;
layout (triangle_strip, max_vertices = 5) out;

void build_house(vec4 position) {    
    gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0);    // 1:bottom-left
    EmitVertex();   
    gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0);    // 2:bottom-right
    EmitVertex();
    gl_Position = position + vec4(-0.2,  0.2, 0.0, 0.0);    // 3:top-left
    EmitVertex();
    gl_Position = position + vec4( 0.2,  0.2, 0.0, 0.0);    // 4:top-right
    EmitVertex();
    gl_Position = position + vec4( 0.0,  0.4, 0.0, 0.0);    // 5:top
    EmitVertex();
    EndPrimitive();
}
void main() {    
    build_house(gl_in[0].gl_Position);
}

2025



Компьютерная графика Демяненко Я.М. ЮФУ 352025



Обновленные данные вершин (с цветом)

Компьютерная графика Демяненко Я.М. ЮФУ 36

float points[] = {
    -0.5f,  0.5f, 1.0f, 0.0f, 0.0f, // верхняя-левая

0.5f,  0.5f, 0.0f, 1.0f, 0.0f, // верхняя-правая
0.5f, -0.5f, 0.0f, 0.0f, 1.0f, // нижняя-правая
-0.5f, -0.5f, 1.0f, 1.0f, 0.0f  // нижняя-левая

}; 

2025



Вершинный шейдер для передачи атрибута цвета в 
геометрический шейдер с использованием интерфейсного блока

Компьютерная графика Демяненко Я.М. ЮФУ 37

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;

out VS_OUT {
    vec3 color;
} vs_out;

void main() {
    gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0); 
    vs_out.color = aColor;
} 

2025



Интерфейсный блок того же типа (но с другим именем) в 
геометрическом шейдере

Компьютерная графика Демяненко Я.М. ЮФУ 38

in VS_OUT {
    vec3 color;
} gs_in[]; 

2025



Компьютерная графика Демяненко Я.М. ЮФУ 39

out vec3 fColor; 

…

fColor = gs_in[0].color; // используется gs_in[0] поскольку на входе у нас единственная вершина
gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0);    // 1:нижняя-левая
EmitVertex();   
gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0);    // 2:нижняя-правая
EmitVertex();
gl_Position = position + vec4(-0.2,  0.2, 0.0, 0.0);    // 3:верхняя-левая
EmitVertex();
gl_Position = position + vec4( 0.2,  0.2, 0.0, 0.0);    // 4:верхняя-правая
EmitVertex();
gl_Position = position + vec4( 0.0,  0.4, 0.0, 0.0);    // 5:крыша
EmitVertex();
EndPrimitive(); 

2025



Компьютерная графика Демяненко Я.М. ЮФУ 402025



Присыпим крыши домиков снегом

Компьютерная графика Демяненко Я.М. ЮФУ 41

fColor = gs_in[0].color; 
gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0);    // 1:нижняя-левая
EmitVertex();   
gl_Position = position + vec4( 0.2, -0.2, 0.0, 0.0);    // 2:нижняя-правая
EmitVertex();
gl_Position = position + vec4(-0.2,  0.2, 0.0, 0.0);    // 3:верхняя-левая
EmitVertex();
gl_Position = position + vec4( 0.2,  0.2, 0.0, 0.0);    // 4:верхняя-левая
EmitVertex();
gl_Position = position + vec4( 0.0,  0.4, 0.0, 0.0);    // 5:крыша
fColor = vec3(1.0, 1.0, 1.0);
EmitVertex();
EndPrimitive(); 

2025



Компьютерная графика Демяненко Я.М. ЮФУ 422025



Взрываем объекты

Компьютерная графика Демяненко Я.М. ЮФУ 43

Перемещение каждого 
треугольника вдоль 
направления нормали с 
течением времени.

В результате этот эффект даёт 
подобие взрыва объекта, 
разделяя его на отдельные 
треугольники, движущиеся по 
направлению своего вектора 
нормали.

Использование 
геометрического шейдера 
позволяет эффекту работать на 
любом объекте, вне 
зависимости от его сложности

2025



Вычисление вектора нормали по трём вершинам входного 
треугольника

Компьютерная графика Демяненко Я.М. ЮФУ 44

vec3 GetNormal() {
   vec3 a = vec3(gl_in[0].gl_Position) - vec3(gl_in[1].gl_Position);
   vec3 b = vec3(gl_in[2].gl_Position) - vec3(gl_in[1].gl_Position);
   return normalize(cross(a, b));
}

2025



Функция принимает вектора нормали и положения вершины,
а возвращает новое положение вершины,
смещённое вдоль нормали

Компьютерная графика Демяненко Я.М. ЮФУ 45

vec4 explode(vec4 position, vec3 normal) {
    float magnitude = 2.0;
    vec3 direction = normal * ((sin(time) + 1.0) / 2.0) * magnitude; 
    return position + vec4(direction, 0.0);
} 

2025



main() геометрического шейдера

Компьютерная графика Демяненко Я.М. ЮФУ 46

void main() {    
    vec3 normal = GetNormal();

    gl_Position = explode(gl_in[0].gl_Position, normal);
    TexCoords = gs_in[0].texCoords;
    EmitVertex();
    gl_Position = explode(gl_in[1].gl_Position, normal);
    TexCoords = gs_in[1].texCoords;
    EmitVertex();
    gl_Position = explode(gl_in[2].gl_Position, normal);
    TexCoords = gs_in[2].texCoords;
    EmitVertex();
    EndPrimitive();
}

2025



Визуализация нормалей

Компьютерная графика Демяненко Я.М. ЮФУ 472025



Реализация метода billboarding

Компьютерная графика Демяненко Я.М. ЮФУ 48

Billboarding - прямоугольник, который всегда направлен в камеру.

При движении камеры по сцене billboard вращается за ней так, что 
вектор из billboard до камеры всегда перпендикулярен 
поверхности billboard. 

2025



Компьютерная графика Демяненко Я.М. ЮФУ 49

желтый вектор — результат векторного произведения

2025

вектор (0,1,0):

вектор из позиции billboard в камеру

Позиция камеры

Позиция билборда



Процедурная растительность

Компьютерная графика Демяненко Я.М. ЮФУ 502025



Проблемы производительности

2025 Компьютерная графика Демяненко Я.М. ЮФУ 51

• Отсутствие кэширования: каждый примитив обрабатывается независимо

• Перерасход вершин: если max_vertices установлен слишком высоким

• Разветвление выполнения: сложные условия в шейдере снижают производительность



Рекомендации по оптимизации

2025 Компьютерная графика Демяненко Я.М. ЮФУ 52

• Минимизировать количество генерируемых вершин

• Избегать сложных ветвлений

• Использовать для небольших преобразований

• Рассмотреть альтернативы (тесселяционные шейдеры, compute shaders)



Ключевые моменты

2025 Компьютерная графика Демяненко Я.М. ЮФУ 53

• Геометрические шейдеры — мощный, но специфический инструмент

• Идеальны для простой генерации и преобразования геометрии

• Требуют внимания к производительности

• Постепенно заменяются более современными технологиями



Современные тенденции и альтернативы

2025 Компьютерная графика Демяненко Я.М. ЮФУ 54

Mesh Shaders (DirectX 12 Ultimate, Vulkan)
• Более гибкая модель, заменяющая геометрические/тесселяционные шейдеры
• Работают с группами примитивов
• Лучшая производительность и контроль

Compute-based geometry processing
• Использование compute shaders для сложных геометрических преобразований
• Больший контроль над памятью и выполнением
• Требует больше кода для интеграции в конвейер


	Слайд 1,  Геометрические шейдеры
	Слайд 2, Впервые появились
	Слайд 3, Место в контейнере 
	Слайд 4, Особенности геометрического шейдера
	Слайд 5, Уникальность геометрических шейдеров
	Слайд 6, Геометрический шейдер может изменять примитивы
	Слайд 7, Типы примитивов
	Слайд 8, Line Strip
	Слайд 9, Стрип треугольников
	Слайд 10, Пример геометрического шейдера
	Слайд 11, layout(input_primitive​) in;
	Слайд 12, Пример геометрического шейдера
	Слайд 13, Получение типа входных примитивов из уже слинкованной программы
	Слайд 14, layout(output_primitive​, max_vertices = vert_count​) out;
	Слайд 15, Пример геометрического шейдера
	Слайд 16, Получение типа выходного примитива и максимального числа выводимых вершин из уже слинкованной программы
	Слайд 17, Встроенная переменная gl_in
	Слайд 18, Пример геометрического шейдера
	Слайд 19, Геометрический шейдер имеет доступ к
	Слайд 20, Из вершинного в геометрический
	Слайд 21, Выходные переменные
	Слайд 22
	Слайд 23, Пример геометрического шейдера
	Слайд 24
	Слайд 25
	Слайд 26, Компиляция и линковка
	Слайд 27, Использование геометрического шейдера
	Слайд 28, Входные данные
	Слайд 29, Вершинный шейдер
	Слайд 30, Геометрический шейдер, который просто берет данные входного примитива и отправляет на выход без изменений
	Слайд 31, Фрагментный шейдер
	Слайд 32, В коде программы
	Слайд 33, Строим домики
	Слайд 34, Результирующий геометрический шейдер
	Слайд 35
	Слайд 36, Обновленные данные вершин (с цветом)
	Слайд 37, Вершинный шейдер для передачи атрибута цвета в геометрический шейдер с использованием интерфейсного блока
	Слайд 38, Интерфейсный блок того же типа (но с другим именем) в геометрическом шейдере
	Слайд 39
	Слайд 40
	Слайд 41, Присыпим крыши домиков снегом
	Слайд 42
	Слайд 43, Взрываем объекты
	Слайд 44, Вычисление вектора нормали по трём вершинам входного треугольника
	Слайд 45, Функция принимает вектора нормали и положения вершины, а возвращает новое положение вершины, смещённое вдоль нормали
	Слайд 46, main() геометрического шейдера
	Слайд 47, Визуализация нормалей
	Слайд 48, Реализация метода billboarding
	Слайд 49
	Слайд 50
	Слайд 51, Проблемы производительности
	Слайд 52, Рекомендации по оптимизации
	Слайд 53, Ключевые моменты
	Слайд 54, Современные тенденции и альтернативы

