[eomeTpunyecKkme Wwenaepsbl

KomnbtloTepHas rpadpuka

Bnepsble N0OABUANCH

* [eomeTpunyecKkue wemnaepbl bbiam BBeAeHbl KomnaHue Microsoft B DirectX10, a
3aTem bbinm gobasneHbl B Aapo OpenGL Bepcun 3.2.

MecTo B KOHTENHEepe

BeplinHHbIE Wenaepbl — ANA BEPLUUH

TeccenAuMoHHbIE Wenaepbl — ANA naTyen

feomeTpuuecKkue weinaepbl — ANA NPUMUTUBOB

PacTepusauyua

* PparmeHTHble WeKaepbl — ANA NUKCeNen

OcobeHHOCTM reoMeTpUYecKoro wenaepa

 MoeT co3aBaTb HOBblE MPMMUTUBbLI Ha OCHOBE CYLLIECTBYHOLLLMX
* MoXeT U3MEHATb TOMNONAOIMNIO0 NPUMNUTUBOB
* PaboTaet c uenbiMm NPUMUTMBAMU (TOYKAMU, TMHUAMMK, TPEYTO/IbHUKAMM)

* Heoba3aTenbHbll 3Tan KOHBeNepa

YHUKaIbHOCTb FTEOMETPUYECKUX LLENIEPOB

YHUKaNbHbIN B3rAs4 Ha MOAENb, B KOTOPOW CBA3U MeXKAy BepLUMHAMM A0CTYMHbI
pa3paboTuMKy, NO3BONAA CTPOUTb HOBbIE MEeTO/bl, OCHOBbIBAACb Ha 3TUX 3HAHUAX.

[eoMmeTpUYeCcKumn Wenaep MoxKeT U3MEHATb NPUMNTUBSI

* M3meHATb TONONOrMI0 BXOAALLMX NPUMUTUBOB.
[eoMeTpUYECKNI Wernaep MOKeT NPUHUMATb NPUMUTUBLI ID6Oro Tna, Ho

BbIBOAUTb MOXET TOJ/IbKO CMUCKU TOYEK, CTPUN NIUHUA U cTpun Tpeyro/ibHUKoOB.

e [eomeTpunYeckmu wenaep NPUHUMaeT oANH NPUMUTUB N MOXKET

nmbo YAa/IUTb €ro nNoJIHOCTbHO,
nmbo OoTNnpPaBunTb Ha BbiIXo4 OANH NI HECKOJIbKO NPNMNTNBOB
(3TO 3Ha4NT, YTO OH MOXeET BbINYCKATb U MeéHbLUE U 6onbLie BEPLUUH, YEM I'IOI'IV‘-I&ET).

3Ta cnocobHOCTb M3BECTHA Kak growing geometry.

Tvnbl NPUMUTNBOB

BxoaHble NPUMUTUBDI:

® points — TO4YKM

e |ines — AnHum

e triangles — TpeyronbHUKM

e lines_adjacency — NANMHUKU C CMEKHBIMMN BEPLUMHAMMU

e triangles_adjacency — TpeyronbHMKK C CMEXKHbIMM BEPLUMHAMMU

BbiIXoAgHbIE NPUMUTUBDI:
e points

e line_strip

e triangle_strip

Line Strip

2025 KomnbloTepHas rpadpurka JemsaneHko A.M. OOY

CTpun TpeyronbHMKOB

1 3 5 7

VAV

Ba)kHOe CBOMCTBO KacaTe/lbHO NopsAKa BHYTPU TPeYyrosibHUKa — NopsaaokK
HOMEPOB BepLUNH 0O6paTEH Yy KaXKA0ro BTOPOro TPeyrosibHUKa.

0 2

3TO 3HAYUT, YTO NOPAAJOK Takos: [0,1,2], [1,3,2], [2,3,4], [3,5,4] v T.A.

2025 KomnbtoTepHana rpadpuka demsaHeHko A.M. ODY

[ToMep reoMeTprYecKoro Wwenaepa

H#version 330 core

layout (points) in;

layout (line_strip, max_vertices = 2) out;
void main() {

gl_Position =gl in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();

layout(input_primitive) in;
// TVn NpuMnNTUBA, AaHHbIe KOTOPOro NOCTYNakoT CO CTaAuUN BEPLUMHHOIO Wehaepa

points

lines

triangles
lines_adjacency

triangles_adjacency ,
1 : V;

Vi

' Vo
Va

2025 KomnbtoTepHana rpadpuka demsaHeHko A.M. ODY 11

[TpMMep reoMmeTpUYecKoro Lwenaepa

#version 330 core
layout (points) in;

layout (line_strip, max_vertices = 2) out;
void main() {

gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();

[TonyyeHmne Tmna BXOAHbIX MPUMUTUBOB U3 VIKE CIMHKOBAHHOW
MPOrpPaMmbl

int type;

glGetProgramiv (program, GL_GEOMETRY_INPUT_TYPE, &type);

layout(output_ primitive, max_vertices = vert _count) out;

// BbIXO,EI,HOl;'I ™n NPUMNTNBA C MAaKCMMaJ/iIbHbIM KONNMYHECTBOM BEPLLUNH

* points
* line_strip

e triangle_strip

[TpMMep reoMmeTpUYecKoro Lwenaepa

#version 330 core
layout (points) in;
layout (line_strip, max_vertices = 2) out;

void main() {

gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();

I‘Ionyqume TUMa BbIXOAOHOTO NMPUMNTNBA N MaRCUMAJIbHOTO YNCJla
BbIBOAMMDbIX BEPLWWNH N3 YKE CZIMHKOBAHHOW NPpOorpaMmmbl

int type, num;

glGetProgramiv (program, GL_GEOMETRY_OUTPUT_TYPE, &type);
glGetProgramiv (program, GL_GEOMETRY_VERTICES_OUT, &num);

BcTpoeHHana nepemeHHas gl in

//MpnbnnsutenbHoe npeacrasieHme

in gl_Vertex {
vecd gl_Position;
float gl_PointSize;
float gl_ClipDistancel];

gl_in(];

[TpMMep reoMmeTpUYecKoro Lwenaepa

#version 330 core
layout (points) in;

layout (line_strip, max_vertices = 2) out;
void main() {

gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex();

gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);
EmitVertex();

EndPrimitive();

[eomeTpuyeckumn wenaep umeeTt 40CTyN K

e uniform-nepemeHHbIM
* BbIXOAHbIM NepPeMeHHbIM BEPLUMHHOrIO LWeraepa

* TEeKCcTypam

N3 BEPLUMHHOIO B reOMEeTPUYEeCcKni

|_|YCTb B BEPLWLNHHOM meﬁp,epa nmeeTca cnenyrllad BbIXOAHAA NepemeHHaA

out vec3 normal; // normal for vertex

Toraa B reomeTpuyecKkoMm Lenaepe oHa Ao/1KHa bbiTb onncaHa cneayrowmm obpasom

in vec3 normal []; // arrays of normals for every vertex

BbIXOAHbIE NepemeHHble

Pe3ynbTathl paboTbl reOMETPMYECKOTO Wenaepa 3anncbiBatoTca B cneayowme nepemeHHble:
* gl Position,

* gl PointSize,

gl ClipDistance [],

* gl PrimitivelD,

gl Layer,

gl Viewportindex.

Kaxabiv BbizoB EmitVertex() nobaBnseTt Tekyuiee 3HayeHne B nepemeHHom gl_Position
K TEKYLWEeMY 3K3emnaapy npuMmmnTumBa.

Koraa e mbl BbidbiBaem EndPrimitive(), Bce nopoxXaeHHble BepLIMHblI OKOHYATENbHO
CBA3bIBAOTCA B YKA3aHHbIN BbIXOAHOW TN NPUMUTUBA.

[TpMMep reoMmeTpUYecKoro Lwenaepa

#version 330 core
layout (points) in;

layout (line_strip, max_vertices = 2) out;

void main() {

gl_Position = gl_in[0].gl_Position + vec4(-0.1, 0.0, 0.0, 0.0);
EmitVertex(); // okoHYyaHne popmmnpoBaHMA BEPLLUHDI

gl_Position = gl_in[0].gl_Position + vec4(0.1, 0.0, 0.0, 0.0);
EmitVertex(); // okoHuyaHne popmmnpoBaHMA BEPLLUHDI

EndPrimitive();

MosTopss Bbi3oBbl EndPrimitive() nocnhe oaHoro nnm 6onee Bbizosos EmitVertex()
MOXKHO NPOAONXKATb CO31aBaTb HOBblE 3K3EMMN/IAPbI NPUMUTUBOB.

KOHKpeTHO B Npumepe reHepupyeTca no ABe BEPLIMHbI, CMELLEHHbIE Ha
Hebo/bLLIOE PACCTOAHME OT MNONOXKEHMA BXOAHOM BEPLLUUHbI, @ 3aTEM BbINONHAETCH
Bbi30B EndPrimitive(), popmupyrowmin n3 atux aByx creHepupoBaHHbIX BEPLUNH
oauH line strip, coaeprKawmm ase BEPLUMHDI.

I'Ionqunm TdKUe pe3y/ibTaTbl, BbINO/IHUB BCETO J/iNLLb OANH Bbl3OB OTPUCOBKMU.

gIDrawArrays(GL_POINTS, 0, 4);

2025 KomnbtoTepHana rpadpuka demsaHeHko A.M. ODY

25

RoMnmnnauma n NMHKOBKA

geometryShader = glCreateShader(GL_GEOMETRY_SHADER);
glShaderSource(geometryShader, 1, &gShaderCode, NULL);
glCompileShader(geometryShader);

glAttachShader(program, geometryShader);
glLinkProgram(program);

Icno/b30BaHME TeOMETPUYECKOro Wenaepa

2025 KomnbtoTepHana rpadpuka demsaHeHko A.M. ODY

27

BxoAdHble NaHHble

float points[] = {
-0.5f, 0.5f, // BepxHsaa-neBasn
0.5f, 0.5f, // BepxHaAs-npaBas
0.5f, -0.5f, // HuxKHAs-npaBas
-0.5f, -0.5f // Hu»KHAA-neBaA

BeplnHHbIV Wenaep

#version 330 core
layout (location = 0) in vec2 aPos;

void main() {
gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0);

}

[eomeTpnyeckmnm Wwenaep, KOTOPbIM NPOCTO bepeT AaHHbIe
BXOAHOTO MPUMWUTUBA M OTMPABAAET Ha BbIXod 6€3 M3MeHEeHNI

#version 330 core
layout (points) in;
layout (points, max_vertices = 1) out;

void main() {
gl _Position =gl _in[0].gl_Position;
EmitVertex();
EndPrimitive();

}

PparMeHTHbIN Wenaep

#Hversion 330 core
out vec4 FragColor;

void main() {
FragColor = vec4(0.0, 1.0, 0.0, 1.0);
}

B Koge nporpammeol

Cospgaem VAO n VBO gna sepLlUmMHHbBIX AaHHbIX U OCYLLEeCTBAAEM peHAaep BbI30OBOM
gIDrawArrays():

shader.use();
glBindVertexArray(VAO);
glDrawArrays(GL_POINTS, 0, 4);

CTpoMM AOMUKU

[MoHagobumnTcAa cMeHUTb TUN BbIXOAHOTO NPUMNTMBA Ha triangle_strip 1 HapucoBaTb
TPW TPEYroNbHUKA: ABa ANA CO34aHUA KBAAPaTHOM OCHOBbI M OAUH ANA KPbILWK

5

2025 KomnbtoTepHana rpadpuka demsaHeHko A.M. ODY

33

Pe3ynbTUPYIOWNN TEOMETPUYECKMM LLIENAEP

#version 330 core
layout (points) in;
layout (triangle_strip, max_vertices = 5) out;

void build_house(vec4 position) {

}

gl _Position = position + vec4(-0.2,
EmitVertex();

gl_Position = position + vec4(0.2, -

EmitVertex();

gl_Position = position + vec4(-0.2,
EmitVertex();

gl _Position = position + vec4(0.2,
EmitVertex();

gl _Position = position + vec4(0.0,
EmitVertex();

EndPrimitive();

void main() {

}

build_house(gl_in[0].gl_Position);

2025

-0.2, 0.0, 0.0); // 1:bottom-left

0.2,0.0,0.0); // 2:bottom-right
0.2,0.0,0.0); // 3:top-left
0.2,0.0,0.0); // 4:top-right

0.4,0.0,0.0); //5:top

KomnbtoTepHas rpaduka demaHeHko A.M. HODY

34

2025

KomnbtoTepHas rpaduka demaHeHko A.M. HODY

35

ObBHOB/IEHHbIE AaHHbIe BEPLMH (C LBETOM)

float points[] = {
-0.5f, 0.5f, 1.0f, 0.0f, 0.0f, // BepxHAA-neBas
0.5f, 0.5f, 0.0f, 1.0f, 0.0f, // BepxHsaa-npaBas
0.5f, -0.5f, 0.0f, 0.0f, 1.0f, // HMxKHAA-npaBas

-0.5f, -0.5f, 1.0f, 1.0f, 0.0f // HMKHAA-neBaA
I

BeplwnHHbIN Wenaep Aasa nepenadm atpmbyTta UBeTa B
rEOMETPUYECKNIN LIENAEDP C MCMONb30BaHNEM MHTEPHEMCHOIO DAOKA

#version 330 core
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;

out VS_OUT {
vec3 color;
} vs_out;

void main() {
gl_Position = vec4(aPos.x, aPos.y, 0.0, 1.0);
vs_out.color = aColor;

}

NHTEepPENCHBbIN BNOK TOTO e Tuna (HO C APYTMM MMEHEM) B
reoMmeTpuYyecKkom wengepe

in VS_OUT {
vec3 color;

} gs_in[];

out vec3 fColor;

fColor = gs_in[0].color; // ucnonbsyetcs gs_in[0] NnOCKONbKY Ha BXoAe Y HaC eANHCTBEHHas BepLIMHA
gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0); // 1:Hu»KHAs-neBas
EmitVertex();

gl_Position = position + vec4(0.2, -0.2, 0.0, 0.0); // 2:HuXHAA-npaBas
EmitVertex();

gl_Position = position + vec4(-0.2, 0.2, 0.0, 0.0); // 3:BepxHsa-neBasn
EmitVertex();

gl _Position = position + vec4(0.2, 0.2, 0.0, 0.0); // 4:BepxHsAa-npaBas
EmitVertex();

gl_Position = position + vec4(0.0, 0.4,0.0, 0.0); // 5:kpbiwa
EmitVertex();

EndPrimitive();

2025

KomnbtoTepHas rpaduka demaHeHko A.M. HODY

40

[TPUCBINMM KPbILWM JOMUKOB CHETOM

fColor = gs_in[0].color;

gl_Position = position + vec4(-0.2, -0.2, 0.0, 0.0); // 1:HuxHAA-neBasn
EmitVertex();

gl _Position = position + vec4(0.2, -0.2, 0.0, 0.0); // 2:HUXKHAs-npaBas
EmitVertex();

gl_Position = position + vec4(-0.2, 0.2, 0.0, 0.0); // 3:BepxHsa-neBasn
EmitVertex();

gl _Position = position + vec4(0.2, 0.2, 0.0, 0.0); // 4:BepxHaa-neBas
EmitVertex();

gl _Position = position + vec4(0.0, 0.4, 0.0, 0.0); //5:kpbiwa

fColor = vec3(1.0, 1.0, 1.0);

EmitVertex();

EndPrimitive();

2025

KomnbtoTepHas rpaduka demaHeHko A.M. HODY

42

B3pbiBaem 0ObEKTH

[lepemelteHmne Kaxaoro
TpeyrosbHMKa BAO/1b
HanpaBaeHUA HOPMaAN C
Te4YeHnem BpeMeHMN.

B pe3ynbraTte aT0T adpPeKT AaéT
nopobue B3pbiBa 06BHEKTA,
pa3aenas ero Ha oTaesibHble
TPEeYronbHUKKU, ABUKYLLMECA NO
HanNpaB/JEHUIO CBOEro BEKTOPA
HOpPManu.

Ncnonb3oBaHume
reomeTpUYecKoro wenaepa
no3sossaeT apPekTy paboTaTh Ha
nobom obbeKTe, BHe
3aBMCMMOCTM OT €ro C0KHOCTU

2025 KomnbtoTepHana rpadpuka demsaHeHko A.M. ODY 43

BbluncneHme BeKTopa HOPMa/n Mo TPEM BePLLUMHAM BXOAHOIO
TPEeyrosibHMKa

vec3 GetNormal() {
vec3 a = vec3(gl_in[0].gl_Position) - vec3(gl_in[1].gl_Position);
vec3 b =vec3(gl_in[2].gl_Position) - vec3(gl_in[1].gl_Position);
return normalize(cross(a, b));

}

OYHKUMA MPUHMMAET BEKTOPA HOPMaIM U MONOKEHUA BEPLLUNHbI,
a BO3BpallaeT HOBOE MNOJIOXKEeHWe BepLUMHbI,
CMelleHHoe BAO0/1b HOPpMa/un

vecd explode(vec4 position, vec3 normal) {
float magnitude = 2.0;
vec3 direction = normal * ((sin(time) + 1.0) / 2.0) * magnitude;
return position + vec4(direction, 0.0);

}

main() reomeTpn4eckoro wemnaepa

void main() {
vec3 normal = GetNormal();

gl_Position = explode(gl _in[0].gl_Position, normal);
TexCoords = gs_in[0].texCoords;

EmitVertex();

gl _Position = explode(gl_in[1].gl_Position, normal);
TexCoords = gs_in[1].texCoords;

EmitVertex();

gl_Position = explode(gl_in[2].gl_Position, normal);
TexCoords = gs_in[2].texCoords;

EmitVertex();

EndPrimitive();

Buayanmsaumsa Hopmanen

2025 KomnbtoTepHana rpadpuka demsaHeHko A.M. ODY

47

Peanun3zauma metoaa billboarding

Billboarding - npamoyronbHUK, KOTOpPbIX BCEraa HanpaBaAeH B Kamepy.
Mpwn aBuKeHnn kamepol no cueHe billboard BpawaeTca 3a Hen Tak, YTo

BeKkTOp M3 billboard Ao Kamepbl Bcerga nepneHanKynapeH
nosepxHocTu billboard.

2025 KomnbtoTepHana rpadpuka demsaHeHko A.M. ODY

48

MNo3nuna 6unbopaa

BekTop (0,1,0):

2025

BeKTOp 13 nosuuum billboard B kamepy

UM Kamepbl

YKeNTbll BEKTOP — pe3y/ibTaT BEKTOPHOIo Npous3BeaeHuUs

KomnbloTepHana rpadurka emaneHko A.M. OPY

49

[TpouenypHaa PacTUTENbHOCTb

2025 KomnbloTepHana rpadurka emaneHko A.M. OPY

50

[Tpobaembl NPON3BOANTENBHOCTU

e OTCyTCTBME KILWMPOBAHUA: KaXKablh NPUMNTUB 0b6pabaTbiBaeTca HE3aBUCUMO
* [lepepacxopn BepLUNH: ecK max_vertices yCTaHOBNAEH C/IMLIKOM BbICOKUM

* Pa3BeTB/1ieHUE BbINOJNHEHUA: CIOXKHbIE YCN10BUA B u.|el‘/’1,£|,epe CHUXaKoT NPon3BoanTe/ibHOCTb

PekomeHaaunMm no oNnTMmMm3aumnm

* MMWHMMU3NPOBATbL KOJIMYECTBO FrEHEPUPYEMbIX BEPLLUH
* W36eraTb C/IOKHbIX BETBIEHUMN
* Mcnonb3oBaTb AN HeDONbLIKX NPeobpasoBaHUM

* PaccmoTpeTb anbTepHaTMBbI (TeccensaumMoHHble Wwenaepbl, compute shaders)

Karyesble MOMEHTH!

 [eomeTpuyeckue Wwenaepbl — MOLLHbIN, HO creunPUYeCcKUm MHCTPYMEHT
* WpeanbHbl ANA NPOCTOMN reHepaumm n npeobpa3oBaHUSA reomeTpum
* TpebytoT BHUMAHUA K NPOU3BOAUTE/IBHOCTU

* [locTeneHHO 3ameHAtOTCA bonee coBpeMEHHbIMU TEXHONOTMAMU

CoBpemMeHHble TeHAEHLUWN U aNbTepHaTUBbI

Mesh Shaders (DirectX 12 Ultimate, Vulkan)

* Bbonee rmMbkas moaenb, 3aMeHsALWAA reomeTpuyeckmue/TeccensiuMoHHble Wenaepsl
e PaboTatloT c rpynnamu npuMmnMTUBOB

e Jlyywas npon3BoAUTENbHOCTb U KOHTPO/Ib

Compute-based geometry processing

* Wcnonb3oBaHue compute shaders ana cnoxKHbix reomeTpuyeckux npeobpasoBaHmi
* bOoNbWWN KOHTPOb HaA, NAaMATbIO U BbINOJIHEHNEM

* Tpebyet 60nblUE KOAA ANA UHTErpaLMmM B KOHBeep

	Слайд 1, Геометрические шейдеры
	Слайд 2, Впервые появились
	Слайд 3, Место в контейнере
	Слайд 4, Особенности геометрического шейдера
	Слайд 5, Уникальность геометрических шейдеров
	Слайд 6, Геометрический шейдер может изменять примитивы
	Слайд 7, Типы примитивов
	Слайд 8, Line Strip
	Слайд 9, Стрип треугольников
	Слайд 10, Пример геометрического шейдера
	Слайд 11, layout(input_primitive​) in;
	Слайд 12, Пример геометрического шейдера
	Слайд 13, Получение типа входных примитивов из уже слинкованной программы
	Слайд 14, layout(output_primitive​, max_vertices = vert_count​) out;
	Слайд 15, Пример геометрического шейдера
	Слайд 16, Получение типа выходного примитива и максимального числа выводимых вершин из уже слинкованной программы
	Слайд 17, Встроенная переменная gl_in
	Слайд 18, Пример геометрического шейдера
	Слайд 19, Геометрический шейдер имеет доступ к
	Слайд 20, Из вершинного в геометрический
	Слайд 21, Выходные переменные
	Слайд 22
	Слайд 23, Пример геометрического шейдера
	Слайд 24
	Слайд 25
	Слайд 26, Компиляция и линковка
	Слайд 27, Использование геометрического шейдера
	Слайд 28, Входные данные
	Слайд 29, Вершинный шейдер
	Слайд 30, Геометрический шейдер, который просто берет данные входного примитива и отправляет на выход без изменений
	Слайд 31, Фрагментный шейдер
	Слайд 32, В коде программы
	Слайд 33, Строим домики
	Слайд 34, Результирующий геометрический шейдер
	Слайд 35
	Слайд 36, Обновленные данные вершин (с цветом)
	Слайд 37, Вершинный шейдер для передачи атрибута цвета в геометрический шейдер с использованием интерфейсного блока
	Слайд 38, Интерфейсный блок того же типа (но с другим именем) в геометрическом шейдере
	Слайд 39
	Слайд 40
	Слайд 41, Присыпим крыши домиков снегом
	Слайд 42
	Слайд 43, Взрываем объекты
	Слайд 44, Вычисление вектора нормали по трём вершинам входного треугольника
	Слайд 45, Функция принимает вектора нормали и положения вершины, а возвращает новое положение вершины, смещённое вдоль нормали
	Слайд 46, main() геометрического шейдера
	Слайд 47, Визуализация нормалей
	Слайд 48, Реализация метода billboarding
	Слайд 49
	Слайд 50
	Слайд 51, Проблемы производительности
	Слайд 52, Рекомендации по оптимизации
	Слайд 53, Ключевые моменты
	Слайд 54, Современные тенденции и альтернативы

