
Algorithms on graphs
Module 1

Lecture 2
Graph traversals: depth-first search,

breadth-first search and their applications.
Part 1

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

Graph traversals

Graph G=(V,E).

A graph traversal: start at a certain vertex and visit
other vertices of G in a specific order.

Traversals let us explore the graph and discover its
structure.

• Depth-first traversal (DFS)

• Breadth-first traversal (BFS)

2

Graph traversals

3

https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html

Graph connectivity

Graph G=(V,E).

A path (walk) is a sequence of edges 𝑒1, 𝑒2, … , 𝑒𝑙 such that for each
𝑖 the end-point vertex of 𝑒𝑖 is a start-point of 𝑒𝑖+1.

Alternative representation: a sequence of vertices 𝑣1, 𝑣2, … , 𝑣𝑙+1 .

The number of edges = length of the path.

4

Graph connectivity

•A path 𝑣1, 𝑣2, … , 𝑣𝑙+1 is a cycle iff 𝑣1 = 𝑣𝑖+1.

•A vertex 𝑣 is reachable from the vertex 𝑢 on G iff
there is a path on G from 𝑢 to 𝑣 .

5

Graph connectivity

•A graph is called (strongly) connected iff for each pair
of vertices {𝑢, 𝑣} there is a path between 𝑢 and 𝑣.

• The maximally connected subgraphs of G are called
(strong) connected components.

6

Graph connectivity

Problem

Given a graph 𝐺(𝑉, 𝐸), detect all its connected components.

1. {0, 1,2,3,4}

2. {5,6}

3. {7}

7

Graph connectivity

Solution

1. Mark all vertices as ‘unvisited’.

2. While there is an unvisited vertex s:

3. Initialize a new component 𝐶𝑘.

4. Start DFS/BFS from s.

5. Visiting a vertex, put it into 𝐶𝑘.

8

DFS: Depth-First Search

Visiting a vertex 𝑣, recursively visit (start DFS) each of its
unvisited neighbors.

DFS(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited:

DFS(u) https://en.wikipedia.org/wiki/Depth-first_search

9

DFS: Depth-First Search

Visiting a vertex 𝑣, recursively visit (start DFS) each of its
unvisited neighbors.

DFS(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited:

DFS(u) https://en.wikipedia.org/wiki/Depth-first_search

10

DFS: Depth-First Search

For graph exploration, we often need to perform some
processing before / after recursive DFS.

DFS(v)

PreVisit(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited: DFS(u)

PostVisit(v)

11

DFS: explicit stack implementation

StackDFS(G)

Select 𝑠 ∈ 𝑉

Push(s)

While (stack is not empty):

v = Pop()

if v is unvisited:

Mark v as ‘visited’

For each u in Adj(v):

Push(u)

12

DFS: example

13

BFS: Breadth-First Search

Visiting a vertex 𝑣,

visit each of its unvisited neighbors,

then neighbors of the neighbors,

etc.

https://en.wikipedia.org/wiki/Breadth-first_search

14

BFS: Breadth-First Search

For keeping this order of visiting,

we need to store neighbor vertices

until we get them for processing.

We need a queue.

https://en.wikipedia.org/wiki/Breadth-first_search

15

BFS: queue-based implementation

BFS(G)

Select 𝑠 ∈ 𝑉

Enqueue(s)

While (Queue is not empty):

v = Dequeue()

if v is unvisited:

Mark v as ‘visited’

For each u in Adj(v):

Enqueue(u)

16

BFS: applications

1) Detecting connected components.

2) Calculating distances.

Principal idea: visiting a vertex 𝑣,

visit each of its unvisited neighbors,

then neighbors of the neighbors,

etc.

https://en.wikipedia.org/wiki/Breadth-first_search

17

BFS: applications

Graph G=(V,E).

A distance between vertices u and v is the minimum
length of the path between u and v.

dist(A,E) = 2

18

BFS: applications

Weighted graph G=(V,E), 𝑤:𝐸 → 𝑅

A distance between vertices u and v is the minimum
weight (=sum of edges’ weights) of the path between u
and v.

dist(A,E) = 18

19

BFS: applications

For unweighted graphs distances from 𝑠 ∈ 𝑉 to all
other vertices can be calculated using BFS.

For weighted graphs: Dijkstra’s algorithm works like BFS
and calculates distances (from 𝑠 ∈ 𝑉 to all other
vertices) on a graph.

20

	Слайд 1, Algorithms on graphs Module 1 Lecture 2 Graph traversals: depth-first search, breadth-first search and their applications. Part 1
	Слайд 2, Graph traversals
	Слайд 3, Graph traversals
	Слайд 4, Graph connectivity
	Слайд 5, Graph connectivity
	Слайд 6, Graph connectivity
	Слайд 7, Graph connectivity
	Слайд 8, Graph connectivity
	Слайд 9, DFS: Depth-First Search
	Слайд 10, DFS: Depth-First Search
	Слайд 11, DFS: Depth-First Search
	Слайд 12, DFS: explicit stack implementation
	Слайд 13, DFS: example
	Слайд 14, BFS: Breadth-First Search
	Слайд 15, BFS: Breadth-First Search
	Слайд 16, BFS: queue-based implementation
	Слайд 17, BFS: applications
	Слайд 18, BFS: applications
	Слайд 19, BFS: applications
	Слайд 20, BFS: applications

