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Graph traversals

Graph G=(V,E).

A graph traversal: start at a certain vertex and visit 
other vertices of G in a specific order.

Traversals let us explore the graph and discover its 
structure.

• Depth-first traversal (DFS)

• Breadth-first traversal (BFS)
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Graph traversals
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https://www3.cs.stonybrook.edu/~skiena/combinatorica/animations/search.html



Graph connectivity

Graph G=(V,E).

A path (walk) is a sequence of edges 𝑒1, 𝑒2, … , 𝑒𝑙 such that for each 
𝑖 the end-point vertex of 𝑒𝑖 is a start-point of 𝑒𝑖+1. 

Alternative representation: a sequence of vertices 𝑣1, 𝑣2, … , 𝑣𝑙+1 .

The number of edges = length of the path.

4



Graph connectivity

•A path 𝑣1, 𝑣2, … , 𝑣𝑙+1 is a cycle iff 𝑣1 = 𝑣𝑖+1.

•A vertex 𝑣 is reachable from the vertex 𝑢 on G iff
there is a path on G from 𝑢 to 𝑣 .
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Graph connectivity

•A graph is called (strongly) connected iff for each pair 
of vertices {𝑢, 𝑣} there is a path between 𝑢 and 𝑣.

• The maximally connected subgraphs of G are called 
(strong) connected components.
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Graph connectivity

Problem

Given a graph 𝐺(𝑉, 𝐸), detect all its connected components.

1. {0, 1,2,3,4}

2. {5,6}

3. {7}
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Graph connectivity

Solution

1. Mark all vertices as ‘unvisited’.

2. While there is an unvisited vertex s:

3. Initialize a new component 𝐶𝑘.

4. Start DFS/BFS from s.

5. Visiting a vertex, put it into 𝐶𝑘.
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DFS: Depth-First Search

Visiting a vertex 𝑣, recursively visit (start DFS) each of its 
unvisited neighbors.

DFS(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited:

DFS(u) https://en.wikipedia.org/wiki/Depth-first_search
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DFS: Depth-First Search

Visiting a vertex 𝑣, recursively visit (start DFS) each of its 
unvisited neighbors.

DFS(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited:

DFS(u) https://en.wikipedia.org/wiki/Depth-first_search
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DFS: Depth-First Search

For graph exploration, we often need to perform some 
processing before / after recursive DFS.

DFS(v)

PreVisit(v)

Mark v as ‘visited’

For each u in Adj(v):

if u is unvisited: DFS(u)

PostVisit(v)
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DFS: explicit stack implementation

StackDFS(G)

Select 𝑠 ∈ 𝑉

Push(s)

While (stack is not empty):

v = Pop()

if v is unvisited:

Mark v as ‘visited’

For each u in Adj(v):

Push(u)
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DFS: example
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BFS: Breadth-First Search

Visiting a vertex 𝑣, 

visit each of its unvisited neighbors, 

then neighbors of the neighbors, 

etc.

https://en.wikipedia.org/wiki/Breadth-first_search
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BFS: Breadth-First Search

For keeping this order of visiting,

we need to store neighbor vertices

until we get them for processing.

We need a queue.

https://en.wikipedia.org/wiki/Breadth-first_search
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BFS: queue-based implementation

BFS(G)

Select 𝑠 ∈ 𝑉

Enqueue(s)

While (Queue is not empty):

v = Dequeue()

if v is unvisited:

Mark v as ‘visited’

For each u in Adj(v):

Enqueue(u)
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BFS: applications

1) Detecting connected components.

2) Calculating distances.

Principal idea: visiting a vertex 𝑣, 

visit each of its unvisited neighbors, 

then neighbors of the neighbors, 

etc.

https://en.wikipedia.org/wiki/Breadth-first_search
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BFS: applications

Graph G=(V,E).

A distance between vertices u and v is the minimum 
length of the path between u and v.

dist(A,E) = 2
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BFS: applications

Weighted graph G=(V,E), 𝑤:𝐸 → 𝑅

A distance between vertices u and v is the minimum 
weight (=sum of edges’ weights) of the path between u
and v.

dist(A,E) = 18
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BFS: applications

For unweighted graphs distances from 𝑠 ∈ 𝑉 to all 
other vertices can be calculated using BFS.

For weighted graphs: Dijkstra’s algorithm works like BFS 
and calculates distances (from 𝑠 ∈ 𝑉 to all other 
vertices ) on a graph.
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