
Algorithms and Data Structures

Module 1

Lecture 3
Graph traversals: depth-first search,

breadth-first search and their
applications. Part 2

Adigeev Mikhail Georgievich
mgadigeev@sfedu.ru

BFS: calculating distances

Graph G=(V,E).

A distance between vertices u and v is the minimum
length of the path between u and v.

dist(A,E) = 2

2

BFS: calculating distances

For unweighted graphs distances from 𝑠 ∈ 𝑉 to all other
vertices can be calculated using BFS.

Idea of the algorithm: BFS starts from s and traverses G with
‘waves’. Each wave is formed in one iteration of the loop

For each u in Adj(v)

Wave number = distance from s to the vertex which was
reached in this wave.

3

BFS: calculating distances

4

BFS_Visit(s)

For each 𝑣 ∈ 𝑉\{𝑠} : Dist[v] := +∞;
Dist[s] := 0;

Queue.Enqueue(s);

While (!Queue.IsEmpty())

v = Queue.Dequeue();

For each u in Adj(v)

If State[u] = ‘unvisited’

State[u] := ‘visited’;

Pred[u] := v;

Dist[u] := Dist[v]+1;

Queue.Enqueue(u);

State[v] := ‘processed’;

BFS: Bipartiteness check

5

•

BFS: Bipartiteness check

6

•

BFS: Bipartiteness check

7

•

BFS: Bipartiteness check

8

DFS: Detecting cycles

9

DAG = directed acyclic graph = directed graph with no
directed cycles.

DFS: Detecting cycles

10

DFS(v)

Mark v as ‘visited’

Mark v as ‘active’

For each u in Adj(v):

if u is unvisited:

DFS(u)

else if u is ‘active’:

a cycle found!!!

Mark v as ‘inactive’

DFS: Topological sort of a DAG

11

Graphs: definition (lecture 01)

•

12

DFS: Topological sort of a DAG

13

•

PostVisit(v)

TopNum[v] = CurTopNum

CurTopNum--

DFS: Topological sort of a DAG

14

Topological sort of a DAG

15

Theorem. A directed graph G has a topological sort iff G is a DAG.
Proof

⇒ Suppose that G is not acyclic, i.e. it contains a directed cycle.

In this case, the vertices of the cycle cannot be numerated according the topological
sort requirement.

Topological sort of a DAG

16

 Let G(V,E) be a DAG. Let us see, how topological sort for G can be built.

Statement. Any DAG has at least one source and at least one sink.

Algorithm for Topological sort based on sources:

1. Create counter and initialize it with 1.

2. While 𝑉 > 0

• Find a source and assign it the current counter value.

• Remove this source from the graph.

• Increase the counter by 1.

Topological sort of a DAG

17

The resulting numeration is a topological sort.

1) All vertices have numbers. This is due to the fact that after removing a source the graph is

still a DAG, so the algorithm is running until all vertices are numbered.

2) For each arc, the number of the starting vertex is less than the number of the finishing

vertex.

Topological sort of a DAG

18

DFS can also be used for building topological sort.

1. Create counter and initialize it with the number of vertices (𝑛 = |𝑉|).

2. Run depth-first-search. Before leaving a vertex, assign it the current counter value as the topological

number; the counter is decreased by 1.

Complexity of the

topological sort: 𝑂 𝑛 +𝑚 .

Topological sort of a DAG

19

DFS_TopSort(G)

For each 𝑣 ∈ 𝑉:
State[v] := ‘unvisited’;

Pred[v] := NULL;

Time_In[v] := NULL;

Time_Out[v] := NULL;

TopNum[v] := NULL;

CurTime : = 0;

CurTopNum : = n;

For each 𝑣 ∈ 𝑉:
If State[v] = ‘unvisited’

DFS_TopSort_Visit(v);

Topological sort of a DAG

20

DFS_TopSort_Visit(v)

State[v] := ‘visited’;

CurTime := CurTime + 1;

Time_In[v] := CurTime;

For each u in Adj(v)

If State[u] = ‘unvisited’

Pred[u] := v;

DFS_Visit(u);

State[v] := ‘processed’;

CurTime := CurTime + 1;

Time_Out[v] := CurTime;

TopNum[v] := CurTopNum;

CurTopNum := CurTopNum - 1;

	Слайд 1, Algorithms and Data Structures Module 1 Lecture 3 Graph traversals: depth-first search, breadth-first search and their applications. Part 2
	Слайд 2, BFS: calculating distances
	Слайд 3, BFS: calculating distances
	Слайд 4, BFS: calculating distances
	Слайд 5, BFS: Bipartiteness check
	Слайд 6, BFS: Bipartiteness check
	Слайд 7, BFS: Bipartiteness check
	Слайд 8, BFS: Bipartiteness check
	Слайд 9, DFS: Detecting cycles
	Слайд 10, DFS: Detecting cycles
	Слайд 11, DFS: Topological sort of a DAG
	Слайд 12, Graphs: definition (lecture 01)
	Слайд 13, DFS: Topological sort of a DAG
	Слайд 14, DFS: Topological sort of a DAG
	Слайд 15, Topological sort of a DAG
	Слайд 16, Topological sort of a DAG
	Слайд 17, Topological sort of a DAG
	Слайд 18, Topological sort of a DAG
	Слайд 19, Topological sort of a DAG
	Слайд 20, Topological sort of a DAG

