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Алгоритмы машинного обучения
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Метрические алгоритмы
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Гипотезы
● Задачи классификации и регрессии:

– X — объекты, Y — ответы;

– Xℓ = (x
i
, y

i
) — обучающая выборка;

● Гипотеза компактности (для классификации):

– Близкие объекты, лежат в одном классе.
● Гипотеза непрерывности (для регрессии):

– Близким объектам соответствуют близкие ответы.
● Формализация понятия «близости»:

– Задана функция расстояния ρ : X × X → [0, ∞).
● Пример. Евклидово расстояние и его обобщение:
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Lazy learning

● Это так называемое ленивое обучение, 
в котором нет этапа тренировки 
параметров модели. Сразу происходит 
этап предсказания.

● Подходит для задач, в которых сложно 
сформулировать набор признаков, но 
легко сравнивать объекты (пример: 
сравнительная геномика)

● Недостаток: медленный процесс 
предсказания
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Методы 1-го, 4-х, 60-и 
ближайших соседей
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Диаграммы Вороного
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Метод окна Парзена

При фиксированной ширине окна качество 
классификатора сильно зависит от плотности точек. 

Выход: положить ширину h равной расстоянию до k-
того соседа

Вес соседей w задается с помощью неотрицательной 
невозрастающей функции K от расстояния до соседа. 
Сумма весов соседей класса трактуется как 
вероятность этого класса.
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Часто используемые ядра
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Проклятие размерности
● Проклятие размерности - усреднение 

значений метрики при большом 
количестве признаков. Почти до всех 
ближайших соседей расстояние 
одинаково

● Почему это происходит:
– Шар радиуса R имеет объем V(R)~RD

– Объем шара радиуса 0.9 в 20-мерном 
пространстве составляет всего 12% от 
объема шара радиуса 1. 
Т.е. 88% точек лежит на сфере: 0.9<R<1
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Проклятие размерности

Объем вписанной в куб 
сферы в многомерном 
пространстве во много раз 
меньше объема куба!

Расстояние до вершины куба: 
√n. Количество вершин: 2n
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Проклятие размерности
Пример

● Пространство признаков: Rn.

● Класс +: область x
1,2

>0 (остальные 
координаты произвольны)

● Xℓ - равномерно 

распределена
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Проклятие размерности
Пример

● Метод 10 ближайших соседей. ℓ = 10000

● Относительная частота класса “+” на 
прямой: x

1
=x

2
, x

3
=0, x

4
=0,...

n=2 n=5 n=20

Вывод: для больших размерностей 
метрические алгоритмы сглаживают границы областей классов
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Жадное добавление признаков

1) Вдруг одного признака достаточно?
Расстояние по k-му признаку: 
Выберем наилучший признак:

2)Добавим еще один признак k:

Найдем лучший k и коэффициент b
k
  

3) Будем добавлять признаки, пока LOO 
уменьшается 
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Выбор метрики – 
сложная задача

● Юриспруденция: поиск похожих случаев 
из судебной практики

● Медицина: как сказывалось то или иное 
лечение на пациентах с похожими 
симптомами?

● Оценка стоимости: найти похожие 
квартиры/подержанную 
технику/драгоценности и вычислить 
среднюю стоимость

● Геномика: найти общие признаки генных 
последовательностей, отвечающие за 
диагноз
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Вероятностный подход
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Вероятностная постановка 
задачи

● P(x,y) – неизвестная точная плотность 
распределения на X×Y

● Xℓ
 - выборка из случайных, независимых и 

одинаково распределенных прецедентов
● Найти: эмпирическую оценку плотности
● Классификатор с минимальной 

вероятностью ошибки:

● Классификатор с минимальным средним 
риском:
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Decision function

● Предположим, что мы нашли 
вероятность p(y|x)=p(x,y)/p(x). Какое 
значение y нужно предсказать для 
заданного x ?

● Минимизация среднего риска:

● Упражнение:
   y         2      3     4      5
p(y|x)    0.1   0.2  0.3  0.4
примите правильные решения 
a(x) для каждой функции потерь
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Вероятностные подходы
● Фреквентистский — оценка 

вероятностного распределения данных:
– дискриминативный подход, оценивает 

p(y|x) и строит разделяющую классы 
поверхность (пример: логистич. регр.)

– генеративный, оценивает p(x|y) и 
применяет формулу Байеса

● непараметрический
● параметрический

● Байесовский — оценка случайных 
параметров модели, данные считаются 
неслучайными
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Наивный байесовский 
классификатор

● Восстановление n одномерных 
плотностей — намного более простая 
задача, чем одной n-мерной.

● Допущение (наивное): признаки 
являются независимыми случайными 
величинами

● Тогда совместная плотность 
распределения представима в виде 
произведения частных плотностей: 
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Непараметрическая оценка
● Определение плотности вероятности 

(одномерный случай):

● Эмпирическая оценка:
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Пример – гистограмма оценок
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Пример – гистограмма возрастов
(Россия 2012г)
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Локальная непараметрическая 
оценка Парзена-Розенблатта

K(z) — функция, называемая ядром, 
чётная и нормированная:

 

p̂ h сходится к p при h→0, l→∞, hl→∞
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Зависимость от h
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Выбор ядра
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Параметрическая оценка 
плотности

● Принцип максимума правдоподобия:

● Необходимое условие оптимума:
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Многомерное нормальное 
распределение

Принцип максимума правдоподобия:

Решение – подстановочный алгоритм:

→ max
      q
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Логистическая регрессия

Если плотности вероятностей 
объектов в каждом классе 
распределены по нормальному 
закону с одинаковой 
ковариационной матрицей, но 
разными матожиданиями, то 
разделяющая классы поверхность 
является плоскостью, а вероятности 
равны логистической функции от 
отклонения точек от плоскости
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Разные дисперсии приводят к 
нелинейной разделяющей 

классы поверхности
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Нейросетевые алгоритмы



31

Модель нейрона
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Линейная модель нейрона 
МакКаллока-Питтса (1943)



33

Градиентный метод численной 
минимизации
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Достоинства и недостатки
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Многомерная линейная регрессия
● f

1
 (x), . . . , f

n
 (x) — числовые признаки;

● Модель:

● Матричная форма:
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Нормальная система уравнений
● Необходимое условие минимума 

● где FтF — ковариационная матрица n×n 
набора признаков f

1
, . . . , f

n
 

● Решение системы: 
● Значение функционала:

где P
F
 - проекционная матрица
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Геометрический смысл

● Любой вектор вида y = Fa – линейная 
комбинация признаков

● Fa*  _   аппроксимация вектора y с наименьшим 
квадратом тогда и только тогда, когда 
Fa* - проекция y на 
подпространство 
признаков
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Метод опорных векторов (SVM)
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Самая широкая 
разделяющая полоса

● Рассмотрим линейный классификатор:

● Допустим, что обучающая выборка 
линейно разделима:

● w и w0 определены с точностью до 
множителя Þ нормируем

● Ширина полосы:
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Метод опорных векторов для 
линейно разделимой выборки

Что делать, если выборка 
не разделима гиперплоскостью?
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Случай линейно 
неразделимой выборки

Так как то в силу минимизации суммы x
i

Следовательно, наша задача эквивалентна минимизации функционала
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Часто используемые 
функции потерь 
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Нелинейное обобщение SVM
Расширение пространства
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Видео-демонстрация
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Полиномиальные ядра

В общем случае новое скалярное произведение вводится формулой:

Расширение пространства

Эквивалентно введению нового скалярного произведения в 
исходном пространстве:
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Примеры классификаций с 
различными ядрами
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Логические алгоритмы
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Понятие закономерности

● Предикат R: X → {0,1} – закономерность, 
 если он выделяет (R(x)=1) достаточно 
много объектов одного класса C и 
практически не выделяет объектов 
других классов 
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Точный тест Фишера

● Предположим, что события “объект 
отобран предикатом” и “объект имеет 
класс с” независимы

● Тогда вероятность отобрать p объектов 
класса c и n – других классов:
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Точный тест Фишера
● Предположим, что события “объект 

отобран предикатом” и “объект имеет 
класс с” независимы

● Тогда вероятность отобрать p объектов 
класса c и n – других классов:

● Это правдоподобие гипотезы 
независимости событий. Чем меньше 
данная вероятность, тем более 
зависимы события
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Линии уровня теста Фишера
Малые p и n

p

n

P = 200
N = 100
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Линии уровня теста Фишера
Малые p и n

p

n

P = 200
N = 100
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Энтропийный критерий 
информативности
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Энтропия для различных q
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Соотношение статистического и 
энтропийного критериев

Энтропийный критерий IGain 
асимптотически эквивалентен 
статистическому IStat:

Доказательство: применить формулу 
Стирлинга к критерию IStat.
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Решающее дерево → 
покрывающий набор 

конъюнкций
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Жадный алгоритм построения 
решающего дерева

● Функция:
● Tree   buildTree(U)    {

– Выбор предиката 
v
: I(

v
,U)  max

– U
0
 := { x U | 

v
(x) = 0 }

– U
1
 := { x U | 

v
(x) = 1 }

– Если |U
0
|<ℓ

0
 или |U

1
|<ℓ

0
 вернуть лист

– Иначе: 
● L

v
 := buildTree(U

0
)

● R
v
 := buildTree(U

1
)

● }
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Обобщение на случай 
задачи регрессии

● В каждом листе целевое значение 
определяется по методу наименьших 
квадратов

● Критирий информативности – 
среднеквадратическая ошибка
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Небрежные решающие деревья 
(Oblivious Decision Tree)

● Для всех узлов на глубине h условие 
ветвления одинаково

● Дерево получается сбалансированным, 
на глубине h ровно 2h-1 вершин

●
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Сравнение алгоритмов
kNN Вероятн. Нейронные SVM

Деревья 
(лес)

Качество не очень среднее хорошее хорошее хорошее

Трудоемкость 
настройки

просто
нужно 

придумать 
модель

сложно просто просто

Переобучение для малых k нет
нужны спец. 

приемы
нет нет

Большая 
размерность

проклятие если нет 
зависимостей

нужны спец. 
слои

OK OK

Маленькие 
выборки

плохо
Фреквентист. 

- плохо
нужны пред-

обученные сети OK
OK для 

Extra Trees

Интерпрети-
руемость

понятно понятно черн. ящик понятно понятно

Нужно 
нормировать 

признаки?

да, или 
подбирать 

метрику
да да да нет

Скорость 
обучения/пре

дсказания
∞ / медленно

быстро/
быстро

медленно/
медленно

быстро/
быстро

средне/
быстро
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