
14. Alternating series
and conditional convergence

Alternating series

Definition of conditional convergence,
alternating series, and the Leibniz series 3.11B/00:00 (04:22)

Definition 1.
The series

∑∞
k=1 ak is called conditionally convergent if it converges and

the series
∑∞

k=1 |ak| diverges. Thus, a convergent series is called conditionally
convergent if it does not converge absolutely.

Such a situation is possible only when the terms of a series have different
signs.

Definition 2.
A series of the form

∑∞
k=1(−1)k+1ak is called an it alternating series, if

all elements of the sequence {ak} have the same sign.
Definition 3.
An alternating series

∑∞
k=1(−1)k+1ak is called the Leibniz series, if the

sequence {ak} monotonously approaches zero as k →∞.
Remarks.
1. When studying Leibniz series of the form

∑∞
k=1(−1)k+1ak, we assume,

for definiteness, that ak > 0, k ∈ N (in this case, the sequence {ak} is
a non-increasing sequence approaching zero).

2. The “Leibniz series” notion is also referred to the alternating series of
a special form

∑∞
k=1

(−1)k+1

2k−1 , which was studied by G.W.Leibniz (he proved
that the sum of this series is equal to π

4 ).

Theorem on the convergence
of the Leibniz series 3.11B/04:22 (11:11)

Theorem (on the convergence of the Leibniz series).
The Leibniz series

∑∞
k=1(−1)k+1ak converges.

https://www.youtube.com/watch?v=l1j-OAwBM5w&t=00m01s
https://www.youtube.com/watch?v=l1j-OAwBM5w&t=04m22s
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Proof.
Consider the partial sums of the Leibniz series with an even number of

terms:

S2n =
2n∑
k=1

(−1)k+1ak = a1 − a2 + a3 − a4 + · · ·+ a2n−1 − a2n. (1)

We place parentheses on the right-hand side of equality (1) as follows:

S2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n).
Since the sequence {ak} is non-increasing, we obtain that each expression

in parentheses is non-negative: a2k−1 − a2k ≥ 0, k = 1, 2, . . . Hence,

S2n+2 = S2n + (a2n+1 − a2n+2) ≥ S2n.

This estimate means that the sequence of partial sums {S2n} is non-
decreasing.

Now we put parentheses in (1) in another way:

S2n = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n.
Since, as before, each expression in parentheses is non-negative, we obtain

that the sum S2n is estimated from above by the value a1:

S2n ≤ a1.

Thus, the sequence {S2n} is not only non-decreasing, but also bounded
from above. Then, by virtue of the convergence theorem for monotone
bounded sequences, the sequence {S2n} has a finite limit S:

lim
n→∞

S2n = S.

Consider the partial sums of the Leibniz series with an odd number of
terms: S2n+1. For them, the following equality holds:

S2n+1 = S2n + a2n+1. (2)

We have already proved that S2n → S as n→∞. In addition, a2n+1 → 0
as n → ∞, since by condition ak → 0 as k → ∞ and thus the subsequence
{a2n+1} of the sequence {ak} must also converge to this limit by the theorem
on the limit of subsequences of a converging sequence.

Therefore, the right-hand side of equality (2) has a limit S, so the left-hand
side approaches the same limit.

So, we have proved that S2n → S as n → ∞ and S2n+1 → S as n → ∞.
This means that the entire sequence {Sn} converges to the limit of S, since
any neighborhood of the point S contains all elements of the sequence {Sn}
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(with even and odd indices), with the possible exception of some finite number
of its initial elements.

The convergence of the sequence of partial sums {Sn} to a finite limit
means that the corresponding series

∑∞
k=1(−1)k+1ak converges. �

Remark.
The theorem on the convergence of the Leibniz series guarantees only its

conditional convergence. For example, the series
∑∞

k=1
(−1)k+1

k is a Leibniz
series, however, we previously established that the harmonic series

∑∞
k=1

1
k ,

consisting of absolute values of terms of the initial series, is divergent. In
what follows, we will prove that the sum of the series

∑∞
k=1

(−1)k+1

k is equal
to ln 2.

Estimation of the Leibniz series
in terms of its partial sums 3.11B/15:33 (14:19)

Theorem (on the estimation of the Leibniz series in terms
of its partial sums).

Let
∑∞

k=1(−1)k+1ak = S be the Leibniz series and Sn =
∑n

k=1(−1)k+1ak
be its partial sums. Then, for any k ∈ N, the following estimate holds:

|S − Sk| ≤ ak+1. (3)

Proof.
In the proof of the previous theorem, we established that the sequence

{S2n} is non-decreasing and has a limit S. This means that the following
equality holds for all n ∈ N:

S2n ≤ S. (4)

On the other hand, the sequence {S2n+1} is non-increasing since

S2n+1 = a1 − (a2 − a3)− · · · − (a2n−2 − a2n−1)− (a2n − a2n+1) ≥
≥ a1 − (a2 − a3)− · · · − (a2n−2 − a2n−1) = S2n−1.

In addition, its limit is also equal to S. Therefore, the equality holds for
all n ∈ N:

S ≤ S2n+1. (5)

Let us subtract S2n from both sides of inequality (5):

S − S2n ≤ S2n+1 − S2n = a2n+1. (6)

It follows from inequality (4) that S − S2n ≥ 0. Therefore, inequality (6)
can be rewritten in the form

https://www.youtube.com/watch?v=l1j-OAwBM5w&t=15m33s
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|S − S2n| ≤ a2n+1.

We have obtained estimate (3) for the case of even k.
Now we turn to inequality (4) and subtract S2n−1 from both its parts:

S2n − S2n−1 ≤ S − S2n−1.

Since S2n − S2n−1 = −a2n, this inequality can be transformed as follows:

S2n−1 − S ≤ a2n. (7)

It follows from inequality (5) that S2n−1−S ≥ 0. Therefore, inequality (7)
can be rewritten in the form

|S2n−1 − S| ≤ a2n.

We have obtained estimate (3) for the case of odd k.
Thus, estimate (3) is proved for all positive integers k. �

Dirichlet’s test and Abel’s test for conditional
convergence of a numerical series

Dirichlet’s test for conditional convergence
of a numerical series 3.11B/29:52 (04:29), 3.12A/00:00 (03:18)

Theorem (Dirichlet’s test for conditional convergence of
a numerical series).

Let the following conditions be satisfied for the series
∑∞

k=1 akbk:
1) ∃M ∀n ∈ N

∣∣∑n
k=1 ak

∣∣ ≤M ;
2) bk → 0 as k →∞, {bk} is monotone.
Then the series

∑∞
k=1 akbk converges (generally speaking, conditionally).

Proof1.
Let us show that, for the series

∑∞
k=1 akbk, the condition for the Cauchy

criterion for the convergence of a numerical series is fulfilled. For this, we will
obtain an estimate for the sum

∣∣∑m+p
k=m+1 akbk

∣∣ when m, p ∈ N.
First, let us transform the sum

∑m+p
k=m+1 akbk using the auxiliary notation

An =
∑n

k=1 ak:
m+p∑

k=m+1

akbk =

m+p∑
k=m+1

(Ak − Ak−1)bk =

m+p∑
k=m+1

Akbk −
m+p∑

k=m+1

Ak−1bk =

=

m+p+1∑
k=m+2

Ak−1bk−1 −
m+p∑

k=m+1

Ak−1bk =

1There is no proof of this theorem in video lectures.

https://www.youtube.com/watch?v=l1j-OAwBM5w&t=29m52s
https://www.youtube.com/watch?v=vlcY9UpBHGg&t=00m01s
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= Am+pbm+p +

m+p∑
k=m+2

Ak−1bk−1 −
m+p∑

k=m+2

Ak−1bk − Ambm+1 =

= Am+pbm+p +

m+p∑
k=m+2

Ak−1(bk−1 − bk)− Ambm+1.

Let us estimate the value
∣∣∑m+p

k=m+1 akbk
∣∣ using condition 1 of the theorem,

from which it follows that |Ak| ≤M for k ∈ N:∣∣∣ m+p∑
k=m+1

akbk

∣∣∣ = ∣∣∣Am+pbm+p +

m+p∑
k=m+2

Ak−1(bk−1 − bk)− Ambm+1

∣∣∣ ≤
≤M |bm+p|+M

m+p∑
k=m+2

|bk−1 − bk|+M |bm+1|. (8)

Since, by condition 2 of the theorem, the sequence {bk} monotonously
approaches 0, we obtain that all the differences bk−1− bk have the same sign.
Therefore, in the sum

∑m+p
k=m+2 |bk−1 − bk|, the absolute value sign can be

moved outside the sum sign:
m+p∑

k=m+2

|bk−1 − bk| =
∣∣∣ m+p∑
k=m+2

(bk−1 − bk)
∣∣∣ =

= |(bm+1 − bm+2) + (bm+2 − bm+3) + · · ·+ (bm+p−1 − bm+p)| =
= |bm+1 − bm+p| ≤ |bm+1|+ |bm+p|.

Now we substitute the estimate for
∑m+p

k=m+2 |bk−1− bk| into inequality (8):∣∣∣ m+p∑
k=m+1

akbk

∣∣∣ ≤M |bm+p|+M(|bm+1|+ |bm+p|) +M |bm+1| =

= 2M(|bm+1|+ |bm+p|).
It remains to use the condition bk → 0 as k → ∞, which can be written

as follows:

∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N |bm+p| <
ε

4M
.

For
∣∣∑m+p

k=m+1 akbk
∣∣, we finally get∣∣∣ m+p∑

k=m+1

akbk

∣∣∣ ≤ 2M(|bm+1|+ |bm+p|) < 2M
( ε

4M
+

ε

4M

)
= ε.

We have proved that the Cauchy criterion condition is satisfied for the
initial series:
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∀ ε > 0 ∃N ∈ N ∀m > N ∀ p ∈ N
∣∣∣ m+p∑
k=m+1

akbk

∣∣∣ < ε.

Therefore, the series
∑∞

k=1 akbk converges. �

Examples of applying Dirichlet’s test 3.12A/03:18 (11:41)

1. Once again, let us turn to the Leibniz series and write it in the following
form:

∑∞
k=1(−1)k+1bk. By the definition of the Leibniz series, two conditions

are satisfied for the sequence {bk}: bk → 0 as k → ∞, {bk} is monotone.
Thus, the condition 2 of Dirichlet’s test is satisfied for {bk}. Also we can
take the sequence

{
(−1)k+1

}
as the sequence {ak}. Obviously, this sequence

satisfies condition 1 of Dirichlet’s test:

∀n ∈ N
∣∣∣ n∑
k=1

ak

∣∣∣ = |1− 1 + 1− 1 + ...| ≤ 1.

Thus, the convergence of the Leibniz series follows directly from the Dirich-
let’s test.

2. Consider the following series:
∑∞

k=1
sin kx
kα , x ∈ R, α > 0. If α > 1,

then this series converges absolutely for any x ∈ R, since, in this case, the
absolute value of its common term can be estimated as follows:∣∣∣sin kx

kα

∣∣∣ ≤ 1

kα
.

Earlier, when discussing the integral convergence test, we established that
the series

∑∞
k=1

1
kα converges for α > 1. Therefore, using the comparison test,

we obtain that the series
∑∞

k=1

∣∣ sin kx
kα

∣∣ also converges, which means that the
series

∑∞
k=1

sin kx
kα converges absolutely.

Consider the case α ∈ (0, 1] and show that in this case all conditions of
Dirichlet’s test are satisfied for the series

∑∞
k=1

sin kx
kα .

First, we discard the case of x = 2πm, m ∈ Z, since in this case all terms
of the series turn to 0 and therefore the sum of the series is also 0.

We take 1
kα as bk, since it is obvious that the sequence

{
1
kα

}
is monotone

(decreasing) and approaches zero as k →∞. We take sin kx as ak and show
that condition 1 of Dirichlet’s test is satisfied for partial sum

∑n
k=1 sin kx.

To do this, we transform this partial sum by multiplying and dividing the
common term by 2 sin x

2 (this factor is not equal to 0, since we assume that
x 6= 2πm, m ∈ Z ):

n∑
k=1

2 sin kx sin x
2

2 sin x
2

=
1

2 sin x
2

n∑
k=1

2 sin kx sin
x

2
. (9)

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=03m18s
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Let us transform the product of the sines sin kx sin x
2 according to the

formula 2 sinα sin β = cos(α− β)− cos(α + β):
n∑
k=1

2 sin kx sin
x

2
=

n∑
k=1

(
cos
(
kx− x

2

)
− cos

(
kx+

x

2

))
=

= cos
x

2
− cos

3x

2
+ cos

3x

2
− cos

5x

2
+ · · ·+

+cos
(2n− 1)x

2
− cos

(2n+ 1)x

2
= cos

x

2
− cos

(2n+ 1)x

2
.

Now let us transform the last difference using the formula
cosα− cos β = 2 sin β+α

2 sin β−α
2 :

cos
x

2
− cos

(2n+ 1)x

2
= 2 sin

(n+ 1)x

2
sin

nx

2
.

Substituting the resulting expression into the right-hand side of (9), we
finally obtain

n∑
k=1

sin kx =
1

2 sin x
2

· 2 sin (n+ 1)x

2
sin

nx

2
=

sin (n+1)x
2 sin nx

2

sin x
2

.

This implies the following estimate for partial sum
∑n

k=1 sin kx, n ∈ N:∣∣∣ n∑
k=1

sin kx
∣∣∣ ≤ 1∣∣sin x

2

∣∣ .
Thus, condition 1 of Dirichlet’s test is also satisfied, and the series∑∞
k=1

sin kx
kα is convergent for α ∈ (0, 1]. However, for these values of α,

convergence is conditional.

The proof of the absence
of absolute convergence 3.12A/14:59 (06:03)

The fact that the series
∑∞

k=1
sin kx
kα is not absolutely convergent for

α ∈ (0, 1] is proved in the same way as a similar fact for the improper inte-
gral

∫ +∞
1

sinx
x dx. First of all, recall the estimate for the function sin kx

kα ; this
estimate is valid for all k and x:∣∣∣sin kx

kα

∣∣∣ ≥ sin2 kx

kα
. (10)

Let us prove that the series
∑∞

k=1
sin2 kx
kα diverges. To do this, consider its

partial sum and transform it as follows:
n∑
k=1

sin2 kx

kα
=

n∑
k=1

1− cos 2kx

2kα
=

1

2

n∑
k=1

1

kα
− 1

2

n∑
k=1

cos 2kx

kα
. (11)

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=14m59s
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The second term on the right-hand side of (11) has a finite limit as n→∞,
since the series

∑∞
k=1

cos 2kx
kα converges (this fact can be proved in the same

way as the convergence of the series
∑∞

k=1
sin kx
kα ). The first term on the right-

hand side of (11) approaches infinity as n → ∞, since the series
∑∞

k=1
1
kα

diverges for α ∈ (0, 1].
Therefore, the right-hand side of equality (11) has an infinite limit as

n → ∞, this is also true for the left-hand side, so the series
∑∞

k=1
sin2 kx
kα

diverges. Using the comparison test, we obtain from estimate (10) that the
series

∑∞
k=1

∣∣ sin kx
kα

∣∣ also diverges. So, for α ∈ (0, 1], the initial series
∑∞

k=1
sin kx
kα

converges conditionally.

Abel’s test for conditional convergence
of a numerical series 3.12A/21:02 (06:58)

Theorem (Abel’s test for conditional convergence of a nu-
merical series).

Let the following conditions be satisfied for a series
∑∞

k=1 akbk:
1) the series

∑∞
k=1 ak converges;

2) the sequence {bk} is monotone and bounded.
Then the series

∑∞
k=1 akbk converges (generally speaking, conditionally).

Remark.
If we compare Dirichlet’s test and Abel’ test, then it can be noted that in

Abel’s test, condition 1 is stronger (since the convergence of the corresponding
series is required instead of uniformly boundedness of its partial sums) and
condition 2 is weaker (since it is not necessary that the sequence {bk} had
a zero limit).

Proof.
By virtue of the theorem on monotone and bounded sequences, the se-

quence {bk} has a finite limit: bk → c as k →∞.
We transform the partial sum of the initial series as follows:

n∑
k=1

akbk =
n∑
k=1

ak(bk − c+ c) =
n∑
k=1

ak(bk − c) + c

n∑
k=1

ak. (12)

The second term on the right-hand side of (12) has a finite limit as n→∞,
since, by condition 1, the series

∑∞
k=1 ak converges.

The first term on the right-hand side of (12) is a partial sum of the series∑∞
k=1 ak(bk − c), which converges according to Dirichlet’s test. Indeed, con-

dition 1 of Dirichlet’s test follows from condition 1 of Abel’s test, since if the

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=21m02s
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series
∑∞

k=1 ak converges, then its partial sums are uniformly bounded. Con-
dition 2 of Dirichlet’s test follows from condition 2 of Abel’s test and the fact
that limk→∞ bk = c, since in this case the sequence {bk − c} monotonously
approaches zero as k →∞. So, the first term on the right-hand side of (12)
also has a finite limit.

Therefore, the partial sums
∑n

k=1 akbk also have a finite limit, and the
initial series converges. �

Additional remarks on absolutely
and conditionally convergent series 3.12A/28:00 (07:07)

The question arises: will the sum of the convergent series
∑∞

k=1 ak change
if the order of its terms is changed? For example, it is possible to organize the
summation, for which, after each term ak of the initial series with an odd index
(a1, a3, a5, . . . ), several terms with even indices will follow, and their amount
will increase by 1 each time (a1+a2+a3+a4+a6+a5+a8+a10+a12+a7+. . . ) or
it will double each time (a1+a2+a3+a4+a6+a5+a8+a10+a12+a14+a7+. . . ).

It turns out that, for an absolutely convergent series, its sum does not
change with any change in the order of its terms. However, for a conditionally
convergent series, this statement is false.

Moreover, if the series conditionally converges, then, by rearranging its
terms, it can be achieved that the resulting series converges to any pre-selected
number A ∈ R or diverges. This fact is called the Riemann theorem on
conditionally convergent series (its proof is given, for example, in [18, Ch. 8,
Sec. 41.4]).

https://www.youtube.com/watch?v=vlcY9UpBHGg&t=28m01s
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