14. Alternating series
and conditional convergence

Alternating series

Definition of conditional convergence,
alternating series, and the Leibniz series \3.11B/OO:OO (04:22) \

DEFINITION 1.
The series Y ;- a is called conditionally convergent if it converges and
the series >~ |ax| diverges. Thus, a convergent series is called conditionally
convergent if it does not converge absolutely.
Such a situation is possible only when the terms of a series have different
S1gns.
DEFINITION 2.
A series of the form Y77 (—1)*"ay is called an it alternating series, if o >0
all elements of the sequence {ay} have the same sign. = 1<
DEFINITION 3. N
An alternating series >, (—1)"1qy, is called the Leibniz series, if the
sequence {a} monotonously approaches zero as k — 00.
REMARKS.
1. When studying Leibniz series of the form > ;- (—1)**tay, we assume,
for definiteness, that a; > 0, £ € N (in this case, the sequence {ay} isi(
a non-increasing sequence approaching zero). - -
2. The “Leibniz series” notion is also referred to the alternating series of &=4 CL\'U’S

a special form > 7, %, which was studied by G. W. Leibniz (he proved/;———
that the sum of this series is equal to Z). 2, - O
q 1) Z'—‘\ G __)—»> Ol\%
Theorem on the convergence ¢ =4 e
of the Leibniz series 3.11B/04:22 (11:112!’ \CHA
(-4
THEOREM (ON THE CONVERGENCE OF THE LEIBNIZ SERIES). Z Colu
et ‘< —

The Leibniz series > p(—1)"*!a;, converges.

G,= G, ¥ Gy = O, 4 —. ..

d,.>9 Q, 0

S



https://www.youtube.com/watch?v=l1j-OAwBM5w&t=00m01s
https://www.youtube.com/watch?v=l1j-OAwBM5w&t=04m22s

PROOF.
Consider the partial sums of the Leibniz series with an even fiumber of
terms:
SQn - A9p—1 — Q92p. (1)

(1) as follows:

(2)
on — S as n — oo. In addition, ag,+1 — 0

0 as £ — oo and thus the subsequence
converge to this limit by the theorem

We have already proved t
as n — 0o, since by condifi

sequence.
Therefore, th ' has a limit S, so the left-hand

on — S asn — oo and Sy, 1 — S as n — oo.
uence {5, } converges to the limit of S, since
tains all elements of the sequence {S,,}

So, we have proved
This means that the
any neighborhood of the point
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(with even and odd indjce ith the possible exception of some finite number
of its initial elements-

The convergefice of theNsequence of partial sums {S,} to a finite limit
means that the corresponding series > r-,(—1)*"1a; converges. O

REMARK.

The theorem on the convergence of the Leibniz series guarantees only its
conditional convergence. For example, the series Y -, (_1,2“1 is a Leibniz
series, however, we previously established that the harmonic series Y -, %,
consisting of absolute values of terms of the initial series, is divergent. In
what follows, we will prove that the sum of the series Y 7, (_1,2“1 is equal

to In 2.

Estimation of the Leibniz series
in terms of its partial sums \3.11B/15:33 (14:19) \

THEOREM (ON THE ESTIMATION OF THE LEIBNIZ SERIES IN TERMS
OF ITS PARTIAL SUMS).

Let S0, (=1)F*ta, = S be the Leibniz series and S, = >_1_,(—=1)*tay
be its partial sums. Then, for any £ € N, the following estimate holds:

S — §_14_| < Gkl (3)

PROOF.
In the proof of the previous theorem, we established that the sequence
{Sa,} is non-decreasing This means that the following
equality holds for all n €

S2n S S.

(4)

all n € N:
S < Sopti.
Let us subtrac
S — Sof < Sopy1 — Son = Aon41- (6)

It followg from inequality (4) that S — Sy, > 0. Therefore, inequality (6)
can be rewritten in the form


https://www.youtube.com/watch?v=l1j-OAwBM5w&t=15m33s

(7)

It follows from inequality (5) that Sy, 1 —S > 0. Therefore, inequality (7)

We have obtpdned egtimate (3) for the case of odd k.
Thus, estipfate (3) is proved for all positive integers k. [J

Dirichlet’s test and Abel’s test for conditional

convergence of a numerical series

Dirichlet’s test for conditional convergence
of a numerical series |3.11B/29:52 (04:29)|, 3.12A/00:00 (03:18)

THEOREM (DIRICHLET’S TEST FOR CONDITIONAL CONVERGENCE OF
A NUMERICAL SERIES).

Let the following conditions be satisfied for the series Y~ | ayby:

1)3IM VneN |Y_ a| <M; -

2) by — 0 as k — oo, {b;} is monotone.

Then the series Y ;- ; apby converges (generally speaking, conditionally).

PROOH!,

Let us show thaty for the series > .- | arbf, the condition for the Cauchy
criterion for the convégygence of a numericalseries is fulfilled. For this, we will
obtain an estimate for 1akbk’ when m,p € N.

First, let us transform h—m-1 @kbr using the auxiliary notation
A, =1 ;
n — Zk:l Qg
m-+p m-+p m-+p
E arby k—1)br, = E Ayby — E Ap-1bg =
k=m+1 k=m+1 k=m+1
m+p+1
— E k—10k—1 — E Aoy =
k=m+2 k=m+1

IThere is no proof of this theorem in video lectures.


https://www.youtube.com/watch?v=l1j-OAwBM5w&t=29m52s
https://www.youtube.com/watch?v=vlcY9UpBHGg&t=00m01s
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m-+p m-+p
= Anipbmrp + D\ Av1bef— Y Apoiby — Anbpir =
k=m+ k=m+2
= Anipbmap + 1(bk—1 — bi) — Abpya.
Let us estimate the value akbk| using condition 1 of the theorem,
from which it follows that | Ay keN

m—+p
> abi] = [Anssbos A (bt = b) = Anbuia | <

k=m+1

Since, by condition 2 gt the theorem, thé sequence {b;} monotonously
approaches 0, we obtain that all the differences b,_1 — b, have the same sign.
Therefore, in the sum S_777  |bp_1 — by|, the’absolute value sign can be

k=m+2
moved outside the sunysign:

m—+p
D fbror — bl = =
k=m+2
= (b1 = bipya) + = bn+3) + -+ (biap-1 = binap)| =
= by — b

Now we substitute

It remains to use the coudition pf, — 0 as £ — oo, which can be written

as follows:
€
IN N m —.
Ve>0 eN V> VpeN b +p\<4M
For }Z;njﬁﬂ akbk|, we/inally
m+p e e
k=m+1

We have proved that the Cauchy criterion condition is satisfied for the
initial series:



m—+p
Ve>0 INEW Vs N VpeN | Y ab<e
k=m+1
Therefore, the series b converges. [
Examples of applying Dirichlet’s test \3. 12A/03:18 (11:41) \

1. Once again, let us turn to the Leibniz series and write it in the following
form: Zzozl(—l)k*l’bﬁ_. By the definition of the Leibniz series, two conditions
are satisfied for the sequence {b;}: b — 0 as k — oo, {by} is monotone.
Thus, the condition 2 of Dirichlet’s test is satisfied for {b;}. Also we can
take the sequence {1 !kH} as the sequence {a;}. Obviously, this sequence

satisfies condition 1 of Dirichlet’s test:
R R O-o\f&

VneN ‘Zak‘—1—1+1—1+ <1
k=1 p—

Thus, the convergence of the Leibniz serieg follows directly from the Dirich-
let’s test.

2. Consider the following seriest” > 1o, Sigfx, r)e R, a>0 Ifa>1,
then this series converges absolutely foramy-—& MR, since, in this case, The
absolute value of its common term can be estimated as follows:

sin kx < 1 ol >
‘ ke ’ ke w,e/v-?e/)

Earlier, whé& dlscussing the integral convergence test, we established that
the series >, ka converges for a > 1. Therefore, using the comparison test,
we obtain that the series Y ;- l‘smkm

ns that/the 4
series 7, SBEZ copver bsolutel a\‘ =
k=1 ges absolutely. z

Dirichlet’s test are satisfied for the series > ey

First, we discard the case of x = 2mm, m € Z;SMce in this case all terms
of the series turn to 0 and therefore the sum of the series is also 0.

We take = as by, since it is obvious that the sequence { ka} is monotone
(decreasing) and approaches zero as k — oco. We take sin kz as ﬁ
that condition 1 of Dirichlet’s test is satisfied for partial sumy Y, _, sin k.
To do this, we transform this partial sum by multiplying and dividing the

common term by 2sin § (this factor is not equal to 0, since we assume that
x #2mrm, meL):

Consider the case o € (0, 1] and show that i s case all Condltlons of

n . .
Z2smkxsm% , Y

2 sin kx sin —

— 2sinj _2sin§k:1 2 {E;?X)'X\[L
a


https://www.youtube.com/watch?v=vlcY9UpBHGg&t=03m18s
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Let us transform the produs{ of the giies sin kz sin§ according to the
formula QSinozsinﬁ = cos(a — BN\ cosptx + (3):

ZQsmkxsm— = Z <c

k=1
B x 3 3 ST
—COS§—COS?—|—0087 087+---+
+COSM—COS =COS§—COSM.
2 2 2
Now let wus transfor ast difference using the formula
cosa — cos B = 2sin BJFO‘ sin
T (2n + 1)z (n+ Dz . nx
COS§—COST T 81n7.

Substituting the resulting expresston into the right-hand side of (9), we
finally obtain

(n+1)x . nx sin (n—‘; 1 sin o

1
k = 2 _— _— =
E Sln Xr = 2 sm T sm 2 Sin 2 sin T
k=1 2

This implies the followmg estimate for partial sum y ,_; sinkz, n € N:

‘Zsm kx‘ <
|sm

T}T,\Gmfm’iofl of Dirichlet’s test is also satisfied, and the series
Sope EL §s convergent for v € (0,1]. However, for these values of a,

—vconvergence is conditional.

The proof of the absence
of absolute convergence 3.12A/14:59 (06:03)

The fact that the seridg > -, Sigf‘” is not absolutely convergent for
a € (0,1] is proved in the sathe way as a spfilar fact for the improper inte-

gral f1+oo Sig” dx. First of all, régall the gétimate for the function Slifx, this

estimate is valid for all k and x:
sin kx sin? kz
R

Let us prove that the series
partial sum and transform it as fol

Zsm kx_zn:

k=1

(10)

hverges. To do this, consider its

1 1 = cos 2kzx
. 11
2 ke 2 p ko (11)



https://www.youtube.com/watch?v=vlcY9UpBHGg&t=14m59s

The second term on the right-hand side of (11) has a finite limit as n — oo,

since the series Y >, Cozz’m is fact can be proved in the same
way as the convergence of the series ;-4 Slgfx). The first term on the right-

hand side of (11) approaches in as n — oo, since the series > ;o &

o

Therefore, the right-hefid sidg”of equality (11) has an infinite limit as

.. . . .2
n — 00, this is also trueNopthe left-hand side, so the series 220:1 S”}ff“’”

test, we obtain from estimate (10) that the

ferges. So, for a € (0, 1], the initial series Yo | SkL

series Yy |22 also

converges conditionally.

Abel’s test for conditional convergence
of a numerical series 3.12A/21:02 (06:58)

THEOREM (ABEL’S TEST FOR CONDITIONAL CONVERGENCE OF A NU-

MERICAL SERIES). —DM_CL @:’S

Let the following conditions be satisfied for a series Y, | axby: Y

1) the series ;- aj converges; D) Z G

2) the sequence {by} is monotone and bounded. k=, ¥

Then the series Y - apby converges (generally speaking, condi%ﬁjrrécﬂy')-'{

REMARK.

If we compare Dirichlet’s test and Abel” test, then it can be noted that in
Abel’s test, condition 1 is stronger (since the convergence of the corresponding
series is required instead of uniformly boundedness of its partial sums) and
condition 2 is weaker (since it is not necessary that the sequence {by} had
a zero limit).

PROOF.
By virtue of the theorem on monotone and bounded sequences, the se-
quence {b;} has a finite limit: by — ¢ as k — oo. : c+0 "
We transform the partial sum of the initial serje€ as follows: S
n n n
Zakbk=2ak(bk—c+c)=Zak(bk—c)+ (12)
k=1 k=1 [ h=1 NG

The second term on the right-hand side of (12) has a finite limit as n — oo,
since, by condition 1, the series Y/~ a converges.

The first term on the right-hand side of (12) is a partial sum of the series
> ooy ak(by — ¢), which converges according to Dirichlet’s test. Indeed, con-
dition 1 of Dirichlet’s test follows from condition 1 of Abel’s test, since if the


https://www.youtube.com/watch?v=vlcY9UpBHGg&t=21m02s
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series > ;- ay converges, then its partial sums are uniformly bounded. Con-
dition 2 of Dirichlet’s test follows from condition 2 of Abel’s test and the fact
that limy_, by = ¢, since in this case the sequence {b; — ¢} monotonously
approaches zero as k — 0o. So, the first term on the right-hand side of (12)
also has a finite limit.

Therefore, the partial sums > ) _; aib; also have a finite limit, and the
initial series converges. []

Additional remarks on absolutely
and conditionally convergent series  [3.124/28:00 (07:07)]

The question arises: will thy sum of the copvergent series Y, ; aj, change
if the order of its terms is change{? For exapiple, it is possible to organize the

Moreover, if the series conditigndlly converges, then, by rearranging its
terms, it can be achieved that the resulting series converges to any pre-selected
number A € R or diverges/ This fact iS\galled the Riemann theorem on

conditionally convergent series (its proof is given, for example, in [18, Ch.8,
Sec. 41.4]).


https://www.youtube.com/watch?v=vlcY9UpBHGg&t=28m01s
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