14. Alternating series and conditional convergence

Alternating series

Definition of conditional convergence, alternating series, and the Leibniz series

$$
3.11 \mathrm{~B} / 00: 00 \quad(04: 22)
$$

Definition 1.

The series $\sum_{k=1}^{\infty} a_{k}$ is called conditionally convergent if it converges and the series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges. Thus, a convergent series is called conditionally convergent if it does not converge absolutely.

Such a situation is possible only when the terms of a series have different signs.

Definition 2.
A series of the form $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ is called an it alternating series, if all elements of the sequence $\left\{a_{k}\right\}$ have the same sign.

Definition 3.
An alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ is called the Leibniz series, if the sequence $\left\{a_{k}\right\}$ monotonously approaches zero as $k \rightarrow \infty$.

Remarks.

1. When studying Leibniz series of the form $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$, we assume, for definiteness, that $a_{k}>0, k \in \mathbb{N}$ (in this case, the sequence $\left\{a_{k}\right\}$ is a non-increasing sequence approaching zero).
2. The "Leibniz series" notion is also referred to the alternating series of $k=1 / 2$ a special form $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2 k-1}$, which was studied by G.W. Leibniz (he proved that the sum of this series is equal to $\frac{\pi}{4}$).

Theorem on the convergence of the Leibniz series

Theorem (on the convergence of the Leibniz series). The Leibniz series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ converges.

$$
a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\ldots
$$

$$
a_{k}>0 \quad a_{k} \rightarrow 0
$$

Proof.
Consider the partial sums of the Leibniz series with an even/number of terms:

$$
\begin{equation*}
S_{2 n}=\sum_{k=1}^{2 n}(-1)+a_{k}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots+a_{2 n-1}-a_{2 n} \tag{1}
\end{equation*}
$$

We place parentheses on the right-hand side ft equality (1) as follows:

$$
S_{2 n}=\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\ddot{\varkappa}\left(a_{2 n-1}-a_{2 n}\right) .
$$

Since the sequence $\left\{a_{k}\right\}$ is non-increasing, we obtain that each expression in parentheses is non-negativg. $a_{2 k-1}-a_{2 k} \geq 0, k=1,2, \ldots$ Hence,

$$
S_{2 n+2}=S_{2 n}+\left(a_{2 n+1}-a_{2 n+2}\right) \geq S_{2 n}
$$

This estimate means that the sequence of partial sums $\left\{S_{2 n}\right\}$ is nondecreasing.

Now we put parentheses in (1) in another wa/

$$
S_{2 n}=a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)--\left(a_{2 n-2}-a_{2 n-1}\right)-a_{2 n}
$$

Since, as before, eack expression in parentheses is non-negative, we obtain that the sum $S_{2 n}$ is estimated fron above by the value a_{1} :

$$
S_{2 n} \leq a_{1}
$$

Thus, the sequenee $\left\{S_{2 n}\right\}$ is het only non-decreasing, but also bounded from above. Then, by virtue of the convergence theorem for monotone bounded sequences, the sequence $\left\{S_{2 n}\right\}$ has a finite limit S :

$$
\lim _{n \rightarrow \infty} S_{2 n}=S
$$

Consider the partial sums of the Leibniz series with an odd number of terms: $S_{2 n+1}$. For them, the following equatity holds:

$$
\begin{equation*}
S_{2 n+1}=S_{2 n}+a_{2 n+1} \tag{2}
\end{equation*}
$$

We have already proved thet $S_{2 n} \rightarrow S$ as $n \rightarrow \infty$. In addition, $a_{2 n+1} \rightarrow 0$ as $n \rightarrow \infty$, since by condition $a_{k} \longrightarrow 0$ as $k \rightarrow \infty$ and thus the subsequence $\left\{a_{2 n+1}\right\}$ of the sequence $\left\{a_{k}\right\}$ must ass converge to this limit by the theorem on the limit of subspquences of a converghig sequence.

Therefore, the right-hand side of equality (\% has a limit S, so the left-hand side approaches the same limit.

So, we have proved $S_{2 n} \rightarrow S$ as $n \rightarrow \infty$ and $S_{2 n+1} \rightarrow S$ as $n \rightarrow \infty$. This means that the eqtire sequence $\left\{S_{n}\right\}$ converges to the limit of S, since any neighborhood of the point S cotains all elements of the sequence $\left\{S_{n}\right\}$
(with even and odd indices), with the possible exception of some finite number of its initial elements

The convergence of the sequence of partial sums $\left\{S_{n}\right\}$ to a finite limit means that the corresponding series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ converges. \square

Remark.
The theorem on the convergence of the Leibniz series guarantees only its conditional convergence. For example, the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ is a Leibniz series, however, we previously established that the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$, consisting of absolute values of terms of the initial series, is divergent. In what follows, we will prove that the sum of the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$ is equal to $\ln 2$.

Estimation of the Leibniz series in terms of its partial sums

$$
3.11 \mathrm{~B} / 15: 33 \quad(14: 19)
$$

Theorem (on the estimation of the Leibniz series in terms of its partial sums).

Let $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}=S$ be the Leibniz series and $S_{n}=\sum_{k=1}^{n}(-1)^{k+1} a_{k}$ be its partial sums. Then, for any $k \in \mathbb{N}$, the following estimate holds:

$$
\begin{equation*}
\frac{\mid S}{\mathrm{OOF}}-\underline{S_{k} \mid} \leq a_{k+1} \tag{3}
\end{equation*}
$$

Proof.
In the proof of the previous theorem, we established that the sequence $\left\{S_{2 n}\right\}$ is non-decreasing dnd has a limit S. This means that the following equality holds for all $n \in \mathbb{N}$.

$$
\begin{equation*}
S_{2 n} \leq S \tag{4}
\end{equation*}
$$

On the other hand, the sequende $\left\{S_{2 n+1}\right\}$ is non-increasing since

$$
\begin{aligned}
& S_{2 n+1}=a_{y}-\left(a_{2}-a_{3}\right)-\cdots\left(a_{2 n-2}-a_{2 n-1}\right)-\left(a_{2 n}-a_{2 n+1}\right) \geq \\
& \quad \geq a_{1}-\left(a_{2}-a_{3}\right)-\cdots-\left(a_{2 n-2}-a_{2 n-1}\right)=S_{2 n-1} .
\end{aligned}
$$

In addition, its limit is also equal to S. Therefore, the equality holds for all $n \in \mathbb{N}$:

$$
\begin{equation*}
S \leq S_{2 n+1} \tag{5}
\end{equation*}
$$

Let us subtract $S_{2 n}$ from both sides of inequality (5):

$$
\begin{equation*}
S-S_{2} h \leq S_{2 n+1}-S_{2 n}=a_{2 n+1} \tag{6}
\end{equation*}
$$

It follow from inequality (4) that $S-S_{2 n} \geq 0$. Therefore, inequality (6) can be rewritten in the form

$$
\left|S-S_{2 n}\right| \leq 2_{2 n+1} .
$$

We have obtained estimate (3) for the case of even k.
Now we turn to inequalix (4) and subtract $S_{2 n-1}$ from both its parts:

$$
S_{2 n}-S_{2 n-1}<8-S_{2 n-1}
$$

Since $S_{2 n}-S_{2 n-1}=-a_{2 n}$, this inequality can be transformed as follows:

$$
\begin{equation*}
S_{2 n-1}-S \leq a_{2 n} . \tag{7}
\end{equation*}
$$

It follows from inequality (5) that $S_{2 n-1}-S \geq 0$. Therefore, inequality (7) can be rewritten fin the form

$$
\left|S_{2 n-1}-S\right|=a_{2 n} .
$$

We have obtzined estimate (3) for the case of odd k.
Thus, estiplate (3) is proved for all positive integers k.

Dirichlet's test and Abel's test for conditional convergence of a numerical series

Dirichlet's test for conditional convergence of a numerical series 3.11B/29:52 (04:29), 3.12A/00:00 (03:18)

Theorem (Dirichlet's test for conditional convergence of a numerical series).

Let the following conditions be satisfied for the series $\sum_{k=1}^{\infty} a_{k} b_{k}$:

1) $\exists M \quad \forall n \in \mathbb{N} \quad\left|\sum_{k=1}^{n} a_{k}\right| \leq M$;
2) $b_{k} \rightarrow 0$ as $k \rightarrow \infty,\left\{b_{k}\right\}$ is monotone.

Then the series $\sum_{k=1}^{\infty} a_{k} b_{k}$ converges (generally speaking, conditionally).
Proofl
Let us show that for the series $\sum_{k=1}^{\infty} a_{k} b / /$, the condition for the Cauchy criterion for the convegence of a numerical/series is fulfilled. For this, we will obtain an estimate for the sum $\left|\sum_{k=m}^{m+p} a_{1} a_{k} b_{k}\right|$ when $m, p \in \mathbb{N}$.

First, let us transform che sum $\sum_{k=m+1}^{k+p} a_{k} b_{k}$ using the auxiliary notation $A_{n}=\sum_{k=1}^{n} a_{k}:$

[^0]\[

$$
\begin{aligned}
& =A_{m+p} b_{m+p}+\sum_{k=m+2}^{m+p} A_{k-1} b_{k-1}-\sum_{k=m+2}^{m+p} A_{k-1} b_{k}-A_{m} b_{m+1}= \\
& =A_{m+p} b_{m+p}+\sum_{=m+2}^{m+p} A_{1}\left(b_{k-1}-b_{k}\right)-A_{m} b_{m+1} .
\end{aligned}
$$
\]

Let us estimate the value $\sum_{k=m+1}^{m+p} a_{k} b_{k} \mid$ using condition 1 of the theorem, from which it follows that $\left|A_{k}\right| \leq M$ for $k \in \mathbb{N}$:

$$
\begin{align*}
& \left|\sum_{k=m+1}^{m+p} a_{k} b_{k}\right|=\left|A_{m+p} b_{m+p}+\sum_{m+2}^{m+p} A_{k-1}\left(b_{k-1}-b_{k}\right)-A_{m} b_{m+1}\right| \leq \tag{8}\\
& \quad \leq M\left|b_{m+p}\right|+M \sum_{k=n+2}^{m+p}\left|b_{k-1}-b_{k}\right|+M\left|b_{m+1}\right|
\end{align*}
$$

Since, by condition 2 of the theorem, the sequence $\left\{b_{k}\right\}$ monotonously approaches 0 , we obtain that all the differences $b_{k-1}-b_{k}$ have the same sign. Therefore, in the sum $\sum_{k=m+2}^{m+p}\left|b_{k-1}-b_{k}\right|$, thd absolute value sign can be moved outside the sun sign:

$$
\begin{aligned}
& \sum_{k=m+2}^{m+p}\left|b_{k-1}-b_{k}\right|=\left|\sum_{m+2}^{m+p}\left(b_{k},-b_{k}\right)\right|= \\
& \quad=\mid\left(b_{m+1}-b_{m+2}\right)+ \\
& \quad=\left|b_{m+1}-b_{m+n}\right|=\left|b_{m+1}\right|+\left|b_{m+p}\right|
\end{aligned}
$$

Now we substitute the estimate for $\sum_{k+p}^{m+p} \sum_{m+2}^{m+2}\left|b_{k-1}-b_{k}\right|$ into inequality (8):

$$
\begin{aligned}
& \left|\sum_{k=m+1}^{m+p} a_{k} b_{k}\right| \leq M\left|b_{m+p}\right|+M\left(\left|b_{m+1}\right|+\left|b_{m+p}\right|\right)+M\left|b_{m+1}\right|= \\
& \quad=2 M\left(\left|b_{m+1}\right|+\left|b_{m+p}\right|\right)
\end{aligned}
$$

It remains to use the condition $b_{k} \rightarrow 0$ as $k \rightarrow \infty$, which can be written as follows:

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall \gg N \quad \forall p \in \mathbb{N} \quad\left|b_{m+p}\right|<\frac{\varepsilon}{4 M}
$$

For $\left|\sum_{k=m+1}^{m+p} a_{k} b_{k}\right|$, we finally get

$$
\left|\sum_{k=m+1}^{m+p} a_{k} b_{k}\right| \not \subset 2 M\left(\left|b_{m+1}\right|+\left|b_{m+y}\right|\right)<2 M\left(\frac{\varepsilon}{4 M}+\frac{\varepsilon}{4 M}\right)=\varepsilon .
$$

We have proved that the Cauchy criterion condition is satisfied for the initial series:

$$
\forall \varepsilon>0 \quad \exists N \in \mathbb{N} \quad \forall m />N \quad \forall p \in \mathbb{N} \quad\left|\sum_{k=m+1}^{m+p} a_{k} b_{k}\right|<\varepsilon
$$

Therefore, the series $\sum_{k=1}^{\infty} \alpha_{k} b_{k}$ converges.
Examples of applying Dirichlet's test

$$
3.12 \mathrm{~A} / 03: 18 \quad(11: 41)
$$

1. Once again, let us turn to the Leibniz series and write it in the following form: $\sum_{k=1}^{\infty}(-1)^{k+1} b_{k}$. By the definition of the Leibniz series, two conditions are satisfied for the sequence $\left\{b_{k}\right\}: b_{k} \rightarrow 0$ as $k \rightarrow \infty,\left\{b_{k}\right\}$ is monotone. Thus, the condition 2 of Dirichlet's test is satisfied for $\left\{b_{k}\right\}$. Also we can take the sequence $\left\{(-1)^{k+1}\right\}$ as the sequence $\left\{a_{k}\right\}$. Obviously, this sequence satisfies condition 1 of Dirichlet's test:

$$
\forall n \in \mathbb{N}\left|\sum_{k=1}^{n} a_{k}\right|=|1-1+1-1+\ldots| \leq 1
$$

Thus, the convergence of the Leibniz series follows directly from the Dirichlet's test.
2. Consider the following series $\sum_{k=1}^{\infty} \frac{\sin k x}{k^{\alpha}}, x \in \mathbb{R}, \alpha>0$. If $\alpha>1$, then this series converges absolutely for $x \in \notin$, since, in this case, the absolute value of its common term can be estimated as follows:

$$
\left|\frac{\sin k x}{k^{\alpha}}\right| \leq \frac{1}{k^{\alpha}} \text {. } \quad \alpha>1
$$

Earlier, when discussing the integral convergence test, we established that the series $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converges for $\alpha>1$. Therefore, using the comparison test, we obtain that the series $\sum_{k=1}^{\infty}\left|\frac{\sin k x}{k^{\alpha}}\right|$ also converges, which means that the series $\sum_{k=1}^{\infty} \frac{\sin k x}{k^{\alpha}}$ converges absolutely. $\quad a_{k}=\sin k x, b_{k<}=$

Consider the case $\alpha \in(0,1]$ and show that in this case all conditions of Dirichlet's test are satisfied for the series $\sum_{k=1}^{\infty} \frac{\sin k x}{k^{\alpha}}$.

First, we discard the case of $x=2 \pi m, m \in \mathbb{Z}$, since in this case all terms of the series turn to 0 and therefore the sum of the series is also 0 .

We take $\frac{1}{k^{\alpha}}$ as b_{k}, since it is obvious that the sequence $\left\{\frac{1}{k^{\alpha}}\right\}$ is monotone (decreasing) and approaches zero as $k \rightarrow \infty$. We take $\sin k x$ as a_{k} and show that condition 1 of Dirichlet's test is satisfied for partial sun $\sum_{k=1}^{n} \sin k x$. To do this, we transform this partial sum by multiplying and dividing the common term by $2 \sin \frac{x}{2}$ (this factor is not equal to 0 , since we assume that $x \neq 2 \pi m, m \in \mathbb{Z}):$

$$
\sum_{k=1}^{n} \frac{2 \sin k x \sin \frac{x}{2}}{2 \sin \frac{x}{2}}=\sum_{2 \sin \frac{x}{2}} \sum_{k=1}^{n} 2 \sin k x \sin \frac{x}{2}
$$

Let us transform the product of the shes $\sin k x \sin \frac{x}{2}$ according to the formula $2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)$:

$$
\begin{aligned}
& \sum_{k=1}^{n} 2 \sin k x \sin \frac{x}{2}=\sum_{k=1}^{n}\left(\cos \left(x-\frac{x}{2}\right)-\cos \left(k x+\frac{x}{2}\right)\right)= \\
& =\cos \frac{x}{2}-\cos \frac{3 x}{2}+\cos \frac{3 x}{2}-\cos \frac{5 x}{2}+\cdots+ \\
& \left.\quad+\cos \frac{(2 n-1) x}{2}-\cos 2 n+1\right) x \\
&
\end{aligned}
$$

Now let us transform the last difference using the formula $\cos \alpha-\cos \beta=2 \sin \frac{\beta+\alpha}{2} \sin \frac{\beta-\alpha}{2}:$

$$
\cos \frac{x}{2}-\cos \frac{(2 n+1) x}{2} \neq 2 \sin \frac{(n+1) x}{2} \sin \frac{n x}{2}
$$

Substituting the resulting expression into the right-hand side of (9), we finally obtain

$$
\sum_{k=1}^{n} \sin k x=\frac{1}{2 \sin \frac{x}{2}} \cdot 2 \sin \frac{(n+1) x}{2} \sin \frac{n x}{2}=\frac{\sin \frac{(n+1) x}{2} \sin \frac{n x}{2}}{\sin \frac{x}{2}}
$$

This implies the following estimate for partial sum $\sum_{k=1}^{n} \sin k x, n \in \mathbb{N}$:

$$
\left|\sum_{k=1}^{n} \sin k x\right| \leq \frac{1}{\left|\sin \frac{x}{2}\right|}
$$

Thus, condition 1 of Dirichlet's test is also satisfied, and the series $\sum_{k=1}^{\infty} \frac{\sin k x}{k^{\alpha}}$ is convergent for $\alpha \in(0,1]$. However, for these values of α, Convergence is conditional.

The proof of the absence of absolute convergence

$$
3.12 \mathrm{~A} / 14: 59 \quad(06: 03)
$$

The fact that the series $\sum_{k=1}^{\infty} \frac{\sin k x}{k^{\alpha}}$ is not absolutely convergent for $\alpha \in(0,1]$ is proved in the sange way as a symilar fact for the improper integral $\int_{1}^{+\infty} \frac{\sin x}{x} d x$. First of all, recall the gstimate for the function $\frac{\sin k x}{k^{\alpha}}$; this estimate is valid for all k and x :

$$
\left|\frac{\sin k x}{k^{\alpha}}\right| \geq \frac{\sin ^{2} k x}{k^{\alpha}}
$$

Let us prove that the series $\sum_{k=1}^{\infty} \frac{\sin ^{2} / k x}{k^{\alpha}}$ diverges. To do this, consider its partial sum and transform it as folloys:

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\sin ^{2} k x}{k^{\alpha}}=\sum_{k=1}^{n} \frac{1-\cos 2 k x}{2 /^{\alpha}}=\frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^{\alpha}}-\frac{1}{2} \sum_{k=1}^{n} \frac{\cos 2 k x}{k^{\alpha}} \tag{11}
\end{equation*}
$$

The second term on the right-hand side of (11) has a finite limit as $n \rightarrow \infty$, since the series $\sum_{k=1}^{\infty} \frac{\cos 2 k x}{k^{\alpha}}$ converges (this fact can be proved in the same way as the convergence of the series $\sum_{k=1}^{\infty} \frac{\sin k x}{k^{a}}$. The first term on the righthand side of (11) approaches infinity as $n \rightarrow \infty$, since the series $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ diverges for $\alpha \in(0,1]$.

Therefore, the right-herd side of equality (11) has an infinite limit as $n \rightarrow \infty$, this is also true for the left-hand side, so the series $\sum_{k=1}^{\infty} \frac{\sin ^{2} k x}{k^{\alpha}}$ diverges. Using the comp arise test, we obtain from estimate (10) that the series $\sum_{k=1}^{\infty}\left|\frac{\sin k x}{k^{\alpha}}\right|$ also diverges. So, for $\alpha \in(0,1]$, the initial series $\sum_{k=1}^{\infty} \frac{\sin k x}{k^{\alpha}}$ converges conditionally.

Abel's test for conditional convergence of a numerical series

3.12A/21:02 (06:58)

Theorem (Abel's test for conditional convergence of a numerical series).

Let the following conditions be satisfied for a series $\sum_{k=1}^{\infty} a_{k} b_{k}$:

1) the series $\sum_{k=1}^{\infty} a_{k}$ converges;
2) the sequence $\left\{b_{k}\right\}$ is monotone and bounded.

Then the series $\sum_{k=1}^{\infty} a_{k} b_{k}$ converges (generally speaking, conditionader) $-A$, Remark.
If we compare Dirichlet's test and Abel' test, then it can be noted that in Abel's test, condition 1 is stronger (since the convergence of the corresponding series is required instead of uniformly boundedness of its partial sums) and condition 2 is weaker (since it is not necessary that the sequence $\left\{b_{k}\right\}$ had a zero limit).

Proof.
By virtue of the theorem on monotone and bounded sequences, the sequince $\left\{b_{k}\right\}$ has a finite limit: $b_{k} \rightarrow c$ as $k \rightarrow \infty$.

We transform the partial sum of the initial series as follows:

$$
\sum_{k=1}^{n} a_{k} b_{k}=\sum_{k=1}^{n} a_{k}\left(b_{k}-c+c\right)=\sum_{k=1}^{n} a_{k}\left(\widetilde{b_{k}-c}\right)+\sum_{k=1}^{n} a_{k} \text {. }
$$

The second term on the right-hand side of (12) has a finite limit as $n \rightarrow \infty$, since, by condition 1 , the series $\sum_{k=1}^{\infty} a_{k}$ converges.

The first term on the right-hand side of (12) is a partial sum of the series $\sum_{k=1}^{\infty} a_{k}\left(b_{k}-c\right)$, which converges according to Dirichlet's test. Indeed, condition 1 of Dirichlet's test follows from condition 1 of Abel's test, since if the
series $\sum_{k=1}^{\infty} a_{k}$ converges, then its partial sums are uniformly bounded. Condition 2 of Dirichlet's test follows from condition 2 of Abel's test and the fact that $\lim _{k \rightarrow \infty} b_{k}=c$, since in this case the sequence $\left\{b_{k}-c\right\}$ monotonously approaches zero as $k \rightarrow \infty$. So, the first term on the right-hand side of (12) also has a finite limit.

Therefore, the partial sums $\sum_{k=1}^{n} a_{k} b_{k}$ also have a finite limit, and the initial series converges.

Additional remarks on absolutely and conditionally convergent series

$$
3.12 \mathrm{~A} / 28: 00 \quad(07: 07)
$$

The question arises: will the sum of the copfvergent series $\sum_{k=1}^{\infty} a_{k}$ change if the order of its terms is changed? For exaphple, it is possible to organize the summation, for which, after each term a_{k} of the initial series with an odd index $\left(a_{1}, a_{3}, a_{5}, \ldots\right)$, several terms with eyen indices will follow, and their amount will increase by 1 each time $\left(a_{1}+a_{2}+a_{3}+a_{4}+a_{6}+a_{5}+a_{8}+a_{10}+a_{12}+a_{7}+\ldots\right)$ or it will double each time $\left(a_{1} \not \perp a_{2}+a_{3}+a_{4}+4_{6}+a_{5}+a_{8}+a_{10}+a_{12}+a_{14}+a_{7}+\ldots\right)$.

It turns out that, for an solutely connergent series, its sum does not change with any change in the onder of jus terms. However, for a conditionally convergent series, this statement is false.

Moreover, if the series conditiondly converges, then, by rearranging its terms, it can be achieved that the resulting series converges to any pre-selected number $A \in \mathbb{R}$ or diverges. This fact is called the Riemann theorem on conditionally convergent series (its proof is given, for example, in $[18, \mathrm{Ch} .8$, Sec. 41.4]).

[^0]: ${ }^{1}$ There is no proof of this theorem in video lectures.

