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Машинное обучение
Feature engineering
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Содержание лекции
● Теория и практические приемы извлечения 

признаков из данных разного типа (признаки 
для пар объектов, для групп (покупок), для 
кусочков временных рядов, для текстов, 
изображений)

● Трансформации признаков: 

– one-hot
– дискретизация
– выделение главных компонент (PCA, 

PLS)
– другие embeddings 

● Важность признаков (в т.ч. взаимная 
информация)
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Дата и время
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Дата и время
● День недели
● Месяц
● Время года
● Время суток
● Рабочие/нерабочие дни, праздники
● Рабочие/нерабочие часы
● Кластеризация
● Значения нескольких синусов с разными 

частотами (используется для 
позиционного кодирования в 
трансформерах)
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Признаки пар разнородных 
объектов

● Распространенный случай: заданы две 
таблицы, описывающие компоненты 
пары, с отношением "многие ко многим" 
и таблица с данными пар. Примеры: 

– (студент, дисциплина)
– (покупатель, товар)
– (пользователь, поисковой запрос)
– (хеш-тег, документ)
– (турист, гостиница)
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Признаки пар разнородных 
объектов

● Признаки компонент пары: группировка 
значений из одной таблицы по ключу 
другой и применение какой-нибудь 
операции (+, min, max, mean, exists,...)

● Пример: средний балл студента, 
средний балл дисциплины (сложность), 
наличие задолжников у дисциплины, ...

● Совместные признаки компонент пары: 
оценка студента по предмету, отличие 
оценки от средней для данной 
дисциплины (или для данного студента) 



7

Признаки пар однородных 
объектов

● Пример: пара товаров (какой понравится покупателю 
больше?), пара кандидатов (какой лучше?), пара 
студентов (кто сдаст экзамен лучше?)

● Методы, основанные на пороговых предикатах 
(градиентный бустинг деревьев), плохо воспринимают 
признаки компонент пары. Им нужны разности или 
отношения (вдобавок!).

● Пример: 
классификация датасета с верным классом: [x2>x1]

Логистическая
регрессия

Случайный
лес
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Признаки множеств

● Метод сумки (Bag of ...): описываем 
множество вектором, считая для 
каждого элемента количество его 
вхождений

● Примеры:
– тексты – Bag of words
– события – Bag of events
– для покупателей – Bag of purchases
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Bag of words
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Признаки множеств
● Распространенная проблема: большое 

количество разнообразных элементов, иногда 
даже все уникальны

● Пример: задача диагностики типа рака (основана 
на пропорциях патологий). Каждый кусочек 
изображения уникален. Выход: кластеризация 
элементов. После этого применяем BagOfWords 
(слово – это номер кластера)
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TF-IDF – выделение 
специфичных элементов

● Элементы, встречающиеся во всех 
множествах не так важны, как те, которые 
характеризуют лишь некоторые: 
TF-IDF = TF*IDF

 

– n
i
 – число вхождений i-того элемента во 

множество

– |d
i
t

i
| - число множеств с элементом t

i

– |D| - количество множеств
● Пример: вычислите TF-IDF слова "нейросеть" в 

сообщении на форуме мехмата, если автор употребил его 
2 раза в своем посте из 50 слов, а в общем на форуме оно 
встречается в 400 сообщениях из 10000
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Последовательности 
данных во времени
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Последовательности 
данных во времени

● набор последних значений
● mean/min/max за последние периоды
● экспоненциальное скользящее среднее
● тренд (коэффициенты линейной 

аппроксимации на последнем периоде)
● обобщение: коэф-ты авторегрессии
● количество пиков на последнем 

интервале
● вариация (интеграл от модуля 

производной)
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TSFRESH – Python-библиотека 
для автоматического извлечения 
и отсева признаков временных 

рядов 
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Тексты и изображения

● Word embeddings: Word2Vec (CBoW, 
skip-gram), GloVe (Global Vectors), 
Fasttext, ...

● Свертки изображений 
с ядрами, трансформеры
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Бинаризация признаков
(One Hot encoding)

● Пусть x - единственный признак 
(номинальный, закодированный: 0,1,2,...k)

● Классификатор: a(x) = sign(wx+w
0
)

● Проблема линейных алгоритмов: вес w 
нельзя подобрать так, чтобы 
классификатор был не монотонным. 

● Для любых w и w0 значения a(x) > 0 
когда x > w

0
/w и a(x) ≤ 0 в противном 

случае
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Бинаризация признаков
(One Hot encoding)

● Вместо одного номинального признака 
вводим k бинарных признаков. 
Пример (k=5):

● Возможна бинаризация и 
количественных признаков путем 
предварительной дискретизации

x1 x2 x3 x4 x5

Азов 0 0 0 0 1

Аксай 0 0 0 1 0

Ростов 0 0 1 0 0

Новочеркасск 0 1 0 0 0

Таганрог 1 0 0 0 0
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Скоринг
● Если все признаки – 

бинарные, то линейный 
классификатор удобно 
рассматривать как 
суммирование баллов 
(score): Sum += w

j
, если 

x
j
=1

● Рисунок – фрагмент 
скоринговой карты для 
вопроса о выдаче 
кредита
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Дискретизация признаков
● Квантильная дискретизация сохраняет 

равномерность ошибки оценки 
плотности вероятностей
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Стратегии KBinsDiscretizer
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Сингулярное разложение
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Метод главных компонент (PCA)
● f

1
(x), . . ., f

n
(x) — исходные числовые признаки;

● g
1
(x), . . ., g

m
(x) — новые числовые признаки, m<n;

● Требование: старые признаки должны 
линейно восстанавливаться по новым:

как можно точнее на обучающей выборке:
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Постановка задачи PCA в 
матричной форме

Найти: и новые признаки G , и 
преобразование U:
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Теорема
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Главная компонента датасета - 
направление наибольшей 

вариации точек

Альтернативное 
определение: 
главная компонента задает 
прямую, среднее расстояние 
точек датасета до которой 
минимально
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Следующие компоненты - такие 
же главные в ортогональном 
дополнении к предыдущим
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Самое распространенное 
приложение: понижение 
размерности датасета
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Главные компоненты датасета 
Olivetti faces 

Показывают ортогональные направления, вдоль которых лица датасета 
меняются сильнее всего
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Главные компоненты датасета 
рукописных цифр
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Применение PCA к сжатию 
изображений
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PCA – простейший пример 
трансформера
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PCA - простейший линейный 
трансформер

● Латентное пространство PCA - линейная оболочка, 
натянутая на первые несколько главных компонент

● Выбирая точки в латентном пространстве и 
применяя декодер, можно генерировать 
“искусственные” объекты, отсутствующие в датасете
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Генерация фото с помощью PCA

150 компонент 1500 компонент
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Управление генерацией в GAN

● Для генерации изображений с помощью GAN берут 
случайные точки в латентном пространстве

● Оказывается, что после трансформации нормально 
распределенной выборки на одном скрытом слое, 
главные компоненты в следующих слоях поддаются 
интерпретации

E.Härkönen, A.Hertzmann, J.Lehtinen, S.Paris GANSpace: Discovering Interpretable 
GAN Controls. arXiv:2004.02546 
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Управление генерацией в GAN
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Управление генерацией в GAN
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Поиск компонент смесей

● Дано: серия спектров для смеси веществ в 
процессе проведения некоторого эксперимента 
(изменяется температура/ давление/… и в 
результате меняются концентрации компонент)

● Найти: спектры 
чистых компонент и 
зависимость 
концентрации от 
меняющегося 
параметра 
эксперимента
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Подход на основе PCA

● Благодаря линейности преобразования в 
латентном пространстве смеси тоже являются 
линейными комбинациями точек и имеют вид 
(для 2-х компонент):   
c1(t) Spectr1+c2(t) Spectr2⋅ ⋅

● Что за фигура получается в результате 
изменения температуры t ?

● А если компонент три: 
c1(t) Spectr1+c2(t) Spectr2+c3(t) Spectr3 ?⋅ ⋅ ⋅
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Смеси двух и трёх компонент в 
латентном пространстве

Ternary plot
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Пример Co TEMPO
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Применение к наборам текстов
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SVD-разложение 
Term-Document матрицы

Числа в диагональной матрице имеют смысл 
“важностей” тем в нашей коллекции документов
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Пример
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Оставили только главные 
компоненты
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Пример работы
Самые весомые слова 

в полученных темах новостей
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Пример работы 2
Визуализация документов
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Сколько главных компонент 
брать?

● Критерий “крутого склона”:
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PLS - Partial Least Squares
● PCA находит компоненты, 

хорошо аппроксимирующие
матрицу X, но 
не связанные с y

● Компоненты PLS ищутся
из условия максимизации корреляций с y 
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Другие embeddings
● Многомерность многих датасетов 

искусственно завышена. Пример: 
наблюдаемый набор данных 
физического эксперимента, в котором 
все зависит от двух варьирующихся 
параметров  
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Другие embeddings
● Проекция датасета на случайные 

ортогональные вектора – не самый 
хороший способ уменьшения 
размерности 
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Другие embeddings
● Выбор PCA/PLS или LDA направлений 

позволяет получить более "интересные" 
результаты
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LDA – линейный 
дискриминантный анализ

● Моделирование распределения объектов 
в классах многомерными нормальными 
распределениями с общей 
ковариационной матрицей

● В качестве "главных направлений" 
выбираются вектора, проекции μk на 
которые имеют максимальную вариацию
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MDS – многомерное 
шкалирование

● Находит преобразование пространства 
объектов в пространство меньшей 
размерности, сохраняющее расстояния 
между объектами.

● Многие методы оптимизируют 
функционал стресса:

Rij – исходные расстояния
dij – расстояния в пространстве меньшей 
размерности
wij – неизвестные веса 
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tSNE – стохастическое вложение 
соседей с t-распределением

● Похожесть точки данных xj точке xi является 
условной вероятностью pj|i, что для xi будет 
выбрана xj в качестве соседней точки, если соседи 
выбираются пропорционально их гауссовой 
плотности вероятности с центром в xi 

● В пространстве меньшей размерности для расчета 
похожести qj|i применяется t-распределение 
Стьюдента

● Расположение точек в пространстве меньшей 
размерности итерационно подбирается 
минимизацией расстояния Кульбака — Лейблера 
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Перплексия в tSNE
● Регулирует ожидаемую плотность вокруг 

каждой точки или, другими словами, 
устанавливает соотношение целевого 
количества ближайших соседей к 
интересующей точке.
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Перплексия в tSNE
● Регулирует ожидаемую плотность вокруг 

каждой точки или, другими словами, 
устанавливает соотношение целевого 
количества ближайших соседей к 
интересующей точке.
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Перплексия в tSNE
● Регулирует ожидаемую плотность вокруг 

каждой точки или, другими словами, 
устанавливает соотношение целевого 
количества ближайших соседей к 
интересующей точке.
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Перплексия в tSNE
● Регулирует ожидаемую плотность вокруг 

каждой точки или, другими словами, 
устанавливает соотношение целевого 
количества ближайших соседей к 
интересующей точке.
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Перплексия в tSNE
● Регулирует ожидаемую плотность вокруг 

каждой точки или, другими словами, 
устанавливает соотношение целевого 
количества ближайших соседей к 
интересующей точке.
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Перплексия в tSNE
● Регулирует ожидаемую плотность вокруг 

каждой точки или, другими словами, 
устанавливает соотношение целевого 
количества ближайших соседей к 
интересующей точке.
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Перплексия в tSNE
● Регулирует ожидаемую плотность вокруг 

каждой точки или, другими словами, 
устанавливает соотношение целевого 
количества ближайших соседей к 
интересующей точке.
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Перплексия в tSNE
● Регулирует ожидаемую плотность вокруг 

каждой точки или, другими словами, 
устанавливает соотношение целевого 
количества ближайших соседей к 
интересующей точке.
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Взаимная информация
Взаимная информация 
описывает количество 
информации, содержащееся 
в одной случайной величине 
относительно другой. 
Она определяется через 
энтропию и условную энтропию двух 
случайных величин
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Задачи на экзамен
● Придумайте алгоритм извлечения признаков из 

геоданных (широта, долгота)
● Извлеките хорошие признаки по наборам 

взаимодействий пользователей с сайтом мехмата 
(множество действий и их временных меток)

● По данным из системы БРС в течении семестра 
предскажите оценки студентов на сессии. 
Объектом является пара (студент, дисциплина). 
Данные содержат баллы и временные метки, 
заносимые преподавателем в БРС в течении 
семестра

● Придумайте хорошие признаки, описывающие 
посетителя сайта по данным из HTTP-заголовков 
User Agent, Referer и IP-адреса
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Задачи на экзамен
● Сгенерируйте несколько множеств разного 

размера из вещественных чисел на интервале 
[0;1]. Будем считать одно множество – 
характеристикой одного объекта. Придумайте 
алгоритм извлечения признаков и примените его 
к сгенерированным множествам
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