Intro to React, Redux,
and TypeScript

Mark Erikson

@acemarke
December 2020

Who Am I?

Answerer of Questions

@acemarke @markerikson
Twitter, Reactiflux, Stack Overflow, Github
Reddit, HN

Collector of Interesting Links
React/Redux Links Redux Ecosystem Links

Who Am I?
Writer of Very Long Posts

blog.isquaredsoftware.com

"ldiomatic Redux" A (Mostly) Complete Guide to
opinions series React Rendering Behavior
Redux Maintainer
Redux Docs Redux Libraries
Redux Essentials tutorial e Wrote React-Redux v7
Redux FAQ e Directed React-Redux v7.1 hooks
Structuring Reducers API

Redux Style Guide e Created Redux Toolkit

Who Am I?
That Guy With The Simpsons Avatar

Notes

e The code samples use the latest modern ES6+ JavaScript syntax,
such as arrow functions and destructuring. None of those are
required to use React, but most React applications use ES6 and
newer features.

e Some of the code samples are shortened or formatted differently
in order to fit them into the slides, and aren't representative of
production code.

e | am a Redux maintainer, and spend most of my time answering
qguestions about React and Redux. So, I'm just a bit biased ;)

e |otsof infoin these slides:
o Intended to be an overview, not a complete reference

Prerequisites

These slides assume knowledge of modern JS syntax (ES6+), async JS,
HTML, and CSS. See these resources for background on relevant
concepts.

How Web Apps Work series

Overviews of key web dev terms, technologies, and concepts:

HTTP and Servers

Client Development and Deployment
Browsers, HTML, and CSS

JavaScript and the DOM

AJAX, APIls, and Data Transfer

JavaScript for Java Devs

A cheatsheet to modern JS syntax and concepts, along with key tools
iNn the JS ecosystem:

e JavaScript for Java Devs

Using React to Create
User Interfaces

JavaScript Frameworks

Every framework can be viewed as an attempt to say "the
hardest part of writing a webapp is $X, so here's some code to
make that easier".

Knockout.js is basically what you get when a dev says "the hardest
part of writing a webapp is implementing two-way data binding",
which you can tell because that's basically 90% of what the
framework does.

Similarly, Backbone is the result of feeling like the hard parts are
fetching and persisting models to a REST API, and client side
routing; that's basically all it does. Figuring out how to turn your
models into HTML is easy (apparently), but models are hard, so it
helps you.

e Reddit user /u/Cody_Chaos

JavaScript Frameworks

Angular is what you get if you think the biggest problem with
writing webapps is that Javascript isn't Java; Ember that it's
not Ruby. (I kid. But I'm less familiar with those frameworks.) And
so on. Everyone has their own ideas of what's hard to solve.

React + Redux is based on the idea that what's really
hard with writing webapps is non-deterministic

behaviour and unclear data flow. And if you've worked on a
large Knockout or Backbone project, you're probably inclined to agree.

e Reddit user /u/Cody_Chaos

JavaScript Frameworks

e Why do frameworks exist?
Keep state out of the DOM
Higher-level abstractions
o Code organization
* Pros
o Common concepts that can be shared between apps and developers
o Large communities, shared knowledge, documentation, bug fixes
o Better app structure through tools and guidelines
e Cons
Learning curve
Minimum requirements for size
o Setup and infrastructure

What Is React?

React

e "AJavascript library for creating user interfaces"
e "The'V'in'MVC"™
e "Alibrary, not a framework"

What Is React?

Declarative

React makes it painless to create interactive Uls. Design simple views
for each state in your application, and React will efficiently update and
render just the right components when your data changes. Declarative
views make your code more predictable and easier to debug

Component-Based

Build encapsulated components that manage their own state, then
compose them to make complex Uls. Since component logic is written
in JavaScript instead of templates, you can easily pass rich data
through your app and keep state out of the DOM.

e React Documentation

Declarative Code

Imperative Declarative
P I
$('form').on(" 'submit’, function (e function NoteBox
preventDefault const = useState
ajax
'/customers' const handlePost = =>
'POST'
$(this).serialize return
success: function (data div className="NoteBox
$('.status').append('<h3>" + + "</h3>" hl hi
$("#banner').show NotelList data={data

NoteForm onPost={handlePost
div

e React is an abstraction away from the DOM

e Encourages you to think of your application and Ul in terms of
state, rather than explicit Ul manipulations

e Allows a simplified mental model for data flow: "re-render the
whole app on every update”

e Mix and match reusable components to build Uls

Managing the Ul

Declarative Rendering

e Completely recreating the entire Ul on every update is not
efficient

e Rendering a component returns descriptions of what the Ul
should look like now

e React uses those descriptions to update the Ul efficiently

One-Way Data Flow

e Components pass data to their children

e Component rendering is based on internal state plus data from
parent

e Predictable top-down data flow makes it easier to understand
reason for Ul contents

Choosing React
Why Is This Compelling?

Declarative — Predictable — Confidence — Reliability

ref: Tom Occhino's ReactConf keynote

What's the Learning Curve?

e |earning React's basic concepts and API: EASY
e |earning to "think in React": INTERMEDIATE
e Stuff you can do with React: ADVANCED

React Components

Components

Components === State Machines

React thinks of Uls as simple state machines. By thinking of a Ul as
being in various states and rendering those states, it's easy to keep your
Ul consistent. In React, you simply update a component's state, and
then render a new Ul based on this new state. React takes care of
updating the DOM for you in the most efficient way

Components === Functions

Just like functions take parameters and return a result, components
take in values and return Ul output. Given the same input values, a
component will return the same Ul output. This is often described as Ul

= f(state)

LIVE PREVIEW

Hello World!

Hello World Component

SOURCE CODE

function HelloWorld
return <div l</div

render(<HelloWorld

Declaring Components

Function Components
(modern)

import React from "react"

// React components are written as functions
function FunctionalComponentSyntax(props
return <div>Hello World!</div

// Or, use ES6 arrow function syntax to declare the
component
const ArrowFunctionComponent = props =>

return <div>Hello World!</div

Class Components (legacy)

import React from "react”

// Class components use ES6 class syntax
// Function components are now considered standard
class ClassComponent extends React.Component
render
return <div> Hello World!</div>

// In React <= 15, this was available as

// React.createClass(). It's now a separate package,
// but deprecated and should not be used

import createReactClass from "create-react-class"

const CreateClassComponent = createReactClass
render: function
return <div> Hello World!</div>

Basic Usage

import from "react"

o ,. : e A React function component
port from "react-dom . .
will be called by React. This
function HelloWorld . T ° 'T)
e e . process is known as renderlng.
e When a component renders, it
const = getElementById("root" returns d tree Of ReaCt)
render (<Helloorld component descriptions, which

will eventually be turned into
DOM nodes in the page

e The ReactDOM.render() method
creates a new component tree,
initializes the React library, and
appends the generated DOM
output from the component and
its children to the parent DOM
node

// Before
const MyComponent = (props) =>
div l</div
render
MyComponent
getElementById("root"
//After
const MyComponent = (props) =>

createElement("div", null

render
createElement
getElementById("root"

JSX Syntax

"Hello World"

e JSX s syntax sugar for nested
function calls. Not required to
use React, but the standard
approach. Requires compilation
process, usually with Babel.

e JSX "“tags” are turned into
React.createElement() calls (which
could be written by hand
without JSX). Those calls return
plain JS objects describing the
output.

e React “element” objects look
like: {type : thingToRender, props
: {}, children : []}

JSX Syntax

// Note use of className for HTML classes

const MyComponent = (props) =>
const = "Something else to display"”
return

div className="classl class2
!
/* <div>Commented out code</div> */
div div
div>{28 + 14 div
div

// Illegal - can only return one value!
const BrokenComponent = =>

div

div

const WorkingComponentl = =>
div div

const WorkingComponent2 = =>
React.Fragment><div div React.Fragment

e Curly braces “escape” from JSX
back into normal JS expressions.
They are used to insert values
from variables and comment out
code

e A few attribute names differ
from plain HTML. In particular,
use className instead of class for
HTML/CSS class values, and
<label htmlFor="someInput">.

e Render logic can return a
single root element, an array, a
string, or a number

e Toreturn multiple items, use
<React.Fragment> as a pseudo
“parent” (which will not add any
extra DOM nodes around the
content)

JSX Gotchas

// Note use of className for HTML classes

const MyComponent = (props) =>
const = "Something else to display"”
return

div className="classl class2
!
/* <div>Commented out code</div> */
div div
div>{28 + 14 div
div

// Illegal - can only return one value!
const BrokenComponent = =>

div

div

const WorkingComponentl = =>
div div

const WorkingComponent2 = =>
React.Fragment><div div React.Fragment

e JSX uses capitalization to
differentiate between HTML
elements and React components.
e |fthe first letter is lowercase,
the tag is assumed to be an
HTML element, and turned into a
string. If it's uppercase, the tag is
assumed to be a variable name in
scope (usually a component).

e A common mistake isto give a
variable a camelCase name and
render it, like <myComponent>. React
turns that into {type
"myComponent"}, which breaks,
Instead of {type : MyComponent}.)

HTML in my JavaScript?
I onere o [

Consensus: “You shouldn’t mix your HTML
and JS together”,

i

Facebook: “You should mix your HTML and
JS together”,

Consensus: “We should”.

se s HEEEILNEE

"Separation of Concerns"?

Templates encourage a poor separation of concerns. "View Model"
tightly couples a template to display logic. Display logic and

markup are inevitably tightly coupled. Templates separate
technologies, not concerns.

React components are "...a highly cohesive building block for
Uls loosely coupled with other components."

e Pete Hunt: React: Rethinking Best Practices

"Separation of Concerns"?

Separation of Concerns Separatiop of Coqcems ° H: CcO d e fre qu eﬂt|y Chang es
together, it should stay together

. - e React allows you to focus on
._f building components, not
4 N templates

e Combining “markup” and
JavaScript reduces context
switching
e Full power of Javascript for
rendering logic

LIVE PREVIEW

Hello Mark

Passing Data As Props

SOURCE CODE

function HelloWorld(props
return <div div

render(<HelloWorld name

Component Props

function HelloWorld(props
return <div div

function Parentl
return <HelloWorld name="Mark

function KitchenSinkParent
return
KitchenSinkChild
a={1
b="some text
C meaningOfLife: 42
d 2, 3,4, 5
e SomeOtherComponent
f={AnotherComponent
g =>
console.log("Clicked!"

e Props are values passed from
parent to child. Think of them as
arguments being passed into a
function (which is actually the
case!)

e Props are combined into a
single object. That props object is
the only parameter for function
components. (For class
components, it's available as
this.props .)

e Props are read-only inside of a
component, in the same way that
a plain function should not
modify its arguments.

e Anything can be passed as a
prop: primitives, objects, arrays,
functions, component types, JSX
elements, and more.

React Events - Deja Vu?

e React manages event
handling internally.
o Event handlers declared in a

2010: do that and you are fired. events component are aUtomatica”y
declared in JS files only plz Ma naged by React, using “‘event
delegation” to simplify handling
and improve performance.

o |t also normalizes event
behavior across browsers.

e React components create
Function MyComponent event handler callbacks and pass
const handleClick = e => references to those callbacks as
log("Clicked: " .
props to child components.

. e Event handler prop names are
return .

button onClick={handleClick} name="hello camelCased: OnC]-le, onMouseMove

+ | Am Devloper
iamdevioper
-

1995: just do onclick="myFunc()’

2015: Oh, React uses onClick...cool.

s7e s BOrEEELCE

button

ompohnent State: The usestate Hook

LIVE PREVIEW

Button was clicked:
O times

function Counter
const =

const onClick = =>

setCounter + 1

return

div

div div

button onClick={onClick
div

render(<Counter

useState(@

button

SOURCE CODE

Component State: The usestate Hook

import from "react"

function Counter

// Import the “useState’ hook from React

// Pass in an initial state value, used on first
render

// Returns a 2-element JS array:

// - array[@]: current value

// - array[l]: setter function

// "Destructuring" creates local variables from array

const = useState(0

const onClick = =>
setCounter + 1

return
div

div div
button onClick={onClick button
div

e Hooks allow React function
components to have internal
state and run additional logic
after rendering

e The useState hook allows
components to store and update

a value internally
o useState accepts an initial state
value, and returns an array with 2
things inside: the current value,
and a setter function
o Calling setState(newvalue) will
gueue a re-render with the new
value
e Normally use ES6 “array
destructuring” to read the two
values into local variables, using
whatever names you want for

them

Component State: The usestate Hook

function Counters

// Multiple calls to useState in one component . Can Ca” useState many t|meS
const = useState(@ IN one (:C)rTWF)C)rWEErWt
const = useState 0 7]

e Calling setstate() replaces
existing value

const handleclick = nane = () = o Can have objects instead of
setTimesClicked +1 . .
// Must create the new object value, immutably prImItIVeS, but yOU Must create a
setCounters new object immutably and pass it
g in yourself
e setState() always requires a
new value by reference
return o Ifthe value passed to setState
aiv hasn't changed, React will skip the
div div re-render
button onClick={handleClick("a" A
button
button onClick={handleClick("b" B
button

div

Component State: usestate Tips

function Counter
const = useState(0

const onClickBuggy = =>
// X Two bugs here!
// 1) "Closed over" old value of ~counter’
// 2) Updates will be batched together

setCounter + 1
setCounter + 1
const onClickFixed = =>

// [can pass an "updater" function to setState,
// which gets the latest value as its argument

setCounter(prevCounter => +1
setCounter(prevCounter => + 1
return
div
div div
button onClick={onClickFixed button
div

e Creating callbacks “closes
over” variable values at time of
render
o Can cause bugs due to “stale
state” if not careful!
e Be careful with multiple
update calls in a row!
e setState can acceptan
“updater” callback instead of a
value.

o Updater will be called with the
latest value as its argument, and
should return a new value. Safer to
use this if multiple updates depend
on each other

o Also can avoid having to capture
value from parent scope

Rendering Lists

LIVE PREVIEW SOURCE CODE

Sort List Scotts Only Reset List function ListsExam ple({speakers

* Scott Hanselman o bttt - 0 -

e JohnPapa -

e Scott Guthrie

e Dan Wahlin s e

e Debora Kurata

e Zoiner Tejada
e Scott Allen 1-

Elijah Manor
e \A/arA Rall | const - nap (speaker <>

function ListsExample({speakers

const
const

const onSortClicked =
setShouldSort(true

const onScottsClicked
setFilter("Scott"

const onResetClicked =
setShouldSort(false
setFilter(""

let =

// Prefer deriving data
if

startsWith

const
1li key={speaker

Rendering Lists

e Listitems must have

= useState(false

= usestate("" keys, which tell React list
N item identity
o Should be unique per
list
- o |deally, use item IDs

o Fallback, use array
indices, but only if data
=> won't reorder

e General tip: prefer

“‘deriving data” while

rendering, vs storing

derived data in state

while rendering, vs storing derived values o store description Of hOW
PP S to filter or sort, not

filtered/sorted values

map (speaker =>
1i

It's Just JavaScript

o JSX looks like HTML, but is
converted to plain JS function

@ Ryan Florence

My favorite part of React is what | loved

about MooTools: to use it effectively you calls C "
learn JavaScript, not a DSL: useful your e No special “template syntax
whole career. for looping or conditions - use

normal JS logic and syntax!
o Conditional rendering: if/else,
ternary operator
o Looping: array.map(), for

s 8 2 EiRARBODOE

Render Logic

// My basic render function structure:
function RenderLogicExample

// 1) Destructure values from " props’
object

// 2) Declare state values
const useState(©o
const useState(©

// 3) Render any dependent items into temporary
variables,
// such as conditional components or lists
const = ?
SomeConditionalComponent
null
const = map(item =>
ListItem key={item.id} item={item

// 4) Use a single JSX structure filled with content
return
div
div
A B
div

div

e Render methods can contain
arbitrary logic. Different people
structure their render methods
in different ways. Many use inline
logic in their JSX structures,
INncluding ternary statements
and array mappings.

e My preferred approach for
rendering is to keep all logic
outside of the main JSX
structure, for clarity

e Render logic must be “pure”,

without any “side effects”
o No AJAX calls, mutating data,
random values
o Rendering should only be
based on current props and state

Parent/Child Communication

LIVE PREVIEW

Scott Hanselman
John Papa

Scott Guthrie
Dan Wahlin
Debora Kurata
Zoiner Tejada
Scott Allen

Elijah Manor
\A/arA Rall

// ES6 arrow function - either function syntax is fine

const SpeakerListItem = speaker, selected, onClick =>

const itemOnClick = => onClick
let =
if

b

i i

b

return <1i onClick={itemOnClick 1i

function ListSelectionExample({speakers

const = useState(false
const = useState(""
const = useState(null

const onSpeakerClicked = speaker =>
setSelectedSpeaker

const onSortClicked = =>
setShouldSort(true

SOURCE CODE

const SpeakerListItem = speaker, selected, onClick

Parent/Child Communication

I}
\'4

// Child uses callback from parent
const itemOnClick = => onClick

// Callback used to notify parent
return <1i onClick={itemOnClick 1i

function ListSelectionExample({speakers

const = useState(null
// Parent creates callback that queues state update

const onSpeakerClicked = speaker =>
setSelectedSpeaker

// Omit derived filtered/sorted values

let =

const = map (speaker =>
// Values and callbacks passed to child as props
SpeakerListItem

key={speaker

speaker={speaker

selected={speaker === selectedSpeaker
onClick={onSpeakerClicked

e Parents pass data as
props to children

e Parents pass callbacks to
children as props, children
communicate to parent by
running
props.somethingHappened(data

Component Effects: The useEffect Hook

function EffectExample
const = useState(0

// The useEffect hook takes a callback function,
// which may contain side effects
useEffect =>
// Updating the document title is a side effect
// (updating the mutable contents of the page)
// Can reference a captured variable inside here
= "You clicked count} times’

return
div
p p
button onClick => setCount(count + 1
button
div

e Component render logic is not
allowed to contain side effects

e Components can run
additional logic that can have
side effects, after the rendering is
done

e The useEffect hook allows
components to run logic that has
side effects

e By default, useEffect runs its

callback after every render
o Effects run on brief timeout
after render is complete

Component Effects: The useEffect Hook

function FriendStatus(props

i o [Effect callbacks can return a
const = useState(null .
cleanup function
const = o . H
e o Typical example: subs_crlbe to
function handleStatusChange(status an event, then unsubscribe in
setIsOnline C|eanup
o Cleanup function will run
subscribe before unmount, but also if effect
re-runs

// Effect hook callbacks can return a cleanup

function o EffeCt hOOk aC(ZeptS a
return () = ‘dependencies array” argument

unsubscribe . .
to limit when the effect callback
runs
// Optional dependencies array: L COﬂceptZ “What State doeS

// only runs callback when deps values change
// Think of this as "syncing effects to state"

this effect sync with?”
o useEffect(fn): “all state” (run
callback after every render)
o useEffect(fn, []): “all state”
(only run callback on mount)
o useEffect(fn, [valuel, value2]):
“these values” (run on mount, and
when any value changes)

// omit rendering

Rules of Hooks

All React hooks usage must follow two important rules!

e Only call hooks at the top level of a function component
o May not call hooks inside conditional logic, loops, or nested functions
o Reason: React needs to track exact order of hooks used, and that order
must match every time a function component is rendered

e Do not call hooks outside of React function components
o Do not call hooks in plain JS (hon-component) functions

o May call hooks inside of "custom hooks", but those must also follow
hooks rules when used

React "Rules of Hooks" ESLint plugin warns about these - do what it
says!

(Note: some hooks data dependency issues can be tricky to solve)

Custom Hooks

function FriendListItem(props

// What if we want to reuse the "is online" logic? ° Need Some Way to Share and
const - useState(null reyse Iog|c between
useEffect => com pOh.e.ﬂtS .
function statusChanged(status o |If ertlng normal JS COde,JUSt
setlsonline “extract a function”
e Can do the same thing with
subscribe hooks-related code
return =>
subscribe
return
1li style color: isOnline ? "green" "black"

1i

Custom

// "Custom hook": extracted function starting with
function useFriendStatus(friendID

"USG"

const = useState(null
useEffect =>

function statusChanged(status

setIsOnline
subscribe
return =>
subscribe

return

function FriendsList(props
const = useFriendStatus
// etc

function FriendsListItem(props
const = useFriendStatus
// etc

Hooks

e (Can extract hooks-related
code into a new “custom hook”
function
e Just a function that calls React
hooks
e Name must start with use
e Many React libraries now ship
their own custom hooks
o React-Redux: useSelector,
useDispatch
o React-Router: useHistory,
useLocation, useParams
o Others: useClickOutside,
useWindowSize, useFormState, etcC

Other Built-In Hooks

function OtherHooksExample(props

® uselayoutEffect(fn, deps)

const = useRef
const - useRefo(@ o same as useEffect, but runs
callback synchronously during
uselLayoutEffect => .
log("Div width: " Commlt phase
® useMemo(fn, deps)
useLayoutEffect(() => o recalculates value when deps
4= 1 change
log(Rendered counterRef.current
el e useCallback(fn, deps) |
o updates callback function
reference when deps change
const = useMemo =>
return calculateExpensiveData ¢ UseRe'F.())
o provides a mutable “ref object”
that persists between renders
const = useCallback =>

log("Clicked!" o Objectis {current: null}
o Used as “instance variable”, or
access to DOM nodes

return
div ref-{divRef o Plain object, so mutating
ChildComponent onClick={callback} data={data .current doesn7t trigger re-

div

renders!

Access DOM Nodes with Refs

LIVE PREVIEW SOURCE CODE
Rendered text content function RefsExample
ClickMe (| const = useRe £
st Click >
// refobj field p th 1 d
if
Modif
rrrrrr
div
d f={divRef d
b nClick Click button
div
d £ mpl

e Pass aref object as <element ref={refObj}>
e refObj.current Will be the real DOM node after render is done
e Escape hatch - use sparingly!

Forms and Controlled Inputs

LIVE PREVIEW SOURCE CODE
First Name: function FormComponent
Last Name: const = useState
Is Jedi: ()
const =
Result:
const = useState(false

const onNameFieldChanged = e =>
setNameFields

const onIsJediChanged = e =>
setIsJedi

let _ o
if &&
= "(%{isJedi ? "Jedi" "Not a Jedi"

return
form
style display: "flex", flexDirection

column", alignItems: "start"

Forms and Controlled Inputs

e Browsers normally own and update input state based on user

interaction
o React wants to own updating DOM based on state

e React uses "controlled inputs" as the idiomatic form input

technique
o React forces inputs to have values based on state
o Useful for validating data immediately
o Can still use "uncontrolled" inputs if desired
e "Controlled inputs" must have:
value prop (or equivalent, like checked for checkboxes)
o onChange callback that reads event and updates state
e Seqguence:
React applies value to input
User edits input
Browser triggers change event
App code takes proposed new value from event, sets state with new
value
o React re-renders and applies value to input
e Tips:
o Can use input.name prop -> e.target.name field as a generic key to update
fields in an object
o Some inputs like checkboxes have other value field, like checked

©)
©)
©)
(©)

Styling Components

import from "react"
import from "classnames”
import from "./StylingExample.module.css"

function StylingExample(props

const = useState(false

const = classnames("fixed-class"
|

return

div style display: "flex", flexDirection
"column"
div
span style color: "red"
span
div
button className="btn btn-primary
button
div className={contentClassname
div
div className={styles.moreContent
div
div

Multiple options available for
styling React components,
including:

INnline styles (style prop):
o Applies styles directly to that
element, high importance
o Style objects have camelCased
properties, unlike CSS

Normal CSS classnames
o Write CSS, hand-write class
names
o Common to use the
classnames() util to conditionally
combine multiple classnames into
one string
o Use className prop in JSX, not
class!

CSS Modules:
o Build-time conversion of simple
CSS file classnames to globally-
unigue classnames (.label ->
"StylingExample label-a841b7")

Building Apps with React

React Ecosystem

e Focused on the "view" layer
o Entirely possible to build a React app with no other dependencies, but
Most apps use a variety of additional libraries for specific capabilities.
o Good news: can pick exactly the libraries you need for your use cases.
o Bad news: need to pick exactly the libraries you need for your use cases.
e Commonly used libraries
AJAX requests: Axios, SuperAgent, Fetch
Routing: React-Router
State management: Redux, MobX
Data/utilities: Immer, Lodash
 Build tools
o Babel: compiles ES6/JSX syntax to widely-compatible ES5
o Webpack: reads multiple JS module formats, loads non-JS formats such
as CSS and images, runs Babel, and generates optimized output bundles
for deployment
o TypeScript: static type syntax on top of JS; provides compile-time type
checking, and can also do JS compile output similar to Babel

o O O O

Requirements and Deployment

e Build tools normally used, but not required
o You can start writing React code with two simple script tags for react.js
and react-dom.js in an HTML file
o JSXsyntax is the accepted way to write React components, but not
required, and other alternatives exist, although rarely used (util functions,
templating tools)
o Modern JS-based web apps do use many build tools: linter, test runner,
compiler, bundler/minifier, etc. These tools are normally written in JS, and
so require the Node.js runtime on your dev/build machines to run them.
e Deployment
o A normal React app build is just static IS/HTML/CSS files that can be
uploaded to any web server. You do not need Node on a server to run
React apps.
o React apps don't care what language the web app server is written in,
as long as it provides an API the client can use to fetch data.
 Standard React "Distributions"
o Create-React-App: opinionated build config for Single Page
Applications
o Next.js: React-based client/server framework, including Server-Side
Rendering and Static Site Gen capabilities
o Gatsby: focused on Static Site Gen, using GraphQL for data sources

State Management with
Redux

ReduXx's Predecessor: Flux

e A year after releasing React,
Facebook announced the “Flux

. Architecture™
—— o “We found that two-way data

= bindings led to cascading updates,
where changing one object led to
another object changing, which could
also trigger more updates. As
applications grew, these cascading
updates made it very difficult to predict
what would change as the result of one
user interaction. When updates can only
change data within a single round, the
system as a whole becomes more
predictable.”
o “Flux is more of a pattern than a
framework”

e Basic concepts:
o Many data stores register with a
singleton dispatcher. To trigger updates,
plain object actions are dispatched, and
stores update themselves in response. Ul

What Is Redux?

&> Redux

Created by Dan Abramoyv for a talk at React Europe 2015 to
demonstrate the idea of "time-travel debugging". Now the most widely
used state management tool for React apps.

e "A predictable state container for JavaScript apps"

e "Flux taken to its logical conclusion"

e "A platform for developers to build customized state management
for their use-cases, while being able to reuse things like the graphical
debugger or middleware"

What Is Redux?
Predictable

Redux attempts to make state mutations predictable by imposing
certain restrictions on how and when updates can happen. These
restrictions are reflected in the three principles of Redux:

e Single source of truth: The state of your whole application is
stored as a tree of plain objects and arrays within a single store. (How
much you put in the store is up to you - not all data needs to live
there.)

e State is read-only: State updates are caused by dispatching an
action, which is a plain object describing what happened. The rest of
the app is not allowed to modify the state tree directly.

e Changes are made with pure functions: All state updates are
performed by pure functions called reducers, which are (state,
action) => newState

Centralized

Having a single store and single state tree enables many powerful
techniques: logging of all updates, API handling, undo/redo, state
persistence, "time-travel debugging", error reports with full snapshots
of app state, and more.

Core Concepts

// App state: a plain object with many keys or "slices"

const =
0 "Learn React"

1 "Learn Redux"
2 "Build something!"

"Active"
Ilr‘edll llbluell

// Actions: plain objects with a "type" field

const = "todos/todoAdded”
const = "todos/todoToggled"
const = "filters/visibilityUpdated"

true
false

"Go to swimming pool"

1

"purple”
"blue"

"SHOW_ALL"

State

App state is stored in
plain objects, like this
Todo example. There's no
“setters”, so that different
parts of the code can't
change the state
arbitrarily. That helps
avoid hard-to-reproduce
bugs.

Actions

To change something in
the state, you need to
dispatch an action. An
action is a plain JS object
with a type field. Actions
are like events - they
should describe “what
happened in the app’.

switch
case "todos/todoAdded™
return

nextTodoId

false

case "todos/todoToggled"

return map(todo =>

if l==
return

return

default
return

Core Concepts

function todosReducer(state = initialState, action

Reducers

e All state update logic lives in
functions called reducers. Since
they're just functions, smaller
functions can be composed
together into larger functions.
Because reducer functions are
(state, action) => newState, they
are very easily testable and
straightforward to understand.

e Reducers should be pure
functions, with no “side effects”.
That means they should only rely
on inputs, and not affect
anything external. Reducers
need to update data immutably,
by making copies of state and
modifying the copies before
returning them, rather than
directly modifying inputs.

Core Concepts

import from "redux" Store

import from "./features/todos/todosSlice" A Redux store contains the current

import from

"./features/filters/filtersSlice" Sta.te Value' Stores are Created
using the createStore Mmethod,

t = mbineRed r .

o conpaneneaneer which takes the root reducer
function and an optional
preloaded state value.

const - createstore Stores have three main methods:

e dispatch:starts a state update
with the provided action object
e getState:returnsthe current
stored state value

e subscribe:accepts a callback
function that will be run every
time an action is dispatched

Core Concepts

const = createStore Store

log getState 1
// {todos : [..... 1, filters : {status: y TO trlgger d State Update, Ca”
"SHOW_COMPLETED"}} store.dispatch(action)

emten e tere e Updated- o The store will call reducer(state,

"SHOW_ALL" action), and save the result

log getstate e Add subscription callbacks
// {todos : [.....], filters : {status: "SHOW_ALL"}} . . .

With store.subscribe(listener)

const - getstate o All subscribers will run after

log("Number of todos: "

every dispatch

// "Number of todos: 2"

subscribe =>
log("An action was dispatched”
const = getState
log("Number of todos: "

dispatch "todos/todoAdded" "Buy
milk"
// "An action was dispatched"
// "Number of todos: 3"

Redux Data Flow: Synchronous

r N
i Y ™
Store
- Dispatch | Ly
Event Handler ﬁucer
R]

1 | \. J
r Ul) \—_[State]—/

___ Deposit $10 SO <)

Withdraw $10

Redux and Async Logic

const thunkMiddlt'awaPe‘= storeAPI => next.=> zf\ction => Middlewa re
// If the "action" is actually a function instead...
if (typeof === "function" '
// then call the function * Mlddlewa re are Store
return action plugins that wrap dispatch
e Can be used for many use
// Otherwise, it's a normal action - send it onwards Cases1 but prima r||y 'I:OI’ asyﬂc
return next |C)g;i(:
e Redux “thunk”
onst = applyMiddleware . .
o S middleware is the standard
async middleware
// Write a function that has “dispatch™ and "getState as args /\ll . f t- t
const fetchSomeData = (dispatch, getState) => © OWS. paSSIng UﬂC. 10Ns 1o
// Make an async HTTP request dispatch instead of actions
-get("todos”). then(todos => _ o Functions receive
// Dispatch an action with the todos we received . <
dispatch "todos/todosLoaded" (dISpatCh, getState) as args
// Check the updated store state after dispatching @) Caﬂ do ahy Sth or asyhc
const = getState |OgiC inSide

log("Todos after loading: "

// Pass the function_we wrote to “dispatch’
dispatch
// logs: 'Todos after loading: ###'

Redux Data Flow: Asynchronous

API N Middleware |
| | — Dispatch
A Dispatch | More

Reducer

Event Handler .

B (R]

-

\.4, y
|
f - b \—_{ State]—/
__| Deposit $10 SO < J
Withdraw $10

Redux Ul Integration

// 1) Create a new Redux store
const = createStore

// 2) Subscribe to redraw whenever the data changes
subscribe

// Our "UI" is some text in a single HTML element
const = getElementById("value"

// 3) When the subscription callback runs:
function render
// 3.1) Get the current store state

const = getState
// 3.2) Extract the data you want
const = toString

// 3.3) Update the UI with the new value

// 4) Display the UI with the initial store state
render

// 5) Dispatch actions based on UI inputs
getElementById("increment"

function
dispatch

addEventListener

"counter/incremented"”

"click"

Using Redux with a Ul requires
a few consistent steps:

1. Create a Redux store
2. Subscribe to updates
3. Inside the subscription

callback:

1. Get the current store state

2. Extract the data needed by
this piece of Ul

3. Update the Ul with the data

4. If necessary, render the Ul
with initial state

5. Respond to Ul inputs by
dispatching Redux actions

React-Redux

React-Redux

e Since Redux is Ul-framework agnostic, need a "bindings" library to
integrate with a given Ul layer

e React-Redux provides bindings to let React components interact
with the Redux store

e Only Ul bindings library maintained by the Redux team

Mark's Dev Blog:
The History and Implementation of React-Redux

e |ntegrating Redux with a Ul
o What does React-Redux even do for you, and why do we need "Ul
bindings" in the first place?
o How does it work internally?
e Development History of the React-Redux API
Initial design constraints
o APl and implementation changes over time

React-Redux v7

e (Goals:
o V6 architecture tried to use context for state propagation, which had
performance problems
o Switch back to per-component Redux store subscriptions for better
performance
o Enable future implementation of a React-Redux hooks API

e Behavior and implementation:
o Rewrote connect using React hooks API + internal Redux store
subscriptions
o Used React renderer batching from ReactDOM and React Native
o Released in spring 2019

React-Redux v7.1: Hooks!

e Goal: eventually design and ship a public useRedux() -type hooks
AP|
o Bikeshedding issue thread: Issue #1179: Discussion: Potential Hooks API
Design
o Extensive discussions around potential APl designs and
implementation constraints
e Behavior and implementation:
Settled on two primary hooks: useSelector and useDispatch
Unlike connect, cannot enforce top-down nested subscriptions
Reference (===) equality checks for selectors instead of shallow equality
No action creator binding
No automatic wrapping of components to avoid re-renders

e We now recommend using the hooks API as the default
approach

o connect Is supported indefinitely, but no plans for further changes
e The hooks API has a different set of tradeoffs than connect does:

Thoughts on React Hooks, Redux, and Separation of Concerns
o ReactBoston 2019: Hooks, HOCs, and Tradeoffs

O O O O O

import
import

React-Redux: useSelector()

'react’
from 'react-redux’

export const PostslList = =>

const

const

= useSelector(state =>

= map(post =>

article className="post-excerpt” key

h3

p
article

return
section
h2

section

h3
substring(@, 100

h2

post.id

P

Extracts a value from the

Redux state for use in this
component

o Accepts a “selector” function as
its argument

o Subscribes to the store and re-
runs the selector whenever the
store state changes

Differences from connect and

mapState:

o Uses reference equality by
default (also takes an optional
equality comparison argument)

o Can be called multiple times in
one component

o Don't have to return an object
(and should prefer returning
single values)

React-Redux: useDispatch()

import from 'react’
import from 'react-redux’
import from './postsSlice'’
export const AddPostForm = =>
const = useState("'
const = useState("'
const = useDispatch
const onSavePostClicked = =>

dispatch(postAdded

return
section
h2 h2
form
/* omit form inputs */
button type="button" onClick
onSavePostClicked

button
form
section

e Returnsthe store’s dispatch
method

e Differences from connect and
mapDispatch:
o Equivalent to calling connect
with No mapbispatch argument
o No "binding action creators”
any more - up to you to call
dispatch() in your own handlers

React-Redux: <Provider>

Hmport from “reactt e Makes the Redux store
import from "react-dom . .
import from "react-redux"” accessible to all components in
import from "./App" the app]
import from "./store" e Should be set up in app entry
ender point file, and wrap entire app
// Render a “<Provider>" around the entire “<App>, (:C)rT]F)()rwear]t

// and pass the Redux store to as a prop
React.StrictMode
Provider store={store
App
Provider
React.StrictMode
getElementById("root"

Redux Toolkit

Redux Toolkit

e Common complaints about Redux:
o Configuring a Redux store is too complicated
o Have to add a lot of packages to do anything useful (redux-thunk,
reselect, etc)
o Too easy to accidentally make a mistake like mutating state
o Amount of "boilerplate" you need to write (see Issue #2295 for
discussion)
= Action types
Action creators
Immutable update logic
"Have" to use multiple files
Complex store setup process

Redux Toolkit

e Created a new official package called Redux Toolkit, inspired by
create-react-app and apollo-boost.

e (Coals:

Simplify common Redux use cases

Provide good opinionated defaults out of the box

Minimize the amount of code you have to write by hand

Doesn't "hide" that you're using Redux, just makes it easier

Opt-in - can add incrementally to an existing app, or use day 1 on a hew
project
o Provide a great developer experience for TypeScript users

e Originally named "Redux Starter Kit", but renamed after 1.0 release
o Confusion over "starter kit" naming: boilerplate? only good for
beginners?
o Renamed to "Redux Toolkit" (package: @reduxjs/toolkit) for 1.0.4 release

e Written in TypeScript, designed to simplify TS usage patterns

e Most recent TS and API dev work thanks to co-maintainer Lenz

Weber (@phryneas)

O O O O O

Useful for all Redux users, both new and
experienced!

Redux Toolkit:

import from "@reduxjs/toolkit"
import from "./todos/todosReducer"
import from

"./visibility/visibilityReducer"

const = configureStore

/*

The store has been created with these options:

- The slice reducers automatically passed to
combineReducers()

- Added redux-thunk and mutation detection middleware
- DevTools Extension is enabled (w/ "action stack
traces")

- Middleware and devtools enhancers were composed

*/

configureStore()

e A small wraper around the

Redux createStore function:
o Automatically sets up the
Redux DevTools extension by
default
o Automatically adds redux-thunk
by default, plus middleware to
check for accidental mutations
and non-serializable values
o Accepts either a root reducer
function, or an object of slice
reducers and will automatically
call combineReducers for you
o Accepts middlewares and store
enhancers as arrays, and
composes them properly

Redux Toolkit:

import

from "@reduxjs/toolkit"

// Examples of adding a middleware and a store enhancer

import from "redux-logger"

import from "@manaflair/redux-batch"
import from "./todos/todosReducer"”
import from

"./visibility/visibilityReducer"

const = combineReducers
const = configureStore
...getDefaultMiddleware

NODE_ENV !== "production"

configureStore()

e QOptions are passed as a

“named arguments” object:
o Override middleware list
o Use an initial state
o Enable/disable DevTools
Extension
o Provide additional store
enhancers

Immer

import from “mmers e An immutable update library
// Plain 35 with object spread and map from Michel Westrate (author of
return PV4()k)><)

o Uses ES6 Proxies to let you
N “mutate” your data, but applies
map((item, 1) => .
return the changes immutably

if l==
o Can drastically simplify your
return : :
iImmutable update logic
123
// Immer
return produce draft =>
// "Mutating" the draft here is safe - it's a Proxy
wrapper!

= 123

Redux Toolkit:

import from "@reduxjs/toolkit"

function addTodo(state, action
// Can safely call state.push() here
push

function toggleTodo(state, action
const =

const =
// Can directly modify the todo object
= |

const = createReducer
ADD_TODO
TOGGLE_TODO

false

createReducer()

e Accepts a lookup table of
action types to reducer functions
e |t usesImmer internally, so
your reducers can “mutate” the
state!

e Warning: this only works _if_
you are using the “magic”
createReducer With Immmer inside.
Otherwise, these functions are
mutating the state!

Redux Toolkit: createAction()

import from
"@reduxjs/toolkit"
const = createAction("ADD_TODO"

log(addTodo("Buy milk"
// {type : "ADD_TODO", payload : "Buy milk"}

log toString
// "ADD_TODO"

log
// "ADD_TODO"

const = createReducer
// Use the action creator function as the object key!
// ES6 computed properties will coerce to string
state, action) =>
push false

e |nspired by redux-actions

e Generates an action creator
that uses the given type and
accepts payload as an argument
e Action creator function
overrides toString(), so it can be
used as the “action type” itself
where needed (also exposed as
actionCreator.type)

Redux Toolkit:

import from "@reduxjs/toolkit"

const = createSlice
"user"
20

// mutate the state all you want with immer

updateUser state payload =>

export const =

export default // "Ducks" - quack!

// Use this elsewhere in the app:
import from "./userSlice"

const = combineReducers

dispatch(updateUser "name" "Eric"

createSlice()

e |nspired by Eric Elliott’s
autodux project

e Accepts an object of reducers,
and returns auto-generated
action creators, action types, and
a reducer function

e Uses our “magic”
createReducer utility, so that your
reducers can “mutate” their state
e Makes it easy to use the
‘ducks” pattern (default export
reducer, named export action
creators)

Redux Toolkit: createSlice()

import from "@reduxjs/toolkit"
import from "./counterSlice"
const = createSlice
"user"
"Fred" 20

updateUser: (state payload

I}
v

// Handle other action types here
state, action) =>
++

export const =
export default // "Ducks" - quack!
// Write side effects logic alongside, like thunks:
export const getUserPets = name => async dispatch =>
const = await fetchPets
dispatch(updateUser
dispatch(increment

Usage patterns:
o Can handle other action types
UsSing extraReducers
o Slices are just actions + reducers
- write side effects like thunks

separately and use the generated
action creators, same as usual

Redux Toolkit: createSelector()

import from "@reduxjs/toolkit"

e Re-exportsthe createSelector
const selectTodos = state => function from Reselect, for
const selectStatusFilter = state =»> Creatlng mem0|zed Se|eCtOFS

const = createSelector

todos, filter) =>
// Only recalculates output result when inputs
changed
return filter(t => ===

Redux Toolkit: createAsyncThunk()

import from
"@reduxjs/toolkit"

import from "./userAPI"

const = createAsyncThunk

"users/fetchByIdStatus"
async (userId, thunkAPI) =>

const = await fetchById
return
const = createSlice
"users"
"idle"

// standard reducer logic, with auto-generated
actions

// Add reducers for additional action types here
state, action) =>
push

// Later, dispatch the thunk as needed in the app
dispatch(fetchUserById(123

Standard async thunk pattern:
o Dispatch “loading” action
before fetch
o Dispatch either “success” or
“failure” action based on result

createAsyncThunk implements

that pattern:

o Accepts an action type string
prefix and a “payload creator”
callback that returns a Promise

o Autogenerates actions for
pending, fulfilled, and rejected
cases

o Auto dispatches those actions
based on promise resolution
lifecycle

Redux Toolkit:

import from
"@reduxjs/toolkit"

const = createEntityAdapter

// Assume IDs are stored in a field other than
“book.id"

selectId: book =>

// Keep the "all IDs" array sorted based on book
titles

sortComparer a, b) => localeCompare

const = createSlice
"books"
getInitialState

// Can pass adapter functions directly as case
reducers

booksReceived(state, action

// Or, call them as "mutating" helpers in a case

reducer
setAll

// Can create a set of memoized selectors

const =

=>

const =
selectAll getState

getSelectors(state

createEntityAdapter()

Redux docs recommend

“normalizing” state structure

o Single copy of each item
o Track items in an object
mapping IDs to items

createEntityAdapter

Implements that pattern:

o Defines prebuilt reducers for
common CRUD logic (add /
update / delete, one/many)

o Reducers can be used directly
or as “mutating” helpers

o Maintains IDs array, with
optional sorting based on items
o Generates basic set of selector
functions (select all as array, one
by ID, etc)

Redux Toolkit: Safety Checks

e Most common mistake with Redux: accidental mutations!
o Can happen in a reducer, or outside a reducer (mapState, etc)
o Usually results in connected components not re-rendering, or bad data
when debugging
o Really hard to figure out where this happened... or is it?

Redux Toolkit: Safety Checks

e Most common mistake with Redux: accidental mutations!
o Can happen in a reducer, or outside a reducer (mapState, etc)

o Usually results in connected components not re-rendering, or bad data
when debugging

o Really hard to figure out where this happened... or is it?
e Several existing "mutation detection" middleware available - the
best one is redux-immutable-state-invariant
e Redux Toolkit's configureStore() adds a port of redux-immutable-
state-invariant by default!

o Throws an error when accidental mutations are detected
o Tells you the state path where the mutation occurred

e RTK also adds a check for "non-serializable values" in state and
actions by default
o Created by me, modeled on the mutation check middleware

Redux Toolkit: Roadmap

// features/pokemon/pokemonService.ts ° . .
import from '@rtk-incubator/rtk-query’ Current RTK version.
1.5.0

e New experimental

// Define a service using a base URL and expected endpoints

export const = createApi]
'pokermonApi API now available: RTK
fetchBaseQuery "https://pokeapi.co/api/v2/"’
endpoints builder) => Query
query o Advanced data

query name: string) => ~pokemon/${name}" fetChing and CaChing
library built for Redux
Toolkit

O
// Export hooks for usage in functional components, which are JUSt re_le.ased as
// auto-generated based on the defined endpoints alpha - will iterate on

export const - API, then merge into
RTK

// in a component:
function PokemonEntry
// Using a query hook automatically fetches data and returns query
values
const =
useGetPokemonByNameQuery('bulbasaur’

Redux DevTools Extension

History:
o Original DevTools logic and component created by Dan Abramov
o Turned into a browser extension by Mihail Diordiev and maintained
separately

New "action stack traces" feature:
o Allows viewing the complete stack trace for any dispatched action - no
more digging through files to see where the dispatch actually occurred!
o Reuses the stack trace components from create-react-app, including
showing original source if available
o Clicking source lines will open file in DevTools debugger or your
preferred editor
o Prototyped by me, polished and merged by Mihail Diordiev
o Not enabled by default - need to call composeWithDevTools({trace : true})
o RTK's configureStore does turn this on automatically

EXPLORER

OPEN EDITORS
4 TODOMVC

4 actions

Js index.js

Is todos.js

4 components

Js Footer.js

Js Header.js
MainSection.js
Todoltem.js

is TadoTextinput.js

4 constants

Js ActionTypes.js

s TodoFilters.js

4 gontainers

is App.js

b OUTLINE

Action Stack Traces

TypeScript

TypeScript

Sales pitch:
"JavaScript, with static types on top"
o "All JavaScript is valid TypeScript" & &)
Overview:
o Standalone compiler that compiles TS syntax to various flavors of ES,
with compile-time type-checking
= Can also be parsed by Babel, but without type-checking
o Language aimed to be a superset of current JS (ES20xx, + stage 3
features)
o Created by Microsoft (author of C#)
o Open-source, but developed by an Microsoft-led team
o Rapid adoption over last 5 years (some surveys indicate >40% industry
usage in newer apps)

Why Use TypeScript?

e Documentation: static types tell devs what variables look like
quickly - especially valuable when working with unfamiliar code

e Compile-time errors: common issues like typos or undefined
values can be caught immediately, rather than at runtime; compiler
prevents passing invalid values

e Intellisense: type declarations allow IDEs to provide proper
autocompletion and type information when writing code

e Refactoring: can confidently rename / delete / extract code, rather
than searching and "hope | found all the uses"

e Long-term maintainability: better codebase information for
future developers who may rotate on and off the project

e Code Quality: doesn't replace unit tests, but can help minimize
errors

e Library Support:. most common 3rd-party libs either ship typings,
or community has created their own

Downsides of Using TypeScript

 Learning Curve: additional syntax and concepts take time to
understand, on top of knowing plain JS by itself

e Time to Write Code: literally more code to write out than just plain
Js

e Difficulties Typing Dynamic JS: can be difficult to come up with
good static types for highly dynamic JS behavior

e Inconsistent/Missing Library Types: not all libs have typings, and
quality can vary

e Compilation Time: TS usage can slow down build times

e Over-Emphasis on Type Coverage: some TS users spend too
much time trying to achieve "100% perfect static type coverage" of an
entire codebase, leading to bizarrely complex types

TypeScript:

// This TypeScript code with a type declaration:
const greeting = (person: string) =>

console.log("Good day " + person
greeting("Daniel”

// Compiles to this plain JS code:

var greeting = function (person
console.log("Good day " + person

greeting("Daniel”

// Basic TS/JS types:

let isAwesome: boolean = true
let name: string = "Mark"

let meaningOfLife: number = 42

// Arrays:
let letters: string[] = ["a", "b", "c"

// "Tuples": fixed-size arrays with specific types

let tuplel: [string, number, boolean
A - |
tuplel = ["chair", 20, true

// X - Should be a string, not a number
tuplel = [5, 20, true

Basic Syntax

// “any : the "cheat code" for the type system.

let numl: number = 4

numl = "test"; // XERROR: cannot assign a string to a
number

let whoKnows: any = 4; // assigned a number

whoKnows = "a beautiful string"; // can be reassigned to
a string

whoKnows = false; // can be reassigned to a boolean, or
whatever

// “void : equivalent to “undefined’
let logAndReturnNothing =
console.log("hey there"

void =>

// TS can often "infer" types based on values:
let x = 10; // x is given the number type

const tweetLength = (message = "A default tweet") =>
// inferred string type, so this is okay
return message.length

TypeScript: Basic Syntax

enum Sizes
Small
Medium
Large

Sizes.Medium; // => 1 // default to ©-indexed

// Enums can also be string-based
enum ThemeColors

Primary = "primary"

Secondary = "secondary"

// "Interfaces": declaring the "shape" of an object
interface User

username: string

age: number

friends: User

// You can "union" values that may be more than one
type:

let x: number | string = 42

x = "test"; //

x = false; // X - not a number or string

// "~ type keyword allows declaring many type
combinations,
type NumberOrString = number | string

// "Generics" are similar to Java, C#, and C++: declare
// a placeholder type value, which will be made
concrete.
const fillArray = <T>(len: number, elem: T) =>

return new Array < T > len.fill(elem
const newArray = fillArray < string > (3, "hi" // =>
['hi', 'hi"', 'hi']
newArray.push("bye" //
newArray.push(true); // X - only strings can be added
to the array

// "Intersection" types are combined together:

type Student = id: string, age: number

type Employee = companyId: string

let person: Student & Employee

person.age = 21; //

person.companyId = "SP302334"; //

person.id = "10033402"; //

person.name = "Henry"; // X - not in Student & Employee

// Optional types are indicated with a “?7:
interface Person
name: string
age: number
favoriteColor?: string; // This property is optional

TypeScript: Basic Syntax

// Function declarations: // You can use "type guards" to ensure that a value is
function addTwoNumbers(a: number, b: number): number // the correct type in a particular code branch

return a2 + b function lower(x: string | string

if (typeof x === "string"
// X 1is guaranteed to be a string

// Still use “?° for optional values return x.tolLowerCase
// TS can probably "infer" that the result is a number else
function addTwoOrThreeNumbers(a: number, b: number, c? // definitely a string[], so we can use reduce
number return x.reduce((val: string, next: string) =>

let result = a + b return (val += °, next.toLowerCase

// Must check to see if "¢ 1is defined before using!
if (c !== undefined
result += c
function clearElement(element: string | HTMLElement
if (element instanceof HTMLElement

return result // element is guaranteed to be an HTMLElement in
here
// so we can access its innerHTML property
function addManyNumbers(a: number, ...others: number element.innerHTML = ""
else
let finalResult = others.reduce((sum, current) => // element is a string in here
return sum + current const el = document.querySelector(element
a if (el !== null

el.innerHTML = ""

TypeScript Usage Tips

e Goal:"80% sweet spot" of type coverage!
o See "Lessons and Takeaways" section in Mark's post Learning and
Using TS as an App Dev and Lib Maintainer
o Want correct types, but not wasted effort
e Aim to type: function arguments/return values, React component
props and state, API responses, Redux state
e |nfer values as much as possible - don't insist on declaring types
for every variable!
o Sometimes may want to declare function return types instead of
inferring, just to be sure they're correct or catch errors
e Avoid use of any and // @ts-ignore... unless absolutely necessary
o valid escape hatches, but they're a last resort
e On the other hand, prefer using these escape hatches instead of
wasting hours fighting TS compiler
o You know what the code does - sometimes hard to convince the
compiler you're right
o Can use a type like type $FixTypelLater = any as a placeholder

Typing React Components

interface MyComponentProps

function MyComponent

a
b
C
MyComponentProps // declare type of props
// Basic state values can be inferred

const = useState(0
// declare complex state types via generics
const = < | null>(null

const =

HTMLInputElement =>

let

if > 0
= <div div

e Read and follow the
React TypeScript
Cheatsheet!

e Declare interfaces for
React props

e Do not use React.FC!

e |nfer or declare types
for useState

e Declare types for event
handlers if declaring
separately

e React.ReactNode:JSX
element, string, number,
null

® React.CSSProperties.:
type for style prop

e Gotcha: TS doesn't like
React function
components that only
return an array

Typing Redux

pnterface Todo e Read and follow the Redux
Toolkit “Usage with TS” docs
e Declare data types in slice

interface TodosState f||eS

vidle" | "loading" e Declare types of initial state

for slices

// Declare type of initial state o DeClare type Of aCtIOﬂS N
const - reducers as

"idle" PayloadAction<TypeOfPayloadHere>
const = createSlice

"todos"

// Declare type of actions in createSlice

todoAdded Todo
push
todoToggled number

const =

import

Typing React-Redux

from "app/store”

function TodoslList

const
const

= useSelector((state: RootState) =>
= useDispatch

e Declare (state:
RootState) as arg in
selector functions
e May need to declare
const dispatch :
AppDispatch =
useDispatch() In
components to be able to
dispatch thunks properly
o Note: Can define pre-
typed versions of both of
these hooks, then import
those pre-typed hooks
everywhere - see React-

Redux “Usage with TS”
docs page

TypeScript: Using Libraries

e Libraries may include an index.d.ts file containing type
declarations

o Allows TS compiler to know what types the library exports
o Could be written by hand, or generated by TS compiler

e Many libraries ship their own typings
e Community maintains 3rd-party library typing file declarations in
the DefinitelyTyped repo
e 3rd-party library typings can be installed from the @types
namespace on NPM:

© npm 1 react @types/react
e Ifalibrary has no types, or the types are inaccurate, you can create

your own custom typings file for that library:
o Could just mock it out with any
o Could try to declare sort-of accurate types

TypeScript: Overriding Library Types
Post: Adding Custom Type Definitions to a Third-Party Library

Config Changes

e Edit your tsconfig.json, add
a compilerOptions > typeRoots
section, add ./types to the
search path, and exclude from

compile:

"compilerOptions™

"typeRoots" "./types"
"./node_modules/@types”

"exclude"

"node_modules™

"types", ...

Declare Module Types

e Create a folder and type file for
that lib:
o types/third-party-library-
name/index.d.ts
e “Declare” that module to make it
any .
© declare module 'third-party-
library-name'
e You can then declare real types
for the lib if desired
e Alternately, you may be able to
create a $PROJECT/global.d.ts file,
and put the module declarations
there

Further Information

Learning Resources: Web Fundamentals
How Web Apps Work series

Overviews of key web dev terms, technologies, and concepts:

HTTP and Servers

Client Development and Deployment
Browsers, HTML, and CSS

JavaScript and the DOM

AJAX, APls, and Data Transfer

JavaScript for Java Devs

A cheatsheet to modern JS syntax and concepts, along with key tools
INn the JS ecosystem:

e JavaScript for Java Devs

Learning Resources: React
React Docs

e (Cetting Started (docs overview and related resources)

e Main Concepts (read the whole series, but especially these two):
o Lifting State Up
o Thinking In React

o React Hooks guide (lays out the motivation, teaches hooks, API
reference, in-depth FAQ)

The React docs still teach classes in the tutorials. A rewrite is in progress
(first beta due early 2021), but until then, there's a "React with Hooks"

version of the React docs that uses hooks and function components for
all examples:

e "React with Hooks" docs port

Learning Resources: React
React Tutorials

e Tania Rascia: Getting Started with React
e Kent C Dodds: React Tutorial for Beginners (videos)
e Scrimba: Learn React (interactive Tutorials)

Creating React Projects

e CodeSandbox.io (an online IDE that uses VS Code's editor, and can
let you develop and run your apps completely in the browser)

e Create-React-App (the official CLI tool for creating a React app
with one command. Sets up a project with good default build
settings out of the box.)

Learning Resources: React
React Concepts and Topics

e Dan Abramov: React as a Ul Runtime (deep dive - not required
reading, but will definitely help you understand React better)

e Dan Abramov: A Complete Guide to useEffect (very long article,
but a must-read. Teaches how hooks use closures, defining when
effects run, and much more.)

e Mark Erikson: A (Mostly) Complete Guide to React Rendering
Behavior (detailed walkthrough of many critical aspects of how
rendering works)

e Dave Ceddia: Immutability in React and Redux: The Complete

Guide
e Gosha Arinich: Controlled and uncontrolled form inputs in React

Learning Resources: React
Additional React Resources

e Mark Erikson's React-Redux links collection (many categories of
links to articles)

e Mark Erikson's blog

e Dave Ceddia's blog

e Robin Wieruch's blog

e Kent C Dodds' blog

Learning Resources: Redux
Redux Core Tutorials

e "Redux Essentials" tutorial: explains "how to use Redux, the right
way", using the latest recommended techniques and practices like
Redux Toolkit and the React-Redux API, while building a real-world-
Ish example app.

e "Redux Fundamentals" tutorial: teaches "now Redux works, from
the ground up". including core Redux data flow and why standard
Redux patterns exist.

Additional Tutorials

e Dave Ceddia: A Complete React-Redux Tutorial

e Dan Abramov's Redux video tutorials:
Cetting Started with Redux
o Building React Apps with Idiomatic Redux

Learning Resources: Redux
Redux Concepts and Topics

e Mark Erikson: The Tao of Redux, Part 1. Implementation and Intent
e Mark Erikson: The History and Implementation of React-Redux
e Mark Erikson: Using Reselect Selectors

Learning Resources: TypeScript
TypeScript Tutorials

e Cet Started with TypeScript in 2019

e TypeScript Deep Dive (a free complete online book that's
considered the best available resource on TypeScript)

e The Definitive TypeScript Guide

e The TypeScript Guide

React/Redux + TypeScript

e The React + TypeScript Cheatsheet
e Redux Toolkit: Usage with TypeScript
e React-Redux: Usage with TypeScript

