Основы искусственного интеллекта

Лекция 5. Задачи классификации и регрессии

2023/2024 учебный год

Доцент кафедры ИВЭ, Махно В.В.

©Создано при помощи https://sberuniversity.ru/

<mark>Задача классификации</mark>.

Пример с вакансиями.

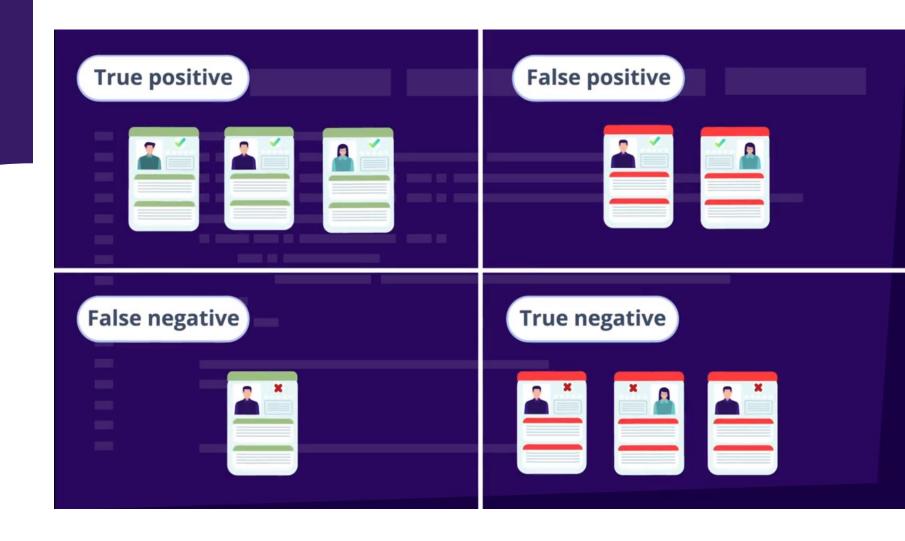
Необходимо построить алгоритм, который позволит системе определить, есть ли в резюме кандидата необходимые параметры. Если есть – отправить в папку «Собеседование», если нет – в папку «Отказать».

Ответы алгоритма и реальные данные

TRUE FALSE

NEGATIVE- POSITIVE +

Ответы алгоритма и реальные данные



Ответы алгоритма и реальные данные

Результат классификации

- TP true positive, алгоритм верно пометил резюме как подходящее
- TN true negative, алгоритм верно отнес резюме к неподходящим
- FP false positive, алгоритм ошибочно считает подходящим резюме, в котором нет нужных качеств
- FN false negative, алгоритм ошибочно отбраковал подходящее резюме

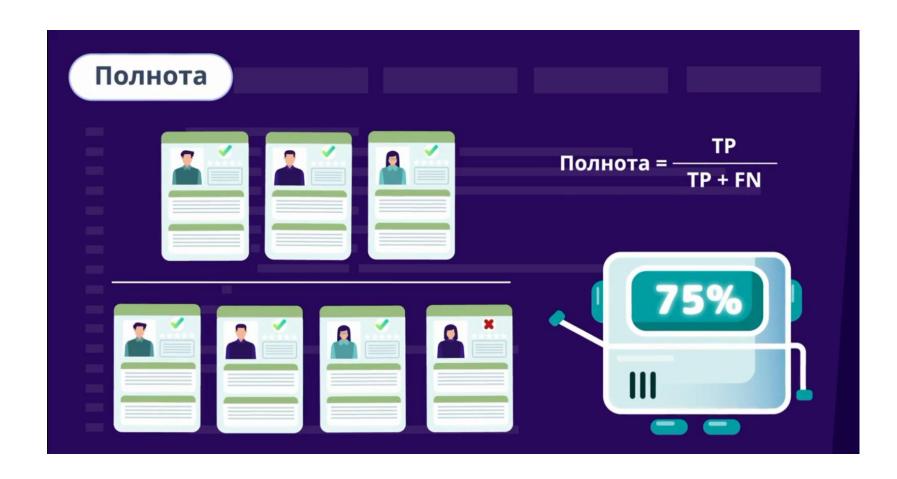
Метрики

- Самая простая метрика доля правильных предсказаний: сколько раз прогноз машины и разметка программиста совпали между собой.
- Другая метрика точность. Она показывает отношение количества верно угаданных подходящих резюме к количеству тех, кого машина вообще отнесла к группе «собеседование».
- Кроме точности есть еще метрика полноты. Она показывает отношение количества верно угаданных подходящих резюме, к другому значению: количеству кандидатов, которых следовало пригласить по мнению программиста.

Метрика точность

Точность показывает отношение количества верно угаданных подходящих резюме к количеству тех, кого машина вообще отнесла к группе «собеседование».

Метрика полнота



Полнота показывает отношение количества верно угаданных подходящих резюме, к другому значению: количеству кандидатов, которых следовало пригласить по мнению программиста.

F-метрика

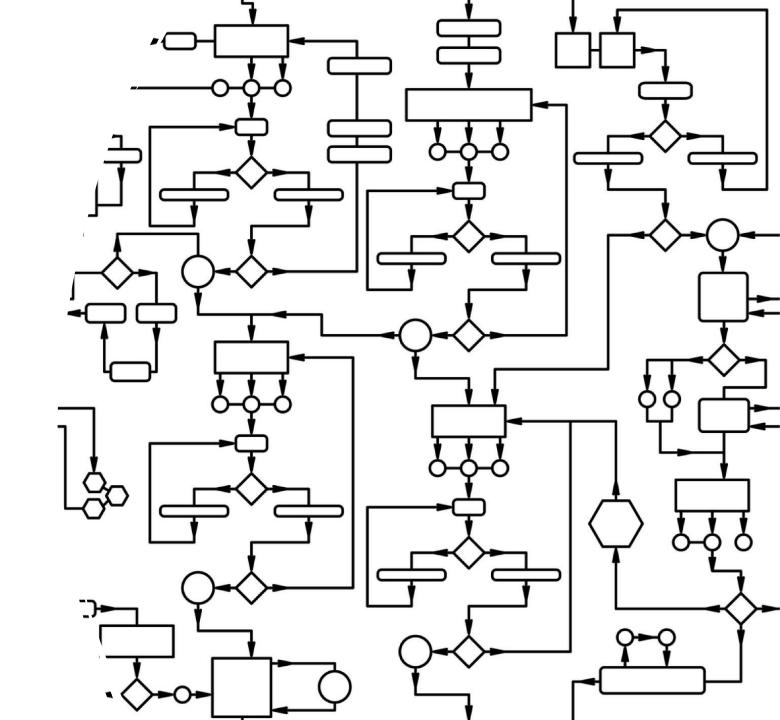
Табличные данные

Заработная плата	Возраст	Должность	Уровень образования	Город проживания	Стаж работы (годы)	Вернет ли клиент кредит
100000	26	Риэлтор	Высшее	Санкт- Петербург	5	Да
50000	20	Продавец- консультант	Высшее	Москва	1	Нет
35000	39	Автомеханик	Среднее специальное	Воронеж	8	Нет
25000	23	Программист	Высшее	Самара	2	Да
75000	41	Юрист	Среднее	Москва	14	Да

Создание алгоритма классификации

В этой задаче каждому объекту (строке в таблице данных) соответствует класс — значение из заданного набора классов.

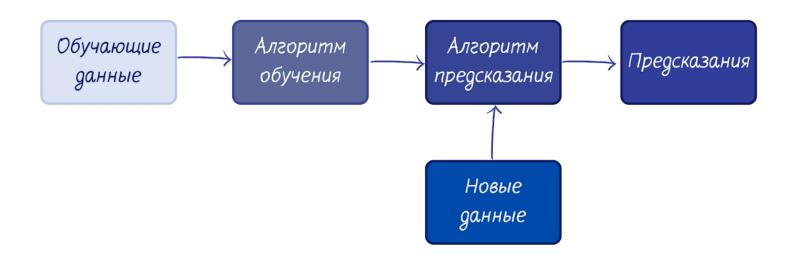
Задача классификации состоит в том, чтобы разработать алгоритм, который по признакам объекта будет предсказывать класс



Кейсы классификации текстов

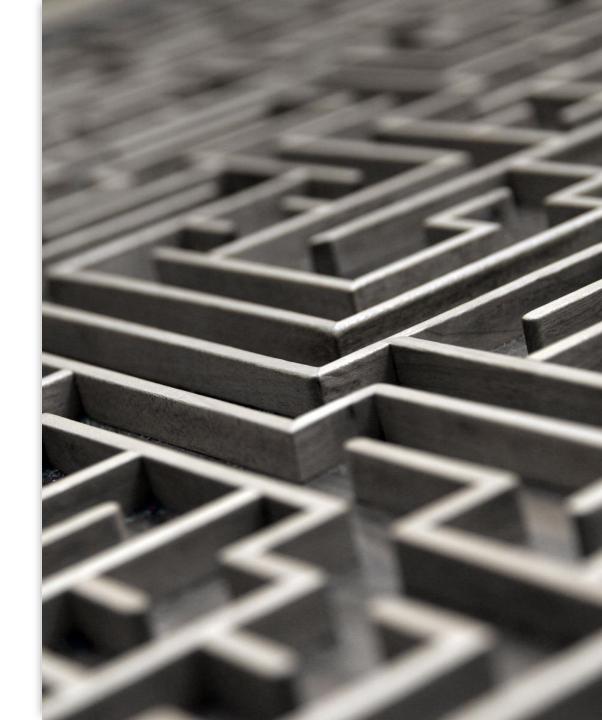
- 1. Классификация текстов (определение жанра, темы, тональности)
- 2. Выделение именованных сущностей (наименования, даты)
- 3. Генерация текстов (создание текстов на заданную тематику по картинке, по 2-3 предложениям)

Машинное обучение

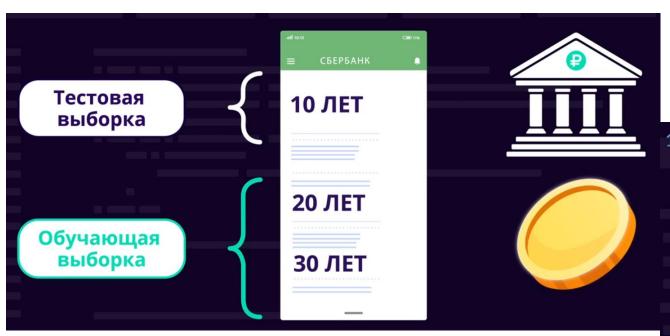


Задача регрессии

Задача регрессии состоит в том, чтобы на основании различных признаков предсказать вещественный ответ, т.е. для каждого объекта нужно предсказать число.



Пример с монетой.





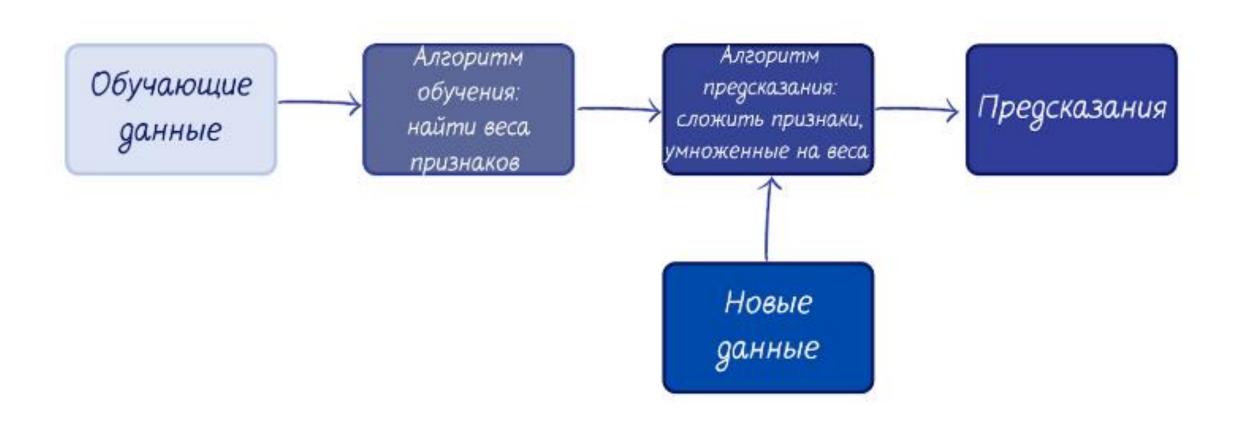
Пример с монетой.

Задача регрессии

Пример. Задача предсказания стоимости квартиры

Площадь (м²)	Этаж	Число комнат	Число лет с последнего ремонта	Стоимость (млн)
115	3	4	2	46.0
55	5	2	5	10.3
72	6	3	12	17.7
55	20	1	0	32.0

Поиск значений весов



Линейные модели

Самый известный метод регрессии — это линейные модели.

Основной механизм предсказания с помощью линейной модели формулируется следующим образом: необходимо умножить значения всех признаков на веса и сложить.

Предположим, что мы хотим предсказать стоимость квартиры со следующими значениями признаков:

Площадь (м²)	LITAW		Число лет с последнего ремонта
70	2	3	5

Также предположим, что мы знаем веса признаков:

0,25 для площади,

1,8 для этажа,

0,5 для числа комнат и

(-0,2) для числа лет со дня ремонта.

Вес признака задает вклад признака в предсказание.

Тогда будет предсказана стоимость 0,25·70+1,8·2+0,5·3-0,2·5=21,6 условных единиц

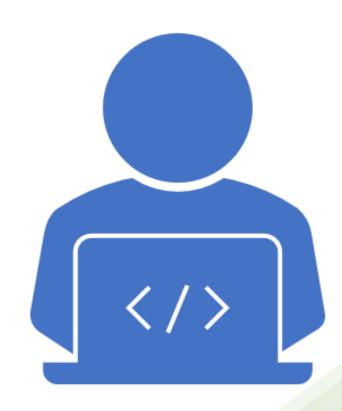
Преимущества линейных моделей

Линейные модели, как правило, решают задачу с приемлемым уровнем качества, однако уступают более мощным алгоритмам, ансамблям решающих деревьев и нейронным сетям, которые мы обсудим далее.

С другой стороны, качество линейных моделей можно значительно повысить, придумав новые признаки, вычисляемые на основе исходных признаков (например, добавив квадраты признаков), — при этом свойство интерпретируемости сохраняется. Благодаря своей интерпретируемости линейные модели очень популярны в бизнес-задачах, например в кредитном скоринге.

Переобучение

Может случиться, что алгоритм делает хорошие предсказания только для обучающих данных. Иными словами, алгоритм запомнил, зазубрил классы/числа для обучающих объектов, но не нашел никаких зависимостей между признаками и целевой переменной (классом/числом). Такой алгоритм будет плохо работать на шаге внедрения и называется переобученным.



Бесплатный курс от Сбера по генеративному искусству https://courses.sberuniversity.ru/generative art?utm sour ce=tg&utm medium=organic&utm campaign=courses&ut m content=gen i&utm term=01 09 2023