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CopepxaHue

[lpumepbl 3aagau

Mopgenb aBTOpPErpeccumn

Mopgenb CKonb3sLero cpegHero
Monoenb ARMA

ARIMA - nuterpunposaHHagd ARMA

[Topbop napameTpoB MoAENMN.
ABTOpErpeccuoHHbIN CNeKTp




[Tlpumepbl 3apgau

NuHamuka ueH Ha HedTb Brent (ICE.Brent, USD 3a Gappens)
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ABTOperpeccmMoHHasa mogenb

e Cny4aunHbI NpoLIECC Ha3bIBaeTCs CTaLMOHAPHbIM, eCrnn
clny4yanHoe pacrnpeneneHme sHavyeHUn PyHKUNMN 3aBUCUT
TONMBbKO OT npeablayLmX 3Ha4YEHNN U PACCTOAHUSA MO
BPEMEHU 0 HUX, HO HE OT CaMUX 3HAYEHNN BPEMEHMU

Stationary Time Series

p
Xe=c+ Zaixt—i + €ty

=1

ADF = -6.128
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Non-stationary Time Series
ADF = -2.0251
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ABTOperpeccuoHHasa moaenb

* Peanusauun ctaumoHapHoOro cny4yamHoro
npoLecca MoryT ObITb NEPNOONYECKNMMU
[Tpumep: npouecc X(t)=sin(t+s), raoe s —
pPaBHOMEPHO pacnpeaeneHHas Ha [0;2r]
clly4YanHasa Benun4dmHa

o X(t) = X(t-2r)

N\ N\ )
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ABTOperpecrMoHHbIN npouecc
nepBoro nopsaka AR(1)

e CTaunmoHapHbI¥ NPOLECC — MAPKOBCKUN, ECIN 3HAYEHUE
3aBUCUT TOSIbLKO OT brnmkaullero npegblayLero s3HavyeHus

* [lpnmep: cnyvyanHoe bnyxagaHue

Xt =c+rXi1 4+ €

ol

X(1)
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[Touck KkoadpdpmumneHToB

daBToperpeccmu
 MeToa HaAaMMeEHbLLUX KBa,EI,paTOB'
Yr+1 Z WiVt—j+1,
(Ye-1 Ye—2 Yt-3 -+ Ye-n ) [ ye
Yt—2 Yt-3 Yt—4 ... Yt—n—-1 Yt—1
EF: , =\ ...
0 Yn Yn—1 Yn—2 ... 1 ol Yn+1
\Ynul Yn—2 Yn-3 ... Yo } \Yn/
'3

Qr(W?XE) = Z(}?:'(W) = y;)2 = ||Fw — y|* — mvln

I=n
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EAWHUYHLIN KOpPEHb It

e XapaKTepucTtnyeckmm normiMHOM Moaenu:. i

p
Yt = E aiYt—i + € alz) =1— E aizzi 15l
i=1 i—1 iJ [
» ECnu cyLLecTBYET KOPEHb BHYTPU €AMHUYHON E— |~

OKPY>XHOCTW, TO MOAErNb — B3PbIBHAS =

* Ecnn eCcTb KOPHU Ha eAUNHNYHOWU OKPYXXHOCTH, |
TO HabngaeTca TpeHag 1 anst yCToMm4nBoro
MOAENNPOBAHUA HYXXHO UMW HAXo4UThb U
BblYMTATL TpeHa, nnn andpdepeHUunpoBaTh

pﬂlul 11
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TecT Ankn — dynnepa

e ABNgeTca OOHUM U3 TECTOB Ha eAUHUYHblIe
KOPHA E H, |

Yr = 0ys_1 + &4 — Y~ Y1 =0y 1 —y1te B i r_|| .

Ays = (0 — 1)ys1 + &4 —_ Ay, = bys_1 + & f‘-ér.-"“
* [lapameTp b oLeHnBaeTCca ¢ NMOMOLL IO
MEeToaa HaMMEHbLUUX KBaapaToB, Nocrie Yero
NPOBEPAETCHA CTaTUCTUYECKAA 3HAYMMOCTb ||
oueHkn. PacyeTHasa ctatucTtnka nmeet =
pacnpegeneHue dukn — dynnepa:

~ b -
T = 35(5) DFI




Moaenb cKonb3dlero cpegHero
(Moving Average - MA)
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Moaen ARMA
(autoregressive moving average)

p q
jK}1==CP+'Et'+'2£:1QH;K}_i'+':E::fkﬁk_i.
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—— ARMA(1,1)
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ARIMA - nHterpupoBaHHasa moaenb

_r
o
e ]

dBToperpeccuun CKoJsib3sdlero cpeaHero (min
(Box-Jenkins model) i

BpemeHHON psg Ha3blBaeTCcA MHTErpupoBaHHbIM nopsaka Kk, i, AN

eCInun pasHOCTM paaa nopsaka k aBnsatoTcs ctauMoHapHbIMA i
p q p=

Ad.Xt = + Z a; AdXt_i + Z bjst_j + Et '_m"|: T

=1 4=1 __,, 'I
V& -> AR filter = Integration filter > MA filter - g,

(long term) (stochastic trend) (short term) (white noise error)

ARIMA (2,0,1) y, = a1Yy.1+ A5V, + biE

ARIMA (3,0,1) y,=a,y,, +a,Y,, + a;Y,3 + b,€, ,

ARIMA (1,1,0) Ay, _a, Ay, ,+€,, where Ay, =y, -y, ,

ARIMA (2,1,0) Ayt=a, Ay, ,+ a,Ay,, + €, where Ayt =yt - yt-1

10 ]
-y




AUTOSALE/CPI
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OOLwWwun nnaH peLleHUs
3aJa4vu npenckKkasaHuvs

* [logrotoBka OaHHbIX — CBeAeHUe K
cTauMoHapHoOMy cny4YyanHoOMYy npoLeccy

* OnpepeneHne TMna moaenu
* OueHka napamMmeTpoB
* [1lpenckasaHune




Mopaenu c TpeHOAOM U Ce30HHbIM 3dheKToOM
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MoaenupoBaHue C NOMOLLbIO

|
W'sis
ARIMA(p,d,q) =0

i TR
« CTtaunoHapHoCTb — onpeaerneHne =
npaBunbHOro d, UCKN4YeHNe ce30HHOCTN | i
* [logbop p n q, ucnonbsysa ACF, PACF u E*

unit root TecTbl

* [lpoBepKa — pacyeT OLEeHKM Ka4ecTBa bl

 OueHKa HeBA3KN — ABNAEeTCSA N OoHa i
6enbiM WymMom? |

* [IpeackasaHue




ABTOpbI BOKC 1 [>XeHKUHC
npeanararoT CXemy:

1.Differencing the
series to achieve

3.Estimate the
i 2.ldentify the model ’ parameters of the
Diagnostic checking.
No ‘ Is the model
adequate?
4. Use Model for forecasting

stationary

20




CTaunoHapHOCTb

* [1poLiecc N3 pasHOCTEN KAaKoro nopsaka
ABNsieTcAa cTauMoOHAPHbIM?

* /lckntounTb CE30HHOCTD, NCMNOJ1b3Yy4

— Ce30HHble 00aBKU/MHOXUTENN K
CpeHEMY 3HAYEHUIO 3a STOT CE30H

— ce3oHHyo ARIMA(p,d,q)x(P,D,Q)
Mofenb, Hanpumep
ARIMA(0,0,0)x(0,1,0): Y, = Y, + 1




ABToKoppensauuna (ACF)

* Koppenauma mexay 3Ha4yeHnsamu
npotecca, ¢ 3adouKcMpoBaHHbLIM
PACCTOAHNEM MO BPEMEHU MeXay HUMU

| Ir | |
o H = | = i 1
 TU T
- A1 Nl | . i
= "I. 1 = I

» YactnyHasa aBTokoppensaums (PACF) -
"4acTb Koppensauun mexay Y nyY,,,

KOTopasa He 0b6ACHAETCS NPOMEXKYTOYHbIMU
Koppendaunammn”. KoadodpunumeHT B AR-
MOAENN




[TpU3HaKn
AR Mopenwu

* [1poLiecc CTpeEMUTCSH
BEPHYTbLCSH K
HEKOTOpPOMY cpedHeEMY
3HAYEeHUIO

* ACF ybbiBaeT nnaBHO,
PACF - pe3ko

Time Series Plot for AR
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Time Series Plot for MA

[Tpu3Haku
MA mogenu %

* [loxoxxa Ha benbin Wym

 ACF ybbiBaeT pesko,
PACF - nocTteneHHo

Estimated Autocorrelations for MA,
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AR vnv MA

* Bce 3aBucut ot nopsaka d
anpdepeHUmMpoBaHnUA npoLiecca

* icxoaHbIn npouecc oobi4HO Moxox Ha AR

e [Tocne BblUUCIEHUA HECKOMBbKNX
Pa3HOCTEN OH npeBpaltaetca B MA-
npotiecc

* He Hy>XHO andodpepeHumnpoBaTb CNMLLKOM
MHOI0 pa3 — 3T0 nepeoby4yeHune
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Original series: nonstationary
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With two orders of
differencing, MA(1) is
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[Ton®op napameTpoB mopenu

«Positive autocorrelation

No autocorrelation

{ l'r.::;

Negative autocorrelation—
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Ce3oHHasa ARIMA-mopensb 1

|
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Seas. diff:

need AR(1) & SMA(1)

Both diff:

need MA(1) & SMA(1)




Sample Quantiles

Peanusauuna Ha Python

» Siddharth Yadav. “Everything you can do
with a time series”

* https://www.kaggle.com/thebrownviking20/
everything-you-can-do-with-a-time-series

Standardized residual Histogram plus estimated density
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https://www.kaggle.com/thebrownviking20/everything-you-can-do-with-a-time-series
https://www.kaggle.com/thebrownviking20/everything-you-can-do-with-a-time-series
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