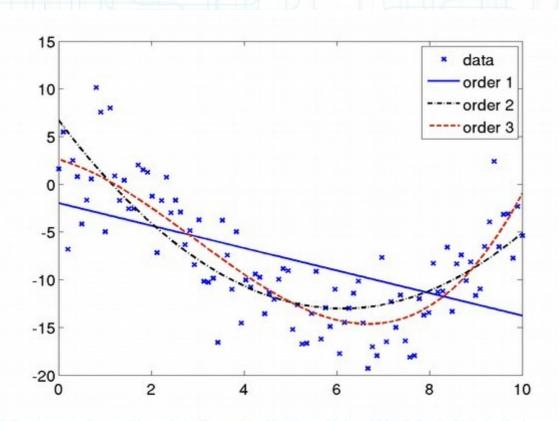
### Машинное обучение Основные понятия



### Содержание лекции

- Задача обучения
- Матрица объектов-признаков
- Модель алгоритмов и метод обучения
- Функционал качества
- Проблема переобучения

### Задача обучения

Х — множество объектов

Ү — множество ответов

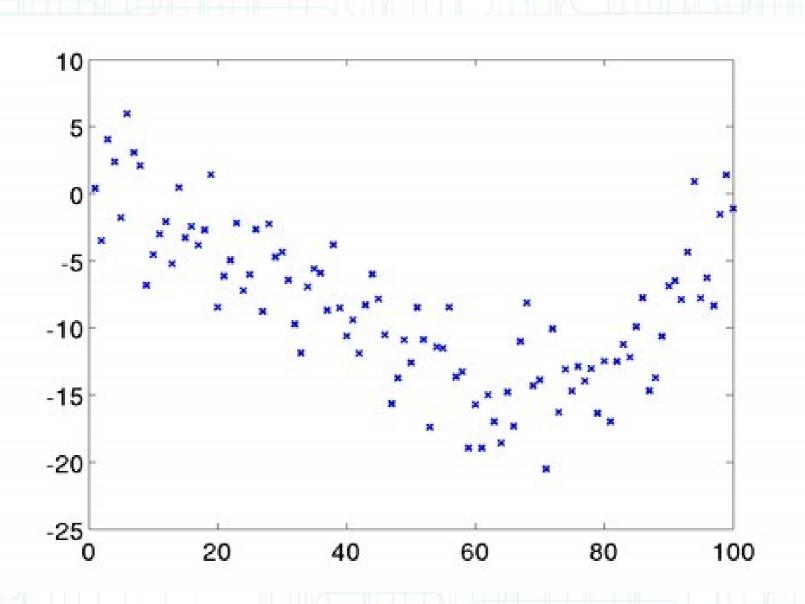
 $y: X \rightarrow Y$  — неизвестная зависимость (target function)

#### Дано:

{x₁, . . . , x₂} ⊂ X — обучающая выборка (training sample)

$$y_i = y(x_i)$$
,  $i = 1, ..., \ell$  — известные ответы

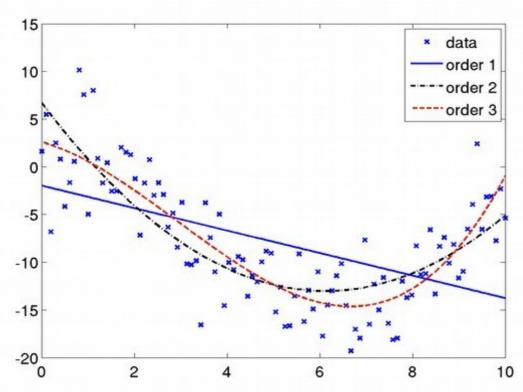
### Задача обучения



### Задача обучения

Найти:

а:  $X \to Y$  — алгоритм, решающую функцию (decision function), приближающую у на всём множестве X



### Типы задач

#### Задачи классификации (classification):

Y = {-1, +1} — классификация на 2 класса

Y = {1, . . . , M} — на М непересекающихся классов (multi-class classification)

 $Y = \{0, 1\}^M$  — на M классов, которые могут пересекаться (multi-label classification).

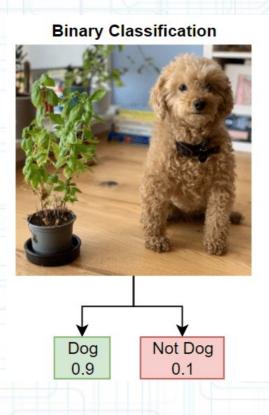
#### Задачи восстановления регрессии (regression):

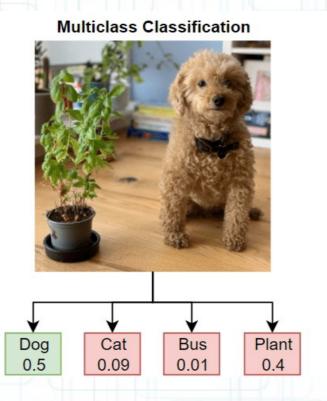
Y = R или  $Y = R^m$ 

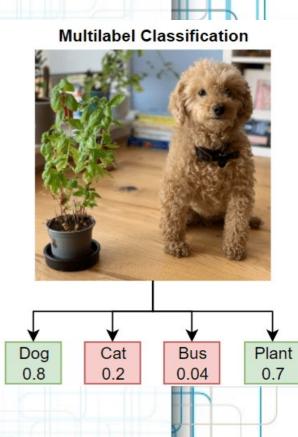
#### Задачи ранжирования (ranking):

Ү — конечное упорядоченное множество

### Типы классификаций



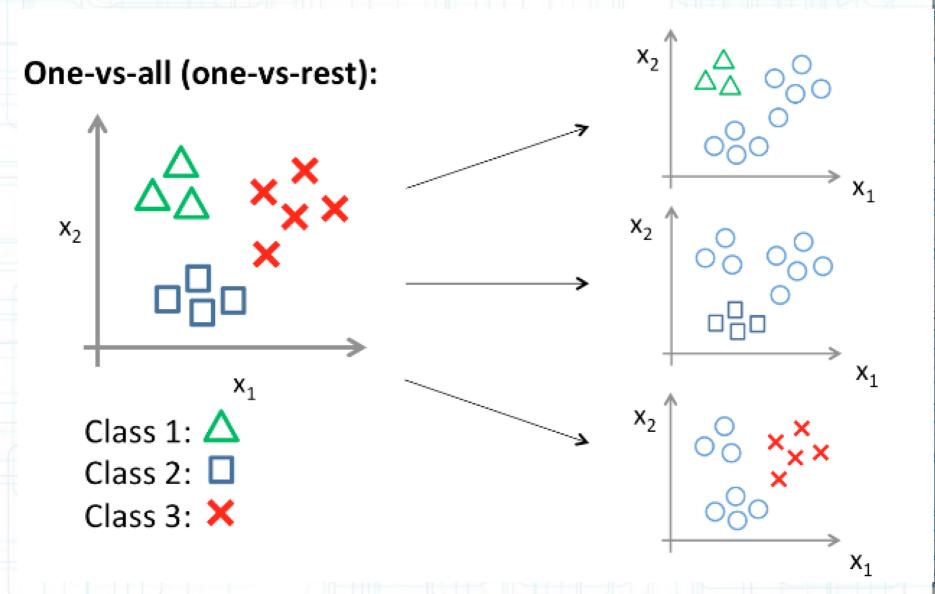




# Выбор между multi-class и multi-label

- Пример нетривиальной задачи: классификация участков гистологий. Патологоанатомы разметили знакомые характерные участки в БД изображений названиями известных патологий. Нужно натренировать нейросеть делать это автоматически
- Чем будут отличаться результаты предсказания multi-class и multi-label нейросетей?
- Если мы впоследствии будем сортировать по вероятности принадлежности тому или иному классу, какой тип классификации правильно будет применять?

# Сведение многоклассовой к бинарной классификации







Multi-Label

C = 3

Samples









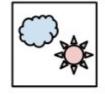


Labels



[0 0 1] [1 0 0] [0 1 0] one-hot encoding

Samples







Labels

[101] [010] [111]

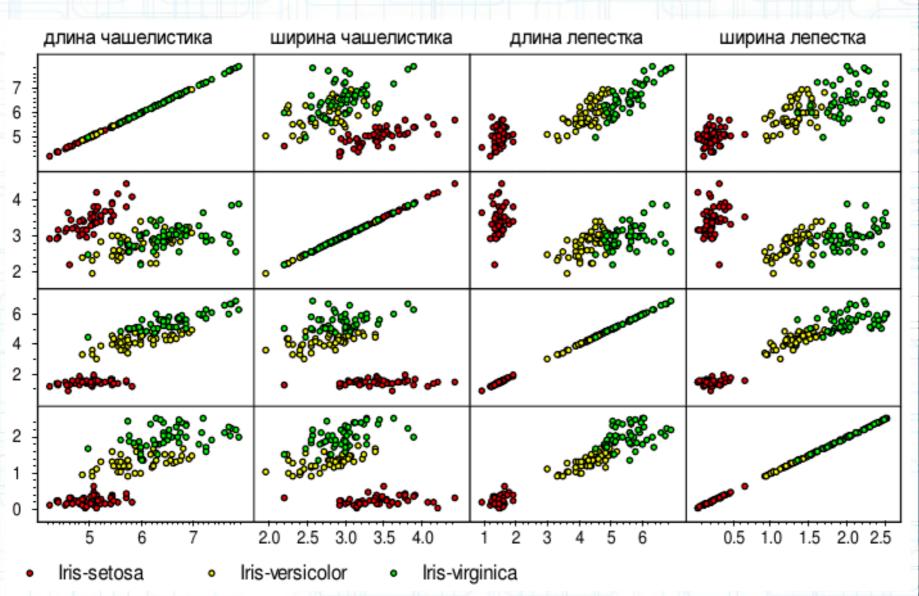
### Признаки

- Компьютер всегда имеет дело с признаковым описанием объектов.
  Например: пациента можно описать признаками: имя, возраст, номер полиса, жалобы, давление, температура, результаты анализов
- $\bullet$   $f: X \to D_f$
- Типы признаков:
  - бинарный
  - номинальный
  - порядковый
  - количественный

Матрица объектов-признаков:

$$\begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}_{11}$$

# Пример. Задача классификации видов ириса (Фишер 1936)



### Модель и алгоритм обучения

• Модель – это семейство "гипотез"

$$A = \{g(x, \theta) \mid \theta \in \Theta\}$$

одна из которых (как мы надеемся) хорошо приближает целевую функцию

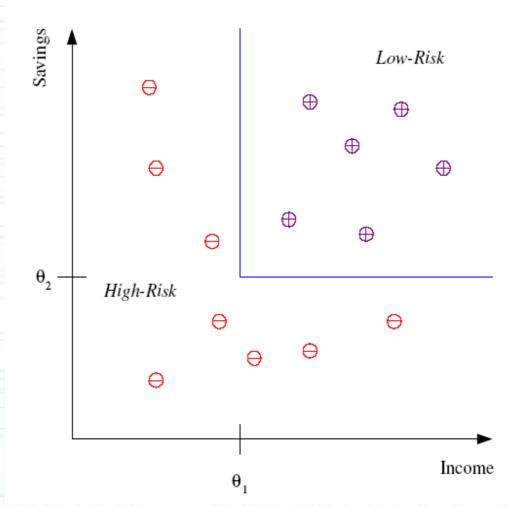
• Алгоритм обучения

$$\mu \colon (X \times Y)^{\ell} \to A$$

находит гипотезу в модели, которая наилучшим образом приближает целевую функцию, используя известные значения (обучающую выборку)

### Пример - классификация

- Кредитный скоринг
- Разделение клиентов на low-risk и high-risk по их зарплате и сбережениям

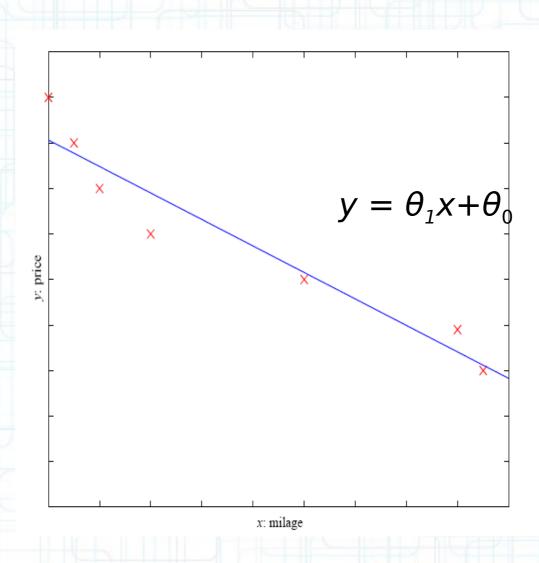


IF income >  $\theta_1$  AND savings >  $\theta_2$ THEN low-risk ELSE high-risk

14

### Пример - регрессия

- у цена автомобиля
- *x* пробег
- $y = \theta_1 x + \theta_0$  модель
- $\theta_{0}$ ,  $\theta_{1}$  параметры



# Обучение на основе минимизации эмпирического риска

- Функция потерь \( \mathcal{L}(a(x), y^\*(x)) \) величина ошибки гипотезы а на объекте х.
  Примеры:
  - бинарная (где используется?)

$$= \mathcal{L}(a(x), y^*(x)) = |a(x) - y^*(x)|$$

$$-\mathcal{L}(a(x), y^*(x)) = (a(x) - y^*(x))^2$$

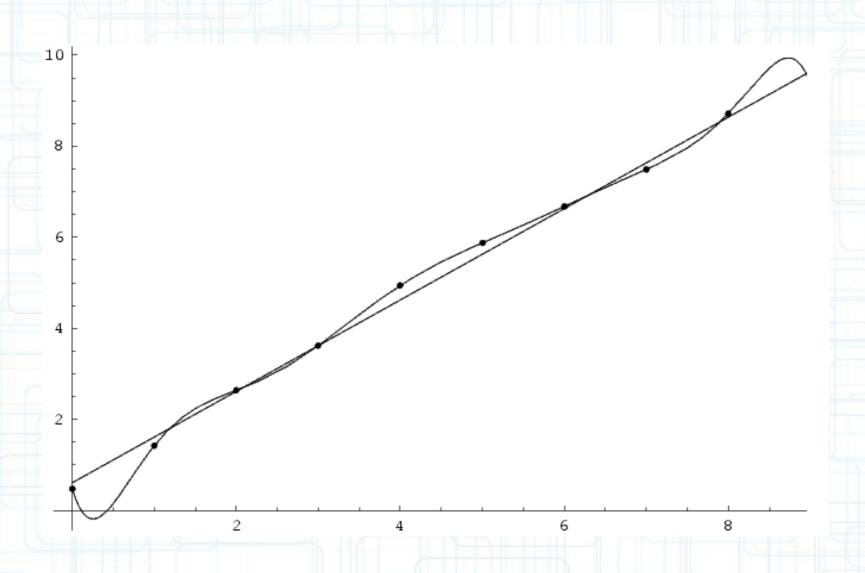
- Эмпирический риск:  $Q(a,X^\ell)=rac{1}{\ell}\sum_{i=1}^\ell \mathscr{L}(a(x_i),y_i)$
- Самый популярный алгоритм обучения минимизация эмпирического риска:

$$\mu(X^{\ell}) = \arg\min_{a \in A} Q(a, X^{\ell})$$

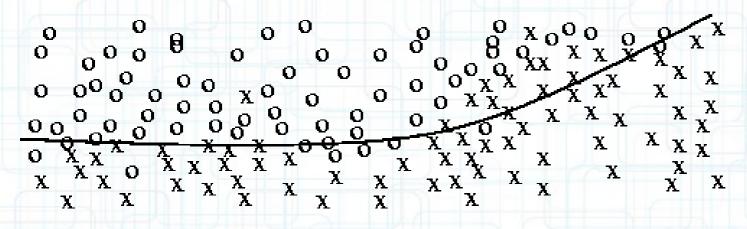
### Степени обученности модели

- Недообученная модель
  - Модель, слишком сильно упрощающая закономерность X → Y .
- Переобученная модель
  - Модель, слишком сильно настроенная на особенности обучающей выборки (на шум в наблюдениях), а не на реальную закономерность X → Y .

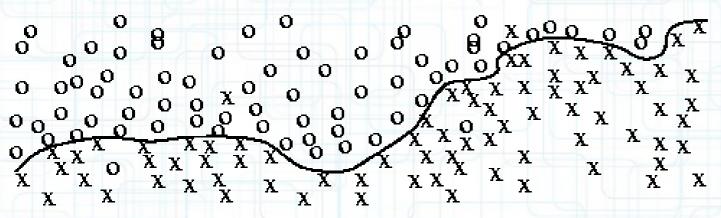
## Переобучение



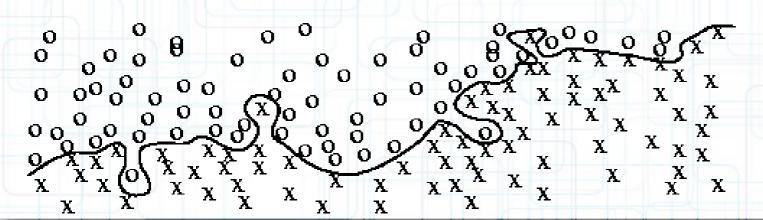
### Переобучение



Under-Trained



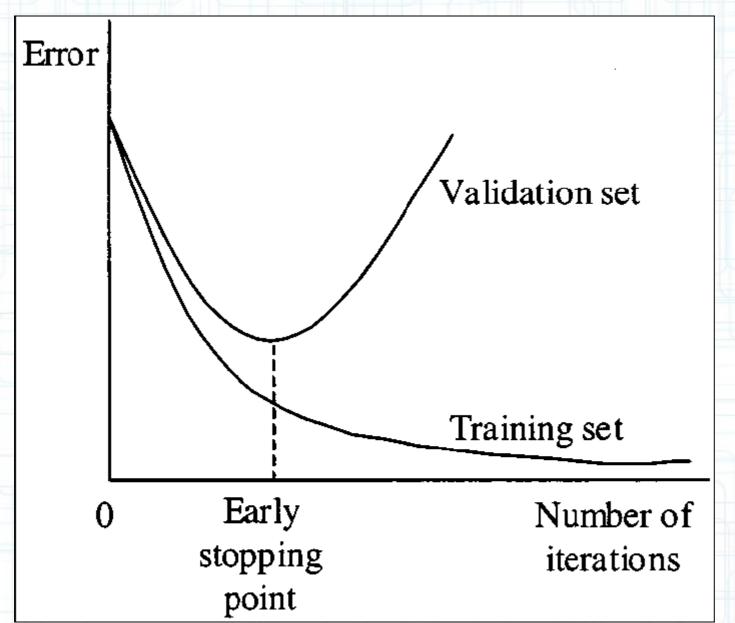
Well-Trained



Overfitted

1

# Когда нужно заканчивать обучаться?



### Контроль переобучения

- - Эмпирический риск на тестовых данных (holdout):

$$\mathsf{HO}(\mu, X^\ell, X^k) = Q(\mu(X^\ell), X^k) o \mathsf{min}$$

- Скользящий контроль (leave-one-out), L=I+1:

$$LOO(\mu, X^{\ell}) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathcal{L}\Big(\mu(X^{\ell} \setminus \{x_i\})(x_i), y_i\Big)$$

- Кросс-проверка (cross-validation):

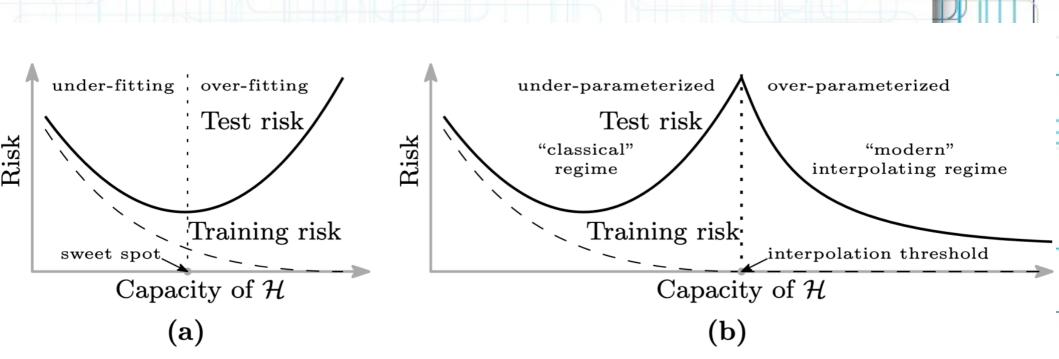
$$\mathsf{CV}(\mu, X^L) = rac{1}{|\mathcal{N}|} \sum_{n \in \mathcal{N}} Q(\mu(X_n^\ell), X_n^k) o \mathsf{min}$$

Оценка вероятности переобучения:

$$Q_{\varepsilon}(\mu, X^{L}) = \frac{1}{|N|} \sum_{n \in N} \left[ Q(\mu(X_{n}^{\ell}), X_{n}^{k}) - Q(\mu(X_{n}^{\ell}), X_{n}^{\ell}) \geqslant \varepsilon \right] \to \min$$

### Кривая риска для современных алгоритмов

Double descent risk curve - после достижения interpolation threshold алгоритм умеет идеально запоминать обучающую выборку, но неограниченного роста переобучения не происходит



### Ошибки кросс-валидации

 Данные, зависящие от времени, нужно разделять на "прошлое" и "будущее", а не пользоваться train\_test\_split да еще и с shuffle=True

 Аугментацию нужно проводить не перед, а после разделения на Train и Test (пример: генерация смесей, аугментация фото)

### Ошибки кросс-валидации

- Bias статистическое отличие Train от Test (или от данных, к которым модель собираются применять в будущем).
- Примеры:
  - обучение на фото, собранных в ясную погоду;
  - наем сотрудников в Amazon (м/ж)
  - наш опыт сбора данных по титановым покрытиям
  - конкурсы Яндекса: пробки, панорамы