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Foreword
Recommender Systems: Navigators in the Ocean of
Information
In 2020, the total global data storage exceeded 40ZB. It is expected that this
number will reach 200ZB between 2025 and 2026. Faced with such a huge
amount of data, the first challenge of the big data era is how to solve the
problem of information overload, that is, how to help users find the content
they need or like in the ocean of information. We have seen different types
of “information intermediaries,” like navigation websites (such as hao123),
portal websites (such as Sohu News), search engines (such as Baidu), and
recommender systems that this book will introduce. Readers may feel that
search engines play the most important role in information acquisition, but
in fact, the vast majority of information we passively obtain or seemingly
actively but actually passively obtain comes from recommender systems,
and this information accounts for the largest share of our information
acquisition from the Internet. For example, although we sometimes browse
videos of our interests on TikTok, Kuaishou, and Xiaohongshu, most of the
time, when we swipe the screen, the new videos come from the
recommender system. We may think that the long videos we watch come
from accurate grasp of our interests and active positioning of the content,
but in fact, over 2/3 of clicks on Netflix come from recommendations, and
over 1/2 of clicks on iQIYI come from recommendations. There are also
news recommendations on Toutiao, product recommendations on Taobao…
We have been tightly wrapped by recommender systems, but this layer of
wrapping is very soft, and we often do not realize it ourselves.

The book in the reader’s hands is a comprehensive introduction to
recommender systems, from theory and methodology to practice. It is
authored by internationally renowned scholars in the field. It must be said
that there are already many high-quality surveys and monographs on
recommender systems, each with its own characteristics. However, most
surveys only focus on a certain type of method (such as Adomavicious and
Tuzhilin mainly focusing on collaborative filtering,1 while our survey
mainly focuses on the methods of physics2) or only delve into a certain
problem (such as Herlocker et al.’s survey mainly focusing on how to
evaluate a recommender system3). Francesco Ricci et al. compiled the book



Introduction to Recommender Systems Handbook,4 which has a great
influence, but this book is actually a compilation of several thematic
surveys, and it is not narrated in the same language and symbol system
from shallow to deep, so it is only suitable for very professional researchers
to read. Liang Xiang’s Practical Recommendation Systems is an entry-level
and practical guide for practitioners,5 but there is not much theoretical
discussion. At the same time, the development speed of recommender
systems themselves is very fast. The single algorithm represented by
collaborative filtering and matrix factorization has been unable to cope with
today’s large-scale recommender systems. In fact, in the current mainstream
recommender system framework, deep learning and feature engineering
have already gained prominence,6 and the once invincible single algorithm
(such as user-based and item-based collaborative filtering) has degenerated
into an inconspicuous member of several recall algorithms in the cutting-
edge recommender system framework. Therefore, some relatively
comprehensive works are far away from the forefront of recommender
system technology. Overall, this book is a “just right” recommender system
monograph, which takes into account both theoretical and practical aspects,
and includes classic algorithms and cutting-edge methods.

I have a deep connection with recommender systems. In 2007, I went to
the University of Fribourg in Switzerland to pursue my PhD. The first topic
I worked on with Professor Yicheng Zhang was recommender systems, and
later recommender system and link prediction became the two main
directions supporting my doctoral thesis. After returning to China, the first
company I participated in founding7 initially developed recommender
systems for e-commerce websites. My wife also worked in practical
recommender system development for a long time and was the main person
responsible for building the recommender system for iQIYI. My wife and I
have an important shared experience, which is that we both worked on
location analysis and recommender systems under the guidance of Professor
Xing Xie. I have collaborated with Professor Xing Xie on a total of four
papers,8 including three on how to recommend locations that users may be
interested in and one on how to use location information to recommend
content.

Despite nearly 30 years of development, the field of recommender
systems remains vibrant. This is largely due to the fact that recommender



systems play a significant role in our information acquisition activities,
which are an important part of modern life and learning. In addition to the
application of deep learning frameworks mentioned earlier, the latest
technological developments have presented several new challenges, such as
how to better design recommender systems in multimedia environments9

(closely related to the currently popular multi-modal learning), how to
incorporate expert knowledge to build “cognitive” recommender systems,10

and how to design recommender systems under the premise of privacy
protection,11 among others. During the hype of big data, the Bureau of
Cyberspace Security and Emerging Technologies (CSET) of United States
released a report suggesting a renewed focus on artificial intelligence
applications in small data.12 Designing recommender systems under the
conditions of sparse and insufficient data is also a major challenge.
Recently, Professor Xing Xie and his colleagues proposed a possible
solution to this problem through their research on knowledge graph-based
recommender systems.13 I have recently focused less on recommender
algorithm research and instead turned my attention to ethical issues in
recommender systems, such as how to avoid narrow vision and even
information cocoons14 caused by excessive personalization—this is actually
a natural extension of my doctoral work15 on solving the apparent diversity-
accuracy dilemma of recommender systems.

It can be said that recommender systems are a vibrant field that
seamlessly integrates scientific, technical, and industrial practice. The
authors of this book are global research scholars in this field, and most of
them are based at Microsoft, making them very sensitive to industry
demands! I hope that all readers can gain a lot from this book.

Professor, University of Electronic Science Tao Zhou
and Technology of China



Preface
The recommender system was born in the 1990s with the vigorous
development of Internet technology. At the beginning of its appearance, it
was generally accepted by academia and industry, achieved wide successes
in many areas, such as e-commerce, news platform, multi-media content,
daily service, social network, advertisement, and marketing, and has
gradually become an indispensable part of the Internet. Today, due to the
increasingly prosperous mobile Internet and new media, the recommender
system plays an irreplaceable role, continuously reducing the difficulty for
Internet users to obtain information, and improving the experience of users
interacting with the information systems. During recent years, many
successful applications have shown that recommender systems are
continuously affecting or even changing the way that humans interact with
the information world.

The emergence of deep learning has greatly changed the development of
recommendation technology, and it is necessary for researchers and
technicians in the field of recommender systems to have a deep
understanding of deep learning-based recommendation technology. First,
the development of technology is usually like a spiral, and recommendation
technology is not exceptional. We can often see the shadows of traditional
recommendation technologies behind many new methods and technologies,
so that it is very important to connect traditional recommendation
technologies with recent deep learning-based recommendation
technologies. Therefore, this book spends a lot of space introducing classic
recommendation technologies. Secondly, recommendation technology is
not limited to Internet applications. There are also a large number of
recommendation scenarios in our daily lives. Traditional industries can also
use recommender systems to reform their business or management.
Therefore, this book focuses on introducing the basic technologies that are
not application-specific, so that researchers at different stages and
technicians in different industries can all benefit from it. Finally, the
recommender system is an application-oriented area. In addition to the
learning of methods and principles, it is more important to learn how to
design and implement industrial-level recommender systems. Therefore,
this book presents to readers how to apply the theory into the practice based
on the open source project of Microsoft Recommenders.



To allow readers with different backgrounds and from different
industries clearly and completely understand the cause and effect of
recommendation technology, this book attempts to view recommender
systems from a broader perspective. First, this book starts with classic
recommendation algorithms, introduces the basic principles and main
concepts of the traditional recommendation algorithms, analyzes their
advantages and limitations, and lays the foundation for readers to better
understand deep learning-based recommendation technology. Then, this
book introduces the basic knowledge of deep learning, focuses on deep
learning-based recommendation technology, and analyzes the key problems
of recommender systems from both theoretical and practical perspectives,
so that readers can gain a deeper understanding of the cutting-edge
technologies of recommender systems. Finally, this book introduces the
practical experience of recommender systems based on Microsoft
Recommenders, an open source project of Microsoft. Based on the source
code provided in this book, readers can learn the design principles and
practical methods of recommendation algorithms in depth, and can quickly
build an accurate and efficient recommender system from scratch based on
this book.

This book was written by Dongsheng Li, Jianxun Lian, Le Zhang, Kan
Ren, Tun Lu, Tao Wu, and Xing Xie. The work division is as follows:

Dongsheng Li wrote parts of Chapters 1, 2, 3, 5, and 7.
Jianxun Lian wrote parts of Chapters 4 and 6.
Le Zhang wrote the majority of Chapters 6.
Kan Ren wrote parts of Chapters 3 and 4.
Tun Lu, Tao Wu, and Xing Xie coordinated, revised, and reviewed the

content of all chapters.
In addition to the authors of this book, several students and partners

helped us a lot in writing this book, including Jiafeng Xia, Guangping
Zhang, Fangye Wang, Yingxu Wang, Zhengyu Yang, Ziyue Li, and Kerong
Wang. We sincerely thank all of them for their tremendous help in the
writing of this book.

This book is translated from a Chinese version. Dongsheng Li, Le
Zhang, Kan Ren, Tao Wu, and He (Simon) Zhao contributed equally to the
translation work. We sincerely thank He (Simon) Zhao for his tremendous
contributions in the translation of this book. Scott Graham and Jun Ki Min
provided valuable assistance in proofreading and reviewing the English



version of this book, and we express our sincere gratitude for their
contributions.

We sincerely thank Mr. Yadong Song and Publishing House of
Electronics Industry for devoting their attention to this book and for
everything they have done for the publication of this book. We also
sincerely thank Springer for everything they have done for the publication
of this book.

Due to the limited time, some deficiencies of this book are unavoidable,
and we will really appreciate if the readers can let us know any of them.
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Abstract
This chapter first introduces the history of the recommender system and the
revolutionary changes in the field of recommender systems. Then, this
chapter introduces the basic principles of recommender systems, including
introducing the basic assumptions of recommendation algorithms from the
perspective of machine learning, introducing how to define the
recommendation problem in the form of a machine learning problem, and
emphatically introducing the deep learning-based paradigm to solve the
recommendation problem—“representation learning + interaction function
learning”. This chapter also gives an overview of the technical architecture
of recommender systems, including the differences between small- and
medium-scale recommender systems and large-scale recommender systems.
Finally, this chapter introduces the main application areas of recommender
systems, such as e-commerce, content platforms, etc., and the actual
business value brought by recommender systems to these application areas
and compares the three main applications in the Internet field—search,
advertising, and recommendation, by the differences and connections
among them. Starting from industry problems, this chapter summarizes the

https://doi.org/10.1007/978-981-99-8964-5_1


differences in the application of recommender systems in different
industries and outlines the solutions to different types of problems.

Keywords Overview – History – Revolution – Recommender system
paradigm – Application

1.1 History of Recommender Systems
Since the 1980s, with the vigorous development of Internet technologies,
many applications using computers to transmit information have emerged in
the field of information technology, such as personal websites, chat
systems, emails, online forums, etc. These applications brought to users
“happiness” and “trouble” at the same time, i.e., the information overload
problem [16]. For instance, the total number of websites in the world has
exceeded 1.8 billion [22]. For an individual user, if she/he can browse one
website per second and browse 24 hours a day, it will take about 57 years to
browse all the 1.8 billion websites, which is unacceptable for any user.
Therefore, people are in urgent need of a technology that can not only allow
users to enjoy the benefits brought by the information era but also
effectively avoid the troubles caused by information overload.

In 1987, the researchers at the Massachusetts Institute of Technology
and Michigan State University came up with an interesting idea: to design a
new type of information sharing system and only distribute relevant
information to those who think the information is valuable to them and not
to disturb those who think the information is of no value to them [29]. This
idea is actually the origin of recommender system. Since then, the research
on recommender systems has gradually deepened and brought higher and
higher commercial value. For instance, in 2001, Amazon for the first time
introduced the recommender system to their e-commerce platform, which
brought a substantial increase in sales [28]. In 2006, Netflix held the
“Netflix Prize” competition [3], which attracted a large number of
researchers to devote themselves to this field, and also promoted the rapid
development of important methods such as matrix factorization in the field
of recommendation algorithms. In 2007, Turing Award winner Geoffrey
Hinton and his collaborators Ruslan Salakhutdinov and Andriy Mnih jointly
proposed to solve the recommendation problem using a restricted
Boltzmann machine [42], which opened up the research and development of



recommendation algorithms in the era of deep learning. Since then, the
research on recommender systems has begun to flourish, and the value of
recommender systems has been proven in more and more scenarios.

1.1.1 Content-Based Recommendation Algorithms
In 1990, Jussi Karlgren from Stockholm University proposed the concept of
book recommendation [23] in a technical report. Taking book
recommendation as an example, Karlgren introduced how to calculate the
similarity between books that users have read in the past and their unread
books and then recommend new books to users based on the similarity. This
idea can be considered as a typical content-based recommendation
algorithm. Its basic assumption is that the items that users like in the future
should be similar to the items they liked in the past, so we can recommend
items to target users by looking for items with similar content. A large
number of content-based recommendation algorithms that have emerged
since then were based on this assumption.

Generally speaking, content-based recommendation algorithms include
the following three key steps [37]:

First, user profiling. A user’s interest in content can be expressed in
various ways, such as the user’s explicit rating of the item (1–5 stars),
whether the user purchased the item (1 or 0), and the user’s comment on
the item (text). For the items that the user has expressed interest in, they
need to be aggregated to form the user’s interest set.
Second, user modeling. With the set of user interests, it is necessary to
model user interests in a computable way. In this step, it is first necessary
to describe the set of items that the user is interested in. Since there are
many types of items, such as movies, books, products, and music,
different types of items need to be described in different ways. For
instance, a movie can be described by means of film type, director, actor,
language, release time, and movie reviews, and music is usually
described by means of music type, singer, release time, and audio
attributes.
Third, content recommendation. After describing the items in the
user’s interest set, the association between items can be calculated, such
as the similarity between two movies. For the items that are not included
in the user’s interest set, we can calculate their average similarity with



the items in the user’s interest set and then select the items with the
largest average similarity and recommend them to the user.
Based on the above formulation, researchers proposed a variety of

recommendation methods to solve the problem of information overload in
different applications. For instance, in 1997, Balabanović and Shoham from
Stanford University proposed the Fab system [1] for web page
recommendation. In the same year, Pazzani et al. from the University of
California, Irvine proposed the Syskill & Webert system [36] to recommend
interesting web pages for users. In 2002, Billsus and Pazzani from the
University of California, Irvine proposed the Daily Learner system [6],
which can recommend personalized news for users. These are all pioneering
research works on content-based recommendation. However, these early
studies had major limitations, such as low accuracy and lack of diversity.
Therefore, with the development of recommendation technology, these
traditional content-based recommendation algorithms have been less
adopted. In recent years, with the fast development of deep learning,
content-based recommendation algorithms have also shown new vitality. In
many recommendation scenarios that rely heavily on content, such as news
recommendation, a large number of recommendation algorithms proposed
to leverage neural network-based representation learning technique in
content-based recommendation [52]. More discussions on this will be
introduced in the subsequent chapters.

1.1.2 Collaborative Filtering-Based Recommendation
Algorithms
After content-based recommendation algorithms were proposed, a lot of
researchers found that these algorithms had limitations. For instance, the
content and quality of two movies with the same genre or even directed by
the same director may vary greatly, and users’ interests in them may also
vary greatly. Recommendations based solely on content will lead to low
accuracy. Meanwhile, only recommending items that are with similar
content to the ones that users have been interested in the past will also lead
to over-concentration of recommended content, leading to low diversity and
serendipity. To solve these problems, in 1992, Goldberg et al. [14] from
Xerox innovatively proposed the idea of collaborative filtering, that is, a
user may have similar interests with some other users (also called
“neighbors”), so she/he is likely to like the items that these neighbors are



interested in. Collaborative filtering can be considered as one of the most
important concepts in the field of recommendation algorithms, and it has
been affecting the research and application of recommendation algorithms
since its appearance.

Key Steps in Collaborative Filtering Algorithms
Generally speaking, a collaborative filtering-based recommendation
algorithm includes the following three key steps [40].

First, collect users’ interest in items, mainly including explicit ratings
and implicit feedback. Explicit ratings refer to users’ explicit feedback on
items, such as movie ratings from 1 to 5 stars, likes and dislikes, etc.
Implicit feedback generally only includes the user’s positive feedback and
lacks negative feedback. For instance, the user’s purchase record on an e-
commerce platform can be regarded as positive feedback, and the reason for
not purchasing the product should not simply be attributed to dislike. It is
possible that the user likes the item but did not purchase it on the target e-
commerce platform.

Second, based on the user’s interests in the items, the neighboring users
who are most similar to the target user are discovered through predefined
functions or models, and then we can describe the relationship between
each user and her/his neighbors. For instance, we can use cosine similarity
to measure the correlation between two users based on their explicit ratings,
and then we can select the users with the highest similarities with the target
user as the set of neighbors.

Third, for the target user, we can obtain a “collective evaluation” from
neighbors on items that the user has not interacted with and then
recommend items with high predicted ratings to the user. The key here is
how to aggregate neighbors’ evaluations. Commonly used methods include
weighted average and model-based methods, which will be explained in
more detail in the subsequent chapters of this book.

Classification of Collaborative Filtering Algorithms
Collaborative filtering is an idea to understand and solve recommendation
problems. There are various kinds of recommendation algorithms based on
the idea of collaborative filtering, and the successful methods mainly
include the following three categories:



(1) Nearest neighbor-based approaches [20, 28, 40]. For instance, the
user-based collaborative filtering method [20] first finds the nearest
neighbors for each target user and then estimates the target user’s
interest in the target item based on the weighted average of the
neighbors’ ratings on the item. Similarly, the item-based collaborative
filtering method [28, 44] finds the nearest neighbors for each item and
then makes a weighted average of the similarity between the target
item and the items that the user has interacted with in the past to
estimate the interest of the target user.

 

(2) Matrix factorization approaches [5, 24, 41, 43]. This type of
methods was proposed to solve the sparsity problem of user–item
interaction data. The rating vectors of users and items are originally
very sparse, so the intersection of rating vectors of different users is
very small. However, if the rating vectors of users and items are
reduced to a low-dimensional space, the problem of data sparsity will
be alleviated, because each dimension on the low-dimensional space
does not represent an item but represents a class of items. After
dimension reduction, a simple dot product operation between the user
vector and the item vector can be used to estimate how much the user
likes the item. This type of method achieved very good performance
[24] in the “Netflix Prize” competition [3] held by Netflix in 2006 and
is also widely adopted by today’s mainstream recommender systems.

 

(3) Deep learning-based recommendation approaches [42]. Although
many deep learning-based methods use a more novel way to model
user interests, they are essentially based on the interests of similar
users to predict the interests of target users. Especially, many deep
learning-based methods can be considered as the neural network
versions of the traditional collaborative filtering algorithms. For
instance, the NeuMF method [19] replaces the dot product-based score
function in the classic matrix factorization algorithm with the multi-
layer perception.

 

1.1.3 Deep Learning-Based Recommendation Algorithms
The earliest deep learning-based recommendation algorithm can be traced
back to 2007. The famous Turing Award winner Geoffrey Hinton, together



with his collaborators Ruslan Salakhutdinov and Andriy Mnih, proposed a
collaborative filtering method using restricted Boltzmann machines. In the
following few years, since deep learning has not been generally recognized
by the academic community, deep learning-based recommendation
algorithms were not very popular then. It was not until 2012 that Geoffrey
Hinton and his students Alex Krizhevsky and Ilya Sutskever proposed to
use GPUs to train deep neural network models, which greatly improved the
accuracy of image classification tasks on ImageNet, and deep learning
began to be recognized by the academic community. Since then, the
research related to deep learning has exploded, and deep learning-based
recommendation algorithms have also begun to flourish. Essentially, deep
learning-based recommendation algorithms do not differ from the scope of
the previous two kinds of methods. The current deep learning-based
recommendation algorithms can also be divided into content-based
recommendation and collaborative filtering. Of course, some methods are a
combination of the two. However, compared with traditional
recommendation algorithms, deep learning has indeed brought a
revolutionary breakthrough.

First, deep learning-based recommendation algorithms can model many
types of data that traditional algorithms cannot model, aiming to improve
the performance of recommendation algorithms by introducing more
information. For instance, by introducing the recurrent neural network into
the recommendation tasks [51], the sequential information in the user or
item interaction sequences can be better modeled, e.g., items with
sequential dependencies generally have a sequential purchase order. For
text or image data, many research works try to introduce a pre-trained
natural language model [52] (such as BERT [11]) or an image feature
extraction network [25] (such as ResNet [17]), to leverage rich text or
image information to improve the recommendation performance. Rianne
van den Berg, from the University of Amsterdam, Netherlands, proposed to
use a graph neural network to model the structural information on the
bipartite graph of users and items, such as the user’s neighbors, neighbors’
neighbors, etc. The additional information on these graphs helps modeling
the user’s interest more accurately, which then improves the accuracy of the
recommendation algorithms.

Second, deep learning-based recommendation algorithms try to improve
the modeling of the user–item matching function in the traditional method,



aiming to improve the performance of recommendation algorithms by
modeling a more complex user–item relationship. For instance, the Wide &
Deep method [7] proposed by Heng-Tze Cheng et al. from Google can not
only use the Wide model to model the simple linear relationship between
users and items but also use the Deep model to model the complex non-
linear relationship between users and items, and the combination of the two
can more accurately model the relationship between users and items and
improve the accuracy of recommendation. The NeuMF method [19]
proposed by Xiangnan He et al. is to replace the dot product score function
in the classic matrix factorization algorithm with the multi-layer perceptron
as the score function. They hoped to improve the accuracy of the model by
a multi-layer perceptron with stronger modeling capabilities. In another
work, Xiangnan He et al. proposed the NAIS method [18], which uses the
attention mechanism in deep learning to learn the similarity between items,
replacing the predefined similarity function (such as cosine similarity, etc.)
in the traditional methods, thus improving the accuracy of item-based
collaborative filtering algorithms.

Finally, the vigorous development of deep learning technologies has
also spawned a large number of new research directions for
recommendation tasks and has greatly promoted the development of
recommendation algorithms. For instance, many research works try to
introduce knowledge graph information into the recommendation tasks [49,
50, 53], which can solve the cold-start problem [50] and can explain the
recommendation results [53]. Lixin Zou et al. proposed an interactive
recommendation algorithm [55] based on deep reinforcement learning,
which can capture the user’s interest during the interactions between the
recommender system and the user, continuously update the user interests
based on new data, and then improve the accuracy of interactive
recommendations. Raymond Li et al. proposed a dialogue-based
recommender system [27] based on the autoencoder method, which can
analyze user interests according to the user feedback during the dialogue
and then more accurately recommend movies that users are interested in.
Caihua Shan et al. proposed a crowdsourcing task recommendation method
[45] using deep reinforcement learning, which can simultaneously optimize
the goals of crowdsourcing platform, task publishers, and workers in a
dynamic environment. This line of research work is also a hot spot in the
current recommendation algorithm research.



1.2 Principles of Recommender Systems
1.2.1 Recommender Systems from the Perspective of Machine
Learning
From the perspective of machine learning, recommendation algorithms are
mainly concerned with two types of problems. One is the regression
problem, which is to predict the user’s rating of the item. For instance, on a
movie website, the recommender system can predict how a user would rate
an item from 1 to 5 stars. This problem was studied in depth in the early
recommendation algorithms, thanks to the MovieLens dataset [32] released
by the GroupLens Laboratory from the University of Minnesota and the
“Netflix Prize” competition dataset [3] released by Netflix. The second is
the classification problem, which is to predict whether a user likes an item.
For instance, the recommender system can predict whether a user will
purchase a certain product on an e-commerce platform. This type of
problem received more attention after Amazon began to apply
recommender system to its e-commerce platform in 2001. In recent years,
the research on regression problems has been relatively matured and new
research works are relatively few, which is no longer the most popular
research direction in the field of recommendation algorithms. Instead, with
the development of deep learning technology, classification problems in
recommender systems have attracted more researchers’ attention.

Whether it is a regression problem or a classification problem, all key
steps in recommender systems can be analyzed and solved from the
perspective of machine learning, which also benefits from the advancement
of machine learning, especially deep learning, in recent years. As shown in
Fig. 1.1, from the perspective of machine learning, a complete
recommender system mainly includes five key steps: data collection, data
preprocessing, recommendation algorithm selection and model training,
recommendation performance evaluation, online deployment, and user
feedback. Next, we describe each step in more detail.



Fig. 1.1 Recommender system from the perspective of machine learning

Data Collection
Data collection is not limited to recommender systems. Any artificial
intelligence project needs to collect sufficient data with sufficient quantity
and quality to ensure the feasibility of the project. Therefore, data collection
is one of the most critical factors that determine the success of a
recommender system. In recommender systems, we need to consider the
following factors in the process of collecting data.

(1) The amount of data. Recommender systems have high flexibility in
data requirements. When there is a lot of data, we can directly try
complex models, and when there is little data, we can try simple
models or design some special interaction methods to acquire data.
For instance, in the case of less user interaction data, some content-
based recommendation algorithms can be used to make preliminary
recommendations. After the users have enough interactions with the
system, collaborative filtering methods can be used to make more
accurate recommendations. Similarly, a question-and-answer or
interactive recommendation algorithm can be used to actively interact
with users and continuously collect user information to achieve more
accurate recommendations.

 

(2) Data quality. In some recommendation scenarios, such as movie
recommendation, the recommender system needs to collect user
ratings on items to build user interest sets. The accuracy of user
ratings is often affected by many factors, such as score granularity,
user memory, even user mood, etc., significantly affecting the
accuracy of ratings [9, 26], so it is necessary to consider how to design
a more reasonable rating collection mechanism to reduce the noise of
rating data. In many recommendation scenarios, such as e-commerce,
false purchases or evaluations often occur. These data will seriously

 



affect the performance of the recommender system, so precautions
should also be taken in real recommender systems.

(3) User privacy. The security and privacy of user data are increasingly
valued by individual users and the society. In September 2021, the
“Data Security Law of the People’s Republic of China” has come into
effect. For recommender systems, in addition to collecting the user’s
interaction history, it is often necessary to collect the user’s personal
information to achieve more accurate recommendations. This personal
information may include gender, age, occupation, income status, and
home address. Once such information is leaked or used illegally, it
will bring about serious social problems. Therefore, the recommender
system needs to strictly abide by relevant national laws in the process
of collecting user data and refer to general user privacy protection
experiences, such as the GDPR standard [13] issued by the European
Union, to ensure that the user’s privacy will not be violated.

 

Data Preprocessing
After user data are collected, further processing is often required to ensure
that the data can be better used to train the model. Common data
preprocessing techniques are as follows:

(1) Outlier processing. Data collected from the real world often have a
lot of noise or missing values, so data noise reduction or missing value
imputation may be required. Abnormalities in the range of values
generally need to be processed with prior knowledge. For instance,
people’s age, height, and weight all have common ranges, and values
outside the ranges need to be bounded. The abnormality or the absence
of some important features will have a greater impact, which can be
dealt with in a predictive manner. For instance, we can train a
classification model to fill in a user’s missing gender information or
train a regression model to fill in a user’s missing age information.

 

(2) Feature engineering. Before the popularity of deep learning, feature
engineering was very important in recommender systems, such as
using methods like Singular Value Decomposition (SVD) or Principal
Component Analysis (PCA) to reduce the dimensionality [40] of
sparse user rating vectors, so as to calculate the relationship between

 



users or items in low-dimensional space so that similarity is not
susceptible to the “curse of dimensionality”. In most deep learning
methods, instead of performing feature engineering on the original
features, simpler one-hot encoding and other technologies are used to
encode category features or user and item IDs, and we can then use
one or more layers of neural networks to convert an original feature
into a fixed-length vector, which is a commonly used representation
learning technique [2] in deep learning. This approach can not only
reduce the dimensionality but also embed richer information into the
vectorized representations, which is more flexible than SVD or PCA
when dealing with various types of data.

(3) Data analysis. After the data are obtained, it is usually necessary to
conduct some analysis on the data to determine whether there are
other problems with the data. For instance, to determine whether the
distribution of data is balanced, statistical analysis of data distribution
or cluster analysis may be used. Data skewness often exists in
recommender systems. For instance, in e-commerce data, the number
of items purchased by each user is usually far less than the number of
items that she/he has not purchased. In addition, the number of
purchases for products often vary a lot, and the number of purchases
for popular products may be hundreds of times higher than that of
unpopular products in the same category.

 

Recommendation Algorithm Selection and Model Training
(1) Recommendation Algorithm Selection
The recommendation algorithm is generally considered to be the most
important part in the entire recommender system, and the performance of
the algorithm often determines the success of a recommender system. We
need to pay attention to the following aspects when selecting
recommendation algorithms.

a) Suitability between the algorithm and the data. Aiming at different
types of recommendation problems or data, a more suitable
recommendation algorithm can often achieve better results. For
instance, for the movie rating prediction tasks, the matrix factorization
algorithms have been shown to perform well in the “Netflix Prize”

 



competition and are therefore the algorithms of choice. However, for
news recommendation tasks, content information will play a vital role
in the recommendation, so content-based recommendation algorithms
are more suitable for tasks such as news recommendation that are
highly dependent on content.

b) The trade-off between efficiency and accuracy. Generally speaking,
complex algorithms can improve the accuracy of recommendations, but
the model training efficiency of complex algorithms is usually low.
When faced with this kind of problem, it is necessary to weigh and
evaluate repeatedly and choose an algorithm with the best accuracy and
acceptable computational efficiency.

 

c) Ensemble learning. A single model usually has many limitations in a
real recommender system. For instance, the collaborative filtering
model is easily affected by cold-start problem. Although content-based
recommendation is not affected by cold start, the content analysis is
often very difficult. Therefore, in the real system, we can leverage
ensemble learning of multiple recommendation algorithms to solve
various challenges faced by a single algorithm. Ensemble learning can
leverage the complementarity of different recommendation algorithms,
theoretically reduce the variance of algorithmic predictions, and
improve the generalization ability of the model [54].

 

(2) Model Training
After selecting the appropriate algorithm, it is necessary to train the
recommendation model according to the algorithm and then input the user
data into the recommendation model to calculate the recommendation
result. The following aspects should be considered here:

a) Dataset splitting. Before model training, the data need to be divided
into three parts: training set, validation set, and test set. The training set
is used to train the model, the validation set is used to evaluate the
performance of the trained model, and the test set is used to evaluate
the generalization ability of the model on new data which is mainly to
prevent overfitting. For the splitting of the three datasets, there is
generally no clear standard, and we can choose 80%:10%:10%,
70%:20%:10%, 60%:20%:20%, and other ratios.

 



b) Overfitting and underfitting. Overfitting refers to the case that the
model performs very well on the training data but does not perform
well on the new data. In contrast, underfitting refers to the case that the
model has difficulty in fitting the training data, that is, not performing
well enough on the training data. In addition to overfitting caused by
improper dataset, overfitting may also result from over-complexity of
the model, and underfitting, on the contrary, may result from over-
simplification of the model. In the machine learning literature, there are
many related techniques that can help to solve these two problems, and
this book will not repeat them.

 

c) Model update. The recommender system is an information system that
continuously interacts with users, so it will continuously collect new
user data. The model can more accurately capture the changes in user
interests only when it can continuously use these new data. The model
update generally includes offline update and online update. Offline
updates are simpler, merging new data with historical data and then
retraining the model. Online updates are more complicated and
generally require support at the algorithm level. For instance,
algorithms such as recurrent neural networks can continuously update
the user’s interest vector according to changes in input data, and the
recommendation results can reflect changes in user interests in real
time.

 

Recommendation Performance Evaluation
(1) Evaluation Metrics
For a recommender system, it is necessary to judge the pros and cons of the
system by measuring various metrics. The evaluation of the recommender
system generally needs to be considered from two aspects: functional
metrics and non-functional metrics.

a) Functional Metrics
Accuracy is to measure whether the recommendations made by the
recommendation algorithm match the user’s interests. Common metrics
to measure the accuracy of rating prediction task include mean absolute
error (MAE) and root mean square error (RMSE). Common metrics to

 



measure the accuracy of item ranking tasks include Precision, Recall,
F1-score, Normalized Discounted Cumulative Gain (NDCG), etc.

Efficiency is a measure of the computation time and storage space
required for the model training and inference process. Efficiency
evaluation should be combined with application scenarios. For
instance, offline model training is required to be as efficient as
possible, but if the update frequency of user data is low, relatively
longer offline model training or inference time is also acceptable. For
online inference, if the computation delay is high, such as exceeding
100 ms, users may experience significant delays, significantly affecting
the user experience.

Diversity and Serendipity. Recommender systems are different
from other applications, which need to provide users with personalized
information and should always pay attention to the user experience. If
the recommended content is too homogeneous, it may cause user
boredom. Therefore, recommendations made by recommender systems
need to increase diversity and serendipity while ensuring high
accuracy. Among them, diversity means that the items in the
recommendation list are as dissimilar as possible, and serendipity
means that users may not see such items if the recommender system
does not recommend to them.

Utility. The proposal of recommender systems is mainly to meet
the needs of users for information acquisition and at the same time
meet the needs of system designers and other system participants. For
instance, from the perspective of an e-commerce platform, the
recommender system should promote the interaction between users and
the platform, including improving click-through rate, browsing time,
quantity of purchased products, sales, etc. Therefore, when evaluating
the performance of a recommender system, it is also necessary to
consider whether it can meet the requirements of utility.

Interpretability. In many recommendation scenarios, such as
healthcare, it is difficult for users to trust the recommender system
when they do not understand the reason behind the recommendations.
Therefore, it is necessary to provide some explanations to convince
users while recommending each item.

b) Non-functional Metrics  



Security. The recommender system may be attacked by malicious
users. For instance, the attacker makes a lot of malicious negative
reviews for an item, reducing the possibility of the item being
recommended, or making a large number of false positive reviews for
an item, increasing the possibility of the item being recommended. To
address this kind of problem, it is necessary to design more robust
recommendation algorithms to reduce the impact of malicious ratings
on the recommendation model. At the same time, it is also necessary to
prevent the impact of malicious ratings from the perspective of
evaluation mechanism, e.g., increase the cost of false evaluation
provided by attackers or detect false evaluation through algorithms.

User privacy. We have already explained the importance of
privacy protection in the previous section when discussing user data
collection, and we should also consider it in the process of system
evaluation, that is, whether the user’s privacy may be easily obtained
by malicious users or system developers.

Usability. In the process of interacting with users, the
recommender system needs to allow users to obtain relevant content
conveniently, so the issue of usability needs to be considered in user
interactions, for instance, whether the recommended content is
displayed in a reasonable position, whether the number of
recommended items is too large or too small, and so on. In addition to
the above metrics, the recommender system should also pay attention
to many system-related metrics, such as scalability, reliability,
maintainability, etc. These are similar to the development of other
information systems and will not be repeated here.

(2) Evaluation Method
In the recommender system evaluation, in addition to knowing about
common evaluation metrics, it is also necessary to know about reasonable
evaluation methods. We mainly have the following three evaluation
methods for recommender systems: offline evaluation, online evaluation,
and user study.

a) Offline evaluation. Before the online deployment of recommender
system, the collected historical data can be used to evaluate the
functional and non-functional metrics of the system, e.g., the accuracy
of the recommendations can be evaluated through a separate test set.

 



However, it may be difficult to measure the system’s metrics very
accurately from offline evaluation. For instance, when recommending
different item lists, the user’s response may be different, so in a real
scenario, if the recommendation list is changed, the user’s decision
may not be consistent with the behavior in their historical data.

b) Online evaluation. In order to solve the problem of inaccurate offline
evaluation, users can be evaluated online. For instance, A/B testing first
divides users into two different sets, set A and set B, and uses different
algorithms to recommend items to users in the two sets. After a period
of time of A/B testing, we can collect the results of online user
feedback and compare the pros and cons of the two recommendation
algorithms. This evaluation method can solve the aforementioned
accuracy problem of offline testing, but it also introduces new
problems. Because the online evaluation needs to be carried out in a
production environment, if the volume of evaluation is too large or the
test is too frequent, the system usability and user experience may be
affected. Therefore, the online evaluation needs to be carried out very
carefully, and it is generally necessary to do the online evaluation when
you have a higher degree of confidence about the new algorithm.

 

c) User study. Both the offline and online evaluations described above
can only measure some metrics that are easy to calculate, but to
measure many non-functional metrics that are difficult to calculate, a
user study is required. There are two ways to conduct the user study:
user interviews and questionnaires. The user study can clearly reflect
user pain points and even discover key issues that researchers have
never considered, which helps researchers find the directions of
improvements more quickly.

 

Online Deployment and User Feedback
After the development of the recommender system, it needs to be deployed
online to provide services to users. With the widespread application of the
cloud computing technology, the online deployment of recommender
systems is increasingly dependent on cloud platforms. The deployment of
recommender system based on cloud platform mainly includes two aspects.
The first is the online serving of recommendation results. After the



recommendation model is trained, recommendation scores can be obtained
for items that the user has not interacted with. These scores need to be
stored in a high-performance cloud database, such as Azure Cosmos DB.
Using these high-performance cloud databases, online services can
efficiently read recommendation results and display them to online users.
The second is the online serving of the recommendation model. For the
situation that the recommendation scores calculated offline cannot meet the
real-time needs of the user, the system needs to calculate the
recommendation scores for the user in real time, so the model needs to be
deployed online to provide real-time services. In this case, cloud-based
machine learning services, such as Azure Kubernetes Service, can be used
to deploy the model as an online service to provide real-time
recommendation services. The main metric of online services is the
response time. Generally speaking, the delay of online services should be
less than 100 ms, so that users will not experience obvious delays.

After the online deployment of recommender systems, developers can
collect a lot of user feedback from log, which is very important for
understanding the system operation status and guiding subsequent
algorithm improvement. From the perspective of system operation, these
real user feedback can be used to evaluate various functional metrics and
some non-functional metrics of the system. For instance, we can analyze the
problems in operation and maintenance efficiency, system security, etc.,
from user logs. Key metrics such as click-through rate and conversion rate
of each recommended item can be analyzed from the user’s click data, and
different types of items can be compared and analyzed. Moreover, we can
compare and analyze with historical data to judge whether the operating
status of the system has improved. From the perspective of algorithm
improvement, developers can analyze user behaviors from logs to find user
groups with poor recommendations and then focus on analyzing the reasons
for the poor recommendations and finally improve algorithm design to
avoid these poor recommendations. It should be noted that in the process of
algorithm improvement, there may be a phenomenon of success in one
metric but failure in another metric. For instance, some recommendations
that were more accurate in the past have become less effective after the
algorithm is improved. This is because the optimization goal of the
recommendation algorithm is non-convex, so there may be multiple local
optimal solutions and the optimal algorithm for some users may not be



optimal for the other users [4]. Therefore, the improvement of the algorithm
also needs to be carried out in a personalized manner, that is, it is not
necessary to apply the improved algorithm to all users. Users can be
grouped, and different recommendation algorithms can be selected for users
with different characteristics.

1.2.2 A New Paradigm for Deep Learning-Based
Recommender System
The emergence of deep learning has changed many research fields, and the
research on recommender systems has also been deeply affected. Compared
with traditional machine learning, one of the most important innovations in
the field of deep learning is representation learning, which is to represent
any kind of information in the form of vectors. For instance, word vector
representation (Word2Vec) [31] represents each English word as a vector. In
this way, English words that cannot be calculated numerically before can be
calculated now. For instance, subtracting the word vector of “man” from the
word vector of “king” and adding the word vector of “women”, the vector
obtained is very close to the word vector of “queen” [12]. In addition to
words, deep learning can represent almost all kinds of information with
vectors, such as continuous features, category features, text, image, audio,
video, etc., and even contextual information, social network relations,
knowledge graphs, etc. can also be represented with vectors. Based on the
characteristics of representation learning, the researchers proposed a deep
learning-based recommendation algorithm framework, which summarizes a
recommendation algorithm into two key steps: representation learning and
interaction function learning.

As shown in Fig. 1.2, user representation learning vectorizes user-
related data, and item representation learning vectorizes item-related data.
After obtaining the vectors of each user and item, the two vectors can be
input into the interaction function learning module to calculate the
recommendation score and generate a recommendation list based on the
scores.



Fig. 1.2 A new paradigm for deep learning-based recommender system: representation learning and
interaction function learning

Some of the techniques commonly used in each module are described in
detail below.

User Representation Learning
User representation learning can consider all user-related data, such as user
ratings, user profiles, user social networks, user reviews, etc. For different
types of information, different deep learning techniques need to be used for
representation learning. For instance, for structured information such as
user ratings and user personal information, multi-layer neural networks or
autoencoders can be used to map high-dimensional sparse vectors into low-
dimensional dense latent vectors. If it is necessary to model the sequence
information clicked by the user, a recurrent neural network can be used to
map a sequence to a vector in a low-dimensional hidden space. For the
graph data such as the user social network, the graph neural network
methods can be used to represent the structural information on the graph as
a vector. For text information such as user reviews, pre-trained language
models such as Transformer [48] or BERT [11] can be used to represent text
as vectors. After learning the representation of different types of
information, it is also necessary to fuse the vectors of different information.



The simplest fusion method is to directly concatenate each vector and then
perform subsequent processing. A more effective way is through learning,
i.e., input different vectors into a new neural network and the output of the
neural network can be used as the fused user representation vector.

Item Representation Learning
Item representation learning also needs to consider all item-related data,
such as item ratings, item attribute information, item relationship networks,
item reviews, etc. For specific representation learning methods, please refer
to the previous section (User Representation Learning). Compared with
user representation learning, items may contain some unique content
information, such as image, audio, and video. For this information,
corresponding techniques need to be used for representation learning. For
image information, we can use a pre-trained image feature extraction
network such as ResNet [17], that is, input an image into ResNet, and then
use the features before the prediction layer as the representation of the
image. For audio information, audio signal processing methods based on
recurrent neural networks such as WaveNet [33] can be used to represent
audio data as vectors. The processing of video is relatively difficult.
Generally, key frames in the video can be extracted, and then features can
be extracted by image processing. Due to the high dimensionality of video
features, they are rarely directly extracted and modeled in practical
recommender systems.

Interaction Function Learning
After obtaining the vector representations of the user and the item, it is
necessary to calculate the possibility of interaction between the user and the
item, which needs to be realized through an interaction function. In the
classic matrix factorization algorithm, the relationship between the user and
the item is modeled by the dot product of the user vector and the item
vector. Inspired by it, many deep learning-based recommendation
algorithms also use the dot product as the interaction function, mainly
because the dot product calculation is very efficient and the
recommendation accuracy is relatively high. The dot product is a relatively
simple linear multiplication and may not be able to model the complex non-
linear relationship between users and items. Therefore, many new studies
try to use neural networks with stronger modeling capabilities as the



interaction function, such as the NCF method [19]. Recently, Steffen
Rendle et al. [39] compared the two interaction functions of dot product and
neural network in more detail. They found that in many scenarios, using the
dot product as the interaction function is better than the neural network as
the interaction function because the recommendation accuracy will be
higher. Of course, since the neural network is a universal approximator that
can fit any type of function, the neural network can also approximate the
dot product by increasing the depth and the width of the network. However,
the amount of calculation and the training cost of the neural network are
much greater than the dot product, so it is usually a more reasonable choice
to use the dot product as the interaction function in industrial recommender
systems [39]. In addition, there are many recommender systems that use the
factorization machine [38] as the interaction function. The factorization
machine can be regarded as approximating an unknown function in the way
of polynomial expansion, so it also has the property of universal
approximation. In addition, the complexity of the factorization machine can
be manually controlled. For example, only the first-order term and the
second-order term are generally used, so its computational complexity will
be lower than that of the neural network.

1.2.3 Common Architectures for Recommender Systems
Recommender systems have been applied in many different types of
scenarios. Since different application scenarios often face with different
problems, small- and medium-scale recommender systems and large-scale
recommender systems usually adopt different system designs. In the
following, we briefly introduce the common architectures of these two
types of recommender systems.

Architecture of Small- and Medium-Scale Recommender Systems
As shown in Fig. 1.3, similar to the common way of using machine learning
to solve a practical problem, small- and medium-scale recommender
systems mainly include the following five key modules: data processing,
recommendation models, model fusion, system evaluation, and online
service. Among them, each module needs to be designed according to the
business requirements and performance requirements of the system. Due to
the small amount of data faced by small- and medium-scale recommender
systems, there is no need to consider the challenges of storage and



computation brought by big data, so they can be designed more flexibly.
The issues that need to be considered in the design of these models have
been introduced before, so we do not repeat them here.

Fig. 1.3 Architecture of small- and medium-scale recommender systems

Architecture of Large-Scale Recommender Systems
Large-scale recommender systems often face with the problem of massive
users and massive items, which brings great challenges to the system
architecture design and algorithm design. From the perspective of system
architecture, mainstream large-scale recommender systems generally adopt
a three-layer architecture [47] consisting of offline computing, near-line
computing, and online computing, as shown in Fig. 1.4.



Fig. 1.4 Architecture of large-scale recommender systems

(1) Offline Computing
Offline computing first needs to process all historical data, including data
preprocessing, feature engineering, etc. This part is similar to other systems.
In addition, due to the huge number of users and items in recommender
systems, calculating all the preferences of all users on all items and then
performing model fusion will require a very large amount of calculation,
which is unacceptable even for offline calculations. Therefore, many
systems adopt a two-level structure of “recall + ranking”. In the “recall”
module, a small number of items are selected for each user through
different recall algorithms (such as popularity, content-based methods,
collaborative filtering methods, etc.) and different recall strategies (business
rules, business needs, etc.). Then, in the “ranking” module, ranking
algorithms such as factorization machines are used to sort these small
number of items more accurately. After the ranking module, the list of
recommended items for each user can be obtained, and then the offline
recommendation list can be stored in the database to provide services for
other modules.



(2) Near-Line Computing
Near-line computing can be considered as real-time processing of some
offline tasks. However, due to the difficulty of real-time processing, an
approximate real-time processing is performed. Near-line computing needs
to use real-time online data, but it cannot be guaranteed to be available in
real time. This is the most essential difference between near-line computing
and online computing. First of all, near-line computing requires real-time
feature monitoring of user behavior and online data to obtain some key data
currently requested by users. Then, through the feature processing module,
the user’s real-time data are characterized, and based on the new features, it
is decided whether and how to update the user recommendation list. In
addition, if the obtained user data need to trigger model updates, such as
obtaining new interests of users or new ratings of items, incremental model
updates will be performed. When the model is updated, recommendations
from the user’s current session may reflect that. However, due to the
uncertainty of user behavior, the user may leave the current session before
the model update is completed, so the model update of near-line computing
may not always be obtained by the user.

(3) Online Computing
First of all, the most important function of online computing is to provide
users with real-time recommendation services, so the corresponding real-
time performance is very important. Generally speaking, if the time delay of
an activity exceeds 100 ms [35], it will be clearly perceived by the user, so
the service delay provided by the online computing module generally does
not exceed 100 ms. Under this limitation, the time complexity, data volume,
and the network delay of online computing module cannot be too large.
Therefore, general online services use pre-calculated recommendation
results, only read on-demand during the online phase, for instance, read the
corresponding recommendation list according to the current user request
type or a certain business rule, and then return it to the user. Second, the
online computing module needs to perceive the user’s contextual
information, such as the drift of user interests, and then adjust the
recommendation list according to the real-time feedback. At the same time,
these real-time data also need to be fed back to the near-line computing
module and the offline computing module to provide support for subsequent
model updates of them. Finally, the online computing module may also



need to perform some online updates to deal with some special scenarios.
For instance, after a new user enters the recommender system, the online
computing module will collect the user ratings on items and then need to
train the model in real time based on the newly obtained ratings. In
addition, another important function of online computing is to process
related business processes, such as assigning different recommendation
results to different users according to the functional logic of the predefined
A/B test.

1.3 Values of Recommender Systems
At present, recommender systems have become an indispensable functional
component in mainstream e-commerce platforms such as Amazon, Taobao,
and JD.com, bringing huge commercial value to these platforms.

1.3.1 Business Values of Recommender Systems
Amazon is one of the earliest companies to commercialize the
recommender system, and it is also one of the most successful companies
applying the recommender system. 2017 is the 20th anniversary of IEEE
Internet Computing magazine. The editorial board of the journal decided to
select a paper that can stand the test of time from the papers published in
the journal. Finally, the editorial board of the journal chose Amazon’s
recommender system paper—Amazon.com recommendations: item-to-item
collaborative filtering [28], which is mainly due to the great success of the
recommender system in the commercial field and the great influence of this
paper to other commercial recommender systems. In 2012, Amazon’s total
sales increased by about 29% year on year, most of which came from the
recommender system [30]. According to the estimation of Microsoft
Research, about 30% of the page visits of Amazon website come from its
recommender system [46].

The massive success of Amazon’s recommender system caught the
attention of other companies. Since then, recommender system has
gradually become an essential component of e-commerce websites and
content platforms. In 2010, a research team from YouTube published a
paper introducing their video recommender system [10]. According to the
paper, about 60% of the video clicks on the homepage of the YouTube
website come from its recommender system. At the same time, the paper



also compares the difference between personalized recommendation and
other rule-based recommendations. For instance, the click-through rate of
personalized recommendation is 207% higher than that of popularity-based
recommendation. Another company that has relied on recommender
systems to achieve great success is Netflix. In 2015, Netflix engineers
Carlos A. Gomez-Uribe and Neil Hunt published a paper introducing
Netflix’s recommender system [15]. According to the data given in the
paper, about 80% of Netflix’s video browsing comes from its recommender
system, and the remaining about 20% comes from search engine. The paper
also evaluates the commercial value of the recommender system. The
recommender system can significantly reduce the user unsubscribe rate.
These reduced unsubscribe users generate about 1 billion US$ in revenue
for Netflix every year. In addition to Internet companies, the traditional
business giant IBM has also successfully applied recommender system to
the company’s sales business. They use the Cognitive Recommendation
Engine [8] developed by researchers from IBM Research to recommend
products for customers and help the sales department to improve business.
According to their statistics, in 2017, after IBM’s sales business adopted
recommender system, the sales opportunities for new customers increased
by 80%, the winning rate of new customer sales increased by 6%, and the
sales opportunities for existing customers increased by more than 2 billion
US$ every year.

Chinese Internet companies such as Alibaba, JD.com, and Douban also
realized the importance of recommender systems very early on. During
Taobao’s “Double 11 Shopping Festival” in 2016, Alibaba created
approximately 6.7 billion personalized pages for 230,000 merchants on
Taobao and Tmall, and the conversion rate of these personalized pages was
higher than that of non-personalized pages by about 20% [21]. After
Taobao’s “Double 11 Shopping Festival” in 2018, Fan Jiang, vice president
of Alibaba, made a report at the 2018 Double 11 “Looking at China” forum,
in which he mentioned “In this year’s Double 11, we can also see that the
traffic based on personalized recommendation has exceeded the traffic
brought by search engine and other methods, which is a very big change
and was completely unimaginable in the past” [56]. In addition, the success
of Toutiao, a well-known domestic news platform, is also mainly due to
their recommender system. In 2012, Toutiao launched a platform to provide
users with news information based on recommendations, gradually



becoming the most popular news portal in China. In addition to applying
recommendations to news, ByteDance, the parent company of Toutiao, has
also applied the idea of recommendation to many fields such as social
media (TikTok), short videos, music, advertising, customer relationship
management, and office work. Their recommender system has become
ByteDance’s core competency.

1.3.2 Recommendation, Search, and Advertising
Recommendation, search, and advertising are called the troika of Internet
technology by many people. They are the three most valued technologies in
the Internet platform, and they are also the key to the profitability of the
Internet platform. From the perspective of the application itself, there are
big differences among the three applications, but the three applications have
a lot in common in terms of technology, as shown in Table 1.1.

Table 1.1 Comparison of recommendation, search, and advertising

Compared items Recommendation Search Advertising

User interaction Active & Passive Active Passive

Personalization Strong Weak Medium

User acceptance Strong Strong Weak

Application Differences of the Three
From the perspective of application, we can compare the differences
between recommendation, search, and advertising through the following
three dimensions:

(1) User Interaction
Most recommender systems interact with users in a way that users passively
receive information, and a few recommender systems (such as question–
answer-based recommender systems) also require users to actively provide
some information for the recommender system. Generally speaking, the
content provided by the search engine to the user must be consistent with
the user’s query keywords, so the application must be triggered by the
user’s active request. Advertisements may cause inconvenience to users, so
they often have less interaction with users and only need to be displayed in



a personalized manner based on the user’s current context information (such
as geographic location, query keywords, etc.).

(2) Personalization
Among the three, recommender systems require the highest level of
personalization. Many applications have proved that users usually have
unique interests, and recommender systems will fail if they cannot
accurately capture users’ unique interests. Search engines have weak
requirements for personalization, because for users, each query has a clear
purpose. If the accuracy of search is reduced in order to introduce
personalization, the utility of search engine will be greatly reduced.
Advertisements require a high degree of personalization to obtain user
clicks, but the advertising platform cannot guarantee to be as personalized
as recommender systems due to problems such as real-time response and
limited user data, so the level of personalization in online advertisements is
between recommendation and search.

(3) User Acceptance
Due to technical limitations, the early recommender systems performed
poorly in terms of accuracy and diversity, so user acceptance was not high.
At present, with the advancement of technology, the recommender system
is more and more popular with users, so its acceptance is close to that of
search engines. Due to the limited content of online advertisement, its user
acceptance is low, and personalization is the key to solve the low
acceptance issue of users in online advertisement.

Technical Similarities Among the Three
Although there are many differences in the application of recommendation,
search, and advertising, the three have a lot of similarities in technology,
and many related technologies are widely used in the three types of
applications. The following is an analysis of the technical similarities
among recommendation, search, and advertising from three aspects: data
processing, algorithm, and system architecture.

(1) Data Processing
There are two key concepts of users and items in these three types of
applications. The documents to be retrieved in the search engine can be



considered as items, and the advertisement itself is a kind of item.
Therefore, all three types of applications need to collect user data, item
data, and user–item interaction data. For these data, the methods of feature
engineering and representation learning are basically similar, so we will not
go into detail here. Generally speaking, recommendation, search, and
advertisement can use the same data storage method, feature processing
process, and representation learning results.

(2) Algorithm
The essential goal of these three types of applications is to find the best
matching items for users. In the early days, the algorithms of the three were
quite different. For instance, the recommender system used the
collaborative filtering algorithm, while the search engine used the
PageRank [34] algorithm. However, with the abundance of data and the
advancement of technology, the technologies among the three are becoming
more and more convergent. At present, mainstream Internet companies have
adopted the classic architecture of “recall + ranking” as the algorithmic
engine for recommendation, search, and advertising. Through different
recall algorithms, a large number of items are filtered to select a small
number of candidate items that users may be interested in. Then based on
these candidate items, we can use a ranking algorithm to rerank them and
finally output the reranked results to the users.

(3) System Architecture
Recommendation, search, and advertising are similar in data and
algorithms, which determines their similarity in storage and computing
architecture. In addition, all three have high requirements for real-time user
interaction, and all need an online module to provide real-time user
services. Therefore, by slightly modifying the architecture of the Internet
recommender system introduced earlier, it can provide services for a large-
scale search engine or online advertising platform.

1.3.3 Industry Applications of Recommender Systems
In addition to e-commerce and the Internet, recommender systems can also
be widely used in various industries, such as traditional marketing and sales
operations. According to the characteristics of different industries, different
considerations need to be made when designing recommender systems. For



instance, for content recommendation, diversity may be an important metric
that needs to be considered. In order to improve diversity, the loss of
accuracy can often be tolerated; but for medical product recommendation,
accuracy is often the most important metric, which cannot be compromised.
The following summarizes some unique aspects that need to be considered
in designing recommender systems in different industries.

E-Commerce Platforms
The recommender system can be regarded as an essential function of the e-
commerce platforms at present, and the related research and technology are
relatively mature. First of all, in the e-commerce platforms, the essence of
recommender systems is to improve the user experience and enable users to
spend less time completing online shopping. Therefore, how to accurately
mine the current intentions of users and make targeted recommendations
becomes very important. Early e-commerce platforms such as Amazon used
item-based collaborative filtering algorithms to find other items that are
most similar to the items currently browsing by users and achieved very
good results. Second, e-commerce platforms also need to consider the
expected benefits of recommended content. Expected revenue needs to be
comprehensively measured through multiple aspects such as click-through
rate, conversion rate, unit price, profit, etc. Therefore, the optimization goal
of the e-commerce platform recommender systems should not be simply the
click-through rate. In addition, e-commerce recommendations also need to
consider some common sense related to shopping, for example, availability,
delivery time, repeated purchases, and whether similar products have been
purchased. Failure to take these factors into account may result in
recommendations that do not conform to common sense. For example, it is
obviously unreasonable to recommend another notebook computer to a user
who has just purchased one notebook computer.

Content Platforms
The content platform includes a variety of applications such as video,
music, books, news, etc. First of all, for the content recommendation
system, how to model the content information into the recommender system
is a problem that must be paid attention to. For instance, for news
recommendation, the text of the news is crucial to the recommendation, and
a good text processing model may significantly improve the quality of the



recommendation. In addition, for different types of content information,
different types of modeling methods are required. For instance, a pre-
trained language model can be used for text, a time series method can be
used for audio, and an image processing technology can be used for images
or videos. In addition, the modeling of content needs to pay attention to
efficiency; otherwise it may have a huge impact on computational
efficiency. Finally, content recommendation also needs to consider the
special needs of users for content, such as diversity. For instance, the user’s
interest in the content is often not single. If the recommended content only
covers a small part of the user’s interest, that is, lack of diversity, it will
cause the user’s boredom in the long run.

Daily Services
The daily service platform includes various information related to the basic
necessities of life, food, housing, and transportation and focuses on
providing users with timely and convenient services, so time and location
information often needs to be considered. For instance, when
recommending a restaurant, it is necessary to consider whether the
restaurant is open at the current time and the distance between the location
of the restaurant and the user’s current location. When recommending travel
routes, it is necessary to consider the traffic sequence between different
scenic spots on the route and try to avoid letting users take repeated routes
or detours. Therefore, daily service recommendation systems often need to
model contextual information. The contextual information mentioned here
includes time, geographical location, weather, other surrounding living
facilities, and whether there are other users participating together. It is
difficult to uniformly describe and model this information. We can refer to
general data modeling methods such as one-hot encoding and representation
learning and adopt corresponding modeling methods for different types of
data.

Social Networks
The social network platform mainly focuses on the social relationship
between users and also includes some content information. For instance, on
LinkedIn, some users also share some articles written by themselves. In the
recommender system of this type of application, it is necessary to consider
how to model the information of the user’s social network. Generally, a



graph neural network or other recommendation methods based on graph
algorithms can be used. For information other than graph features, such as
user-created articles, user-uploaded music, interactions between users, etc.,
this information is modeled in the same way as other types of recommender
systems. In addition, social network relationships can be used as auxiliary
information to help developers better recommend content. For instance,
when recommending videos, the videos watched by the user’s friends are
more likely to be liked by the user. Therefore, social networks can be used
to assist in recommending content and improve the accuracy of
recommendation.

Marketing and Sales
Marketing and sales are faced by all commercial companies, and
recommender systems can help the marketing and sales personnel of
commercial companies find better sales opportunities. For marketing, such
as e-mail marketing, it is necessary to maximize the revenue at a given cost.
Recommender systems can more accurately predict the interests of users
and introduce products that users are more likely to be interested in
marketing emails, which can significantly improve the effectiveness of
marketing. Similarly, for salespeople, finding sales opportunities can be
accomplished with the help of recommender systems. When recommending
products to customers, it is necessary to pay attention to the explainability
of the recommended products because sales personnel need to communicate
with customers, and these explanations for recommended products can
often improve the success rate of sales. From a technical point of view,
there is no essential difference between the recommender system for
marketing or sales personnel and the recommender system for platforms
such as e-commerce, so the same algorithm and system architecture can be
used.

1.4 Summary
This chapter first introduces the history of the recommender system,
including some key events from the introduction of the recommender
system concept to the present, such as the emergence of the recommender
system concept, content-based recommendation, collaborative filtering,
matrix factorization, and deep learning, and the revolutionary changes in



the field of recommender systems. Then, this chapter introduces the basic
principles of recommender systems, including introducing the basic
assumptions of recommendation algorithms from the perspective of
machine learning, introducing how to define the recommendation problem
in the form of a machine learning problem, and emphatically introducing
the deep learning-based paradigm to solve the recommendation problem—
representation learning + interaction function learning. This chapter also
gives an overview of the technical architecture of recommender systems,
including the differences between small- and medium-scale recommender
systems and large-scale recommender systems. Finally, this chapter
introduces the main application areas of recommender systems, such as e-
commerce, content platforms, etc., and the actual business value brought by
recommender systems to these application areas and compares the three
main applications in the Internet field—search, advertising, and
recommendation, by the differences and connections among them. Starting
from industry problems, this chapter summarizes the differences in the
application of recommender systems in different industries and outlines the
solutions to different types of problems.
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Abstract
This chapter introduces four types of classic recommendation algorithms,
including content-based recommendation algorithms, classic collaborative
filtering algorithms, matrix factorization methods, and factorization
machines. Before the emergence of deep learning, these methods were the
most mainstream techniques for recommender systems, widely recognized
by both academia and industry. Although after the emergence of deep
learning, these technologies are no longer the first choice of the industry,
but the basic ideas and practical experience extracted from these
technologies still affect the follow-up research. Therefore, in many deep
learning-based recommendation algorithms, we can often see the reflections
of the above approaches.

Keywords Classic recommendation algorithms – Content-based
recommendation – Collaborative filtering – Matrix factorization –
Factorization machines

This chapter introduces the recommendation algorithms before the rise of
deep learning, including content-based recommendation algorithms and
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classic collaborative filtering algorithms. In the content-based
recommendation algorithm section, we will focus on how to model both
structured and unstructured content. In the classic collaborative filtering
algorithm section, three mainstream collaborative filtering methods will be
introduced: memory-based methods, matrix factorization methods, and
factorization machine methods.

2.1 Content-Based Recommendation Algorithm
The content-based recommendation algorithm [12] is a kind of classic
recommendation algorithm, and its concept first appeared in the 1980s.
Although it has a long history, it is still widely considered by academia and
industry, which is enough to prove its important application value. Different
from collaborative filtering algorithms, content-based recommendation
algorithms generally only rely on the contents of items and behaviors of
users themselves and do not involve the behaviors of other users to make
recommendations. Even in the case of cold start (i.e., new users or new
items), recommendations can still be made by content-based
recommendation algorithms. Therefore, today’s commercial recommender
systems still use content-based recommendation modules complementary to
collaborative filtering recommendations.

Recommender systems infer the user’s interests and preferences based
on the user’s behavior in the system (website, mobile application, etc.) and
finally make personalized recommendations for the user. During the entire
recommendation process, data may be generated from multiple sources
including the user himself, user behavior, candidate item information, and
contextual information. In addition to the common numerical data, the types
of data used by content-based recommendation algorithms also include text,
images, audio, video, etc. As shown in Fig. 2.1, since different data have
different formats, the content in the recommender system mainly includes
structured data, semi-structured data, and unstructured data.



Fig. 2.1 Classification of contents in recommender systems

Structured Data
Structured data can be stored using tables in relational databases. In general,
each column in the table represents an attribute or feature, and each row
represents a data sample. User attribute data and item attribute data can be
stored in different tables, and each attribute of the user and item is
represented as a field in the database table, so this type of data is called
structured data. Structured data can generally be stored and managed by
relational databases such as MySQL and SQL Server and can be queried by
a very mature SQL language.

Semi-Structured Data
Semi-structured data does not have the strict structural definition like that in
relational databases, but the organization of data is also standardized, such
as using predefined tags or rules to separate semantic elements with
different meanings in the data or using predefined ways to organize records
and fields. This way of defining data structures is also called a self-
describing structure. Common data format like XML or JSON belongs to
this category. For user behavior in recommender system, the relevant fields
are generally recorded in a semi-structured manner, such as using JSON
format data to record user online behavior or splitting different fields
according to the specified segmentation characters and then splicing them
into logs. This type of data is also a kind of semi-structured data. For some



difficult-to-handle semi-structured data, it can also be converted into
structured data through preprocessing before processing.

Unstructured Data
The data structure of unstructured data is not clear, even there is no
predefined data structure, and it cannot be represented by tables in
relational databases nor does it have predefined data specifications like
semi-structured data. Common unstructured data include text, images,
audio, video, etc. Unstructured data has no fixed data structure, so it is
difficult to process it by computer.

This section describes how to design content-based recommendation
algorithms for different types of content. Because semi-structured data can
usually be transformed into structured or unstructured data, this section will
mainly introduce how to design content-based recommendation algorithms
for structured and unstructured data.

2.1.1 Recommendations Based on Structured Content
Basic Content-Based Recommendation Algorithms
Basic content-based recommendation algorithms only focus on structured
data. In the content-based recommendation algorithm, the most important
step is to extract the features of items and users and recommend by
calculating the similarity between item feature vectors and user preference
vectors. The calculation process of the content-based recommendation
algorithm is shown in Fig. 2.2.



Fig. 2.2 Calculation process of content-based recommendation algorithm
One of the most common similarity calculation method is the cosine

similarity, which is defined as follows:

(2.1)

In the above equation,  represents the preference feature of a certain
user;  represents the preference feature of a candidate item; k represents
the k-th feature, and there are  features in the vector. If the value of the
cosine similarity is closer to 1, it means that the candidate item is closer to
the user’s preference. If the value is closer to 1, it means that the
candidate item is less suitable for the user.

After calculating the similarity between all candidate items and the user,
we can sort the items according to the similarity from high to low and save
the Top-K candidate items and recommend them to users according to
actual recommendation requirements.

Nearest Neighbor Classification Algorithm



K-Nearest Neighbor (KNN) is a very effective and easy-to-master
classification algorithm, which is widely used in recommendation
algorithms. The main assumption of the algorithm is: in the same feature
space, if most of the K samples (nearest neighbors) which are most similar
to the target sample belong to the same category, the probability that the
target sample belongs to this category will also be high.

When classifying, the KNN algorithm only determines the category of
the target sample according to the category of the K samples closest to the
target sample, so the complexity of the algorithm prediction has nothing to
do with the total number of training samples, only related to K. But the time
complexity of the algorithm to find K nearest neighbors is related to the
total number of samples, for instance, the total computational complexity of
obtaining the similarity between any two sample pairs is the proportional to
the square of the number of samples. We need to pay attention to three key
aspects when using the KNN algorithm: the selection of algorithm
hyperparameter K, the selection of distance or similarity measurement
method, and the rules of classification decision.

Take movie recommendation as an example. When applying the KNN
algorithm in the recommender system, we can first find k movies rated by
the target user that are most similar to the candidate movie. Then we can
predict the user’s rating on the candidate movie based on the user’s rating
of the k similar movies. Specifically, it mainly includes the following three
steps:

(1) Calculate the similarity. Calculating similarity is one of the key steps
in the KNN algorithm. The similarity or distance commonly used in
recommender systems includes: Pearson similarity, cosine similarity,
Jaccard similarity, Euclidean distance, etc. Taking the Pearson
similarity as an example, its value range is , 1 means that
the two users/items are negatively correlated, 0 means that the two are
not correlated, and 1 means that the two are positively correlated. We
can use  to represent the similarity between item m and item n,
where the similarity calculation process needs to be based on the
feature vectors of the two items.

 

(2) Select k nearest neighbors. Assuming that the candidate item to be
recommended is m, we can find k items with the highest similarity to  



item m among all the items rated by user u and use  to
express this collection of k items.

(3) Calculate the prediction score. After having a set of k similar items,
the following equation can be used for obtaining the prediction score:

(2.2)

 

Finally, we can sort the candidate items according to the predicted
ratings from high and low and recommend the N items with the highest
predicted ratings to the user.

Relevance Feedback-Based Algorithm
The Rocchio algorithm [8] is a well-known algorithm in the field of
information retrieval, which is mainly used to solve the problem of
relevance feedback. When using the Rocchio algorithm to construct a user
profile vector, it is usually assumed that the correlation between the vector
and the features of the items that the user likes is the largest, and the
correlation between the vector and the features of the items that the user
does not like is the smallest. For instance, if a user gave high scores to the
two movies “Your Name” and “Titanic,” then the user’s preference vector
can be expressed as {“romance”: 1; “comedy”: 1; “drama”: 0.8}.
Afterwards, the user gave a low score to the movie “Good Will Hunting.”
At this time, the user preference vector can be updated as {“romance”: 1;
“comedy”: 0.5; “drama”: 0.5}.

In content-based recommendation, the Rocchio algorithm can be used to
continuously modify the user’s original feature vector to achieve real-time
update of the user profile. The feature vector of user u is defined as follows:

(2.3)

In the above equation,  and  represent the collection of items that the
user likes and dislikes, respectively;  represents the feature vector of
item j. The goal of the algorithm is: the new user feature vector is most
similar to the feature vectors of the items the user likes and most different
from the feature vectors of the items the user dislikes. In practical



applications, the feature vector of the target user may already exist, and we
only need to update the user’s feature vector as follows:

(2.4)

In the above equation,  represents the initial feature vector of the user;
, ,  represent the weight of the initial feature vector, positive

feedback, and negative feedback, respectively, which can be set according
to experience. For instance,  and  can be appropriately increased when
there are many historical data. In practical applications, we can generally
set  to 1,  to 0.8, and  to 0.2, because the importance of positive
feedback is generally greater than that of negative feedback. Figure 2.3
vividly shows the process of user feature vector update.

Fig. 2.3 The process of user feature vector update
We can see from the above equation that the Rocchio algorithm is very

similar to the average method, except that there is an additional part of



negative feedback, and three weights are set respectively to achieve flexible
adjustment. In addition, the Rocchio algorithm also has the advantage that
the user feature vector can be updated in real time according to user
feedback. Since the update cost is very small, it can be used in real-time
recommendation scenarios.

Decision Tree-Based Recommendation
In the content-based recommendation algorithms, another classic algorithm
is the decision tree-based algorithm. When the content attributes of the
candidate items have good structures, the decision tree usually has an
advantage in interpretability than algorithms such as KNN. For instance, a
decision tree can show the decision-making process to the user, tell the user
the reason why the item is recommended, make it easier for the user to
accept the recommendation result, and improve the explainability of the
recommendation.

Taking the movie recommendation system as an example, the internal
nodes of the decision tree can usually be represented as movie attributes,
and these nodes are used to distinguish different types of movies. From the
algorithmic perspective, the training of a decision tree is a recursive
process, and the conditions for stopping the recursion are: first, the subset
of the current node all belongs to the same category, then the splitting ends;
second, the attribute values of all samples of the current node have the same
value, and the splitting ends; third, the current node has no samples to
classify.

The key to decision tree learning is how to choose the optimal partition
attribute. Generally speaking, we hope that the branch nodes of the decision
tree contain as few classes of samples as possible, that is, the purity of the
nodes is higher. Information entropy is one of the most commonly used
indicators to measure sample purity. Assuming that the proportion of k-th
class samples in the current sample set is , then the
information entropy of the sample set is as follows:

(2.5)

Entropy can measure the uncertainty of variables, and the smaller the
value, the more consistent the sample set, that is, the smaller the



uncertainty. When  is 0 or 1, there is no uncertainty. Next, we introduce
the conditional entropy to describe how to reduce uncertainty by obtaining
more information. The conditional entropy defines the mathematical
expectation of the information entropy of the conditional probability
distribution of X on Y , as follows:

(2.6)

Information gain can measure the difference between information
entropy and conditional entropy and can be used to select features during
the training process of decision tree algorithm. The equation for calculating
information gain is as follows:

(2.7)

When selecting features, the feature with the largest information gain is
usually selected as the classification feature. Figure 2.4 gives a simple
example of a decision tree-based recommendation process. When the
system recommends movies for users, it first draws a conclusion based on
the user’s historical ratings of the movies: when the movie is an action
movie, the user is likely to like it; if the movie contains science fiction
elements, the user has a high probability to dislike; users may or may not
like a movie when it contains romance-related elements.



Fig. 2.4 Example of a decision tree-based recommendation process

Naive Bayes Classification
Bayes’ theorem is a famous theorem in probability theory, which describes
the probability of event A occurring under the premise of known condition
B, generally expressed as , A and B are random events. Bayes’
theorem can be expressed by the following equation:

(2.8)

The classification method based on Bayes’ theorem is called Bayesian
classification, which is a common classification method, and is also often
used in content-based recommendation. The recommendation method based
on Bayesian classification can judge whether the user is interested in a
candidate item according to the characteristics of the item, such as like or
dislike. Suppose the n-dimensional vector  is
the feature set of the candidate item,  is a feature of the item, and the
output space for the recommendation task is .
According to Bayes’ theorem, it can be expressed that:

(2.9)



In the above equation,  and  represent the prior probability;
 represents the posterior probability. Bayesian theorem makes a

conditional independence assumption for the conditional probability
distribution, that is, different features are independent of each other given a
category. Specifically, it can be expressed as:

(2.10)

For a given candidate item, with a feature vector F, the posterior
probability  is calculated, and the class with the largest posterior
probability is the output. The specific calculation is as follows:

(2.11)

where the denominator is a constant, which is the same for all categories.
Therefore, only the numerator needs to be maximized.

Linear Classification-Based Content Recommendation Algorithm
The content-based recommendation problem can usually be regarded as a
classification problem, so various classification methods commonly used in
machine learning can be used, such as classical linear classifiers. The goal
of a linear classifier is to find a plane in a high-dimensional space to
distinguish samples of different classes so that samples of different classes
are distributed on different sides of the plane as much as possible. In the
recommendation algorithm, this is equivalent to finding a classification
boundary to divide items into two categories that users like and dislike. For
instance, if a user likes to watch action movies, then the classification
boundary is whether the movie belongs to action movies. In practice, the
splitting conditions are more complex, usually a combination of multiple
features.

As shown in Fig. 2.5, suppose the feature of the input movie is
, where  represents the i-th feature of the movie,

and the output result Y  represents whether the user likes to watch the
movie. The linear classification model tries to find the plane

 in the feature space , hoping that this plane can
separate the movies that the user likes and dislikes.



Fig. 2.5 Example of a linear classification model-based recommendation
In ,  represents the weight corresponding to the

movie feature, and b represents the bias. Both  and b are parameters in
the model and need to be obtained through learning. A commonly used
parameter learning method is the gradient descent method, that is, the
parameters are updated in the direction of gradient descent until
convergence. The update of each iteration is described as follows:

(2.12)

(2.13)

In the above equations, t represents the number of iterations;  represents
the learning rate, which controls the step size of each iteration of the model
update. After continuous iterations to achieve convergence, the
corresponding hyperplane is found to classify the movies. For candidate
movies, we can judge whether the movie features satisfy the condition

 and then sort and recommend based on the classification
results.

2.1.2 Recommendations Based on Unstructured Content
Unstructured data refers to data whose data structure is not clear or not
predefined. Common unstructured data include text, image, audio, video,



etc., which are difficult to represent with the table structure in the database.
Unstructured information is usually text-heavy but may also contain data
such as dates, numbers, and facts as well as multimedia information such as
images, audio, and video. This leads to irregularities and ambiguities in
unstructured data, which are harder for computer systems to understand
than data stored as fields in databases or annotated data (with semantic
labels) in files. Although unstructured data has the disadvantages of
complex structure, non-standard and high processing overhead, the high
data volume and rich information determine that unstructured data is a
treasure to be discovered by recommender systems.

Item representation is the basis of recommender systems. Using the item
representation vector, the recommender system can easily calculate the
item’s intra-category similarity and inter-category preference matching, so
as to make recommendations. The recommender system’s processing of
unstructured data also follows this idea. Through representation algorithms,
representation learning algorithms, etc., unstructured data is processed into
vectors and connected to downstream tasks. All kinds of unstructured data
have their own unique representation methods, but the processing ideas are
interlinked. This section will focus on the item representation of text data
and briefly describe other forms of data processing.

Text Representation
There are two common technical pathways for text representation, one is
discrete representation in classical machine learning, and the other is
distributed representation in deep learning.

(1) Discrete Representation
a) One-hot encoding. One-hot encoding is a binary vector representation

of categorical variables, and it is the simplest and most commonly used
encoding method when dealing with discrete data. One-hot encoding
uses N state registers to encode N states, each register is the state of an
encoding, and at any time there is only one state register activated. As
shown in Fig. 2.6, the IDs of basketball, football, and rugby are 0, 1,
and 2, respectively, corresponding to the 0-th, 1-th, and 2-th bits in the
one-hot encoding are 1, that is, the one-hot encodings are [1, 0, 0], [0,
1, 0], and [0, 0, 1], respectively.

 



Fig. 2.6 Example of one-hot encoding
In recommender systems, it is very important to measure the

distance or similarity between item representations. Commonly used
distance or similarity calculations are performed in Euclidean space,
and the Euclidean distance between each state representation under
one-hot encoding is the same. For mutually independent state
categories, this encoding method is more reasonable. However, if the
distance can be reasonably calculated by the discrete features
themselves, such as numerical features, there is no need for one-hot
encoding. In addition, one-hot encoding also requires that each state
category is independent of each other. If there is a continuous
relationship between states, it is more appropriate to use distributed
representation. Finally, the features obtained by one-hot encoding are
very sparse, and if the state space is too large, it will bring the curse of
dimensionality.

b) Bag-of-words model. Bag-of-words (BOW) [8] is a relatively simple
language model that converts text into vector representation. As shown
in Fig. 2.7, the bag-of-words model regards the text as a collection of
all words in the text. It does not consider the order of the words but
only considers the number of occurrences of each word in the sentence.

 



Fig. 2.7 Example of bag of words
The advantages and disadvantages of the bag-of-words model are

very obvious. Its advantages are simple and easy to implement. The
disadvantages are that it cannot consider the structure and order of the
text and its expressive ability is limited.

c) N-gram model. N-gram model is an algorithm based on statistical
language model, which is an extension of bag-of-words model. This
model takes adjacent N words as a unit and assumes that the
occurrence of the N-th word is only related to the previous 
words (Markov assumption), and not relevant to other earlier words.
From the perspective of the N-gram model, the occurrence probability
of the entire text is equal to the product of the conditional probabilities
of the individual words that make up the text. The conditional
probability of N-gram phrases can be approximated by counting the
frequency of N-gram phrases in the corpus. Commonly used variants
are Bi-gram ( ) and Tri-gram ( ). When , the N-
gram model degenerates into a bag-of-words model.

As shown in Fig. 2.8, when using the N-gram model for text
representation, first, the content in the text is operated by a sliding
window with a size of , after which a sequence of fragments with
length N is formed, and each fragment is called a gram. Then, we can
count the occurrence frequency of all grams and filter according to the
predefined threshold to form a key gram list, which is also the feature

 



vector space of the text, and each gram in the list is one dimension of
the feature vector.

Fig. 2.8 Example of N-gram model
The advantage of the N-gram model is that it models the local

sequence information of the text and solves the problem of different
semantic meanings caused by different word sequences. For instance,
“I like to play basketball” and “Basketball likes to play with me” will
produce the same textual representation under the bag-of-words model,
while the N-gram model can distinguish them. The disadvantage of the
N-gram model is that increasing the length of the phrase will make the
total number of N-grams expand exponentially and become more
sparse. For instance, for a corpus of 20,000 words, the total number of
Bi-grams is , and the total number of Tri-grams reaches

.

d) TF-IDF model. TF-IDF (Term Frequency—Inverse Document
Frequency) [8] is an algorithm to evaluate the importance of a word to  



a document in the corpus. Its core assumption is that the importance of
a word in the document is proportional to the frequency of the word in
the text and inversely proportional to the frequency of the word in the
entire corpus.

The term frequency (TF) of word i to document j is defined as
follows:

(2.14)

where  is the number of occurrences of the word i in the
document j, and the denominator is the sum of the occurrence times of
all words in the document j. Dividing the two can prevent TF from
biasing toward long text.

The inverse document frequency (IDF) of a word is defined as
follows:

(2.15)

where the numerator is the number of all documents in the corpus,
and the denominator is the number of documents containing the word i
in the corpus.

The TF-IDF of word i to document j is defined as:

(2.16)

It is not difficult to see from the above equation that words with
high importance to a document need to meet the two conditions of high
word frequency in the document and low word frequency in other
documents in the corpus. The former filters out occasionally used
words in the document, and the latter filters common high-frequency
words. Finally, it filters out the repeatedly mentioned and topical words
in the document.

The advantages of TF-IDF are simple logic, fast calculation and
good interpretability. The disadvantage is that the standard for
measuring the importance of words is too simple to deal with the
inconsistency between word frequency and importance. In addition,
TF-IDF ignores the sequential information of words and cannot reflect
the relationship and influence between words and context.



(2) Distributed Representation
The idea of distributed representation is to establish a mapping from words
to low-dimensional continuous vector space through machine learning, so
that semantically similar words are mapped to closer regions in the vector
space, while semantically irrelevant words are mapped to farther regions.
This property can be used for generalized analysis of words and sentences,
and it is a means to achieve the purpose of word semantic speculation and
sentence sentiment analysis.

a) Co-occurrence matrix-based model. Generally speaking, words with
similar semantics often co-occur in the context. This phenomenon
provides ideas for modeling the similarity between words. A simple
method is to scan all the sentences in the corpus, count the number of
times other words appear around each word, construct a word
adjacency matrix, and use the value of the corresponding column/row
of the word as the vector representation of the word. However, this
vector is too large and too sparse, direct use of which will consume a
lot of storage and computing resources. Therefore, in practical
applications, it is necessary to reduce the dimension of the vector. As
shown in Fig. 2.9, the most direct matrix dimensionality reduction
method is eigenvalue decomposition or singular value decomposition,
which can maximally preserve information in the high-dimensional
sparse co-occurrence matrix into the low-dimensional dense
embedding matrix by keeping the largest components of the features.
After dimensionality reduction, each row or column can still be
represented as a vector of the word.

Fig. 2.9 Example of dimensionality reduction for co-occurrence matrix

 



b) Neural network-based models. In distributed representation, deep
learning has great advantages over traditional methods and has
occupied a dominant position in text representation in recent years. The
core idea of deep learning-based text representation methods is to use
vectors to represent text, such as the Word2Vec method [9] which uses
vectors to represent words and the Paragraph2Vec method [7] which
uses vectors to represent paragraphs. After each text is vectorized, their
similarity can be efficiently calculated by dot product or cosine
similarity, and then recommendations can be performed using content-
based recommendation algorithms or item-based collaborative filtering
algorithms. Since the Transformer method [17] was proposed, the field
of text representation learning has increasingly begun to use pre-
training techniques to improve learning capabilities, such as BERT [4],
UniLM [5], GPT-3 [2], etc. Through unsupervised or self-supervised
training on very large-scale corpora, these pre-trained models can
obtain general distributed representation capabilities of natural
language. The text representations based on the output of these pre-
trained models can also be applied to content-based recommendation
algorithms. These technologies will be introduced in detail in
subsequent chapters and will not be repeated here.

 

Representation of Non-text
With the rapid development of technology, the forms of content in the
Internet are flourishing, gradually developing from a single text form to a
fusion of multimedia multi-modal information, such as images, videos, and
audios. The modeling and representation of these multimedia multi-modal
information have become the key to improving the performance of
recommender systems currently.

(1) Image Representation
Before the rise of deep learning technology, image feature extraction
usually relied on manual feature extraction, that is, designing some feature
extraction techniques through human experience to extract features of
different types of images. The features extracted by these methods can be
divided into two categories: one is general features, including pixel-level
features (such as the color and position of pixels), local features (summary



of features of some regions on the image), and global features (summary of
all features of the image); the other category is domain-related features,
which are strongly related to applications, such as face and fingerprint.
After the features are extracted, a machine learning model can be trained to
obtain the relationship between image features and user preferences and
then use these relationships to calculate recommendation scores. For
instance, we can consider the image features of the items that the user has
interacted with as a representation of the user’s interests and then train a
classifier to distinguish items that the user likes or dislikes.

Image representation based on deep learning tries to understand the
image itself. In the text representation part, methods such as BERT use
downstream self-supervised tasks to pre-train the upstream representation
model and then migrate the representation model to other downstream tasks
such as recommender systems. The image visual representation can also
follow this idea. The image is encoded by a task-specific pre-trained
representation model, converted into a distributed vector representation, and
then recommendations can be performed by a K-nearest neighbor-based
recommendation algorithm. In terms of pre-training tasks, image
representations can be pre-trained using supervised tasks such as image
classification or unsupervised tasks such as image generation. Among them,
supervised tasks such as image classification have a clear training objective.
When the image representation information required for the
recommendation task is relatively clear, such as recommendations based on
image style preferences, the pre-training of the representation model can be
designed and adjusted in a targeted manner, so that it can improve the
quality of image representation and recommendation performance. In
contrast, if image representation needs to be applied to multiple
downstream recommendation tasks, or there is no clear recommendation
target, a representation model pre-trained for generative tasks may be more
reasonable. In addition, an end-to-end approach can also be used to train
image representation and recommendation models at the same time. The
advantage of this method is that image representation is directly oriented to
downstream recommendation tasks. The disadvantage is that the model is
complex and difficult to train.

(2) Video Representation



The representation of video is often performed by characterizing the text
associated with the video, e.g., long text such as video title and description
and sparse text attributes such as tags. Before the emergence of distributed
text representation technology based on deep learning, long text was more
used in search engines than recommender systems, and tags were the core
of the recommendation tasks at that time. A label is an abstract description
of a subject and subjects belonging to the same label share this attribute.
The more labels shared by two subjects, the more similar they are.
However, video tags are often very sparse, so how to effectively diffuse tags
to solve the sparsity issue is the core problem of the recommender system at
that time.

An excellent example of solving this problem is the Adsorption
algorithm [1] from YouTube. The core of the Adsorption algorithm is the
video co-view graph. First, a user--video bipartite graph is constructed, and
then edges between videos are generated based on rules such as the number
of users who have watched two videos at the same time. Finally, the label
adsorption is performed on the generated video relationship graph. In the
label adsorption process, each node first calculates its own new label
according to the label passed by the neighbor and then propagates the new
label back to the neighborhood. During this process, the label gradually
diffuses and finally converges, and a stable and smooth distribution is
formed on the nodes connected to any of the original nodes.

Based on the Adsorption algorithm, the timeliness of user behavior is
further considered, “co-viewed” can be restricted to “co-viewed in one
session of the user.” The similarity of two videos is calculated as follows:

(2.17)

where  represents the number of times a video is co-viewed in all
sessions;  represents a regularization function that tries to punish
the popularity of videos, in which a simple solution is to multiply the
number of times the two videos have been viewed. So far, we have seen the
prototype of collaborative filtering.

Although deep learning technology has made great progress, but due to
factors such as computation costs, most current video recommendations in
the industry rely on technologies such as long text representations, tags, and
social recommendations. In addition, label-based methods are



computationally simple and thus are still widely used in the “recall” part of
large-scale recommender systems.

(3) Audio Representation
There are also two ways to represent an audio: by means of associated text
and for the audio itself. Taking music representation as an example, music
metadata can be divided into three categories: editorial metadata (some
labels on the music claimed by the music publisher), cultural metadata
(song listening statistics, co-occurrence relationship, etc.), and acoustic
metadata (analysis of music audio signals, such as beat, tempo, pitch,
instrument, mood, etc.). The first two types of metadata are presented in the
form of tags and long text, respectively, and can be calculated and utilized
using the tag propagation and text representation methods introduced
before. In terms of analyzing music audio signals, Query by Singing and
Humming (QBSH) system is an important technology for audio retrieval
using audio signals before deep learning. This technology extracts
information from audio signals, compares them with those in the database,
and then sorts and retrieves based on similarities.

There are three key parts in query by singing and humming: onset
detection, pitch extraction, and melody matching. Onset detection captures
the change of a certain feature in the audio signal by building a
mathematical model, so as to detect the starting point of a sound. The
specific methods include magnitude method (characterized by volume),
short-term energy method (characterized by energy), and surf method
(characterized by slope). The pitch extraction part estimates the
fundamental frequency of each tone through autocorrelation function,
average amplitude difference function, harmonic product spectrum, etc.
Melody matching converts the extracted sequence into MIDI numbers and
compares it with the digital sequence in the database. Common methods
include hidden Markov model, dynamic programming, linear scaling, etc.

2.1.3 Advantages and Limitations of Content-Based
Recommendation
Advantages of Content-Based Recommendation
(1) No dependencies among users. The construction of each user feature

only depends on its own preferences for items (movies, books, music,
etc.) and has nothing to do with the behavior of others. In contrast,

 



collaborative filtering algorithms need to use other user’s interests to
predict the target user’s interests. This independence among users
makes it less impactful on the recommendation performance even if
the number of users in the recommender system is small.

(2) Easy to explain. In some specific scenarios, the recommender system
needs to explain the reason to the user for recommending an item. It
only needs to tell the user that the recommended item has certain
attributes and these attributes often appear in the items that the user
likes, to achieve the explanation of recommendation results.

 

(3) Not restricted by new users or new items. When a new user enters
the recommender system, content-based recommendations can be
made based on the user’s personal attribute information, such as
gender, age, occupation, and IP address. In the same way, new items
can be recommended to users immediately after entering the
recommender system. In the collaborative filtering algorithms, only
the items evaluated by other users may be recommended to the target
user. That is, the collaborative filtering algorithm is difficult to solve
the cold-start problem, and the content-based recommendation
algorithm will not suffer from the cold-start problem.

 

Limitations of Content-Based Recommendation
(1) Difficulty of feature extraction. If the item description in a

recommender system is unstructured (such as books, movies, music,
etc.), although the existing technology can extract some features to
characterize the items, it is difficult to extract item features accurately
and comprehensively. The problem that may be caused by incomplete
feature extraction is that some features extracted from two items are
very similar, but there may be huge differences in user preferences for
them. For instance, movies with the same actor, director, and genre
may have very different user ratings. In this case, a content-based
recommendation algorithm cannot accurately distinguish the two
movies.

 

(2) Difficulty of discovering other potential interests of users, i.e., lack
of diversity. Content-based recommendation only depends on the  



user’s personal attributes and historical preferences on contents, so the
generated recommendation results will have a very high similarity to
the user’s historical interactions. For instance, if a user has watched a
lot of comedy movies in the past, a content-based recommendation
system will only recommend comedy movies for him in most cases,
without exploring whether he might like other types of movies.

These two limitations are exactly what the collaborative filtering
algorithms are good at, so in the practical recommender systems, it is
necessary to combine the collaborative filtering algorithm with the
content-based recommendation algorithm.

2.2 Collaborative Filtering-Based
Recommendation Algorithms
2.2.1 Memory-Based Collaborative Filtering
There is a popular proverb: birds of a feather flock together. It is a metaphor
that items with similar characteristics are often placed in one place, and
people with similar preferences are often gathered together. This proverb
perfectly reveals the principle of memory-based recommendation
algorithms. Memory-based recommendation algorithms calculate the
similarity between users or items to generate their corresponding “clusters”
for each target user, usually called neighbors. Since the “clusters” gather
users who have similar preferences or characteristics with the target users,
and similar users will have a large overlap in interacted items, the
recommendation algorithm can calculate the preferences of the target users
based on the interaction records of other users in the same “clusters,” so as
to generate a recommendation list for each of them.

This section first introduces two classic memory-based collaborative
filtering algorithms: user-based collaborative filtering algorithm and item-
based collaborative filtering algorithm, which generate recommendation
lists for users from two different perspectives of user similarity and item
similarity. Then, we introduce improved memory-based collaborative
filtering algorithms such as SLIM, SSLIM, and LorSLIM. The principle of
these algorithms is the same as the classic memory-based collaborative
filtering method, but their accuracy is greatly improved.



Classic Memory-Based Collaborative Filtering Algorithms
Generally speaking, users in a recommender system are not independent
from each other, and there will be certain similarities between some users,
for instance, they like the same music and singers. These similarities will
implicitly associate two users, so that the interests and preferences of one
user will be implicitly influenced by another user. This implicit association
is often referred to as “implicit relationship.” If two users have higher
similarities, then the “implicit relationship” between the two users will be
stronger, and the influence of interests and preferences between the two
users will be more significant. For instance, users A, B, C interact with
items a, b, c, d, e, and the user-item interaction relationship is shown as Fig.
2.10.

Fig. 2.10 Example of user-item interaction (user-centric view)



The solid line indicates the interaction between users and items, the
dotted line indicates the hidden relationship between users, and the color of
the dotted line indicates the strength of the hidden relationship, that is, the
darker the dotted line, the stronger the hidden relationship. In Fig. 2.10,
users A and B interact with item a, so it can be considered that there is a
certain similarity between the two users. Similarly, users A and C jointly
interact with items c and d, then there is a certain similarity between these
two users. These similarities between users can be expressed by the implicit
relationship mentioned earlier, since the number of co-interacted items
between users A and C is more than that between users A and B, so the
implicit relationship between user A and user C is stronger than the implicit
relationship between user A and user B, and the influence between user A
and user C on interests and preferences is more significant than those
between user A and user B. Therefore, in the recommendation process, we
are more likely to recommend the item b that user C has interacted with to
user A than the item e that user B has interacted with.

User-based collaborative filtering algorithm [6] first mines the hidden
relationship between users according to the user’s interaction records and
builds a set of users similar to the target user, also known as a neighbor set.
Then a corresponding recommendation list is generated based on the
interests and preferences of the neighbors. Generally speaking, the
recommendation process of the algorithm can be divided into two stages:
similar user set calculation and recommendation list generation.

The similar user set calculation phase mainly calculates the similarity
between users based on the existing user interaction records and then filters
users with high similarity with the target user according to the similarity
and the preset threshold to generate a similar user set. Among them, cosine
similarity, Jaccard similarity, Pearson coefficient, Euclidean distance,
Manhattan distance, etc. can be used to calculate the similarity or distance
between users. Here, we mainly introduce two commonly used methods—
Jaccard similarity coefficient and cosine similarity.

The Jaccard similarity is specially used to calculate the similarity
between finite sets. Generally speaking, the larger the Jaccard similarity of
two sets, the higher the similarity between the two sets. The Jaccard
similarity is calculated as follows:



(2.18)

where  represents the similarity between user u and user v; 
represents the set of items user u has interacted with;  represents the
set of items that user v has interacted with.

Cosine similarity measures the similarity of two vectors according to
the angle between two vectors in the coordinate system. The smaller the
angle between two vectors, the more similar the two vectors are, and vice
versa. Its calculation is described as follows:

(2.19)

where  represents the similarity between user u and user v; 
represents the rating vector of user u on items;  represents the rating
vector of user v on items. It is worth noting that the above cosine similarity
calculation formula does not consider user rating scale, that is, different
users may give the same item different ratings according to their
preferences or habits. Therefore, the above calculation formula needs to be
adjusted to take into account user rating preferences or habits. The adjusted
cosine similarity calculation process is as follows:

(2.20)

where  represents the set of items that user u and user v have interacted
with;  represents the rating of user u on item c;  represents the
rating of user v on item c;  represents the average rating of user u on all
interacted items;  represents the average rating of user v on all interacted
items;  represents the set of items that user u has interacted with; 
represents the set of items user v has interacted with.

After using the above methods to calculate the similarity between any
two users, the similarity matrix  among all users can be obtained.
Among them, n represents the number of users, and each element of matrix

 represents the similarity between user i and user j. Assuming that we



want to find the K users who are most similar to the target user, we can find
the top K users with the largest similarity value from the corresponding row
of the similarity matrix  to form a similar user set, which will be used in
the next stage to generate a list of recommendations for each user.

In the recommendation list generation stage, a corresponding
recommendation list is generated for the target user based on the set of
similar users. To generate a recommendation list for each user in the
system, it is first necessary to calculate each user’s preference for the
candidate items as follows:

(2.21)

where  represents the predicted rating of user u on item i; 
represents the rating of user v on item i;  represents the set of K
users who are most similar to user u. Then, all candidate items are sorted in
descending order according to the predicted ratings, and the top N (for
example, the top 5 or top 10) items are selected to form the user’s
recommendation list. Finally, we can recommend the list of items to the
target user.

The item-based collaborative filtering algorithm [16] completes the
recommendations to users from the perspective of item similarity. The
similarity of the candidate item should be positively correlated with the
items that the target user interacted with before, that is, the more similar the
item is to the item that the user has interacted with before, the more likely
the item will be the user’s next interaction. Therefore, item-based
collaborative filtering first calculates the similarity between items based on
user interaction records, thereby mining the “hidden relationship” between
items. According to the implicit relationship between items, we can
calculate the possibility of the candidate items interacting with the user in
the future, and generate the user’s recommendation list accordingly. For
instance, items a, b, c, d, e have interactions with users A, B, and C, and the
interaction relationship is shown in Fig. 2.11. Items that user A has not
interacted with are b and e. For item b, since there is a common interacted
user between it and other items, it has the same similarity with items a, c,
and d, showing item b and a, c, and d have the same strength of implicit
relations. For item e, it only has a certain degree of similarity with item a,



and the similarity with other items is 0, showing that there is a certain
implicit relationship between item e and item a and there is no implicit
relationship between e and other items. Therefore, when recommending
items to user A, the algorithm will be more likely to recommend item b
rather than item e, because item b has greater similarity with items that user
A interacted with before, i.e., the implicit relationship is stronger.

Fig. 2.11 Example of user-item interaction (item-centric view)
The computation process of the item-based collaborative filtering

algorithm can also be divided into two stages: similar item set calculation
and user recommendation list generation. The similar item set calculation
stage calculates the similarity between each pair of items according to the
user interaction records, so as to obtain the top K items most similar to each
target item to form the similar item set. First, it is necessary to calculate the
similarity between each item and all other items and construct an item--item
similarity matrix. Then, we can filter out K items with the largest similarity



from the corresponding rows of the items in the similarity matrix to form a
set of similar items and generate a user recommendation list based on this
set. The method for calculating the similarity between items is the same as
the method for calculating the similarity between users and will not be
repeated here.

In the recommendation list generation stage, we first calculate the user’s
predicted score for each candidate item, then sort all items according to the
predicted score, and finally recommend N items with the highest scores to
the user. Similar to the user-based collaborative filtering algorithm,
assuming that the set of K most similar items of the target item i is ,
the predicted score of the user u on the item i can be calculated by the
following formula:

(2.22)

where  represents the predicted rating of user u on item i; 
represents the similarity between item i and item j;  represents user u’s
rating on item j. It can be seen from the formula that the predicted score of
user u for recommended item i is equal to the weighted sum of scores of
items that user u has interacted with and are similar to the target item.

In general, the user-based collaborative filtering algorithm starts from
the perspective of the target user and selects items that are liked by users
who are highly similar to the target user as the recommendation results. The
item-based collaborative filtering recommendation algorithm starts from the
perspective of candidate items and selects items that are similar to the items
that the target user has interacted with as the recommendation results. These
two algorithms are simple and easy to understand in principle, clear and
complete in structure, and easy to use and practice.

Based on the above works, many researchers proposed several
improvement methods from the perspective of recommendation accuracy,
and the main improvement ideas are summarized as follows:

(1) Choose an appropriate similarity calculation method. For the same
dataset, if different similarity calculation methods are used, the
accuracy of the recommendation will also be significantly different.
For instance, using the Pearson correlation coefficient as a similarity
calculation method needs to meet two assumptions, that is, the

 



relationship between variables is linear, and the error needs to satisfy a
probability distribution with a mean of 0 and a constant variance. If
the dataset does not meet the above conditions, there will be a large
deviation in the recommendation results. Therefore, it is necessary to
select an appropriate similarity calculation method according to the
characteristics of the dataset distribution and research questions.

(2) The reliability of similarity calculation. If there are a large number
of commonly interacted items between a user and the target user, the
user should be given a larger weight when calculating the prediction
scores of items, that is, the similarity between the two users is more
reliable. On the contrary, it means that the reliability of the similarity
is lower. Usually, we can set a threshold for the number of commonly
interacted items, such as 50. When the number of common
interactions is less than the threshold, the user can be given a weight
less than 1 when calculating the prediction score, otherwise the user is
given a weight of 1, that is, the neighbor’s score should punished
according to the reliability.

 

(3) Choose an appropriate number of neighbors to compute the
prediction score. The number of users in recommender systems is
usually large, so it is unrealistic to consider all users as neighbors
when calculating the score. It is necessary to select some users as
neighbors of the target user according to certain rules (for example,
the similarity is higher than a certain threshold). The specific number
of neighbors is related to the dataset and needs to be set by manual
tuning.

 

(4) Consider user rating habits to avoid rating prediction bias caused
by different user rating habits. In the real world, each user has
her/his own rating habits. For instance, some users are used to giving
high ratings to movies, while others are used to giving low ratings to
movies. Therefore, it is necessary to eliminate the prediction bias
caused by different user rating preferences. A feasible method is to
subtract the average value of the corresponding user’s rating from the
rating of each item before calculating the prediction score and then
add the average value back after the rating prediction stage, so as to
avoid the influence of different users’ rating preferences.

 



Advanced Memory-Based Collaborative Filtering Algorithms
The SLIM (Sparse Linear Methods) [10] algorithm proposes some
improvements to memory-based methods. The SLIM algorithm proposes to
learn a sparse matrix for all items from user interaction records to
simultaneously achieve efficient and high-quality recommendations.
Specifically, if we want to calculate the rating of user i on an item j that has
not yet been interacted with, it can be achieved by performing sparse
aggregation on the ratings of items that user i has interacted with, namely

(2.23)

where  and  is a sparse column vector. From the
perspective of matrix operations, the SLIM model can be expressed as

(2.24)

where  represents the user interaction matrix;  represents a
sparse matrix; its j-th column is the  in the above formula; each row 
in  matrix represents the predicted ratings of user i on all items.

The focus of SLIM is the construction of sparse matrix , which can
be obtained through the following optimization problem:

(2.25)

In the above problem,  represents the  norm
of the sparse matrix ;  represents the  norm of the sparse
matrix ;  and  represent the coefficients of the regularization terms,
and the larger the coefficient of the regularization term, the stricter the
constraint on the parameters. In the optimization objective, the first term

 describes the fitting error between the predicted value and
the real value, and both the second term and the third term are
regularization terms which are used to penalize the value of the sparse
matrix . The introduction of the third term  norm makes the matrix

 tend to be sparse (that is, multiple elements in the matrix are 0). The



introduction of the second term  norm can transform the optimization
problem into an elastic net regression problem, which is used to reduce the
complexity of the model and avoid overfitting. In addition, the first
constraint  ensures that each item in the sparse matrix is positively
correlated, and the second constraint ensures that the sparse matrix  is
not a trivial solution, that is,  is not an identity matrix and  does not
rely on  when calculating. Since each column of the matrix  is
independent, the construction of  is highly parallelizable. SLIM can also
reduce training time by combining with feature selection methods. For
instance, SLIM combined with feature selection methods such as cosine
similarity can greatly improve training efficiency with a slight decrease in
recommendation quality.

Compared with traditional linear models, SLIM has significant
advantages. For instance, the linear model based on the item-based k-
nearest neighbor (ItemKNN) algorithm is similar to SLIM in principle. It
uses an item--item cosine similarity matrix  to achieve item
recommendation, but ItemKNN relies too much on the pre-calculated item--
item similarity matrix , while SLIM obtains the similarity matrix  by
an optimization problem, so that  can encode the relationship
information between items that is not easy to be captured by the similarity
calculation method. In addition,  is a dense symmetric matrix, and the
value of the matrix can be negative. While the similarity matrix 
obtained by SLIM optimization is a highly sparse non-negative matrix,
making SLIM has extremely high recommendation efficiency. At the same
time, since  is not required to be a symmetric matrix, SLIM has better
flexibility.

SLIM and Matrix Factorization (MF) methods are also quite similar in
structure. Matrix factorization reconstructs the user-item interaction matrix

 through the user feature matrix  and item feature matrix , the
specific calculation is as follows:

(2.26)

It can be seen from the above equation that SLIM is essentially a special
form of matrix factorization, that is,  and  of SLIM can correspond to

 and  of matrix factorization, respectively. Matrix factorization needs
to construct respective feature matrices  and  for users and items,
while SLIM only needs to build feature matrices  for items, so the



learning process of SLIM is simpler than matrix factorization. In addition,
 and  are usually constructed as low-dimensional hidden spaces,

resulting in the possible loss of some useful high-dimensional user features
and item features when decomposing  into  and . On the contrary,
user information in SLIM is completely retained in the user interaction
matrix , so SLIM is better than matrix factorization in terms of
recommendation accuracy in many Top-N recommendation scenarios. In
terms of recommendation efficiency, SLIM is also better than matrix
factorization. Since  and  are both dense matrices in matrix
decomposition, when calculating the predicted score vector  of user i, it
is necessary to calculate the score  of each item separately, and its time
complexity is , where k represents the dimensions of  and

, n represents the number of items. The SLIM method using sparse
matrix can reduce the time complexity of the algorithm and improve the
training efficiency.

At present, many related research works have proposed some
improvement ideas to optimize the SLIM algorithm. For instance, SSLIM
[11] introduces side information based on SLIM to improve the accuracy of
recommendation. SSLIM proposes two methods to use auxiliary
information. The first method is to share a sparse matrix  with the user
interaction matrix  to reconstruct the auxiliary information matrix ,
whose optimization objective is:

(2.27)

In the formula,  is a regularization coefficient, which controls the
importance of auxiliary information in the training phase. The larger value
of  means the auxiliary information is more important for model training.
The second method is to set a separate sparse matrix  for the auxiliary
information matrix , but it is necessary to ensure that  and  are as
close as possible:



(2.28)

LorSLIM [3] uses a kernel norm on top of SLIM to ensure the low-rank
characteristic of the sparse matrix. The low-rank characteristic of the sparse
matrix can enable LorSLIM to better capture the relationship between items
on sparse data. At the same time, the low rank and sparsity of the sparse
matrix ensure that it is a block diagonal matrix, and similar items will be
classified into the same category. LorSLIM obtains a low-rank sparse
matrix  by optimizing the following objective function:

(2.29)

In the formula,  represents the nuclear norm of ;
 is the singular value of the matrix ; z represents the coefficient of the

regularization term. However, due to the introduction of the nuclear norm,
LorSLIM cannot use coordinate descent and soft thresholding methods to
obtain . Therefore, LorSLIM uses ADMM (Alternating Direction
Method of Multipliers) to solve the optimization problem. Readers who are
interested in solving optimization problems with ADMM can learn more by
reading related papers.

Summary of Memory-Based Collaborative Filtering Algorithms
The user-based collaborative filtering method and the item-based
collaborative filtering method are two classic memory-based methods,
which calculate the user recommendation lists from the perspective of user
similarity and item similarity, respectively. They are simple and easy to
understand in principle, clear and complete in structure, easy for readers
and beginners to get started and practice. The SLIM algorithm and its
variants SSLIM algorithm and LorSLIM algorithm are improvements to
memory-based methods. They generate user recommendation lists from the
perspective of item similarity. Compared with memory-based methods, the



similarity matrices of these methods are optimized and sparse, which can
achieve both fast and high-quality recommendations. The LorSLIM
algorithm has a better performance on sparse datasets due to the
introduction of the nuclear norm. However, both the memory-based method
and the SLIM algorithm or its variants generally have a shortcoming, that
is, they cannot solve the recommendation problem of new users and new
items. Recommender systems based on the above methods cannot generate
recommendation lists for new users and cannot recommend new items to
other users, which brings great challenges to the application of
recommender systems.

2.2.2 Matrix Factorization Method and Factorization Machine
Method
The matrix factorization method was introduced into the collaborative
filtering algorithm to solve the data sparsity [13] problem. In the Netflix
Prize competition held in 2006, the matrix factorization method achieved
the highest accuracy among all stand-alone CF algorithms and has since
attracted widespread attention from academia and industry. In 2010, Rendle
extended the matrix factorization method and proposed the factorization
machine method [13], which can model more complex relationships
between users and items.

Matrix Factorization Method
(1) Classic Matrix Factorization
As shown in Fig. 2.12, the classic Matrix Factorization (MF) method is a
simple embedding model that can be used in recommender systems. Its core
idea is to find a low-dimensional space to represent users and items.
Specifically, given a user-item interaction matrix , m represents
the total number of users, n represents the total number of items, the matrix
factorization will learn:

User embedding matrix , where the i-th row represents the
embedding of user i.



Fig. 2.12 Illustration of matrix factorization
Item embedding matrix , where the j-th row represents the
embedding of item j.
Embeddings are learned such that the product  is a

reasonable approximation of the interaction matrix , where the entry
 in  is the product of the representation vectors of user i and item j.

In order to make  as close as possible to , the optimization objective
 of matrix factorization can be defined as follows:

(2.30)

Meanwhile, in order to ensure that the matrix factorization model does
not suffer from the overfitting problem, it is necessary to add 
regularization to the objective function , namely:

(2.31)

To solve the above optimization problem, the gradient descent method
is usually used, such as the stochastic gradient descent (SGD) method, and
the partial derivative of the objective function  to  is calculated as
follows:



(2.32)

(2.33)

Based on the above partial derivatives, the iterative update formula of
SGD is obtained by:

(2.34)

(2.35)

By continuously iterating using the above formulas, the  and 
obtained after convergence can be used as the recommendation model to
recommend items for users.

(2) Probabilistic Matrix Factorization
Although the classic matrix factorization method introduced above has
excellent results in practical applications, there are some key technical
problems that have not yet been resolved, such as whether the mean square
error is reasonable, and how to select the coefficient of the regularization
term, etc. In order to solve the above problems, Ruslan Salakhutdinov and
Andriy Mnih proposed the idea of Probabilistic Matrix Factorization (PMF)
[15]. Different from the classical matrix factorization, the probabilistic
matrix factorization assumes that the observed rating matrix has noises, and
the noises follow the Gaussian distribution with zero mean, and the user
feature vector and the item feature vector also follow the Gaussian
distribution. Based on these assumptions, probabilistic matrix factorization
can solve the above problems.

As shown in Fig. 2.13, in the probabilistic graphical model of
probabilistic matrix factorization, the user feature vector and the item
feature vector are initialized using an isotropic multivariate Gaussian with
zero mean. Suppose there are m users and n items in the recommender
system, and the dimension of user feature vector and the item feature vector
is d, then we have:



User embedding matrix , where the i-th row represents the
embedding of user i.

Fig. 2.13 Probabilistic graphical model of probabilistic matrix factorization

Item embedding matrix , where the j-th row represents the
embedding of item j.
The core of the probabilistic matrix factorization is Bayesian theory, and

Bayes’ theorem can be used to estimate the posterior distribution of model
parameters, as follows:

(2.36)

where  is the user’s rating matrix for items;  is the parameter set of the
distribution;  is the hyperparameter of the distribution;  is the
posterior distribution of ;  is the prior distribution; 
is the likelihood function. The idea to solve the above problem is: as more
information about the data distribution is obtained, the model adjusts the
parameters  to fit the data. That is, the parameters of the posterior
distribution of the previous iteration are used as the prior distribution for the
next iteration until the posterior distribution  tends to be stable.



For ease of notation, we can define , where 
represents the standard deviation of the zero-mean Gaussian distribution.
Using the above definition to rewrite the above formulas, we can obtain:

(2.37)

Since  and  are independent of each other, the above formula can
be rewritten as:

(2.38)

In the above equation,  is the likelihood function,
defined as follows:

(2.39)

where  is an indicator function, that is, if , then  is 1,
otherwise it is 0;  is the mean of Gaussian distribution;  is the
variance of Gaussian distribution.

In addition,  and  are the prior distribution,
defined as:

(2.40)

(2.41)

That is, two zero-mean Gaussian distributions. Combining the above
definitions, we can get:

(2.42)



In order to solve the optimization problem of the probabilistic matrix
factorization, it is necessary to maximize the above objective to obtain the
optimal parameters , . It is difficult to obtain derivatives for the
optimization objective in the form of multiplication, so it is difficult to
directly solve . Here, we can consider to take the
logarithmic on both sides of the equation in the above formula and we can
get:

(2.43)

The Gaussian probability density function in the above formula is
defined as:

(2.44)

Combining the above two equations, we can get:

(2.45)

The above equation is convenient for derivation. Finally, in order to
facilitate the processing of the equation, we can define the hyperparameter

,  and extract the relevant common factors to obtain:

(2.46)

Find the partial derivatives of  to , respectively, and let the
partial derivative be 0, the following equation can be obtained:



(2.47)

(2.48)

By solving the above two equations, we can get:

(2.49)

(2.50)

That is, the iterative solution of  and  are obtained. By calculating
using the above iterative formulas,  and  obtained after convergence
can be used to calculate the recommendation results.

(3) Bayesian Probabilistic Matrix Factorization
The probabilistic matrix factorization model involves fewer parameters and
the estimation of the parameters is all point estimation, which is easy to
cause the problem of overfitting in the process of model training. Therefore,
Ruslan Salakhutdinov and Andriy Mnih improved the probabilistic matrix
factorization by a full Bayesian inference to ensure that the model capacity
is controlled by parameters and hyperparameters, that is, the Bayesian
probabilistic matrix factorization [14].

In the Bayesian probabilistic matrix factorization, the posterior
probability, likelihood function, and prior probability of the model
parameters are basically consistent with the probabilistic matrix
factorization, that is:

Posterior probability:

(2.51)

Likelihood function:



(2.52)

Prior probability:

(2.53)

(2.54)

Based on the prior probability, the Bayesian probabilistic matrix
factorization further introduces Gaussian-Wishart prior for the parameter

, , namely:

(2.55)

where  represents the Wishart distribution, the degree of freedom of this
distribution is , and the range matrix is , additionally:

(2.56)

where  represents the normalization constant.
After the above definition, the rating prediction based on the Bayesian

probabilistic matrix factorization can be given by:

(2.57)

Due to the complexity of the posterior distribution, the above equation
is unsolvable. Therefore, here we can use the Markov Chain Monte Carlo
(MCMC) method to approximate the scoring prediction process, namely:

(2.58)



where  represent the stationary distribution of
 based on model parameters and hyperparameters,

respectively, generated by a Markov chain. Consider a simple MCMC
algorithm, that is, the Gibbs sampling algorithm. Since the Bayesian
probabilistic matrix factorization uses conjugate prior distributions for
parameters and hyperparameters, the conditional distribution obtained from
the posterior distribution is easy to sample. Based on the rating matrix ,
the item embedding vector , the parameter , the hyperparameter ,
the conditional distribution of the user embedding vector  is:

(2.59)

where

(2.60)

(2.61)

In addition, the hyperparameters  are generated by sampling
from a Wishart-Gaussian distribution:

(2.62)

where

(2.63)

(2.64)



(2.65)

Based on the above formulas, we can obtain the update process of the
user embedding vector. And the update process of the item embedding
vector is similar to that of the users, so it will not be repeated here.

Factorization Machine
Factorization Machine (FM) [13] is a method for modeling the relationship
between users and items through polynomials, proposed by Steffen Rendle
in 2010. FM’s polynomial model incorporates the idea of matrix
factorization, that is, the coefficients of the second-order cross feature terms
are adjusted in a matrix factorization manner, so that the coefficients are no
longer independent and irrelevant. And at the same time, it can solve the
problem that the parameters are not sufficiently trained due to data sparsity.
The second-order FM model is expressed as follows:

(2.66)

where  represents the number of features of the data sample; 
represents the value of the i-th feature; , ,  represent the
parameters of the model. In practical recommender systems, there are
usually serious data sparsity problems, which bring great challenges to the
training of FM models. Sparse data will lead to insufficient training samples
for cross feature terms, so the parameters  obtained by training do not
meet the characteristics of sufficient statistics, resulting in inaccurate
parameters , which in turn affects the performance of model prediction.
In order to solve the above training problem, FM draws on the idea of
matrix factorization to form a symmetric matrix  of all quadratic
parameters . Then this matrix can be decomposed into ,
where the j-th column of  is the hidden vector of the j-th feature . Each
parameter , so the original FM expression can be written
as:



(2.67)

where  is the hidden vector of the i-th feature;  represents the
vector dot product. The length of the hidden vector is , which
means that  dimensional vectors are used to describe user features. The
first term of the second-order FM expression represents the global bias, the
second term represents the linear relationship between input and output, and
the third term is the second-order cross term, indicating that the model
considers the interaction between two different features, thereby
establishing a bilinear relationship between input and output. If the cross-
term coefficient is 0, it means that the corresponding two features have no
correlation. Such a design can reduce the redundancy of the model and
improve the predictive ability of the model.

The Connections and Differences Between Matrix Factorization
and Factorization Machines
Factorization machines can be thought of as an extension of matrix
factorization. A factorization machine is equivalent to a matrix factorization
model if only quadratic terms are kept in the factorization machine model.
And, the model optimization of the factorization machine also follows the
optimization method of probabilistic matrix factorization or Bayesian
probabilistic matrix factorization. For instance, the stochastic gradient
descent method used in the factorization machine learns the model in the
same way as the classical matrix factorization method, and the factorization
machine can use the Markov chain Monte Carlo method to learn the model
in the same way as the Bayesian probabilistic matrix factorization method.

There are two main differences between the two algorithms. One is that
the factorization machine can use more information. It cannot only use the
rating information of users on items but also use a lot of additional
information, such as user attributes, item characteristics, social network,
and context information. With this information, factorization machine can
provide effective recommendations even in the face of new users or new
items. However, most matrix factorization methods are difficult to directly
utilize these additional information and cannot solve the cold-start problem.
The second is that factorization machine can model more complex feature



relationships. In addition to the same quadratic terms as matrix
factorization, factorization machine contains constant and linear terms and
can even contain higher-order feature interaction terms such as cubic and
quartic terms. Compared with the matrix factorization models, the
factorization machine can significantly improve the capacity and expressive
ability of the model, which helps to improve the accuracy of prediction.

2.3 Summary
This chapter introduces four types of classic recommendation algorithms,
including content-based recommendation algorithms, classic collaborative
filtering algorithms, matrix factorization methods, and factorization
machines. Before the emergence of deep learning, these methods were the
most mainstream techniques for recommender systems, widely recognized
by both academia and industry. Although after the emergence of deep
learning, these technologies are no longer the first choice of the industry,
but the basic ideas and practical experience extracted from these
technologies still affect the follow-up research. Therefore, in many deep
learning-based recommendation algorithms, we can often see the reflections
of the above approaches.
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Abstract
This chapter introduces the basics of deep learning, including feedforward
computation and backpropagation algorithms for deep neural networks, as
well as various classic neural network models. As readers learn, they can
combine the content of other chapters in this book to understand and design
different types of neural network models for recommendation scenarios,
taking into account the data characteristics and task properties, in order to
improve recommendation performance.

Keywords Deep learning basics – Feedforward computation –
Backpropagation – Deep neural networks

This chapter first introduces the feedforward computation and back-
propagation algorithms of neural networks, helping readers better grasp the
knowledge of deep learning, understand its optimization operations, and
assist in designing recommendation models suitable for various
recommendation scenarios. Then, this chapter introduces various deep
learning models, including multi-layer neural networks, convolutional
neural networks, recurrent neural networks, attention mechanisms,
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sequence modeling, and pre-training. These models play a very important
role in various tasks in the recommendation scenario.

3.1 Neural Networks and Feedforward
Computation
This section first introduces the basic structure of a Neural Network (NN),
and then it gives an example to explain the feedforward computation
process of a neural network. A neural network, also known as an Artificial
Neural Network (ANN), is a computational model that mimics the structure
of biological neural networks. In a neural network, each neuron acts as a
basic computation unit, receiving a certain number of input signals from
other neurons, processing them, and then transmitting them to other
neurons.

Typically, the signals transmitted between neurons are real numbers.
Each neuron first calculates the weighted sum of the input signals from the
previous layer, where the weights are represented by , and
adds a bias term b. It then passes the result through a non-linear activation
function  before transmitting it to the next layer of neurons. This
process can be represented by the diagram in Fig. 3.1.

Fig. 3.1 An example of neuron structure in a neural network



The feedforward neural network (FNN) refers to a neural network
where the neurons are connected to form a neural network without loops.
The most common feedforward neural network model is the perceptron
model, which was first proposed by Frank Rosenblatt in 1958. A single-
layer perceptron is the simplest feedforward neural network model, and its
structure is the same as in Fig. 3.1. A common example of a single-layer
perceptron model is a single-layer neural network combined with a Logistic
function (also known as the Sigmoid function), that is,

When this function is used as a neural network activation function, the
single-layer perceptron becomes a Logistic model. Common activation
functions include ReLU, tanh, and others.

This single-layer perceptron model is often used as the basic building
block of more complex neural networks, and it can be used to classify linear
separable data.

The feedforward calculation of a neural network refers to the process of
computing the corresponding output for a given input of the neural network.
For example, in the Logistic model, given the input , the process of
computing the corresponding output

(3.1)

is called the feedforward calculation of the neural network.
The following introduces the model structure, parameters, and forward

calculation process of a two-layer perceptron. As shown in Fig. 3.2, the
model contains a hidden layer composed of neurons. The output of the
model can be represented as

(3.2)

(3.3)

In the above equations,  and  are the weight matrix
and bias term from the input layer to the hidden layer, respectively;

 and  are the weight matrix and bias term from the



hidden layer to the output layer, respectively;  and  are the activation
functions of the two layers. The forward calculation process of the model is
the process of calculating the hidden layer output  and the model output

 given input .

Fig. 3.2 The structure of the two-layer network model

3.2 Back-Propagation Algorithm
The next chapter will introduce how to optimize neural network models.
Here, using the model in Fig. 3.2 as an example, the Back-Propagation (BP)
algorithm in neural network optimization will be introduced [3]. Back-
propagation algorithm is a widely used algorithm in the training of
feedforward neural networks. In the process of fitting neural networks, the
back-propagation algorithm can efficiently calculate the gradient of the loss
function with respect to the parameters of the neural network and use the
gradient descent method to update the parameters such that the loss function
of the neural network is minimized.

Back-propagation refers to the calculation of gradients of each layer in a
reverse direction starting from the loss function, for the purpose of gradient
updates and optimization. In the example of a two-layer neural network



above, the gradients of the loss function with respect to the parameters 
and  are first calculated. As shown in the model in Fig. 3.2, assuming that
the input  corresponds to the true label , the output is , and the loss
function is , where , the gradient of the loss
function with respect to the weight matrix  for the  element 
can be calculated through the chain rule:

(3.4)

In the equation,  is the gradient of the loss function with respect to the
output ,  is the gradient with the activation function , and 
is the output of the hidden layer; the product of these three terms can derive
the gradient of the loss function with respect to . This formula can be
written in the form of matrix multiplication

(3.5)

In the equation,
; 

represents the element-wise multiplication. The final product result
 is the gradient of the loss function with respect to the entire

weight matrix .
Similarly, the gradient of the loss function with respect to the bias term

 can also be calculated using the chain rule.

(3.6)

In the computation process, we can first calculate the gradients of 
and , then calculate the gradient of , and finally use the
hidden layer output  and the already calculated gradient  to
directly obtain the gradient of the term .

Next, we will calculate the gradient of the loss function with respect to
the parameters  and  of the first layer in the neural network. This
process is a little bit more complex.



(3.7)

In this equation,  represents the i-th element in the vector. The above
equation can also be written in the matrix form as

(3.8)

It can be seen that the gradient of the loss function with respect to 
contains the  term that has been previously calculated. The method
for calculating the gradient of the loss function with respect to  is also
similar and will not be discussed further here.

Up to this point, this section has explained how to calculate the gradient
of the loss function with respect to each parameter, layer by layer, from the
final output layer backward. Taking the mean square error (MSE) function
as an example, the specific process for calculating the gradient of the loss
function with respect to the parameters of a K-layer neural network is as
follows:

Step 1: First, perform feedforward computation on the input of the
neural network to obtain the output of each layer:

(3.9)

Step 2: Compute the gradient of the loss function with respect to the
output:



(3.10)

Step 3: Compute the gradient of the activation function of the last layer
of the neural network:

(3.11)

Let

(3.12)

In this equation,  represents the error term for this layer. Next, compute
the gradient of the loss function with respect to the parameters  and

:

(3.13)

Step 4: Compute the gradient of the activation function of the second-
to-last layer of the neural network:

(3.14)

Let

(3.15)

Compute the gradient of the loss function with respect to the parameters
:

(3.16)

For a neural network with many layers, people can repeat steps 3 and 4
until the error term propagates from the output layer to the first layer, so as
to obtain the gradient of the loss function with respect to all parameters. The
algorithm of propagating the error term from the output layer to the input
layer is the back-propagation algorithm. Next, optimization methods such



as gradient descent can be used to update the parameters, in order to
achieve the goal of training the neural network.

3.3 Various Types of Deep Neural Networks
In this chapter, various types of deep neural networks will be introduced. In
many fields such as information retrieval and recommendation, these
different types of neural networks are used to help the systems better use
heterogeneous information sources, including images of the items to be
recommended, text of item reviews, users’ sequential browsing behavior,
etc. These models will be used in the other chapters of this book and will be
explained and discussed here in a unified manner.

3.3.1 Convolutional Neural Network
Convolutional Neural Network (CNN) is a type of deep neural network that
is suitable for analyzing grid-like topology data, such as image data. The
basic structure of CNN includes convolutional layers, activation layers,
pooling layers, and fully connected layers, as shown in Fig. 3.3. This
section will introduce the components of CNN in turn and give examples of
the application of CNN in recommendation systems.



Fig. 3.3 The basic components of CNN: the combination of the basic components will be utilized
multiple times

In conventional feedforward neural networks, a two-dimensional image
(a matrix of pixel values) input is folded (i.e., flattened and concatenated)
into a one-dimensional vector, which may cause the image to lose the
information of its spatial structure. Moreover, because each pixel in the
image is connected to a neuron in the network, the number of computation
parameters is large. Compared to the traditional feedforward neural
networks, CNNs use convolution operations at least in one layer to replace



general matrix multiplications, which helps to capture the dependency of
spatial regions in the data, and to share computation parameters. This
convolution operation layer is called convolutional layer. Because the
design of CNNs is inspired by biological processes, the organization of
neural connections in the visual cortex of animals is similar to artificial
neural networks, and a single cortical neuron responds only to the limited
regions of stimuli in the visual field, which is called the receptive field
(RF). Different neurons’ RFs partially overlap, making them cover the
entire input image or the visual field of the input matrix.

The mathematical definition of convolution is a linear operation that
takes two functions as inputs and produces a single function output. The
one-dimensional convolution of two functions,  and , is defined as

(3.17)

in continuous space and

(3.18)

in discrete space.
Take the example of a falling ball to illustrate the meaning of the

formula (Fig. 3.4). Assume that a ball falls from the air and it will undergo
one-dimensional motion. The probability that the ball will land at a distance
of a units from the starting point after the first fall is , where x is the
probability distribution function. After the first fall, pick up the ball and
drop it from another height above where it first landed. The probability that
the ball will reach a point b units away from the new starting point is ,
where w is a different probability distribution. As shown in the figure, if it is
known that the position reached after the first fall is a, then the probability
value of reaching t is . To consider all the possibilities of the ball
reaching t, all possible combinations of reaching t are divided into two
moves and the probability of each way is summed, which is .



Fig. 3.4 Visualization of the probability of the ball falling into point t
As shown in Fig. 3.5, under discrete conditions, the probability of the

ball falling a distance of t, i.e., , is calculated by shifting ,
multiplying it by the corresponding position of , and adding them up.



Fig. 3.5 Probability calculation of the ball falling into point t
In convolution,  can be considered as the input and  is the

kernel function (weighting function) that weights . Similarly, discrete
two-dimensional convolution can be extended from one-dimensional
convolution:

(3.19)

Like one-dimensional convolution, two-dimensional convolution can be
thought of as sliding over another function, performing multiplication and
addition operations. This is the most common application of convolution in
convolutional neural networks, where two-dimensional matrices (such as
images) are viewed as two-dimensional functions and then a local function,
called a “convolution kernel”, is used to convolute the image function.
However, what is actually used in convolutional networks is not the original
definition of convolution, but the cross-correlation function, which is a
“convolution” without flipping operation:

(3.20)

Figure 3.6 shows an example of convolution operation on a two-
dimensional matrix input. The convolution kernel slides over each element
of the matrix and calculates the weighted sum of the neighboring elements
with the convolution kernel as a new element value. This is the most basic
convolution operation in a convolutional neural network, but in practice
additional operations are often applied. Convolution kernels with size
greater than 1 will result in a dimensionality reduction of the generated
feature map compared to the input matrix. To retain the dimensionality of
the input matrix and preserve more information at the edges, padding is
often applied to the edges of the input matrix. Stride refers to the number of
elements the convolution kernel skips when sliding, when the stride is equal
to 1, it is a normal convolution operation, and when the stride is equal to 2,
it means the convolution kernel will skip two elements before performing
the convolution operation. Dilated convolution increases the receptive field
in convolution by increasing the spacing between values processed by the
convolution kernel.



Fig. 3.6 Visualization of the calculation of convolution on a two-dimensional matrix
Figure 3.7 shows a  convolution with a dilation rate of 2. It has

the same receptive field as a traditional  convolution, but the dilated
convolution kernel only has 9 parameters, less than the 25 parameters of the

 convolution kernel. This means that a wider field of view can be
perceived at the same computational cost, thus improving the performance
of the model.

Fig. 3.7 Dilated convolution with dilation rate as 2

Since the output of a convolution layer is sensitive to the position of the
features in the input, pooling layers are used in convolutional neural
networks to aggregate the feature values in a region of a feature map with
down-sampling, thus achieving translation invariance. Figure 3.8 shows two
common pooling methods, average pooling and max pooling, which
calculate the average and maximum values of all the elements in a pooling



window, respectively. Therefore, pooling layers are generally used in
combination with convolutional layers.

Fig. 3.8 Average pooling and max pooling
The activation functions and fully connected layers in convolutional

neural networks have few differences from those in feedforward neural
networks.

As convolutional neural networks are widely used in the image analysis,
people have also studied their applications in natural language processing
and recommendation systems. As shown in Fig. 3.9, by concatenating user
behavior feature vectors at a single time point (such as embedding vectors
of the watched movies or the purchased items) in temporal order from left
to right into a 2D matrix, short-term behavior features of the user can be
extracted by sliding convolution on the time dimension of the matrix, which
can be used for modeling user sequential behavior. For more detailed
recommendation algorithms, please refer to Sect. 4. 4 of this book on
sequential recommendation systems.



Fig. 3.9 Using CNN for feature extraction from temporal user behavior sequences

3.3.2 Recurrent Neural Networks
Recurrent Neural Network (RNN) is a type of neural network that is used to
process sequence-type data. This section will introduce three types of
RNNs: traditional recurrent neural network, Long-Short Term Memory
(LSTM), and Gate Recurrent Unit (GRU).

One of the key characteristics of RNNs is that they accept a sequence of
inputs  and process each data element  in the sequence
in order. When processing , the RNN takes into account the previous
hidden state  in order to calculate the current hidden state  and
output , as shown in the diagram (Fig. 3.10).



Fig. 3.10 Traditional RNN
The computation process of traditional recurrent neural networks is as

follows:

(3.21)

(3.22)

(3.23)

In the equation,  and , respectively, represent the bias vectors of the
corresponding neural network layer. It should be noted that for the input at
different times in the sequence, the recurrent neural network uses the same
parameters for calculation, that is, the input  at different time steps
requires the same parameters , , , , and  to be shared. Since the
same parameters are used at each step, according to the definition of the
back-propagation chain rule discussed earlier in this chapter, the gradients
of the recurrent neural network tend to disappear or explode during the
backward propagation along the time dimension. Specifically, assuming
that there is a loss function L at time step t, the gradient of  is

(3.24)

Furthermore, considering the gradient backpropagated to time step
, the gradient is



(3.25)

It is easy to find from the above equation that as we continue to take
derivatives along the time dimension, the first term in the equation will
have multiple multiplications of , and the multiplication of the same
matrix will cause the result to be too large or too small. These two
situations correspond to the gradient explosion and gradient vanishing
phenomena in recurrent neural networks. Gradient explosion can be
alleviated by techniques such as gradient clipping. Gradient clipping is
controlling the norm of the gradient matrix or vector within a preset range.
However, the solution to the gradient vanishing phenomenon is relatively
more difficult, and this has become a key problem to be addressed in
recurrent neural networks. Due to the widespread existence of the gradient
vanishing phenomenon, it is difficult for the gradient of one time step to be
backpropagated to many steps before, which makes it difficult for
traditional recurrent neural networks to capture the dependence between
data from distant time steps (i.e., long-term dependencies). To deal with the
long-term dependency problem, researchers have proposed other alternative
RNN structures. Two commonly used RNN structures will be introduced
below.

Compared to traditional recurrent neural networks, Long Short-Term
Memory (LSTM) networks have added three gate control units in each step,
which are forget gate , memory gate , and output gate . At the same
time, in addition to storing the hidden state , the long short-term memory
network also introduces a new memory unit , as shown in Fig. 3.11.



Fig. 3.11 Long Short-Term Memory (LSTM) network
The circle with the multiplication symbol  in the figure represents the

Hadamard product, which is the element-wise product of matrices. Let 
and  be two matrices with the same dimensions, then the result of the
Hadamard product of  is the same dimension as  and , and

. The square with the  in the figure represents the
Sigmoid function. Specifically, the calculation process of the LSTM
network is as follows:

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)



The key to LSTM alleviating the gradient vanishing problem lies in the
memory unit . Observing the fifth equation above, there is a term  in
the derivative of  with respect to , which is the output of a Sigmoid
function. And the Sigmoid function has saturation regions on both sides. If
the neural network considers some information in  to be important,
then the corresponding  will be in the saturation region on the right of
the Sigmoid function, and its value will be very close to 1. Even if multiple
items are multiplied together, i.e., multiple steps of gradient back-
propagation, it will not cause gradient vanishing.

Another alternative is Gated Recurrent Unit (GRU) which uses a similar
approach to solve the problem of gradient vanishing, but it has a simpler
structure and is easier to implement. It can be seen as a simplified version
of LSTM networks. Considering the similarity of the memory gate and
forget gate functions in LSTM, GRU combines these two gates. After the
merger, GRU only has two gates, called the update gate  and reset gate

. At the same time, GRU also removed the memory unit  in LSTM,
making the hidden state  responsible for the memory unit at the same
time. Its specific update mode is shown in Fig. 3.12.

Fig. 3.12 Gated Recurrent Unit (GRU) network

The calculation of GRU is as follows:



(3.32)

(3.33)

(3.34)

(3.35)

Using the example of the recommendation scenario in an e-commerce
platform, when performing the current time step’s recommendation, the
user may have previously viewed a variety of products, so the e-commerce
platform’s recommendation strategy needs to be based on the user’s
browsing history (a sequence) for the current recommendation. Since the
number of items viewed by different users is not necessarily the same, the
e-commerce platform’s recommendation strategy needs to handle variable-
length sequences, so traditional fully connected neural networks are unable
to handle this problem, which makes recurrent neural networks widely used
in various tasks in the recommendation scene.

3.3.3 Attention Mechanism
Attention is a commonly used mechanism in the field of deep learning,
which is used to automatically learn the contribution of input data to output.
In some scenarios, the input data contains a lot of irrelevant information.
Attention mechanism is used to distinguish the importance of each feature
in the input data and then perform subsequent tasks based on the important
features. This often leads to better performance if tuned well.

In short, an attention module maps a query and a set of key–value pairs
to an output, where the output is the weighted sum of the input values and
the corresponding weights are calculated by the key and query. The query,
key, and value are denoted as , , and , respectively. Then, an
attention mechanism module can be represented as

(3.36)

where  represents the calculation of the corresponding weights
based on the query and key and can usually be represented as

.



The attention mechanism was first proposed in machine translation,
where the translation model is composed of an encoder and a decoder
which constitute a sequence-to-sequence (Seq2Seq) model. The encoder
and the decoder are both composed of RNNs. When the sequence-to-
sequence model is running, the encoder first receives the input data and
encodes it into a vector . The decoder then decodes the vector as the initial
hidden vector . In order to better capture the dependency
relationship between the original text and the translated text, this method
adds a layer of attention mechanism between the encoder and the decoder,
as shown in Fig. 3.13. In the figure, the attention weight  is calculated
based on the query  and the key , specifically by a neural

network with a final Softmax function. After the weight is calculated, the
weighted sum  can be calculated for the hidden

states. Then, based on the previous hidden state , the current input ,
and the weighted sum , the prediction of the current time step can be
derived.

Fig. 3.13 The attention mechanism in machine translation



It is worth noting that if the key and value are the same content, both
being , it is called a self-attention mechanism. Recently, the self-

attention mechanism has received widespread attention. At its core, its logic
is consistent with traditional attention mechanisms. The difference is that
self-attention mechanisms operate on attention mechanisms between the
same set of data, while traditional attention mechanisms operate on
attention mechanisms between two sets of data. For example, in Fig. 3.13, it
is the operation of attention mechanisms between the decoder’s hidden state
and the encoder’s hidden state. At the same time, in a self-attention
mechanism, related research has also proposed several special structures of
attention mechanisms, namely, scaling dot product attention and multi-head
attention, the specific structure is shown in Fig. 3.14. Among them, scaling
dot product attention is actually a way of calculating weights, that is,

, where  represents the dimension of the query.

The multi-head attention mechanism also uses multiple different attention
mechanism modules (different parameters and similar structures) and
finally concatenates the outputs of different attention modules to better
mine information in the data and use it for subsequent tasks.



Fig. 3.14 Scaling dot product attention (left) and multi-head attention (right)
This section still uses the recommendation scenario of the e-commerce

platform as an example to show the application of the attention mechanism.
In order to better complete the recommendation task, it is necessary to
accurately model the user’s interests based on the user’s browsing records.
However, due to random browsing behavior by the user during the
activities, that is, noise in the user’s browsing history, it may not be possible
to obtain the best results by directly using all the data. Moreover, the user’s
browsing history may be very long, and even long-term memory networks
are difficult to effectively encode. Additionally, there is a long-term
dependence between the user’s behaviors, so it is also unreasonable to
model user’s interests with only the most recent browsing history.
Therefore, researchers propose using an attention mechanism to model the
user’s interests [5]. Given the current item, the algorithm will perform an
attention mechanism operation between the item and the user’s historical
browsing records and then judge the current user’s preference for the item
based on the output of the attention mechanism, that is, the user’s interests.
This specific process is shown in Fig. 3.15. Thanks to the use of the
attention mechanism, the model significantly improved the performance of
the recommendation system online.



Fig. 3.15 Modeling user interests

3.3.4 Sequence Modeling and Pre-training
In recommendation scenarios, the input data of most tasks are usually
presented in the form of sequence, so people can view the items that can be
recommended as one word and view the user’s behavior as a sentence
composed of word sequences. Then, it is natural to adopt the sequence
modeling algorithm that is at the forefront of natural language processing.
On the other hand, in scenarios such as news recommendations, the input
data is presented in the form of natural language. Given the relevance of the
recommendation field and the natural language processing field, this section
will introduce three sequence modeling and pre-training techniques:
Word2Vec, Transformer, and BERT from the natural language processing
field.

Word2Vec
The Word2Vec model [2] aims to learn representations of words.
Essentially, it utilizes the hidden layer of a neural network to achieve the
distributional representation of discrete data in the hidden space, mapping
words from a discrete space to a multi-dimensional real-valued hidden
space. The input and output of Word2Vec are both one-hot encoded
vocabulary vectors. It trains on all the data in a large-scale natural language
corpus and, after convergence, the vector from the input layer to the hidden
layer is the corresponding word’s distributed representation, i.e., the word
vector.

Word2Vec uses an unsupervised training mode and has two models,
CBOW and Skip-Gram. CBOW is relatively more suitable for smaller
datasets, while Skip-Gram performs better in relatively larger corpus. The
CBOW model is shown in Fig. 3.16a, it uses the context (neighboring



words in the corpus) of the target word as input, and after weighting sum
processing in the mapping layer, it optimizes for the correct output of the
target word. On the other hand, the Skip-Gram model takes the current
word as input and aims to correctly predict the context words, as shown in
Fig. 3.16b.

Fig. 3.16 Word2Vec model. (a) CBOW model. (b) Skip-Gram model

Transformer
Transformer, as described in [4], uses a fully connected network with self-
attention mechanisms and position embeddings to replace recurrent neural
networks. This breakthrough removed the limitation of serial computation
based on the input’s temporal sequence in RNNs, and its derived pre-trained
text representation model BERT has excelled in various downstream tasks,
becoming one of the mainstream frameworks in natural language
processing.

As shown in Fig. 3.17, Transformer mainly consists of an encoder and a
decoder, corresponding to the upstream and downstream tasks, respectively:
the upstream task trains a text representation model, while the downstream
task performs specific tasks such as classification and text generation.



Fig. 3.17 Transformer model
During execution, Transformer first initializes the input representation

by encoding the text data into an initial representation. Generally speaking,
any method mentioned earlier in this text can be used here. Additionally,
since Transformer uses a fully connected network, discarding the sentence’s
sequential information, it is necessary to add its position encoding to the
input data in order to consider the data’s sequential information. In the



position encoding section, trigonometric functions are used to superimpose
the position information of the words in the whole sentence. The formula is
as follows:

(3.37)

(3.38)

In the formula, “pos” represents the position of the word in the entire
sentence,  represents the dimension index of the word vector, and 
represents the dimension hidden vector in the attention mechanism. For the
dimension i of the word vector, the encoding value increases with the
position index, showing a triangular wave fluctuation, and the fluctuation
period increases exponentially with the dimension index i.

The core of Transformer is the self-attention mechanism described
earlier. Its encoder and decoder modules mainly utilize multi-head self-
attention, which independently carry out self-attention operations on
multiple sets of queries, keys, and values and then combine the extracted
information.

In Transformer, in order to avoid the temporal dependency problem
brought by recurrent neural networks and speed up the model training, it
removed the serial computation method of recurrent neural networks and
directly used fully connected layers as the main modules. As a result, it can
independently calculate the attention between all words in the sentence.
Through this mechanism, Transformer can better handle long-term
dependency problems. On the other hand, this mechanism also overlooks
the sequence information of the sentence, but the incorporation of position
encoding made up for this. The combination of self-attention mechanism
and position embedding is the ingenuity of Transformer’s design.

BERT
BERT [1] is one of the most popular frameworks in the field of natural
language processing currently. BERT is essentially the encoder part of the
Transformer, used to generate a text representation of a sentence for
downstream tasks. The training of BERT is an unsupervised process, which
can be achieved through the use of masked language model (MLM) and
next sentence prediction (NSP) pre-training tasks.



MLM first randomly masks or replaces words in a sentence, and then
the downstream model predicts the covered or replaced words through
context and finally constructs a loss function that is only for the prediction
part to train the BERT model. To prevent overfitting and improve the
model’s understanding of the text itself, MLM uses a mixed method when
covering or replacing words, with most (80%) words being covered as
“[mask]” a small portion (10%) being replaced with other words, and a
small portion (10%) remaining unchanged.

When the task requires the sentence-level representation, MLM tends to
extract word-level representations, and then the NSP task needs to be pre-
trained. The goal of the NSP task is to predict whether two sentences are
connected. Specifically, NSP takes N pairs of sentences with a 50%
connected probability from the corpus, adds [cls] prediction tags and [sep]
sentence tags, inputs them into the BERT model, uses the global
representation collected by the [cls] prediction tag to perform binary
classification prediction, and optimizes the BERT model using the
classification loss.

MLM and NSP tasks can be performed simultaneously as shown in Fig.
3.18. Both tasks require data from unlabeled text data and are self-
supervised. This greatly reduces the data cost and, combined with the
parallel training of the Transformer, BERT can be trained on a large-scale
corpus, providing high-quality and transferable pre-trained text
representations for downstream tasks.

Fig. 3.18 BERT training paradigm

3.4 Conclusion



This chapter introduces the basics of deep learning, including feedforward
computation and back-propagation algorithms for deep neural networks, as
well as various classic neural network models. As readers learn, they can
combine the content of other chapters in this book to understand and design
different types of neural network models for recommendation scenarios,
taking into account the data characteristics and task properties, in order to
improve recommendation performance.
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Abstract
This chapter introduces the relationship between collaborative filtering and
deep learning and then presented various deep learning-based collaborative
filtering algorithms. Leveraging cutting-edge methods from deep learning,
these algorithms can significantly improve the accuracy, scalability,
diversity, and interpretability of recommendation systems, offering richer
technological choices for recommendation system design. However, most of
these algorithms are optimized for specific problems, and there are often
limitations in practical applications. Therefore, at the system design level,
algorithm integration or fusion needs to be considered.

Keywords Deep learning-based collaborative filtering

Deep learning technology has been changing the progress of AI. Deep
learning has also shed significant impact on the recommender system
research. On one hand, the researchers can make use of the deep learning
technology to enhance the modeling performance of the conventional
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recommendation algorithms. On the other hand, there are novel
recommendation algorithms being developed that are inspired by the deep
learning technology. The deep learning-based algorithms are not merely
heated in the academia, they are also widely applied in the industry. The
deep learning-based algorithms have the strong capability for representation
and generalization, so that they can enhance the conventional algorithms in
many ways. In this chapter, the six of the most important topics in the deep
learning -based recommendation algorithms are reviewed, which are
collaborative filtering, feature product, graph learning, sequential
recommendation, knowledge distillation, and deep reinforcement learning.

4.1 Deep Learning and Collaborative Filtering
Collaborative filtering is one of the most classic ideas in recommender
algorithms. The collaborative filtering algorithm does not need to collect the
feature or content information about users or items; instead, it creates the
model based on the user–item interactions, from which it learns the similar
users or items based on the interaction behavior and produces the
recommendations that are similar to what users prefer. Usually, there are two
types of implementations of the collaborative filtering algorithms: the matrix
factorization model-based one and the memory-based one. Along with the
development of the deep learning technology, it has been found that the
matrix factorization model stays on the surface and its expressibility can be
further improved. In this subsection, the evolution of the collaborative
filtering algorithms under the impact of deep learning is discussed.

4.1.1 Restricted Boltzmann Machine-Based Collaborative
Filtering
In the contest of “Netflix Prize” in 2006, there were two algorithms
receiving great attention due to its elegant mathematical theory and
completed experimental proof. One of the two algorithms is Singular Value
Decomposition, and another is Restricted Boltzmann Machine, i.e., RBM.
RBM is a generative random neural network. Ruslan Salakhutdinov et al.
[49] adjusted it to be a collaborative filtering algorithm and published it in
the proceedings of ICML 2007. The architecture of the RBM model is
shown in Fig. 4.1. It mainly consists of a hidden layer, a visible layer, and
model parameters. The visible layer takes the seen data of users as input.



Every node represents an item, and its content is one-hot coded. Using the
movie recommendation as an example, the ratings that the user gives to each
corresponding movie are encoded into the one-hot code, while those movies
that do not have ratings are given missing values. In the hidden layer, each
of the neurons is a binary unit, which has merely two states, that is, activated
(1) and deactivated (0). This state is used to represent the principle that for
each of the users, the units in the hidden layer are connected to the non-
missing nodes in the visible layer, but the internal nodes inside the hidden
layer are not. In addition, there is a bias parameter for each node. To
differentiate between the bias parameter in the hidden layer and the visible
layer, the two variables are represented as  and , respectively.

Fig. 4.1 Architecture of the restricted Boltzmann Machine
RBM uses a multinomial distribution to model the ratings that the users

have given to the items. The probability of the multinomial distribution is
obtained by performing a normalization by using a Softmax function on the
predicted ratings.

(4.1)

The probability of activation of each hidden unit is



(4.2)

 in the above equation is the Sigmoid function. The energy function is
shown below.

(4.3)

The marginal distribution is shown below.

(4.4)

In theory, the optimization of the RBM model maximizes the probability
of the marginal distribution. The derivatives of the distribution include one
step that needs to iteratively calculate all the possible values to compute the
integral, and this generates tremendous overhead in computation. Hence,
Ruslan Salakhutdinov et al. proposed using the contrastive divergence (CD)
[24] to accelerate the process. The enhanced steps that update the parameters
are shown below.

(4.5)

(4.6)

(4.7)

The parameter  in the above formula indicates the co-
occurrence in the training set.  indicates the co-occurrence after 
times CD sampling. The computation of CD is rather simple. It is essentially
a Gibbs sampling process. Based on (4.2), the activation probability of the
hidden vectors can be obtained, and then a Bernoulli experiment is
conducted to confirm whether the unit is activated or not. Then, by using
(4.1), the activation probabilities of the non-missing nodes in the visible
layer can be determined by sampling from the multinomial distribution. This
procedure is repeated for  times. Usually, the value of  can be small,



e.g., 1, to get a good result. In the last, using the final results after the 
times iteration to update the model parameters.

4.1.2 Autoencoder-Based Collaborative Filtering
In fact, the autoencoder (AE) model is very similar to RBM. That is, the
computation from the visible layer to the hidden layer can be regarded as the
encoding process that compresses information, while the computation from
the hidden layer to the visible layer can be treated as the decoding process.
The biggest difference between RBM and AE is that RBM is a probabilistic
generative neural network so that its computation relies on the Gibbs
sampling instead of the end-to-end gradient descent approach. AE is a
deterministic neural network. Its training process is rather simple and
efficient, owing to which it is preferred in many applications. Suvash
Sedhain [50] proposed the CF algorithm that is based on the AE model,
termed AutoRec, and the method demonstrated superior performance on the
Movielens and Netflix dataset compared to RBM. The model structure of the
AutoRec algorithm is illustrated in Fig. 4.2. It consists of a neural network
that includes a hidden layer. The input is a long vector, which represents the
ratings on all the items from a particular user, i.e.,

 . The non-missing values in the vector
are compressed into a low-dimensional latent vector after the hidden layer.
This vector indicates the interests of the users in the low-level latent space,
with which the users’ ratings can be reconstructed.



Fig. 4.2 The user-based AutoRec model
The entire flow can be formalized by using the following equation:

(4.8)

In the above equation,  and  are the optional activation
functions. To introduce non-linearity into the model, the activation functions
such as Sigmoid, tanh, etc., can be properly chosen based on the actual
dataset. The optimization objective of the AutoRec model is to minimize the
RMSE score computed between the reconstructed ratings and the original
ground truth. The training process can be performed by using the gradient
descent method. The model is called user-based AutoRec due to the fact that
the input vector is the user-related data. Similarly, the input vector can be
replaced by using item-based rating data, that is,

. Correspondingly, the model is called the
item-based AutoRec.

The training process of AutoRec can be self-supervised. In the ideal
situation, the model is expected to reconstruct the input vectors, and this is
beneficial to the application scenarios of information compression. In the



context of recommendation, many times the ratings of users are extremely
sparse, and this leads to overfitting of AutoRec, i.e., it can well reconstruct
the historical ratings but cannot predict precisely the unknown ratings.
Therefore, the Denoising Autoencoders (DAEs) are applied in the
recommendation use case. That is, the input vectors are either denoised or
noised to allow the decoder to reconstruct the original correct values. By
doing this, the latent vectors after the encoding process do well in
generalization. The classic approach for this method is the one called CDAE
that was proposed by Yao Wu in [72].

Both AutoRec and CDAE deterministically encode the input vectors into
the latent vectors. Variational AutoEncoder (VAE) is yet another
autoencoder. It is special in a way that the encoder is a generative model.
VAE assumes that the latent vector of the input vector is not deterministic.
Instead, it follows the normal distribution, i.e., . The encoder
draws the mean  and the standard deviation  from the distribution and
then samples the latent vectors that are then fed into the encoder to generate
the model. By using the generative model in the encoder, VAE becomes
more flexible in the expressibility compared to the conventional approach. In
addition, it also adds diversity to the recommendation results. The model
structure of VAE is shown in Fig. 4.3. Inspired by the idea of VAE, Dawen
Liang et al. proposed the novel collaborative filtering algorithm, named
Multi-VAE [36], which improves the model performance of the original
VAE by using the multinomial likelihood function that demonstrates
superiority over those of the Gaussian distribution and Logistic distribution.
Given that the latent vectors are drawn from , the sampling
process is non-differentiable. This makes it infeasible to optimize the VAE
model in an end-to-end flow like the other normal AE models. To address
this issue, the reparameterization trick is introduced. That is, from 
, a vector  is sampled, which is equivalent to sampling a vector  from

. The sampled vector is then converted into a desired one
. As a result, the sampling process for the vector  does not

require differentiation, and the objective function can still use the variables
of  and  for back-propagation for the encoder. In addition to the bias in
the reconstruction function of VAE, there is another loss function of KL
divergence, which is used as constraints to guarantee that the latent vectors
follow the standard distribution. Here, the computation results are shown
directly.



(4.9)

Fig. 4.3 Model structure of VAE
In the above equation,  is used to represent the i-th dimension of the

vector .

4.1.3 Deep Learning and Matrix Factorization
Neural Collaborative Filtering
Xiangnan He et al. [22] pointed out that in the conventional matrix
factorization method that is used for collaborative filtering, the interaction
between user and item can only be modeled by using the dot product of the
latent vectors, and this restricts the expressibility of the model. Considering
the potential of the neural network that any form of the functions can be
fitted, Xiangnan He et al. proposed the Neural Matrix Factorization



(NeuMF), where the multi-layer perception is used to improve the modeling
and generalizing capabilities for non-linearities. The model structure of
NeuMF is shown in Fig. 4.4. It consists of two branches. The left one is the
generalized version of the conventional matrix factorization, called
Generalized Matrix Factorization (GMF). GMF is designed to differentiate
the importance of the latent vectors at different dimensions. Therefore, it
uses a linear regression layer to fuse the user vector and the item vector by
doing the dot product. The right part of the NeuMF model is a multi-layer
perception (MLP) layer. Differently, it does not perform the element-wise
product of the vectors. Instead, it concatenates the vectors for users and
items that are used as input to the MLP, to learn the user–item interactions.
The output from GMF and MLP is processed in a linear confusion function
and then a Sigmoid activate function to get the final score. The entire model
is optimized based on the binary cross-entropy metric. There are two details
that are worth mentioning. One is that the GMF part and the MLP part do
not share the latent vectors for users or items—they have the latent vectors
for each separately—this design makes the model perform better and more
flexible compared to the single approach of each. This is because that the
dimensionality of the latent vectors in the two parts may not be identical.
The other one is that both of the GMF part and the MLP part can be pre-
trained and used for initializing the corresponding modules in the NeuMF
model, and by doing this, the local optimization can be avoided.



Fig. 4.4 Model structure of the NeuMF
The proposed NeuMF creates a widely spread interest in the Neural

Collaborative Filtering method from the researchers in the field. Nowadays,
it has become one of the baseline methods in the research of the
collaborative filtering algorithms. Interestingly, there have been many
research articles published after the idea of Neural Collaborative Filtering
was developed. Though these approaches had similar structures, they
provided new inspirations to the following research in the realm. For
example, Zhi-Hong Deng et al. in the DeepCF [12] proposed that the
collaborative filtering algorithms that are based on the intrinsic latent vectors
can be categorized into two groups. One aims at mapping the user and item
representations into a low-dimension space and leverages the relationship
among the vectors (e.g., the dot product or the Cosine similarity) to indicate
the users’ preferences. The other one aims at learning the complex matching
function, which relies on the user or item representations, respectively,
without the need to align the user vectors and item vectors within the same
space. Essentially, the GMF layer in NeuMF corresponds to the two different
collaborative filtering paradigms.



Deep Matrix Factorization
Inspired by the modeling methods used for the correlation between
documents and the search query texts in DSSM [25], Hong-Jian Xue et al.
proposed the two-tower architecture based on MLP [75] and named it Deep
Matrix Factorization (DMF), to improve the conventional matrix
factorization algorithms. The model structure of DMF is demonstrated in
Fig. 4.5. The left and right sides of the model correspond to the user module
and the item module. Compared to NeuMF where the users and the items are
represented in one-hot code, the inputs of DMF use all the historic ratings of
a user to represent the user (the same is applied to the items). This is similar
to RBM and AutoRec.

Fig. 4.5 Model structure of DMF

Assuming that the user and item rating matrix in the data is indicated as
, then the input of the user side is one row of , which is

, and the input of the item side is one column of the , which is



. After the transformation in MLP, the inputs can be mapped to the
low-dimension representations as below.

(4.10)

(4.11)

(4.12)

In the above equation,  refers to the vectors of either  or . It is
worth noting that the user side and item side have two different sets of the
MLP parameters. Finally, DMF uses the cosine similarity to represent the
rating predictions for user  on item .

(4.13)

In addition, DMF changes the loss function. By taking into account that
the RMSE is merely suitable to the prediction for the explicit rating
scenarios, while cross entropy is merely suitable for the implicit rating
scenarios, Hong-Jian Xue et al. proposed the normalized cross entropy as the
loss function that works for both the explicit and implicit ratings.

(4.14)

In the above equation,  and  are the positive and negative
samples.  is the maximum rating value (e.g., 5 in the scale of 1 to
5). It is not hard to observe that generally normalized cross entropy adds
weighting operations on the basis of the cross entropy.

4.1.4 Neighborhood-Based Collaborative Filtering
The deep collaborative filtering algorithms that have been introduced thus
far in this chapter all use the latent factor-based method. Another classic
collaborative filtering method is neighborhood-based (sometimes it is called
the memory-based methods), and whether this method can be applied in
combination with the deep learning techniques becomes an interesting
research problem. To answer the question, Travis Ebesu et al. proposed the
Collaborative Memory Network (CMN) [14]. In the article of CMN, the



authors pointed out that the neighborhood-based methods such as KNN
explicitly construct the user group with the common interest and then
propagate the interests to those users groups that have close relationships.
This method does not perform well in recommendation with varieties due to
its limited focus on merely the  neighbors, and as a result, it can only
capture the localized information. However, the methods that are based on
the latent factors represent the user and item information at the low-
dimension space, they do not account for the closely related user groups
(e.g., the Top-  neighbors). CMN is designed to take the advantages of both
the neighborhood-based method and the latent factor-based idea. It uses the
memory network to unify the collaborative filtering methods into the same
framework. To be more precise, the latent factor-based module in CMN is
similar to a conventional matrix factorization, that is, a user matrix

 and an item matrix  are formed. The novelty of
CMN is that it has an additional user matrix, , to represent the
relationship between the neighbor users and the target users. Assuming 
is the user set that has interacted with the item , the following formula is
used to calculate the interest similarities between the target user  and the
neighbors  on the item .

(4.15)

Next, the matching scores for the neighbor users are transformed by
using Softmax to normalize the weights for the neighbor users.

(4.16)

After the weights are obtained, the neighborhood-based user vector can
be formed by using the weights.

(4.17)

The predicted scores for the user  on the item  are generated from a
neural network layer with the input of the two vectors being concatenated
together.

(4.18)



In the above equation,  are the
parameters of the neural network.  is the activation function, and usually
ReLU performs the best. The neighborhood searching module in CMN can
be conveniently extended to “multiple hops” such that a more completed
neighborhood-based user vectors can be obtained. With the 0-th hop being

, the -th hop can be formed by using the k-th hop and
the output vector.

(4.19)

The matching score between the target user and the neighbor user is then
replaced by . Travis Ebesu et al. proved that increasing
the hops can improve the model precision.

4.2 Deep Learning and Feature Interaction
The latent factor-based collaborative filtering method maps the user and item
representations onto the low-dimension space. Its computation is
straightforward so it is suitable to the recall models or the pre-ranking
models. In the ranking models, to precisely delineate the users’ preferences
on items, contextual information is taken into account. For example, time,
location, etc. Sometimes, even finer-grained feature interactions such as the
one that is between user profile and item properties are leveraged. In the
past, the feature interactions are designed manually or distilled automatically
by using the gradient boosting decision tree. However, such methods are not
generalizable into the feature combinations that have not appeared in the
training set. Along with the proliferation of the deep learning technologies,
the automatic feature interactions start to embrace new opportunities.

4.2.1 AFM Algorithm
Factorization machine (FM) is an algorithm that considers the second-order
feature interactions in the model. However, when there are large volume of
feature combinations that are not necessary in the training set, noise may be
introduced, which can deteriorate the model performance. Jun Xiao et al.
[74] proposed the Attentional Factorization Machine (AFM) to resolve the
problem. Particularly, the second-order feature interaction module, ,
does not sum up all the feature combinations between one and another.
Instead, the weighted sum is used.



(4.20)

In the above equation,  is the scalar that represents the importance of
the feature on , and it is generated from the attention network.

(4.21)

(4.22)

; ;  are the attention model parameters. The
output of the second- order feature interaction module in the AFM model,

, is a d-dimension vector. It represents the second-order feature
interactions after a weighted compression. The final prediction output of the
AFM model is shown below.

(4.23)

The entire model structure of AFM is shown in Fig. 4.6.

Fig. 4.6 AFM model structure

4.2.2 PNN Algorithm
The input samples in the recommender model that are used for ranking and
click-through rate prediction are always sparse. For example, the user ID,
item ID, discrete timestamps, categorical properties, etc., can all be used as



features in the sample data. And these highly sparse features can be
categorized into different fields, and for each field, the one-hot code or
multi-hot code is used to encode the original representation. The benefit of
doing so is that although the number of features in each sample is
changeable, the number of the feature field is fixed. Therefore, it is
convenient to concatenate the latent factors corresponding to the feature field
and use them as the input to MLP for the following computation. An
illustrative example is shown below.

(4.24)

There are three different fields in the above example, that is, date,
gender, and location. Each of the fields is represented by one-hot encoding.
One of the straightforward approaches is to use the embedding lookup to
find the low-dimension vectors for each feature field and then concatenate
all of the vectors to feed into MLP for high-order feature interaction
computation [81]. To use a more effective feature interaction, Yanru Qu et al.
proposed Product-based Neural Networks (PNNs) [46], which innovatively
added the explicit second-order feature interaction layer between feature
fields. It is placed between the embedding layer and the MLP layer. The
model architecture is shown in Fig. 4.7.



Fig. 4.7 PNN model architecture
The discussion here is mainly focused on the second-order feature

interactions. From Fig. 4.7, it can be seen that the second-order feature
interaction layer is composed of two parts, indicated by  and ,
respectively.  is the interaction between each feature field and an all-one
vector, and  is the interaction between every two feature fields. The
outputs of  and  are transformed via a linear layer, which are then
mapped onto the latent factors that have fixed length.

(4.25)

(4.26)

The operation of the first layer in the MLP is

(4.27)

In the above equation,  is the vector that shifts  dimensions. It can
be intuitively understood that  and  are used to give  and  a fully
connected layer with  units. To obtain  and , Yanru Qu et al. defined



two different types of interactions, inner product-based and outer product-
based.

Inner Product-Based Interaction
In this situation, the content in  is equivalent to concatenating vectors of
all the feature fields. Therefore, the complexity of the parameters used in the

-th layer is , where M is the dimension of the feature
embeddings. The content of  is the inner product of  fields, which are

 scalar values. Therefore, the complexity of the parameters at the -th
layer is . If the parameter size is too large, the parameter matrix

 can be assumed to be low rank, and it can be approximated as
, such that the size of the parameters is not at the

square level of .

Outer Product-Based Interaction
The inner product of two vectors is a scalar, while the outer product is a
matrix. That is

(4.28)

The content of  is the outer product of the  fields. Therefore, the
parameter size at -th layer is . This is apparently very big.
To reduce the computational efforts and the size of the parameters, Yanru Qu
proposed pooling the sum of the feature fields onto a vector,

, where . Based on the vector, another outer
product is performed, . By doing this, the parameter size of

 becomes , and the total parameter size becomes
.

4.2.3 Wide and Deep Algorithm
Wide and deep algorithm [10] was proposed by Google in the year of 2016.
It is a recommendation algorithm that combines the deep learning technique.
Since its birth, it has received compliment, and now it has become one of the
main stream recommendation algorithms used in the industry. The wide and
deep model emphasizes that a good recommender model should perform
well in both memorization and generalization. Memorization refers to the
model capability that it can capture the frequent common features in the data



and build the relationship between these features against the prediction label.
This memorization part can be implemented by using a logistic regression
model to learn the coefficients for the cross-product features. For example, if
in the training set, users frequently click a news topic that is related to
celebrity, then the cross-product feature of <user ID, topic ID, celebrity ID>
is a good cross-product feature. Generalization is the capability of the model
to transfer the existing patterns that have been learnt from the training data
to those unobserved data (or those that do not frequently occur in the
dataset). This can be implemented by using the latent factor embeddings plus
the neural network. For example, if the users like the music from Jay Chou,
it is very likely that the users are born in the 80s or 90s, and as a result, the
users may also like the music from May Day.

Both memorization and generalization are important to recommender
systems. If a model merely has the capability of memorization, the
recommender system may only recommend items that are correlated to the
users’ historic interactions. As a consequence, the diversity of the
recommendations is poor, and the holistic system is impacted negatively due
to the Matthew effect. On the other hand, if a model is only capable of
generalizing, due to the long-tail effect in the latent factors, these factors
cannot be learnt effectively by the model, and thus the non-zero predictions
can be still generated because of the existence of these factors. The
consequence of such behavior is that the recommendation results may
consist of many items that users do not have interest in. Wide and deep
algorithm trains the linear model and the neural network model
combinationally for having both the capabilities of memorization and
generalization at the same time. Such idea is applied for the ranking stage in
the recommender system of Google Apps.

The model structure is shown in the diagram of Fig. 4.8. The model is
composed of two parts. The left side is the wide part, which is for
memorization. It is generally a linear regression model, i.e.,

. The inputs are the original features and some cross-
product features. . The right-hand side is the deep part,
and it is for generalization. The input is sparse features, and the embeddings
are found from the lookup table to obtain the low-dimension dense vectors

 (in Google’s real-world applications,  not only consists of the latent
factors from the sparse features, but also the original dense features such as
age, activities, etc.), which are then fed into the deep neural network (the



MLP layer is also termed as DNN module hereafter) for learning on the
cross-product features . Here,  is the number
of layers in the DNN, and  is the activation function. The inputs for the
wide part and deep part are combined together for model building.

(4.29)

Fig. 4.8 Wide and deep model structure
In the above equation,  is the value after the activation function of the

deep part.  is the Sigmoid activation function. When doing the joint
training, for the wide part, FTRL is recommended [41] to be used as the
optimizer, while for the deep part, AdaGrad [13] is recommended.

4.2.4 DeepFM Algorithm
In the deep part of the wide and deep model, DNN can learn the high-order
feature interactions automatically. However, it cannot guarantee that the
useful low-order feature interactions are well learnt. In the meantime, the
wide part relies on human beings to extract the cross-product features for the
low-order feature interactions, but this manual method does not scale for all
the possible feature interactions. The classic factorization machine is able to
explicitly model the second-order feature interactions and capture all the
possible ones. To mitigate the issue that the existing models tend to learn



either the high-order feature interactions, the linear features, or rely on the
manually extracted low-order feature interactions, Huifeng Guo et al. [18]
proposed the DeepFM algorithm, which combines factorization machine and
MLP into the same model structure so that it is capable of modeling the low-
order feature interactions (from the FM part) and the high-order feature
interactions (from the DNN part). The model structure of DeepFM is shown
in Fig. 4.9. Similar to wide and deep, the final output of DeepFM is the
combination of the two parts.

(4.30)

Fig. 4.9 DeepFM model structure
Interestingly, Huifeng Guo et al. experimentally demonstrated that by

sharing the latent factors for both the FM part and the DNN part is more
effective than using two separate sets of latent factors. That is to say, the
high-dimension sparse features can be obtained by taking the embedding
lookup operation from the corresponding latent factors, and these latent
factors are fed into the FM part to compute the second-order feature
interactions and concatenated according to the feature sequence. In the DNN
part, the high-order feature interactions are learnt. The two parts are trained



jointly in an end-to-end fashion. As a result, DeepFM does not need a FNN
module [81] that uses the pre-trained FM vectors for the DNN initialization.
This proves that sharing the latent factors for both low-order and high-order
feature interactions is advantageous.

4.2.5 DCN Algorithm
It was realized by the researchers that although the linear model is simple,
scalable, and explainable, it does not favor the expressibility need. Also, the
linear model relies on the engineer-generated feature interactions, and it
cannot be well generalized to the feature interactions that do not exist in the
training set. Until now, the capability of learning high-order feature
interactions in a model still requires DNN. Therefore, how to effectively
extend DNN becomes an interesting research topic. Considering that DNN
can merely implicitly model the high-order feature interactions and its
training process and outcome is a black box, it cannot be guaranteed that the
DNN model can learn the completed set of the high-order feature
interactions. Is it possible to design a novel deep neural network that can
learn the high-order feature interactions in a better way? Ruoxi Wang [64]
proposed the DCN model that has the advantages as following: It can
explicitly capture the high-order feature interactions and the order is
controllable. The model structure is similar to wide and deep, DeepFM, etc.,
which has two parts. In this chapter, merely the cross network part of DCN
is discussed. The structure of cross network is shown in Fig. 4.10. The cross
network is designed to make the -th layer in the cross network cover the

-th layer for the feature interactions.



Fig. 4.10 Cross network in DCN
Every single layer is computed from the hidden layer states and the

original input feature latent factors in the precedent layer via a cross network
operator. Therefore, every time the cross network is appended with an
additional layer, and the number of order for feature interactions is added by
one. The cross network operator  is defined as below.

(4.31)

In the above equation,  is the latent factor after the
concatenation.  is the hidden state in the -th layer of the cross network.

 indicates the learnable parameters in the -th layer. The
benefits of the cross network are that it is computationally efficient, size of
the parameters is small, and it is highly scalable. For example, there are only

 parameters in each layer of the cross network. At the same time, the
number of layers of the cross network strictly controls the order of feature



interactions. Ruoxi Wang et al. provided the mathematical proof that can be
referenced in the publication of DCN [64]. Similar to wide and deep, DCN
also combines the outputs from the cross network and the fully connected
neural network as the final output.

(4.32)

In the above equation,  is the output features from the cross network,
and  is the ones from the full-connected network.

4.2.6 xDeepFM Algorithm
The proposal of DCN inspired the researchers in the field. Jianxun Lian et al.
[35] found that although the cross network in DCN is ideal for its simplicity
and computational efficiency, it has the drawback that the final hidden state
of the cross network is only applicable as a scaling form of the original latent
factor . For the sake of simplicity, assuming the activation function in the
cross network is an identity function, it can be derived that

(4.33)

In the above equation,  is a scalar. It can be
mathematically inducted that assuming that  holds for all the
possible , when , we have

(4.34)

Therefore,  is still scaling form of . It is worth mentioning that
this does not mean that the output from the cross network has a linear
relationship with the original latent factors because the corresponding scalar

 is dynamically correlated to the data samples . And thus, the form of
 is limited.

To explore a more flexible explicit high-order feature interactions,
Jianxun Lian et al. [35] proposed the new neural network structure, i.e., the
Compressed Interaction Network (CIN). CIN is ideated based on two
findings. First, the bit-wise feature interactions can be replaced by the
vector-wise ones. Given that the latent factors represent the feature field, the
interactions among the feature field can be useful, while the interactions
among the elements in a feature field may not be useful. Also, DNN uses the
bit-wise full connection in the network. Theoretically, it can be used to
model any complex function, but it is difficult to learn the model parameters



properly. Particular, on the recommendation related datasets where feature
interactions are obvious, whether DNN can effectively model the high-order
feature interactions or not is uncertain. Similar to the idea of CIN, Alex
Beutel et al. [3] proposed the vector-wise interaction in the article about
Latent Cross, and it was proved by a data-driven experiment that to train a
DNN for feature interactions is not straightforward. Second, given that DNN
can automatically extract complex features, e.g., the automatic feature
extraction from the unstructured raw data of images, text, and audio, is it
possible to treat the raw feature interactions as unstructured data and use
DNN to automatically extract the useful interactions from them? The answer
is possible, and this is where the term of “compression” in CIN comes from.

Specifically, the input to CIN is no longer vectors. It is matrix instead.
, where  is the number of feature fields,  is the

dimensionality of the embedding vectors, and the -th row in  is the
embedding of the -th feature field, . The -th hidden
layer in CIN is also a matrix, , in which  is the number of
the features in the -th layer. The structure of   and  is
illustrated in Fig. 4.11. Based on the hidden layer matrix in the -th layer
and the original feature matrix, the intermediate output  can be
obtained. This step is not parameterized.  is the original content after
all the features are interacted, and it can be treated similarly to the raw data
of an “image”. As shown in Fig. 4.11, from the intermediate output ,
there are  feature maps extracted, which can be used as the hidden
layer matrix in the -th layer.



Fig. 4.11 The computational procedure of CIN
The operation inside the compressed interactions can be formalized as

below.

(4.35)

In the above equation, odot is the Hadamard product of the two vectors,
i.e., .  is the
parameters for the h-th feature map in the k-th layer. The computation can be
illustrated in the diagram in Fig. 4.11.

Figure 4.12 demonstrates the overall architecture of CIN. Due to the
interaction between the input feature embedding matrix for each layer and
the one in the previous layer, the order of feature interactions increments
when the network is appended with an additional layer. To make sure that
feature interactions from low order to high order are all sufficiently captured,
the feature map at each layer is through a sum pooling before it is used in the
prediction module at the last stage. It is worth noting that CIN has
similarities with both RNN and CNN. The commonality between CIN and
RNN is that the computational output of each hidden layer depends on the
activation value of the last layer and an additional input. The two are
different in the aspect that the inputs for RNN at each time are new (e.g., the
words in a sentence) so that the parameters for each neural network unit are
shared, while the inputs for CIN are fixed (they are always the feature



embeddings) so that the parameters for each neural network unit are fresh.
The common functionality between CIN and CNN is that the intermediate
output in CIN  (shown in Fig. 4.11) can be treated as an image, from
which  feature maps are learnt. Each feature map is associated with a
convolutional kernel with parameter size  and dimensionality .

Fig. 4.12 Overall architecture of CIN
In the last, similar to wide and deep, Jianxun Lian et al. [35] combine the

output from the linear part, DIN, and DNN, to feed into the prediction part.

(4.36)

In the above equation,  is the raw feature,  is the last hidden
layer in DNN, and  is the vector generated by sum pooling the output
from CIN. The algorithm is called eXtreme Deep Factorization Machine
(xDeepFM).

4.2.7 AutoInt Algorithm
Along with the success of the transformer-based model in natural language
processing, the application of transformer techniques on feature interactions



has been researched by scholars. Weiping Song et al. proposed using the
core component, Multi-head self-attention (MSA) in the transformer model
into the feature embeddings of a recommender model, to automatically learn
the high-order feature interactions. The embedding representation of a
feature sample is , where . There are
two important units in MSR—the self-attention part and the multi-head part.
The self-attention module is aimed at improving the latent factor
representation for the features so that the new vectors can properly contain
the information from the other features (this is called the contextual vector
representation) instead of just the IDs. This is essentially the feature
interaction process in the form of <query, key, value>. Each of the features
uses its own vector representation as the query and computes the similarities
with the vectors of the other features for key. The similarities are used as the
weights for applying the feature vectors on the self-vectors as the value.
Using the -th feature as an example, the similarity between it and the k-th
feature can be computed as below.

(4.37)

(4.38)

In the above equation,  is the inner product (it can be combined
with a scaling factor). ,  is the transformation
matrix. After that, the feature vector  is updated.

(4.39)

Since the vector  is a combination of feature m and the other
features, it can be regarded as one round of feature interaction. In addition,
the multi-head mapping is used to indicate that such interaction is executed
for multiple times with different sets of parameters, and each time it is
operated a head is used to learn the features from a different perspective. The
overall vector representation of feature m is the concatenation of the output
from H attention heads.

(4.40)



To well maintain the original latent factors for m, the final output is
processed by using a residual network, to fuse the new vector  and the
original one .

(4.41)

The process of MSA can be repeated for multiple times, to get the high-
order feature interaction information. Due to the fact in each step of the
MSA transformation the features are combined with the information from
other features, the feature vector can be concatenated in the last stage to get
the prediction value via a logistic regression module.

(4.42)

4.2.8 Additional Thoughts on Feature Interaction
Effectively learning feature interactions for ranking in recommender
systems, CTR prediction, etc., is a big challenge. There is a plenty of
research work in this topic. Due to the limit of space, they are not reviewed
here. Readers can check the references for further readings. For example, the
research team in Sina AI Lab proposed the FiBiNet algorithm [26] that
enhances the existing feature interaction methods in two folds. First, it
replaces the conventional inner product and Hadamard product by bilinear
product, to capture the fine-grained feature interactions. SENET module is
introduced to dynamically adjust the weights of the feature vectors. Noah
Ark Lab at Huawei proposed the AutoFIS algorithm [38], which is capable
of capturing the meaningful feature interactions while abandoning the
meaningless or even the noisy ones, and it got improvement in terms of both
model performance and efficiency over the existing methods. Alimama
proposed the DIN framework where the CAN model was introduced [4]. It
formalized the feature interactions into feature transformation in DNN. For
example, to get the latent factor of feature  against the target feature , a
set of parameters can be used correspondingly in a DNN. When the original
latent factor of  is used as input to the DNN, the output is the interaction
between  and .



4.3 Graph Representation Learning and
Recommender System
Algorithms of RNN, CNN, etc., assume the input data of the model to be in
a space where the input vector positions are ordered. For example, the input
image that is the input of CNN has the pixel values that are positioned in an
Euclidean space, that is, the pixels are placed among the others with the
relative positions of its surroundings. Similarly, the words in a sentence that
are processed by RNN are also ordered in sequences. However, there is a
commonly seen data model, the graph representation, where there is no such
ordered space. Examples of such unordered data model include social media
network, knowledge graph, chemical molecules, DNA structure, etc. The
nodes on a graph can have different neighbors, and the neighbors do not
have strong spatial correlations among each other. In most situations, a
spatial exchange of neighbors in a graph does not change the physical
meaning of the graph. Graph mining is a challenging task. However, given
that a graph reflects the raw and unprocessed relationship between data
points, by designing efficient models to process complex data, significant
progress can be made in many application domains.

Many data can be represented in graph for recommender system
applications. The user–item interaction data can be described as a bipartite
graph. The classic neighborhood-based collaborative filtering method
models the user-to-user similarities based on the neighborhood similarities
on such bipartite graph. The co-occurrence of items can be constructed as an
item-to-item graph. For example, edge in such graph indicates that the two
items are purchased or clicked on by users frequently. The items can also be
connected as an item-based knowledge graph to thoroughly delineate the
item-to-item and item-to-property relationships. In addition, the user-to-user
relationship can also be connected by leveraging the social connections
because acquaintances may have similar interests, and the influencing nodes
in the social media network may impact on the interests of other users.

By nature of the powerful representative learning capability of deep
learning, applying deep learning in the graph data model attracts attentions
from researchers. In this section, the application of graph neural network in
recommender system is reviewed. To better present the content related to
this topic, the following subsections will start with the introduction of the
graph-based embeddings in the early days and then discuss the applications



of graph neural network in the recommender systems, to help the readers get
a completed and systematic understanding.

4.3.1 Graph Embedding and Fundamentals of Graph Neural
Network
Graph Embedding
A typical graph can be a complicated data structure. How to efficiently
represent the node information of a graph is a challenging task. Inspired by
the Word2Vec algorithm [42], it was found that using the low-dimension
vector to represent the graph nodes is an effective method. Essentially, this is
a self-supervised learning method based on the graph data structure. For a
given graph, the algorithm learns a low-dimension embedding for each node
ID in the graph so that the proximity of the neighboring notes can be
obtained by using the inner product or the Cosine similarities of the
embeddings. In this task, the most critical point is how to design the
supervisory signal for the proximity of the neighboring nodes. In the
subsection, four representative algorithms for resolving the issues, namely,
DeepWalk, Node2Vec, LINE, and SDNE, are reviewed. Among the four
algorithms, DeepWalk and Node2Vec make use of the random walk
technique to generate the supervisory signal, and LINE and SDNE regress
the first-order and second-order node proximity directly.

DeepWalk [44] is a two-stage model. Its idea is fairly easy to understand.
In the first stage, starting from each node, the random walk algorithm is
performed on the graph, to obtain the path  with the
length of n. In the second stage, similar to the Word2Vec model used in NLP,
each path is treated as a sentence and nodes in the path are treated as words.
For the nodes that co-occur in any limited window, the Skip-gram method is
applied to get the latent factors. Usually, Word2Vec module in the library of
Gensim is used to implement the second stage.

In NLP, the words in the same sentence have close semantic relationship.
However, in the DeepWalk algorithm, given that the paths are obtained via
random walk, the nodes in a path may not reflect the graph structure
precisely. Aditya et al. then proposed Node2Vec [17] to resolve the issue.
Considering that there are two types of searches for graph, i.e., breadth-first
search (BFS) and depth-first search (DFS), DeepWalk can be regarded as a
DFS-based approach, but this may not be the optimal one. A combinational
approach that takes both BFS and DFS in generating the paths can help



retrieve the structural pattern in the graph. As shown in Fig. 4.13, assuming
the last walk is from node  to node , the current step is to hop from node

 to the next one; instead of randomly selecting the next node as that in
DeepWalk, Node2Vec categorizes the neighboring nodes of  into 3
different groups that are associated with different probability values. The
first group is the nodes , meaning that the hop steps back from  to the last
one. The second group is the nodes , and this group of nodes are
connected to both  and . The third group of nodes are  and , which
are the neighbors of  but not the ones of . The probabilities
corresponding to the three groups of nodes are , 1, and . After the
traversal step on the graph, the second-stage operations in Node2Vec are the
same as those in DeepWalk.

Fig. 4.13 The probability distribution of the random walk in Node2Vec
The idea in LINE [54] is different from DeepWalk and Node2Vec. It

does not leverage the random walk technique to obtain the proximity of
graph nodes for structurally modeling the graph. Instead, it uses the low-
dimension representation to directly indicate the first-order and second-order
node proximity. Here, the first-order proximity refers to the two nodes that
are directly connected, and naturally, the vector representations of the two
nodes are similar. The second-order proximity refers to the similarity
between the neighbor nodes of two nodes under comparison. If the two
nodes do not have direct connections, they may still have similar
representations. Modeling the first-order proximity is rather straightforward.



It can be done simply by maximizing the inner product of the low-dimension
representations  (if the l1 norm of the vectors is 1, then the inner
product is equivalent to the cosine similarity). Directly modeling the second-
order proximity is hard because the neighbor node set of a node may have
many members. An enumeration-based method may incur a significant
amount of computational efforts. LINE algorithm nicely leverages the
context vector to resolve the problem. That is, each of the nodes  has a self-
vector  and a context vector , and then the second-order proximity can
be converted into a problem that requires only enumerating the edges

 such that the inner product of the self-vector and the context
vector of node  is maximized. Essentially, this operation is a propagation of
node relationship. If two nodes have a large overlap of the neighbor set, it
means that the two vectors of the nodes and their context vectors have high
values of the inner product, and thus the self-vectors of the two nodes are
similar to each other.

SDNE [57] shares a similar idea to LINE. Differently, SDNE uses neural
network to learn the latent vector representations, while LINE, DeepWalk,
and Node2Vec all use the lookup table for node ID to get the latent vector
representation. SDNE leverages the structure used in AutoEncoder, where
the neighbors of a node are taken as network input to a MLP for generating
the low-dimension vector representation. The first-order proximity of the
nodes can then be represented by these vectors. In the meantime, there is a
decoder module in SDNE to reflect the neighbor relationship among the
nodes by using the low-dimension vectors. The idea applied in this task is
similar to the use of self-vectors and context vectors in LINE. It is worth
mentioning that the idea of SDNE is already close to that of graph neural
network.

There are many use case examples of the graph embedding methods.
Jizhe Wang et al. [62] proposed their work, EGES, at KDD’18 about how
the DeepWalk-based algorithm is applied for product embeddings in the
Taobao front-page recommendations. In this method, the user behavioral
sequences are first constructed as a product-to-produce directed graph. For
users’ repeated behavior in a session (a session is defined as the sequential
behavior of a user within one hour), when enumerating the products, a
directed edge can be added to construct a directed graph. The edges in the
graph are weighted, and the weights are the co-occurrence of the two
products in the historical behavior of the user. In this product graph, the



edge-based random walk that normalizes the weights as probabilities is
performed, to obtain a sequence of paths. Then the algorithm of Skip-gram is
performed to get the latent vectors of the products. The idea is in fact used in
DeepWalk, but the disadvantage of DeepWalk is that it cannot be applied to
the cold-start products. Considering the products’ properties such as
category, merchant, price, etc., fusing the property information into the
embedding representation is beneficial to resolving the cold-start problem.
Assuming that there are n properties for products , the corresponding latent
vector can be represented as  according to the product ID. To
differentiate the importance of properties, there is another parameter vector

 for weighting. The final vector representation of a product is the
weighted sum of the latent vectors for all the properties.

(4.43)

Then the Skip-gram algorithm can be used to make sure that the vector
 for a product in each path is similar as much as possible to the context

vector  of the other products u in the session. The latent vector  after
the training process can be used in two ways in a recommender system. One
is for the item-to-item-based product recalling, and another is for improving
the precision in the ranking stage as product features.

Graph Neural Network
Thomas n. Kipf and Max Welling proposed GCN, and it generated much
interest in researching the graph neural network-related topics. GCN uses the
idea of CNN directly onto a graph such that the information of nodes and
their neighbors can be fused. The convolution operations can recursively be
appended to make each node be combined with the information of neighbors
from a distance of multiple hops. The method that GCN uses to generate the
latent vectors is shown below.

(4.44)

In the above equation,  is the normalized adjacent
matrix.  is the adjacent Matrix, and each node has an edge that connects
to itself.  is the diagonal matrix generated from  from each node. 
is the parameter for the l-th layer neural network.  is the features of each



node. GCN has a severe scalability issue: Along with the increase of the
layer number, the size of node neighbors increases exponentially. This makes
it a computationally challenge for being practical. As a result, there are
different methods proposed to enhance the scalability of GCN. In this
subsection, three most representative methods are reviewed.

(1) GraphSage Algorithm [19]
William L. Hamilton et al. proposed a neighbor-based sampling method,
GraphSage, to control the number of neighbors in each convolutional layer.
This method was successfully used in the recommender system of Pinterest
as PinSage and implemented on a distributed system. GraphSage redesigned
the convolution operations into two steps. First, the neighbor vectors of a
node are combined to generate a neighbor vector .

(4.45)

In the above equation,  is to conduct a linear transformation of the
neighbor vectors by using a single layer of neural network.  is a vector-
based pooling operation, which may be, for example, the average or
weighted average of the neighbor vector on all its dimensions. Next, by
concatenating the neighbor vector  and the self-vector  and feeding
into a neural network, a new vector can be obtained.

(4.46)

(4.47)

Similar to GCN, the convolution operations can be appended to combine
the high-order neighbor information. On the other hand, GraphSage strictly
controls the number of neighbors,  in the convolution operations, to
avoid its exploding too fast. This not merely controls the size of the neighbor
size but also simplifies the implementation complexity of the model with an
improved use of memory. This makes the GraphSage algorithm trainable in
mini-batch by using the gradient descent technique and resolves the issue
that GCN cannot be trained scalably on a large graph.

(2) ClusterGCN Algorithm [11]



Given that it is difficult to train GCN on the whole graph, is it possible to
partition the graph into sub-graphs by using the community detection
method (e.g., METIS in [30]) and then train the sub-graphs with GCN? This
is achieved by ClusterGCN. The ClusterGCN is naive yet efficient. It is
advantageous in terms of low memory footprint. In each batch for training, it
just loads the needed sub-graphs instead of the entire graph itself. It is also
computationally efficient. For each node, the hidden states that have been
calculated can be used for updating the objective function of the nodes.
However, in GraphSage, only minorities of the sample nodes are capable of
performing training against the objective function. To get the hidden states,
the k-th order neighbors should be extended, but the training efficiency is
quite low because there is no descent update for the k-th order neighbors.

(3) PPRGo Algorithm [5]
The limited scalability of graph neural network is due to its adding
operations of neighbor nodes. Now that adding neighbor nodes is for getting
useful information at the largest scale, is it possible to find the k most
important nodes (these nodes are not limited to the directly connected ones)
for each node in a graph as a fixed area so that the convolution operation is
only performed in such area? Aleksandar Bojchevski et al. optimized the
model for multiple iterations and proposed the PPRGo algorithm. It consists
of two steps. In the first step, the algorithm performs a personalized
PageRank (PPR) [28] on the node u, to find the k most important nodes to u
as the neighborhood of the node. In the second step, the scores generated
from PPR are used as the node weights of nodes in the neighborhood. By
calculating the weighted sum of the latent factors of the neighbors, the new
latent vector of node u can be obtained. The two steps of PPRGo are
independent. In computation, the neighbors of all the nodes for pre-trained
can be generated and fixed in the first step, and in the second step, the
stochastic optimization can be done until a convergence is achieved.

One of the graph neural network use cases is the one that Rex Ying et al.
proposed, which applied GraphSage into the recommender system of
Pinterest [78]. The largest applied graph neural network, called PinSage,
consists of 3 billion nodes and 18 billion edges. Compared to GraphSage,
there are mainly two innovations in PinSage. One is that, for the neighbor
sampling, PinSage conducts the random walk based on the graph to get the
k-hop scores for the Top-k neighbors. When performing the pooling



operation on the neighbors, these scores can be used as the weights. By
using the curriculum training philosophy, along with the training process, the
weight of negative samples is increased. Meanwhile, to efficiently train the
large-scale graph, there are three types of engineering optimizations
performed in PinSage. First, the gradient descent training approach with
mini-batch is used. For the nodes that are in a mini-batch, the local
neighbors of that node are recursively sampled from a graph for training the
k-layer network (e.g., to train a 2-layer graph neural network, second-order
neighbors of the node are required). The training in the current iteration
relies only on the information of the node and its edges, and the overall
graph information is not needed. Second, by leveraging the design pattern of
producer–consumer, preparation of the mini-batch training data that can be
treated as a producer process only needs CPU-based computation, and the
convolution operations on GPU devices can be treated as a consumer
process. Since the CPU and the GPU devices can be parallelized, the
producer and consumer setup can be pipelined for efficiency enhancement.
Third, the graph neural network can be trained locally, and the implication
can be performed on the global graph node latent vectors. This can be
implemented by using the MapReduce-based distributed computing
framework.

4.3.2 Graph Neural Network and Collaborative Filtering
GCMC Algorithm
Considering the user–item relationship an edge in the graph, the users and
the items can be constructed as a bipartite graph. By doing this, the
recommendation task can be formalized as a link prediction problem on the
bipartite graph, and thus the graph model can be effectively applied in such
use case. Rianne van den Berg et al. observed that the contemporary graph
embedding models make use of the unsupervised learning approach to get
the node features and use the features to train a downstream prediction
model [2]. The two steps in this approach are independent so that it is lack of
an end-to-end path that directly uses the features extracted from nodes for
objective optimization. Rianne van den Berg et al. then proposed the Graph
Convolutional Matrix Completion method, where CNN is used as extractor
for node features with which an end-to-end training pipeline can be
established. As shown in Fig. 4.14, given the user–item matrix, GCMC first
builds a bipartite graph where the edges are tagged with classes to indicate



the ratings that users give to the items. Figure 4.14a depicts the original
user–item rating matrix. Figure 4.14b is the bipartite graph constructed based
on the rating matrix. Figure 4.14c illustrates that the content information for
each node is passed to its neighbors via edges.

(4.48)

Fig. 4.14 Graph structure and message passing process for GCMC. (a) Original rating matrix. (b)
Bipartite graph. (c) Message passing

In the above equation,  is the property vector of item .  is the
parameter matrix for data transformation tagged with .  is the
regularization part. The degree of the receiving part  or the square
root of the degrees of the two parts ;  can be used
to represent the message that is passed from item node  to user node  via
the edge tagged with . User node  then combines all the information that
is is received into a vector.

(4.49)

In the above equation,  is the function used for combination,
e.g., vector concatenation, bit-wise addition, etc. After getting the vectors
from neighbors, transformation with a neural network can be applied to get
the latent vectors for the user nodes.

(4.50)



The latent factors of the item nodes can be obtained by doing the same. A
bilinear function that delineates the preferences of users on items at each
dimensionality of ratings is applied, after which an activation function of
Softmax is used for normalization.

(4.51)

In the above equation,  is the parameters of the bilinear function
corresponding to the rating r. The final prediction score is the expected value
of all the predicted ratings.

(4.52)

Considering that every rating value  corresponds to a set of model
parameters , , when the user data are sparse, some parameters cannot
be fully optimized. Therefore, a parameter sharing technique is introduced,
to aggregate the low-level rating parameters  for the parameter of .

(4.53)

For , it can be obtained by learning the parameter coefficients 
from  basic parameter matrices .

(4.54)

NGCF Algorithm
Xiang Wang proposed the NGCF algorithm at SIGIR’19 [67]. It is a
collaborative filtering algorithm that is enhanced by graph neural network.
The conventional model-based collaborative filtering algorithm such as
matrix factorization algorithm obtains the latent factors from the encoding of
the user or item IDs (or properties). Such encoding process does not
combine the collaborative signal in user–item interactions, and thus the
latent factors generated cannot fully describe the collaborative filtering
impact in the data. The high-order connectivity of a node can be used to



exploit the user–item interaction information. For example, a path <user ,
item , user > on the graph reflects the fact that user  and user  are
similar because both of them like item . Another path of <user , item ,
user , item > indicates that item  may be liked by user  because the
similar users  and  like item , and this is exactly the idea of
collaborative filtering. Therefore, NGCF attempts to use the graph neural
network to introduce the high-order connectivity into the encoding process,
to get an even more powerful representation of latent factors. The overall
structure of NGCF is similar to GCMC, which also passes messages via
edges to neighbors and combines the information of all the neighbors.
However, it is different from GCMC in terms of the passing and the
combining operations. Without loss of generality, considering merely the
collaborative filtering methods where users and items do not have property
information but the ID latent factors, the following can be derived.

(4.55)

The message that is passed from item  to user   is

(4.56)

In the above equation,  represents the new vector that is the inner
product of the two vectors. The message that user passes to itself is

. The connectivity information of user  can be obtained by
the operations as below.

(4.57)

This process can be appended to get the even higher-order connectivity
information.

(4.58)

(4.59)



(4.60)

The modeling process for items is similar. The neural network with
different depths corresponds to information with different breadths. NGCF
combines the vectors to form a long one as the user and item latent factors.

(4.61)

The inner product is used as the predicted interest scores for user toward
item.

(4.62)

The algorithm is optimized by maximizing the pairwise logloss. Making
the predicted value of positive samples toward  be larger than that of
the negative samples as much as possible, the loss function can be derived as
below.

(4.63)

In the above equation, 0 indicates the tuples in the training set, where u is
user, i and j are two different items, and user u has rating on i but not j,  is
the Sigmoid function, and  is the set of the model parameters.

LightGCN Algorithm
While GCN is popular, it is merely an algorithm that is used for
classification on graph. Although researchers applied GCN on the
recommender system (e.g., NGCF) and made success, the internal structure
of GCN and its impact on recommendation tasks had not been thoroughly
studied. With exhaustive experiment, Xiangnan He et al. [21] found that the
two key components in GCN, i.e., feature transformation and non-linear
activation function, do not help in the recommendation tasks. Therefore,
they simplify the NGCF algorithm by pruning the unnecessary components.
The new algorithm is named as LightGCN. The combination operation on
the connectivity information is simplified to weighted average of vectors and
the activate function is removed. That is,



(4.64)

(4.65)

The final latent factors for user and item nodes are not the concatenation
of the ones generated from each layer. Instead, the average vector is used.

(4.66)

By experimenting on the public dataset, Xiannan He et al. surprisingly
found that the performance of LightGCN improves that of NGCF by 16.5%
on average. Since there is no feature transformation and non-linear activate
function, its computation process can be conveniently formalized as matrix
operations. Letting the user–item rating matrix become , where
M and N represent the number of users and items, respectively. The adjacent
matrix of the user–item bipartite graph can be generated as below.

(4.67)

Letting the matrix formed by using the latent factors from the user and
the item IDs be , the convolution operation in LightGCN
can be formed as

(4.68)

 is the diagonal matrix that is generated from degree of each node in
. The final latent factors for the nodes are

(4.69)

In the above equation,  is the weight coefficient. In LightGCN, it is
set to . From the perspective of matrix operation, LightGCN has a
similar structure to RandNE [82] except that ID embedding matrix of the
latter cannot be learnt.



4.3.3 Graph Neural Network and Social Recommendation
Social recommendation leverages the social media network that users
participate in for enhancing the recommendation precision of a
recommender system. The social connections of a user, e.g., friends,
schoolfellows, colleagues, etc., contain rich and close group relationship.
One the one hand, the users that are in the same social community may have
the common interest. On the other hand, users may be influenced by the
others that have a close relationship or are trustworthy such that they may
behave in a similar way. A good use of the social network information not
only helps predict user interests but also helps dealing with the cold-start
problem for new users. However, how to use the user–user social network
graph and the user–item behavior graph is a big challenge.

GraphRec Algorithm
Wenqin Fan et al. proposed the GraphRec algorithm. It generates a user
vector by concatenating the two vectors that are produced based on the item
space and the user social network space. Specifically, the item space vector
is represented as , which indicates the vector generated by modeling the
user–item historic behavior.

(4.70)

In the above equation,  is the item set that user  has interacted.
 is the latent factor of the items  that user  likes. The ratings that

user has on the items are discrete values, e.g., . A latent
factor  is assigned to each rating for updating the original vector
representation of the item  , and this is the adjusted vector
representation for the rating r given to item  by the users.

(4.71)

where  is an MLP.  is the weight coefficients for the interaction
set between item  and user .

(4.72)



(4.73)

 indicates the latent factor for user . The user vector based on the
social network space is represented as , and it is formed by combining the
vectors from the user’s neighbors.

(4.74)

(4.75)

(4.76)

Considering the item space and the social network space reflect the user
preferences at different aspects, to obtain the final user vector , the two
vectors are concatenated and fed into the MLP layer.

(4.77)

Similar to the user latent factors, , the items can also be represented
by all the users they have interacted with. To be more specific, the original
vector of item  can be adjusted by the rating vectors.

(4.78)

The item vector for  becomes  from .

(4.79)

(4.80)



(4.81)

Finally, the rating predictions generated from the MLP layer with the
input of the concatenated user and item vectors.

(4.82)

DiffNet Algorithm
GraphRec combines the first-order neighbor information on a social network
graph to get an enhanced representation of user state. Le Wu et al. proposed
Diffusion Neural Network (DiffNet) by leveraging the idea of social
influence propagation process to model the user interests in a social network
graph as layer-wise influence diffusion. This method cannot merely fuse the
first-order information of neighbors, but also learn about how to recursively
combine the information of the neighbors of the neighbor in order to take in
even higher-order information. To be specific, using  and

 to be the latent factors of the user and item IDs, the hidden
states of user  and item  are both generated from a fully connected layer
with the input of the concatenation of ID vector and the property features.

(4.83)

(4.84)

The item vector does not need the influence diffusion. For user vector,
 influence diffusion is needed to simulate the influencing process that the

neighbors have on the user. To use  to indicate the state of the user a after
the information is propagated for  times. The -th propagation process
is

(4.85)



(4.86)

In the above equation,  is the pooling operation that can be either an
average combination or a bit-wise max operation.  is a non-linear
transformation function. The final user vector  is the combination of
output from the K-th diffusion network and the state of the historic set of the
items that user has interacted .

(4.87)

The users’ interest on items is modeled as the inner product of the two
vectors.

(4.88)

The optimization objective is the BPR loss.

(4.89)

In the equation,  is the  regularization form for the latent
factors for the user and item IDs.

In the following year when DiffNet was published, Le Wu et al.
proposed an improved version of DiffNet that is called DiffNet++ [71]. The
main framework of DiffNet++ is the still based on DiffNet. There are two
improvements made in DiffNet++. One is that both the user–user social
network graph and the user–item interaction bipartite graph are considered
for influence propagation, to get the graph-based user and item
representations. When combining the neighbor information, an attention
mechanism is used for learning the weighted pooling operations. To be
specific, the user representation on the user–item bipartite graph is

(4.90)

(4.91)



 is the user set where the users have interacted with item .  is
the weight coefficient that indicates how significant the user  is toward
item . It can be computed as below.

(4.92)

(4.93)

The user representation does not merely combine the neighbors on the
social network graph but also the neighbors on the user–item bipartite graph.

(4.94)

(4.95)

Similarly, the weights of the combination can be predicted from the MLP
layer.

(4.96)

(4.97)

Lastly, for users and items, the final vector representation can be
obtained by concatenating the hidden states in each layer.

(4.98)

4.4 Sequential Recommender Systems
Sequential recommendation is a type of recommendation paradigm that
recommends relevant items to users by modeling patterns of user behavior
and item interactions over time. In recommender systems, there are two
main entities: users and items, both of which involve multiple interactions
over time, such as browsing, clicking, and purchasing behaviors. Sequential
recommender systems arrange these interaction behaviors in chronological
order, utilizing various modeling methods to uncover sequential patterns and
support the recommendation of one or multiple items for the next moment.



This section first introduces the research motivation and mathematical
definitions of sequential recommendation. It then proceeds to classify
sequential recommendation techniques in the order of their publication,
discussing three main categories of these techniques. Subsequently, the focus
shifts to an in-depth explanation of sequential recommendation algorithms
based on deep learning methods. Finally, several cutting-edge topics that
have garnered significant attention in both academia and industry are
presented.

4.4.1 Motivation, Definition, and Classification of Sequential
Recommendation
In the process of regular online browsing, users engage in various browsing
behaviors. As shown in Fig. 4.15, a user’s browsing records on an e-
commerce platform are arranged in chronological order. The user’s recent
history on the platform includes a sequence of different interaction behaviors
such as “browsing”, “searching”, and “purchasing”. The items of interest to
the user comprise “mobile phones”, “headphones”, “phone screen
protectors”, and other related products, indicating that this user is currently
in the process of selecting mobile communication devices and related items.

Fig. 4.15 Example of user’s historical behavior sequence

Based on the sequence of user’s recent browsing history, the e-commerce
platform can leverage the information to recommend products like “phone
cases” when the user visits the platform next time. Such a recommendation
is more likely to elicit positive user feedback, such as “clicking to view” or
“making a purchase conversion”.

Through this example, readers should be able to understand the scenarios
in which sequential recommendation occurs, which involves recommending
items based on users’ dynamically changing historical behavior sequences
for future moments. In real life, people’s interests often change over time,
and at the same time, the behavior sequences driven by user interests can be
diverse. For instance, before a trip, users might be interested in hotels, flight



tickets, and travel equipment; during festivals like Chinese New Year,
festive-themed items tend to be of particular interest to users. Therefore, in
different time periods, for different users and different contexts, user
behavior sequences exhibit various forms and variations. Readers can
consider whether their online shopping, web content browsing, and other
behaviors also demonstrate continuous and dynamic characteristics in their
daily lives.

Since the late 20th century, the Internet has evolved, giving rise to
numerous online service platforms, such as e-commerce giants such as
Amazon and Alibaba, news media platforms such as Toutiao, and social
media platforms such as Meta and Sina Weibo. These platforms have often
moved past the phase of rapid user growth (“incremental development”) and
entered a period of “stock growth”, where new user growth has slowed
down, and the focus lies in providing better services and experiences to the
existing user base. These platforms’ existing users continuously engage in
various types of interactions. Ren et al. [47] conducted a study on user
behavior data on Alibaba’s e-commerce platform “Taobao” during the period
from April to September 2018. The data show the percentage of users with
different interaction frequencies on the platform during that six-month
period, specifically focusing on the interactions between “adding items to
the shopping cart” and the final purchase. From Table 4.1, it can be observed
that a significant portion of users on “Taobao” had a high number of
interactions, with more than half of the users having over 200 interactions,
indicating that their behavior sequence length exceeded 200 times within the
six months. Consequently, exploring how to model the dynamic changes in
these users’ interests to facilitate personalized recommendations during their
next visit has become a vital research direction for platforms such as
“Taobao”.

Table 4.1 User behavior statistics on Alibaba E-commerce Platform “Taobao” from April to
September 2018 [47]

Length of behavior Less than 200 Less than 1,000 Less than 3,000

sequence times times times

Percentage of users 47.57% 77.08% 92.73%

The recommendation and ranking algorithms based on users’ historical
behavior sequences have become essential in various major online platforms.



According to a paper from the “Alimama” advertising platform, their
algorithm called Deep Interest Network (DIN) [87], which was the first to
utilize user historical behavior sequences for modeling, resulted in a 10%
increase in user click-through rate and a 3.8% increase in platform revenue
after its launch. Subsequently, the adoption of sequence modeling techniques
in the Deep Interest Evolution Network (DIEN) [86] led to another over 10%
increase in user click-through rate and a 9.7% increase in platform revenue.
Such rapid growth in user click-through rate and platform revenue was not
solely due to a massive influx of new users; it was primarily the result of
research efforts to improve the modeling of user historical behavior data and
the enhancement of algorithm models. This demonstrates the importance and
promising prospects of modeling and recommendation algorithms based on
users’ historical behavior sequences.

In the context of sequential recommendation, the dataset is organized in
time order as either user u’s evaluation scores for item v (e.g., ) [70] or
event behaviors (e.g., ) such as clicks, purchases, and conversions [29].
For the sake of clarity, this section will use “click” behavior as an example
to illustrate the concepts.

Mathematically, sequential recommendation can be defined as a
recommendation task that incorporates three pieces of information: the
current time t, the user-side representation vector  for a given user u, the
item-side representation vector  for a specific item v, and the context
information representation vector .

The goal of the recommendation system is to predict the user u’s rating
score  for item v or the click probability  as follows. For rating
prediction:

(4.99)

For click probability prediction :

(4.100)

In the above equations,  represents the parameters of the prediction
function , and it is typically trained using a loss function based on the
specific prediction target.

(4.101)



Here,  is the actual rating given by the user (if rating prediction is the
target),  is the binary label indicating whether the user clicked on item v at
time t, and  is the prediction function that takes user, item, and context
representations as inputs to produce the prediction. The training process
involves minimizing the loss function with respect to the parameters  to
improve the accuracy of the recommendation model in predicting user
ratings or click probabilities.

For the user-side representation , sequential recommendation
algorithms integrate the interaction set 
of all items  that user u has interacted with or rated before time t. Here, the
interaction set  represents all items with which user u has had
interactions before time t. By modeling the user’s past interaction set,
sequential recommendation can more accurately capture changes in user
interests and depict the relationships between user behaviors, thus achieving
more precise recommendation results.

There are three categories of sequential recommendation based on
different scenarios, as shown in Fig. 4.16.

Fig. 4.16 Classification of sequential recommendation

Temporal recommendation refers to recommending the next item [20,
40] or the next set of items [48, 63] of interest for a specific user u based on
their historical behavior sequence up to time t. In the mathematical definition
provided earlier, the recommendation target is defined as the “next” item
recommendation. If recommending a “next set” of items, the definition of v



should be adapted to represent a “set of items” while keeping the other
definitions unchanged. In temporal recommendation, users may not be
logged in, and in such cases, providing recommendations based on an
anonymous user’s short-term session within a single session is referred to as
session-based recommendation. In session-based recommendation, the
length of the sequence is generally short, and it may not be possible to
associate with the user’s longer-term historical interaction behaviors. The
third category involves combining the first two types of sequences. The
system considers both the short-term browsing behaviors in the current
session and the long-term historical behaviors of logged-in users to provide
comprehensive recommendations.

Overall, these three types of sequential recommendations cater to
different scenarios and user engagement levels, enabling the system to adapt
and deliver more relevant and accurate recommendations.

The sequential recommendation scenario presents three challenges that
make it difficult to address using traditional recommendation algorithms:

Dynamic nature of user interests: Users’ interests change and shift over
time. Their preferences and behavior patterns evolve, making it necessary
for the modeling methods to adapt to this dynamic nature.
Dependency between different items in the user behavior sequence: There
are interdependencies between different items in a user’s behavior
sequence. For example, there may be sequential dependencies, such as
“purchasing a mobile phone” being followed by “searching for phone
screen protectors”. Modeling such dependencies is essential for accurate
recommendations.
Context modeling: Sequential recommendation often involves unique
contextual relationships. Users’ feedback and behaviors may vary in
different usage contexts, which necessitates considering contextual
information for effective recommendation.

Traditional recommendation algorithms, such as matrix factorization
algorithms [33] and wide and deep network algorithms [10], typically treat
user historical behavior as static information. Even when considering user
behavior sequences, they often rely on complex handcrafted feature
engineering to address the challenges mentioned above. However, these
approaches are limited in their ability to fully resolve the issues unique to
sequential recommendation. Consequently, research on sequential



recommendation algorithms has emerged to tackle these challenges more
effectively.

4.4.2 Classification of Sequential Recommendation Algorithms
As shown in Fig. 4.17, sequential recommendation algorithms can be
classified into four categories. In the following, this section will provide a
brief overview of each category.

Fig. 4.17 Classification of sequential recommendation algorithms

Sequential Pattern Mining
Sequential pattern mining (SPM) was proposed by Yap et al. in 2012 [76].
Before that, Agrawal et al. introduced the concept of sequential pattern
mining [1] as a method to recommend the next item based on mining
sequential patterns. The underlying assumption of this technique is that if
many users browse item  and then subsequently browse item , it is
reasonable for the recommendation system to suggest item  to users who
have viewed item . Figure 4.18 illustrates the process of the sequential
pattern mining algorithm.



Fig. 4.18 Process of sequence pattern mining algorithms
Yap et al. believed that the traditional approach had limitations in

achieving personalized recommendations. To address this, they built upon
traditional sequential pattern mining and utilized the results of pattern mined
on a specific user’s browsing history to calculate support and predictive
power. These metrics were then used for personalized sequential
recommendation. This category of methods uses traditional sequential
pattern mining algorithms, which require significant computational resources



and rule design. Additionally, they face challenges in modeling complex
sequential relationships. Nonetheless, this was an early exploration in the
field of sequential recommendation algorithms.

Latent Factor Representation
The second category of methods is the time-aware latent factor
representation method. These methods are closely related to traditional
collaborative filtering algorithms and factorization machine algorithms.
They use latent vector representations to model user and item features and
perform first-order and second-order operations to predict user ratings or
click probabilities.

In 2009, Koren [32] first proposed a collaborative filtering algorithm that
models user interest transfer and changes over time. By introducing the time
factor into the factor model, Koren’s timeSVD++ algorithm extends the
original SVD++ algorithm. It incorporates linear and spline functions to
comprehensively model the temporal transfer of user global interests and
specific interests at a given time. The formula for timeSVD++ is as follows:

(4.102)

In the formula,  represents the average rating, and  and  are the
time-varying user bias and item bias, respectively.  denotes the item
feature vector, which is assumed to undergo minimal changes over time (as
item features are less likely to change significantly with time). 
represents the time-varying user feature,  is the set containing items
rated by user u, and  represents the item factor features. This formula
decomposes user ratings into different components, while considering time-
varying user features and biases, making it capable of modeling temporal
features.

This algorithm, by explicitly modeling the changes in user interests, has
significantly improved performance compared to traditional methods.
Subsequently, there have been related works that incorporate time or user
behavior sequences into factorization-based representation methods [8, 43].
In a research work by Tong Chen et al. [8], it was pointed out that traditional
factorization methods often overlook the sequential information in user
interactions. Even though Rajiv Pasricha et al. [43] had already considered



sequence features, they only took into account the influence of the most
recent item, which could lead to information biases and incorrect
recommendation results.

In response, Tong Chen proposed a Sequence-Aware Factorization
Machine (SAFM) algorithm [8] for predicting user ratings or click
probabilities in the next time step. As shown in Fig. 4.19, the features from
both the user and item sides are divided into static view features and
dynamic view features. The paper employed interactions between static view
features and a combination of cross-view feature interactions and dynamic
view feature interactions, implemented using a neural network structure
based on self-attention mechanisms. Additionally, the paper masked the
input sequence based on the order of user–item interactions to ensure the
correct usage of the sequence during modeling and avoid information
leakage.

Fig. 4.19 Sequence-Aware Factorization Machine model for temporal prediction analysis [8]



The experimental comparisons in the paper demonstrated SAFM’s
superiority over traditional factorization machine methods and other
algorithms, thereby showcasing the advantage of using sequence information
for factor modeling in sequence prediction tasks.

Markov Chain-Based Sequential Recommendation
The third category is the Markov chain-based sequential modeling method.
The Markov Chain (MC) is a well-known approach used for modeling state
probability distributions and state transition probabilities. The core idea is to
model the user’s purchase or click behavior at time t as the conditional
probability given the purchase behavior at time :

(4.103)

Here,  represents the user’s purchase behavior at that time, and I
denotes the set of all items. After modeling the conditional probability of
user purchasing items, the probability  of a user purchasing item i after
purchasing item l can be defined as

(4.104)

This method allows for modeling the sequential dependencies between user
purchase behaviors, which is helpful for capturing the transitional patterns in
user preferences over time. It can be used to predict the likelihood of a user
purchasing a particular item based on their previous purchase behavior.

In the paper by Steffen Rendle et al. [48], the Markov chain-based
sequential modeling method was first introduced in the context of the
Factorizing Personalized Markov Chains (FPMC) algorithm for
recommendation systems. Based on the definition in the previous message,
Steffen first defined the personalized conditional purchase probability for
user u as follows:

(4.105)

Here,  represents the probability that user u purchases item i at time t
given that they had previously purchased item l at time . This
personalized conditional probability is an essential component in the FPMC
algorithm, which leverages the Markov chain-based modeling to capture the
sequential patterns in user behaviors and make personalized
recommendations accordingly.



Then, they proposed a factorization algorithm based on Tucker tensor
decomposition:

(4.106)

Here,  is the core tensor, and , ,
and  are the user feature matrix, last-purchased item feature
matrix, and predicted item feature matrix, respectively. The parameter k
represents the length of features and is a hyperparameter of the model. The
algorithm uses the estimated transition probability tensor  to predict the
next item of interest for the user at the next time step:

(4.107)

In this equation,  represents the estimated probability
that item i is in the user u’s next purchase sequence given that item l was in
the user u’s previous purchase sequence. The formula involves the user and
item feature vectors , , and , which are obtained through the
Tucker tensor decomposition to model the sequential dependencies between
user behaviors.

In FPMC (Factorizing Personalized Markov Chains), as mentioned
earlier, the interest of the user in item i is independent of item l. Hence, the
terms  and  can be moved outside the summation. This chapter was
the first to apply the Markov chain model to personalized recommendation
and proposed a personalized factorization for the transition probability
matrix to reduce the complexity of estimating the transition probability
matrix. However, FPMC algorithm faces challenges in addressing sparsity
issues and may perform poorly in many long-tail distribution datasets, where
specific user–item recommendations suffer from limited data and are
difficult to accurately characterize by the model.

In another paper, He et al. introduced the Fossil algorithm [20], which
uses item similarity modeling and high-order Markov chains for sequential
recommendation. They made two improvements: First, they employed an
item similarity matrix to model user preferences, replacing the global
preference modeling for items, and utilized the historical behavior set  to



filter user preferences. Second, they introduced high-order Markov chains to
consider the influence of the last L user actions on the current prediction.
The part of the Fossil method that models the temporal user behavior is
similar to FPMC, but it includes the weighting of high-order Markov chains
for user preferences. In experimental comparisons, Fossil demonstrated
better predictive performance and recommendation effectiveness compared
to traditional Markov chain-based recommendation algorithm FMC and
personalized Markov chain modeling method FPMC.

Deep Learning-Based Sequential Recommendation
The fourth category of methods is based on deep learning for sequential
recommendation. Traditional sequential recommendation algorithms heavily
rely on matrix factorization or factorization techniques to decompose high-
dimensional and sparse user–item interaction matrices or Markov chain
transition probability matrices into low-rank representations. Alternatively,
some methods encode user interactions as one-hot encodings and use
factorization machines for feature interaction modeling to predict user
behavior and make sequential recommendations. While these methods to
some extent support modeling and optimization of user behavior sequences,
they face challenges in modeling longer user behavior sequences and
handling complex feature interactions and representations.

As shown in Fig. 4.20, since 2015, with the widespread application of
deep learning methods in recommendation systems and user feedback
prediction tasks, a plethora of deep learning-based sequential
recommendation algorithms have emerged, with a significant increase in
related research publications in recent years. These deep learning-based
approaches have shown promising potential to overcome the limitations of
traditional methods and improve the performance of sequential
recommendation systems.



Fig. 4.20 The development trend of deep learning-based sequential recommendation algorithm
papers [15]

Based on the perspective of deep learning models, deep learning-based
sequential recommendation algorithms can be categorized into
autoregressive recurrent neural networks, non-autoregressive deep learning
models, and memory-based neural networks for modeling user behavior
sequences. The introduction of deep learning methods aims to address
challenges in modeling user behavior sequences, such as sequential pattern
mining and modeling extremely long user behavior sequences. Some
research works also explore joint modeling of user-side behavior sequences
and item-side access user sequences to enhance the overall effectiveness of
sequential recommendation. The following sections will provide a detailed
overview and introduction of these latest algorithms.

4.4.3 Recurrent Neural Network-Based Sequential
Recommendation
Hidasi et al. first introduced the use of a recurrent neural network (RNN) to
model user behavior sequences in their paper [23], and the algorithm is
named GRU4Rec. In this section, we will first introduce the structure details
of the recurrent neural network unit used in GRU4Rec, followed by a
detailed explanation of the modeling approach.



For information about recurrent neural networks, please refer to Sect. 3. 
3. 2 of this book. The update equation of a standard recurrent neural network
can be expressed as follows:

(4.108)

Here,  represents the hidden state vector of the recurrent neural network at
time step t, and it is updated based on the previous hidden state vector 
and the current input vector  using a smooth and bounded function g as
the activation function.

In the paper, Hidasi used the Gated Recurrent Unit (GRU), a type of
recurrent neural network unit that mitigates the vanishing gradient problem
commonly encountered in standard RNNs. The update equation of the
GRU’s hidden state is as follows:

(4.109)

The update gate value  is computed using the following formula:

(4.110)

Similarly, the candidate hidden state vector is computed as follows:

(4.111)

(4.112)

In these equations,  represents the sigmoid activation function, and 
denotes element-wise multiplication. The GRU allows for better capturing of
long-term dependencies in the sequence data, making it more suitable for
modeling user behavior sequences in the context of recommendation
systems.

In the modeling process using recurrent neural networks, at the t-th time
step, the paper authors use the items or item sequences that the user has
previously interacted with in the same session as the input to the recurrent
neural network unit, which first go through an embedding layer. If items are
used as input, the input vector is directly passed through the embedding
layer after one-hot encoding. If item sequences are used as input, the authors
calculate a weighted sum of the embedding vectors of all items in the
sequence (with higher weights for more recent interactions) before
proceeding with the subsequent computations. Then, the information passes



through multiple gated recurrent units (GRUs) and a feedforward layer (a
regular fully connected neural network layer) before finally outputting the
current user’s preference score for the item. The entire computation process
is illustrated in Fig. 4.21. The algorithm’s loss function consists of the
Bayesian personalized ranking loss and the top-1 ranking loss function.

Fig. 4.21 Sequential recommendation based on recurrent neural networks [23]
GRU4Rec introduces several algorithmic innovations to achieve higher

training efficiency. First, considering that different user sessions may have
varying lengths, the authors process multiple session sequences in parallel as
a batch of data and then use the recurrent neural network units to calculate in
parallel from left to right. Additionally, at the end of the sequences in the
batch data, a new session sequence is appended to support flexible
computation requirements. Furthermore, considering the vast number of item
categories in recommendation systems, it is computationally challenging to
calculate the final scores for all items. Therefore, the authors adopt a
weighted negative sampling strategy, where user’s actual interacted items are
used as positive examples for prediction and items from other sequences in
the batch data are used as negative examples, creating a negative sampling
scheme. Moreover, since different batches of data contain all items that users
have ever interacted with, this negative sampling strategy is also based on



popularity statistics, meaning that items that have been interacted with by
more users are more likely to be sampled.

GRU4Rec, as a classic recurrent neural network algorithm for sequence
recommendation, has established the fundamental operational logic of using
recurrent neural networks for sequence recommendation. Subsequent
methods mostly follow the same construction approach, so the following
content will not redundantly elaborate on similar algorithm details. The
advantage of this algorithm lies in its use of autoregressive neural network
structure to model the non-linear variations in user interests and behavior
patterns. It also considers the impact of both the user’s past historical
behavior and the most recent behavior on their interests in the next time step.
However, there are also some drawbacks to such methods.

These methods have high computational complexity and slow
computation speed. Modeling user historical behavior sequences involves
sequentially inputting and computing from older to the most recent
behaviors in a recurrent neural network unit. Each unit’s computation logic
is relatively complex. If the sequence length is long, the computation time
increases linearly, leading to significant overall time consumption. This high
computational cost may not be feasible for real-time online systems.

As a result, several solutions have been proposed to address these
challenges.

4.4.4 Non-autoregressive Neural Network-Based Sequence
Modeling
Non-autoregressive neural network-based sequence modeling mainly
includes two types of models: Convolutional Neural Networks (CNNs) and
transformer models. This section will introduce the classic algorithms for
both types of methods.

Convolutional Neural Networks were originally applied in computer
vision and image processing. In the context of sequence recommendation,
the user’s accessed item feature sequences are arranged in chronological
order, forming an “image-like” structure. The idea behind using
Convolutional Neural Networks for modeling user behavior sequences is
similar to processing image data. Tang et al. proposed the Caser
(Convolutional Sequence Embedding Recommendation) algorithm in their
paper [55]. It consists of three main modules: the embedding lookup module,



the convolutional layer module, and the fully connected layer module. The
specific computation flow of each module will be introduced below.

The embedding lookup module, as shown on the left side of Fig. 4.22, in
the Caser algorithm, combines the one-hot encoded representations of the
user ’s recent  historical behavior sequences at time  into a large tensor.
This tensor is then interacted with the embedding dictionary  to obtain a
new representation composed of embedding vectors, denoted as

, where  is the d-
dimensional real-valued embedding vector representing the item that user 
interacts with at time . At the same time, each user also obtains their own
user embedding vector  for subsequent modeling and
computations.

Fig. 4.22 User behavior sequence modeling based on Convolutional Neural Networks [55]

The convolutional layer module applies convolutional operations to the
feature tensor obtained earlier. First, the Caser algorithm considers the

-dimensional real-valued matrix  as an “image” composed of the
representation vectors of the previous L user historical behaviors in the latent
space. Next, as shown in the middle part of Fig. 4.22, the Caser algorithm
uses two types of operations: horizontal convolution and vertical
convolution, to apply convolutional operations to the user representation
tensor. The horizontal convolution kernel is an -dimensional matrix,
and in the experiments, the authors set n horizontal convolution kernels



, each with a parameter , meaning that each
convolution operation constructs a modeling window of length 2. The
convolution operations are performed by scanning the matrix  row by row
from top to bottom. Additionally, the algorithm also uses vertical
convolution operations with  -dimensional convolution kernels

, scanning the matrix  column by column from left to
right. Through these operations, the Caser algorithm can discover and model
complex co-occurrence relationships among item sequences, leading to
better predictions for user interests and potential future interactions with
items. The calculation process of the convolution operation can be
mathematically expressed as follows:

(4.113)

(4.114)

(4.115)

(4.116)

In these equations,  is the activation function of the convolutional layer;
 denotes the element-wise Hadamard product (matrix-wise

multiplication);  represents the l-th row of the original behavior sequence
embedding matrix ; k is the index of different convolution kernels ; 
represents the horizontal convolution kernel, and  represents the vertical
convolution kernel. Additionally, after the horizontal convolution layer
computation, the results will undergo a max-pooling layer, denoted as

, where the max-pooling operation
selects the maximum value from each vector  obtained by different
convolution kernels  and discards the other values, resulting in an n-
dimensional vector  used for subsequent computations. On the other
hand, the results obtained after the vertical convolution operation do not go
through the max-pooling layer; they are directly combined into a tensor

.
The last module is the fully connected layer, as shown on the right side

of Fig. 4.22. Here, a single-layer fully connected neural network is taken as



an example, and the specific computation is given by

(4.117)

where . The final prediction network considers the output of
the previous user behavior sequence modeling and the user embedding
representation vector as inputs to predict the final click probability:

(4.118)

where the prediction vector  represents the probability of user u
interacting with different items at time t.

Currently, the sequence modeling methods introduced in this chapter are
all based on the same assumption that user interests are related to recent
interactions. However, these methods mainly focus on short-term user
modeling, limited by the user’s most recent behavior. Nowadays, users have
accumulated very long behavior sequences on different online platforms, as
shown in Table 4.1. If we consider longer user behavior sequences, existing
methods may not effectively model periodic, diverse, and continuously
evolving user interests. Zhang et al. [80] proposed an additional static user
representation vector to model the inherent user interests, which are not
influenced by time. However, such methods overlook the diverse
characteristics of user interests. Ying et al. [77] proposed a multi-layer
attention approach based on user behavior sequence features to model long-
term user interests. However, their model can only capture relatively simple
behavioral patterns and does not consider long-term and multi-scale
behavioral dependencies. Furthermore, existing research has almost ignored
modeling the user’s lifelong behavior sequence, thus failing to provide a
complete and comprehensive user profile.

4.4.5 Self-attention-Based Sequence Recommendation
In addition to Caser, another type of non-autoregressive sequence modeling
algorithm used for sequential recommendation is based on the self-attention
mechanism. This class of methods was initially proposed by Kang et al. [29],
and later, other related research work was published [52]. The modeling
approach of these methods is similar to GRU4Rec and Caser, but they use
different models for modeling and computing user behavior sequences.



Unlike other non-autoregressive sequence modeling algorithms, the SASRec
algorithm proposed by Kang et al. utilizes the transformer model [56]. The
calculation process of the transformer model is different from the
convolutional neural network, as it employs the self-attention mechanism to
model user historical behavior sequences. Moreover, in the process of using
self-attention, Kang et al. introduced causality modeling, which means that
when modeling the sequence at time t, the information after time t is hidden
to prevent information leakage. In the following sections, this chapter will
introduce the self-attention-based sequence recommendation model,
SASRec.

The SASRec model, like other sequence recommendation models, starts
with an embedding representation layer. The original behavior sequence

 of user u is transformed using the item embedding dictionary
 to obtain a representation matrix  with length L. Additionally,

the relative positions of items in the sequence are modeled using position
embeddings , which are then added to the original behavior sequence
embedding matrix to obtain the sequence input matrix:

(4.119)

Here, , where , represents the position embedding vector of the
l-th user behavior representation. Next, the input representation matrix 
will be passed through the self-attention layer for further computation.

In Sect. 3. 3. 3 of this book, the computation of the attention mechanism
has been introduced. Let us review the calculation method of the attention
module:

(4.120)

Here,  represents the query matrix,  represents the key matrix, and 
represents the value matrix (where each row represents an item). The dot
product operation interacts the corresponding rows of the query matrix with
the key matrix and calculates the weighted values for each row of the value



matrix. In natural language processing, the key matrix and value matrix are
usually set to be the same, that is, .

The specific computation process of the representation matrix 
through the self-attention layer is as follows:

(4.121)

The representation matrix is first passed through three separate linear
mappings, ensuring consistent mapping results. Then, the query, key, and
value matrices are input into the attention calculation formula successively,
yielding the comprehensive representation matrix .

One important point to note here is that the modeling and prediction of
user behavior sequences have “temporality”. When predicting the user
behavior at time step , we cannot have knowledge of the user
behavior after the prediction time, i.e., . Therefore, when performing
the self-attention layer calculation for the sequences, it is necessary to
introduce causality modeling, which means that the computation result at
position i must be dependent on the result at position j where . Thus,
when implementing the attention calculation, it is crucial to ensure that all
computations involving , , and  maintain temporal dependency, in
order to avoid information leakage.

Considering that all operations, including attention calculations,
performed so far are linear, in order to introduce non-linearity into the
model, a non-linear layer is added after the self-attention layer:

(4.122)

Here,  are square matrices, and  are vectors.
It is important to note that  and  do not interact in this operation,

and the entire process maintains the sequence dependency.
After introducing the computation of the attention layer, the SASRec

model proceeds to stack multiple layers of self-attention for enhancing the
modeling and expressive capacity of the model:

(4.123)

(4.124)



For deep neural networks, stacking too many layers or a very deep network
may lead to training instability and even overfitting issues. To address this,
SASRec introduces three mechanisms: residual connection, layer
normalization, and dropout. The residual connection is mainly inspired by
the implementation of deep residual networks by He et al. [29]. The layer
normalization formula is given by

(4.125)

For any input vector , the layer normalization operation first computes the
mean  and standard deviation  and then performs normalization. It is
followed by an element-wise multiplication with the learnable parameter ,
and finally, the bias term  is added. The dropout operation was initially
introduced by Srivastava et al. [51]. It involves two steps: during training,
some neural units are randomly set to zero with a probability value p to
deactivate them, and during inference, the dropout operation is turned off to
keep all neural units activated.

In the final prediction stage, the SASRec model performs an interaction
operation between the output of the last layer and the entries of the item
embedding dictionary:

(4.126)

This calculates the preference probability  of user u toward item v at
time step t. Here,  represents the user embedding vector for user u.

The training labels of the model consist of the user’s real behavior
sequence , which is defined as

(4.127)

The real label at different time steps is the user’s real behavior at the next
time step, and  is used to fill the parts of the user behavior sequence
that are less than L and has no real meaning. Finally, the SASRec model is
trained and optimized using binary cross-entropy loss function.



4.4.6 Memory-Based Neural Networks for Sequential
Recommendation
In order to model longer user behavior sequences more effectively, many
researchers have turned their attention to memory-based neural networks.
The idea of memory-based neural networks for sequence modeling was
initially proposed by Chen et al. in a research paper [9]. The authors drew
inspiration from the design of external memory networks in natural language
processing [16, 69]. They maintained a private memory matrix  for each
user, and when predicting the interaction probability of user u with item i,
they used the item representation  for memory querying, obtaining the
memory representation vector:

(4.128)

This memory-based approach allows the model to retrieve relevant
information from the user’s private memory when making predictions for
user–item interactions.

Next, the algorithm concatenates the memory representation vector 
with the user’s intrinsic representation vector , where the concatenation
function is implemented as a weighted sum in the research paper:

(4.129)

(4.130)

Here,  represents the weight coefficient, which is determined by the
algorithm’s training personnel. When predicting the user–item interaction
probability , the authors of the paper used a prediction function similar to
matrix factorization:

(4.131)

In this function,  represents the sigmoid activation function, and the dot
product  calculates the interaction score between the user and the
item.

Regarding the user’s private memory module, there is an update function
that operates on the memory matrix after the user interacts with a specific
item. The update function is defined as follows:

(4.132)



As shown in Fig. 4.23, the user representation vector is used for both reading
(READ) and writing (WRITE) operations on the user’s memory module.

Fig. 4.23 The framework of the sequence recommendation model RUM based on memory network
[9]

In their RUM paper [9], Chen et al. implemented two types of read–write
schemes, and this chapter will introduce one of them: the item-level memory
module. This memory module stores a set of items that the user recently
interacted with, denoted as , where  represents
the -th item visited by user . In the entire system, the user representation
vector  and the item representation vector  are -
dimensional real-valued vectors. The user memory module

 consists of  memory slots used to
store user-related memory representation vectors.

For the READ operation of the memory module, Chen employed an
attention-based memory read mechanism in the paper, calculating the
relevance between the current item  and the contents of the memory
module :

(4.133)



Then, RUM utilizes the computed weights to read the memory contents
for subsequent prediction:

(4.134)

For the WRITE operation of the memory module, only the items that the
user has actually interacted with  will affect the contents of the
memory module, namely . When a new
item that the user interacts with is added to the memory module, its contents
will be updated to , where  enters the
memory module and replaces the entry of the oldest user-interacted item.
The other feature-based memory module read–write mode can be referred to
in the original paper, and the overall approach is similar to the above
scheme, which will not be reiterated here.

The sequence recommendation algorithm based on memory neural
networks reduces the complexity of modeling long sequences in sequence
recommendation. By utilizing the external memory network module’s space,
it decreases the linear complexity of modeling long sequences during each
user–item interaction probability prediction, greatly improving prediction
efficiency. Moreover, for modeling interactions with items from the more
distant past, larger memory networks can be used. However, the memory
capacity of the memory module in memory neural network-based methods is
still limited, and it has not yet solved the problem of modeling extremely
long user behavior sequences or even lifelong user behavior sequences. As
user behavior sequences become increasingly rich, and the proportion of
existing users increases, Internet platforms are facing algorithmic challenges
in modeling extremely long sequences.

Ren et al. made improvements based on memory networks and proposed
a solution called HPMN (Hierarchical Periodic Memory Network) for
modeling lifelong user behavior sequences. The authors divided the memory
module into L layers and used different update frequencies for each layer.
For the l-th layer memory module, its update frequency is . For
example, if the user memory module is divided into three layers, the update
frequency for the first layer is 1, which means the content of this layer’s
memory module will be updated every time the user interacts with an item.
The update frequencies for the second and third layers are  and



, respectively, which means the contents of these two layers will be
updated after the user interacts with 2 and 4 items, respectively. Additionally,
when updating the memory content in each layer, the next layer’s memory
content is utilized as well, specifically:

(4.135)

(4.136)

Here,  represents the memory content of the l-th layer of the current
user memory network,  is the memory content from the previous
update, and  is the memory content from the next layer. This
hierarchical memory network update method fully utilizes the memory
contents between layers, passing fine-grained memory contents to coarser-
grained memory layers. Moreover, the memory contents of different layers
are updated using the latest memory content from the previous update,
achieving a similar effect to that of recurrent neural networks.

When making predictions, the HPMN hierarchical periodic memory
network’s modeling results were visualized, revealing interesting findings.
As shown in Fig. 4.24, the top-down visualization displays the modeling
results for three users. The left-side vector  shows
the weighted coefficients of different layers’ memory contents after the
memory network READ operation, where the index l indicates the
importance of the memory contents from layers with larger indices and
corresponds to coarser-grained levels, suggesting higher relevance for
predictions.



Fig. 4.24 Visualization of the modeling results of the hierarchical periodic memory network (HPMN)
[9]

From the visualization in the figure, we can observe interesting patterns
for three users’ modeling results using HPMN [9]. For User 1, who is
currently interested in buying lotion, the historical behavior sequence shows
a strong correlation with makeup products related to lotion. As a result, the
coarser-grained hierarchical memory network receives higher weights for its
content. On the other hand, for User 2, whose interest in the item “desk” is
more related to recent behaviors, the memory network’s weights are higher
on the finer-grained hierarchical levels. As for User 3, whose behavior
sequence mainly consists of “tea”-related items, HPMN balances the
utilization of coarse- and fine-grained memory levels in modeling due to the
consistent interest pattern.

These three examples vividly demonstrate that HPMN can capture
various temporal patterns of user behaviors, effectively modeling and
optimizing for long user behavior sequences.

With this hierarchical memory module design, the HPMN model can
utilize different update frequencies to model user access item sequences with
different spans at different granularities. It captures both long-span coarse-



grained temporal patterns and short-span fine-grained temporal patterns,
which greatly benefits user behavior modeling and recommendation. The
memory layers with longer spans can be used to remember stable interest
patterns of users, while the layers with shorter spans are utilized to model
users’ frequent and dynamic changes in interests and behaviors.

4.4.7 User–Item Dual Sequence Modeling
In the traditional recommender systems, researchers have generally given
similar attention to both users and items. Algorithms such as matrix
factorization and factorization machines represent users and items as latent
space vectors. They model users’ interests in items through interactions and
predict the probability of interactions (such as click-through rate or purchase
conversion rate). The previous sections have focused on modeling user
behavior sequences, where these algorithms only pay attention to the
sequences of items that users interact with and model these sequences
accordingly. However, the attention to the item side is usually limited to
obtaining latent vectors to represent the items. This raises a natural question:
should we also pay attention to the user access sequences on the item side?

Wu et al. proposed a comprehensive modeling approach that utilizes both
user-side and item-side sequences in their paper [70], known as the recurrent
recommender network (RRN). As shown in Fig. 4.25, for a user u, their
historical interactions with several items before the current time form the
user’s historical behavior sequence. On the other hand, the users who have
accessed a particular item v form the item-side user sequence. Both
sequences are individually modeled using recurrent neural networks
(RNNs). The learned hidden vectors and user representations, along with
item representations, are then fed into the prediction function to predict the
final interaction probability .



Fig. 4.25 Recurrent recommender network [70] illustration
Other algorithms [45] have also adopted similar ideas. The assumption

behind these algorithms is that the item-side user access sequences represent
the popularity of items and their influence patterns. For example, many
items have seasonal characteristics, such as New Year’s cards being more
popular during the New Year holiday but not as much during other time of
the year. By using item-side user access sequences, the model can
understand which items are currently popular among users. By combining
this with user-side pattern mining and matching, the recommendation
algorithm can better recommend items to the corresponding users. Similarly,
the algorithm can also recommend suitable users for specific items.

In summary, with the widespread use and dissemination of Internet
products, these online platforms are facing a massive demand to serve
existing users. Meanwhile, users are generating a large number of historical
behaviors, leading to the emergence of sequential recommendation systems
and algorithms. From an algorithmic perspective, sequence recommendation
can be categorized into four types: sequence pattern mining methods, time
matrix factorization methods, Markov chain-based modeling methods, and
deep learning methods. This section introduced several representative
algorithms under these categories and provided a detailed explanation of
several deep learning models based on the length of user sequences. Through
these introductions, the aim is to give readers an overall impression of the
current state of sequential recommendation algorithms and help them
understand and keep track of the cutting-edge algorithms in this field.

4.5 Recommender Systems Combined with
Knowledge Graph



In 2012, Google proposed the concept of “Knowledge Graph”, which was
originally intended to show the results returned by search engines in a more
intelligent form to optimize the user experience. Nowadays, knowledge
graph has been widely used in many application fields, such as search,
question answering, recommendation, text understanding, and generation.
Knowledge graph often uses structured triplets to describe the relations
between entities. For example, <Bill Gates, founds, Microsoft> is a
knowledge triplet. “Bill Gates” and “Microsoft” are two entities, represented
as two nodes in the knowledge graph, and “founds” is the relation between
them, represented as the edge connecting the two nodes. The relations
between nodes and edges can be a many-to-many relation. Because
Microsoft was co-founded by Bill Gates and Paul Allen, there is another
triplet <Paul Allen, founds, Microsoft> in the knowledge graph. The
knowledge graph establishes the relationship between entities with explicit
semantic relations, so it can directly bring three benefits to the recommender
system. The first is to enrich the user–item and item–item connections, to
reduce the sparsity of user behavior. In the recommender system, the
interaction between users and items is often very sparse. Through the
knowledge graph, different levels of entity information can be used to get
the hidden relations between items, so as to establish more relations between
users and items. As shown in Fig. 4.26, if a user has seen the movie “Back to
the Future”, it is likely that the user will also like the movie “Forest Gump”,
since they are both directed by Robert Zemeckis. The second is to enrich the
attributes of items, so as to learn a more comprehensive item representation
and improve the accuracy of recommendation. The third is to use the
semantic relations in the knowledge graph to provide explainability for the
recommender system. For example, in Fig. 4.26, when recommending the
movie “Forrest Gump” to users, several recommendation reasons can be
generated based on the knowledge graph, including “The Green Mile – Tom
Hanks – Forrest Gump” and “Back to The Future – Robert Zemeckis –
Forrest Gump”. This section will focus on these three aspects to introduce
the recommendation algorithms combined with knowledge graph.



Fig. 4.26 Example of Knowledge Graph Enhanced Movie Recommendation

4.5.1 Enhancing User–Item Interaction Modeling
The RippleNet Model
In the traditional item-based collaborative filtering, the user u is represented
by a collection of items  that he/she has interacted with, and the item v
to be predicted directly interacts with  to get the predicted value.
Knowledge graph brings rich relations among items. An intuitive use is to
expand the set of items that interest the user, so that the item v to be
predicted can interact with more content and reduce data sparsity. Based on
this idea, Hongwei Wang et al. [60] proposed RippleNet. By simulating the
ripples propagating on the water, RippleNet spreads and diffuses the user’s
interests on the knowledge graph, narrowing the distance between users and
unknown items. Let  denote the knowledge graph,

 denote the head entity and the tail entity in a triplet, respectively,
and  represent the relation between the two entities. It is assumed that
items in the recommender system can correspond to entities in the
knowledge graph. In order to facilitate the representation of users’ extended
interests in the knowledge graph, two terms are defined: relevant entities and
ripple set.

Definition 1 (RELEVANT ENTITIES) Given the user–item interaction
matrix  and the knowledge graph , the set of k-hop relevant entities for



user u is

(4.137)

where  is the set of items that the user has
interacted with.

Definition 2 (RIPPLE SET) The k-hop ripple set of user u is defined as
the set of the knowledge graph triplets whose head entities belong to 

(4.138)

Thus, ripple sets can be used to improve the representation of the candidate
item v for the user. Let  denote the latent vector representation of the
item v, which can be from one-hot ID, or a feature representation that
incorporates attributes, depending on the dataset. First, the 1-order ripple set
interest vector of the user u with respect to the item v is generated. To do
this, a relevance coefficient needs to be determined for each relation in the 1-
hop ripple set:

(4.139)

where  and  are the embeddings of relation  and head
entity h. The relevance coefficient  can be regarded as the similarity of the
item  and  in the relation . The user’s interest representation based on
the 1-hop ripple set is turned into

(4.140)

Similarly, by replacing  with  and repeating the procedure on 2-hop
ripple set,  can be obtained. The final vector representation of the user is
the sum of H user interest vectors:

(4.141)

Generally, the value of H does not need to be large. In the three datasets
in the paper, the optimal value of one dataset is set as , and the
optimal value of the other two is set as . User’s preference for the



item is modeled as the dot product of two vectors . Figure
4.27 depicts the modeling process of RippleNet. In addition, the model
learns the prediction effect of user–item and the modeling effect of the
knowledge graph at the same time, so that the user behavior as well as the
entity and relation representation in the knowledge graph can be optimized
together under an end-to-end framework.

Fig. 4.27 Illustration of the RippleNet model

The KGAT Model
Considering that knowledge graph is relational data organized into graph
structure, how to use graph neural network to build a recommender system
based on graph knowledge is a promising task. Traditional supervised
learning methods, such as factorization machine, take each sample as an
independent event to predict after extracting the attribute characteristics of
samples but overlook the internal relations among samples. Knowledge
graph can associate samples with attributes so that samples can no longer be
predicted independently. Naturally, the use of graph neural network cannot
only absorb the content beyond the multiple hops on the graph structure
when generating the feature representation of nodes, but also
comprehensively consider the surrounding relations when predicting the
user–item relations, which is called Label Smoothness. In this research
direction, this section introduces a representative work—KGAT (Knowledge
Graph Attention Network) [66].

In order to facilitate the establishment of an end-to-end training
framework, KGAT integrates the user–item interaction bipartite graph and



the knowledge graph together to get a graph , which is called
Collaborative Knowledge Graph (CKG). In , nodes contain entities, users,
and items. The relations consist of the ones from the original knowledge
graph plus those that reflect the user–item interactions. The KGAT
framework, as shown in Fig. 4.28, includes three main layers: CKG
embedding layer, attentive embedding propagation layer, and prediction
layer.

Fig. 4.28 Illustration of the KGAT model
CKG embedding layer aims to obtain the embeddings of entities and

relations that preserve the graph structure. Here the TransR [37] model is
employed, and it makes the triplets  have translation relation on the
projection plane of relation r:

(4.142)

where  is the transformation matrix of relation r. The smaller
the score of , the greater the probability that the triplet  is
true. The training loss function is

(4.143)

where , and  is a
negative example triplet constructed by replacing the tail entity in a valid
triplet;  is the sigmoid function.

The second module is the attentive embedding propagation layer, which
aims to recursively absorb the high-order connectivity on the graph and save



the important information through the graph attention network, ignoring
noises. Considering the operation of a single-layer propagation, given a head
node h, let  denote the set of all triplets
starting with it. Then, the first-order connectivity vector representation of h
on the graph is

(4.144)

where  reflects how important the triplet is to the first-order
connectivity representation of h and also controls how much information is
propagated from the tail node t. It is calculated as follows:

(4.145)

(4.146)

Finally, it is needed to aggregate the entity ’s representation  and its
ego-network representation  to obtain the new representation  of the
entity . Three types of aggregators are chosen:

1. The first is GCN Aggregator, which sums two vectors up and then
passes through a non-linear transformation layer:

(4.147)

 

2. The second is GraphSage Aggregator, which concatenates two vectors
and then passes through a non-linear transformation layer:

(4.148)

 

3. The third is Bi-Interaction Aggregator, which considers two kinds of
interactions, vector addition and vector element-wise product , and
then passes through a non-linear transformation layer:

(4.149)

 



The above is one operation of attentive embedding propagation. To
explore higher-order information, more propagation layers can be stacked:

(4.150)

In the prediction layer, it is needed to concatenate the vectors of users
and items obtained at each layer to get the final representation:

(4.151)

The user’s preference for items is predicted as the inner product of the
two vectors:

(4.152)

Similarly, the loss function of the recommendation prediction is also a
pairwise optimization error:

(4.153)

where  denotes the training set,
and  represents the positive samples, while  is the negative samples.
The joint training loss function of KGAT is

(4.154)

where  is the model parameter set.

4.5.2 Joint Learning of Graph Modeling and Item
Recommendation
The KTUP Model
In addition to propagating users’ interests layer by layer on the knowledge
graph to obtain explicit high-order connectivity information, another simpler
modeling method is to expect that the learned latent vectors can directly
contain the relation information in the knowledge graph, so as to strengthen
the relationship between users and items. At the same time, the data
contained in the knowledge graph are often incomplete, and many triplet
relations are missing. The two tasks of predicting user–item and completing
the knowledge graph can complement each other for mutual enhancements.
Therefore, Yixin Cao et al. [6] proposed the KTUP model to jointly train the



user–item prediction module and the knowledge graph completion module
through a unified translation-based framework, TransH [68]. TransH is
originally a knowledge graph embedding model. In order to model many-to-
many relations, it assumes that each relation owns a unique hyperplane, and
two entities need to be projected to the hyperplane of a relation to determine
the relation between them:

(4.155)

where  is a distance function. The smaller the value, the closer
the relation between the two entities.  denotes the -norm.  and

 are the projection vectors of the entities on the plane of the relation r.

(4.156)

(4.157)

The optimization objective of TransH is to make  of the correct
triplet relation in the knowledge graph smaller than  of the wrong one.

(4.158)

As shown in Fig. 4.29, KTUP similarly models the user–item relation
using TransH’s framework. Suppose the user interacts with the item because
of some preference p, and  is a series of predefined user preferences,
and for the observed user–item interaction, there is . Therefore,
compared with the recommendation model that only needs to model the
binary user–item relation, KTUP requires an additional preference induction
module to predict which preference will make the user interact with the item.
In general, the preference induction module has two alternative strategies:
single mode (hard) and composite mode (soft). In the single mode, it is
assumed that the user will only make decisions based on a single preference.
In this case, the Straight-Through Gumbel SoftMax [27] is adopted for the
discrete sampling to have continuous gradients during the end-to-end
training. Given a user–item pair  and the preference p, the score of p is

. The probability of selecting the
preference p is the value normalized by :



(4.159)

Fig. 4.29 Illustration of the KTUP model
In the composite mode, a user interacts with an item according to various

preferences:

(4.160)

where  is the importance of , and it is positively correlated with
. Mimicking TransH, the user–item relation can be modeled as

(4.161)

Similarly,  and  are the vectors projected on the plane of the
preference p:

(4.162)

For the single mode,  is the projection vector corresponding to the
preference p; for the composite mode, the projection vector is also obtained
by combination:

(4.163)



KTUP adopts the way of joint training to optimize the user–item
recommendation module and knowledge graph completion module at the
same time. The whole framework is shown in Fig. 4.29. To establish a good
relationship between the two modules, it is needed to align the embeddings
of the item i and the entity t, as well as the preference p and the relation r.
Specifically, the recommendation module is then defined as

(4.164)

(4.165)

(4.166)

where  is the set of item–entity alignments. And the one-to-one
mapping  from relations in the knowledge graph to user preferences
is needed, and then the preference vectors can be obtained:

(4.167)

The loss function of the recommendation module is

(4.168)

And the final loss function takes into account both the errors of
knowledge graph completion and recommendation:

(4.169)

where  is the recommendation error, and  is the knowledge graph
completion error.

The MKR Model
Training the two tasks together, item recommendation and knowledge graph
embedding, can be mutually reinforcing. The collaborative behavior of many
users among different items suggests that there is strong correlation behind
these items, which can be used as the basis for assisting knowledge
embedding. At the same time, the rich relations among items brought by
knowledge graph can well alleviate the data sparsity problem in
collaborative filtering and help improve the accuracy of recommendation.



Despite the strong correlation between the two tasks, there are still some
differences. It is a problem worth pondering that how to balance the
information sharing and differentiation between the two tasks in the end-to-
end joint training framework, so as to get the best effect. Hongwei Wang et
al. [59] proposed the MKR framework, which uses deep neural networks to
automatically learn the information sharing and interaction between items in
the recommender system and entities in the knowledge graph. Its core
component is the cross and compress unit, which explicitly models high-
order interactions between items and entities and automatically controls the
degree of information sharing and interaction between the two tasks. As
shown in Fig. 4.30, MKR consists of three main modules: recommendation
module, knowledge graph embedding module, and cross and compress unit.
The first two modules are bridged together by the cross and compress unit.
Let the embeddings of the item and its corresponding entity in the l-th layer
be  and , respectively, and then  is a cross-product
matrix of :

(4.170)

where  is the interaction result of the item vector and the entity vector in
the l-th layer. The next step is to compress the interaction matrix into two
vectors, respectively, representing the outputs of the item vector and the
entity vector for the l-th layer, and also the inputs for the -th layer:

(4.171)

(4.172)

where  and  are parameters of the trainable compress
units, which aim to compress the matrix  of  into a vector of .
The parameters of compress unit in each layer are different, in order to
capture different degrees of information sharing between tasks through the
interaction and transformation of L layers. For example, low-level networks
need to learn more general knowledge, whose degree of sharing among
different tasks is larger, while in high-level networks, task-specific
knowledge needs to be gradually extracted for different tasks, so the degree



of knowledge sharing among different tasks in high-level networks is
relatively smaller. To simplify the expression, let  be one cross and
compress operation.

Fig. 4.30 Illustration of MKR
For the recommendation module in Fig. 4.30, the input is the user vector

 and the item vector , which can be either a one-hot ID, or attributes,
depending on the situation of different datasets. The user vector  will go
through an L-layer MLP to extract the condensed vector representation:

(4.173)

The item vector  and its associated entity set  go through L cross
and compress units to extract latent vectors:

(4.174)

Then, the extracted user vector  and the item vector  are inner
producted or concatenated through an H-layer MLP to get the prediction:

(4.175)

Similarly, for the knowledge graph embedding module, the head entity h
will go through L cross and compress units to extract the latent vector, and
the relation r will go through a L-layer MLP to get the latent vector:

(4.176)



(4.177)

Subsequently,  and  are concatenated together, followed by a k-
layer MLP, to get the final tail entity prediction:

(4.178)

The prediction that makes the knowledge graph triplet  true is
the similarity of the predicted vector of the tail entity with its real vector,
which can be obtained by inner product or cosine similarity:

(4.179)

The final training loss function is the accumulation of the
recommendation function, the knowledge graph embedding function, and the
regularization term.

4.5.3 Knowledge Graph Enhanced Item Representation
The DKN Model
In the news recommendation scenario, items are news articles, which have
two characteristics: One is that news articles tend to have a short life cycle.
For example, in the Bing News data, about 90% of the news articles are not
clicked by users after two days [58]. Therefore, the traditional collaborative
filtering algorithm based on ID cannot be effectively used in news
recommendation. It is very crucial to understand the information of articles
from the text content. Second, news articles often contain multiple
knowledge entities, which condense the content of the article and enrich the
information of the article from another angle. However, traditional natural
language understanding models, such as Kim CNN [31], cannot capture the
information of knowledge entities well. So Hongwei Wang et al. [58]
proposed DKN, which integrates entity information into natural language
representation model with the help of knowledge graph to generate better
document representation, so as to improve the recommendation accuracy. Its
core module is KCNN (knowledge-aware CNN), whose structure is shown
in Fig. 4.31a. It is an extension of Kim CNN, which aligns the embedding of
the word in the news title with its corresponding entity embedding and first-
order neighbor entity embedding to form the 3-dimensional  input
data. The original entity embedding is obtained by training an independent
knowledge graph embedding model, such as TransE or TransH, so the



learning process of knowledge graph embedding and recommendation model
are not an end-to-end unified process. To this end, DKN uses a non-linear
projection layer on top of the original entity embedding, aiming to project
the entity representation into the word representation space:

(4.180)

Fig. 4.31 Illustration of the overall structure of DKN and its core module KCNN. (a) KCNN. (b)
DKN

Then, the Kim CNN model is applied to the 3-dimensional channel data
to obtain the vector embedding  of the news article t.

The modeling of users borrows the idea of DIN [87]. In order to
distinguish the importance of different articles to different topics in the click
history of the user u, the embedding of the news to be predicted is taken as
the query vector to calculate the attention weight of each news article in the
user behavior history:

(4.181)

where  is the attention network, which concatenates input vectors and
passes through an MLP to get the weights. The vector of the user u with
respect to the candidate news j can be expressed as



(4.182)

In order to predict users’ preferences for news, DKN combines the user
vector  with the candidate news vector , followed by an MLP, to
get the prediction.

The KRED Model
The core module of DKN–KCNN uses convolutional neural networks with
aligned words and entities as inputs to extract hidden document vectors. This
approach has two main defects. First, the computational complexity is high,
and entities need to be aligned with the document and modeled with the
document together. For a large number of documents without entities
involved, zero vector is assigned to the corresponding position, which wastes
a lot of computing power. Second, the extensibility is low. The document
understanding module is based on convolutional neural network. In the
current era of natural language understanding where pre-training is
prevalent, KCNN is not compatible with powerful document understanding
models such as BERT. In view of these considerations, Danyang Liu et al.
[39] proposed KRED, a highly extensible knowledge-enhanced document
representation model. For original document representation vectors of any
form, such as BERT, DSSM, LDA, Kim CNN, KRED is able to inject
knowledge representation in a very efficient and concise form. KRED’s
document representation enhancement module, as shown in Fig. 4.32,
consists of three main modules: an entity representation layer, a context
embedding layer, and an information distillation layer.



Fig. 4.32 The knowledge-enhanced document representation module in KRED
The entity representation layer exploits the idea of KGAT [66], which

aggregates the first-order neighbors of the entity through the attention
mechanism to enhance the representation of the entity itself:

(4.183)

(4.184)

(4.185)

The context embedding layer is designed to delineate how the entity
appears in the document. For example, entities that appear in the title tend to
be more important than entities that appear only in the body; entities that
appear more often tend to be more important. KRED considers three types of



information: position, frequency, and category. Similar to the position and
segment coding in BERT model, KRED provides embedding tables  for
the three kinds of information and extracts corresponding embedding vectors
by embedding lookup to be aggregated with the entity embedding vector:

(4.186)

where , , and  denote the position, frequency, and category of the
entity h, respectively.

The information distillation layer is the aggregation of many entity
information into a vector . Here, the original representation vector of the
document  is taken as the query vector, and the correlation of each entity
to the document is calculated as the attention weight for weighted fusion:

(4.187)

(4.188)

(4.189)

The original representation vector of the document  is concatenated
with the entity vector  to obtain a knowledge-enhanced representation of
the document through a non-linear layer

(4.190)

For a mature news recommender system, it is far from enough to only
have a user-to-news recommendation model. Many other services are also
needed, such as news-to-news recommendation, news category classification
and popularity prediction, local news detection, etc. Together, these services
can form a comprehensive news recommender system. The core of these
services is a content-based document understanding module. Therefore,
KRED uses a multi-tasking learning approach to train a unified document
knowledge-enhanced model to serve different tasks, which not only
eliminates the hassle of training a single model for each task, but also
leverages data from different tasks to improve a single task. As shown in
Fig. 4.33, KRED lists five tasks, including personalized user-to-news



recommendation, news-to-news recommendations, news category
classification, news popularity prediction, and local news detection.
Different tasks share KRED’s document enhancement module. At the same
time, each task has a small number of model parameters for its specific
requirements.

Fig. 4.33 The multi-task learning approach in KRED

4.5.4 Explainability
The KPRN Model
Knowledge graph not only brings a wealth of auxiliary information to enrich
the data content, but more importantly, its structured triples rich in semantic
relations can bring explainability to recommender systems. Combining the
user–item interaction bipartite graph with the knowledge graph to get the
collaborative knowledge graph, the path connecting users and items on the
new graph structure is a recommendation candidate. For example, in Fig.
4.26, “The Green Mile – Tom Hanks – Forrest Gump” and “Back to the
Future – Robert Zemeckis – Forrest Gump” can both be reasons to
recommend the movie Forrest Gump to users. The most suitable path can be
chosen as the reason for recommendation according to users’ preferences
(for example, some users prefer directors, while others prefer actors). Xiang



Wang et al. proposed the KPRN model [65] to model the paths on the
collaborative knowledge graph and find out the high-quality path as the
reason for recommendation. The task described by KPRN is to estimate the
probability  of user u liking item i given user u and
item i and all paths  connecting u and i on the
collaborative knowledge graph. Different from other embedding-based
recommendation models,  cannot only give scores, but also reveal
recommendation reasons based on .

The KPRN model mainly consists of three parts: embedding layer,
LSTM layer, and weighted pooling layer, as shown in Fig. 4.34. The
embedding layer is responsible for projecting three different IDs—the entity,
entity type, and the relation—into the unified latent space. In the path

in Fig. 4.34, each entity will be represented by concatenation of three latent
vectors corresponding to [entity, entity type, relation]. For example, the first
entity “Alice” is represented as . The
last entity “I see Fire” corresponds to a special symbol  because it
is the terminating node.



Fig. 4.34 Illustration of the KPRN model
After obtaining the entity embedding  on the path ,

the LSTM model is used to process this sequence to obtain the path
embedding . A two-layer MLP is then used
to obtain a preference prediction score based on this path:

(4.191)

For every path  in , a path score  is calculated. In
order to distinguish the importance of different paths for predicting ,
KPRN introduced a pooling layer:

(4.192)

where  is the hyperparameter to control each exponential weight. The
prediction result of the model is given by

(4.193)



Since the KPRN model will give a score  for each path , by ranking
the scores from high to low, the paths with high scores can be selected as the
reasons for recommendation.

The PGPR Model
KPRN enumerates all the short paths that connect a bunch of users and items
and then scores them. This enumeration process is expensive. The number of
paths grows exponentially with the length of the path, and this scheme is
usually not feasible when the knowledge map is large. Instead of
enumeration and then scoring, another approach is to model the task as a
path finding process on the collaborative knowledge graph. From a user,
through a random walk strategy, actively selects a neighbor as the next
direction of progress until a target item is reached. The path traversed during
this period is an explainable path between the user and the item. Yikun Xian
et al. [73] first formally described this framework and designed a
reinforcement learning-based solution named PGPR (Policy-Guided Path
Reasoning). The task of PGPR is described as follows: Given the
collaborative knowledge graph , the maximum path length K, and the
number of recommended items N, it can provide a recommended item set

 for an input user , so that each  has a path
 on the collaborative graph to explain its relation.

In order to solve this task effectively, three key points should be taken
into consideration. First, because this framework is a process of actively
searching for recommended items without a predefined target item, the
traditional reward function based on binary classification is not applicable.
Therefore, it is necessary to design the reward function by combining the
historical behavior and auxiliary information based on the correlation
between the arrived items and users. Second, some entities have a large
number of neighbors, so it is not practical to enumerate all possible paths.
Therefore, it is necessary to find an effective strategy that uses reward
functions as incentive to prune feasible paths. Third, the N items
recommended to the same user should meet the diversity requirements, and
similar items cannot always be recommended based on similar paths. As
shown in Fig. 4.35, PGPR is a model based on reinforcement learning.
Through training, an agent can meet the above three requirements. From a
given user node, the agent can automatically select the appropriate path to



find good candidates. First, define the four components of this reinforcement
learning method: state, action, reward, and transition.

Fig. 4.35 Illustration of PGPR

State The state  at step t is defined as a triplet , where u
denotes the given user node,  is the entity node reached at step t, and  is
the history prior to step t. The k-step history is defined as all entities and
relations in the past k steps, i.e., . The initial
state is .

Action The action space for the state  is all relations starting from the
node  (excluding those that have already appeared on the history),

. Considering that out
degrees of nodes follow a long-tail distribution, in order to improve the
storage efficiency in the model implementation, a user-conditional scoring
function  is used by the authors to evaluate the potential of each
edge  to the user u. The action space of each state can then be limited
to the first  actions (  is a hyperparameter):

.



Reward A reward is assigned only for the terminal state 
based on another scoring function :

(4.194)

Transition Given a state  and a selected action
, the probability of transitioning to the next state  is

(4.195)

Based on this Markov Decision Process (MDP) formulation, the goal of
PGPR is to learn a policy  that maximizes the cumulative reward:

(4.196)

The authors designed a policy network and a value network to solve this
reinforcement learning task through REINFORCE with baseline [53]. The
input of the policy network  is the state vector  and the
binarized vector , and the output is the probability of the action. The
value network  maps the state vector to a predicted reward, which will
be used as the baseline in REINFORCE. The structure of the two networks is
as follows:

(4.197)

(4.198)

(4.199)

where  is the Hadamard product;  is a non-linear activation function, for
which ELU is recommended; state vectors  are represented as the
concatenation of the embeddings ; the action space is

;  represents the predefined maximum size. The policy
gradient of the model is



(4.200)

where G is the discounted cumulative reward from the state  to the
terminal state .

Now the scoring function for action pruning  can be defined.
First,  is defined to indicate that on the path connecting  and , the
first j relations are forward relations, and the last  relations are
backward, that is, the path  has the form of

. Then the multi-hop scoring
function is

(4.201)

For a given user–item pair , let  be the smallest k such that 
is valid. Then the scoring function for action pruning is

, and the scoring function for reward is
derived from direct relation between the user and the item:

.
In order to learn meaningful embeddings for entities and relations, for

any pair of entities  with valid k-hop , the probability with respect
to the negative sample  should be maximized:

(4.202)

The agent guided by the policy network tends to choose the action
direction with the largest cumulative reward, resulting in very similar paths.
In order to improve the diversity of paths generated by agents, PGPR
employs beam search to explore potential recommendation paths. At each
step t, instead of sampling only one action according to the policy function,

 actions with the highest probability (  is the hyperparameter) are put
into the exploration trajectory, and only those paths whose terminal state is
the item node are retained at last.

The ADAC Model



For path finding models based on reinforcement learning such as PGPR, due
to the huge state and action space of collaborative knowledge graph, if the
model is allowed to learn freely from a completely randomly initial state, the
convergence is not fast enough, nor is it easy to converge to a good enough
state. Moreover, the path found only guarantees connectivity, not necessarily
qualified as a good reason for explanation. A high-quality explanation needs
to include the user’s preferred entities and persuasive relations in the path.
Therefore, Kangzhi Zhao et al. [83] further optimized the PGPR framework.
The authors believe that the key to solving these problems is how to design
some mechanisms to guide and supervise the learning process of path
finding. The main challenge, however, is that there is no readily labeled path
reasoning data for supervised learning. Manual labeling is a very time-
consuming and labor-intensive process, and it is difficult to ensure that the
labeled data are complete. Therefore, Kangzhi Zhao et al. [83] proposed the
ADAC (Adversarial Actor–Critic) model. First, a meta-heuristic-based
demonstration extractor is used to generate a set of path demonstrations with
minimal labeling efforts. These demonstrations are imperfect. Then, by
optimizing both imperfect demonstration signals and the reward signal in the
path finding, ADAC is able to obtain an excellent explainable path finding
model with better convergence training. There are several important
components to the process: a meta-heuristic-based demonstration extractor,
adversarial imitation learning, and an actor–critic-based reward modeling
method. The ADAC model is shown in Fig. 4.36.



Fig. 4.36 Illustration of the ADAC model
The meta-heuristic-based demonstration extractor needs to extract a set

of expert demonstration paths that connects the user and the item:

(4.203)

Here, meta-heuristics means that the generated demonstration paths need
to satisfy some desirable properties. These properties are threefold: easy to
access, more interpretable than randomly generated paths, and able to
accurately connect users with the items they are interested in. As long as
these three properties are satisfied, the extracted demonstration is considered
useful, even if they are imperfect and noisy. The authors proposed three
heuristics, all of which can generate demonstrations satisfying these three
properties: First, the shortest paths connecting users and items; second is the
predefined meta-paths; third, paths that contain the entities that the users are
interested in. Based on these three heuristic rules, sets of demonstrations can
be generated.

Obviously, these demonstration sets are imperfect (incomplete and
noisy), and the task of path finding cannot be formalized as a supervised
learning process with the demonstrations as the ground-truth labels. ADAC
effectively integrates the demonstration learning and the collaborative
knowledge graph-based reward exploration process into a reinforcement
learning framework with the help of an adversarial imitation learning
module. As shown in Fig. 4.36, the main difference from PGPR is that
ADAC not only has an MDP environment centered around the collaborative
knowledge graph and policy learning part, but also demonstration sets to
guide the learning process of the actor. The agent learns an effective policy
by the actor–critic method. Paths generated by actors are fed into the
adversarial imitation learning module to interact with expert paths generated
by demonstration sets. The adversarial imitation learning module has two
discriminators to distinguish expert paths from paths generated by the actor.

The task of an actor is to “fool” the discriminator so that it cannot tell
whether a given path comes from the actor or the demonstrations. Through
this adversarial learning, the actor can mimic the spirit of the demonstrations
and produce high-quality paths. The goal of the critic is the reinforcement
learning reward (the terminal reward, that is, whether the generated path can



successfully connect the user with the item they interact with) and two
rewards obtained from fooling the discriminators.

4.6 Reinforcement Learning-Based
Recommendation Algorithms
Traditional recommendation algorithms have two main characteristics:
staticity and short-term focus. These characteristics provide modeling
convenience but also bring some disadvantages. In this chapter, we will
sequentially introduce these two characteristics and provide solutions to
address the issues they present.

Traditional recommendation algorithms, including matrix factorization
models, factorization machines, and other deep learning-based models
introduced in this book, all attempt to model and make recommendations
based on static assumptions. Specifically, these algorithms assume that the
inherent distribution of user interests over different items is static. Different
algorithms model the unique user interest distribution  in various
ways and make recommendations based on the modeling results, i.e.,

, to maximize positive user feedback, such as increasing
click-through rates or purchase rates for recommended items. Researchers
use predictive models to model users’ preferences for different candidate
items in specific recommendation scenarios. Then, personalized ranking is
applied to the item list based on the current user preferences and presented to
the user. Subsequently, user feedback is collected for model retraining or
tuning. As shown in Fig. 4.37, the recommendation model is trained offline
and deployed for recommending items to users. User feedback is collected
and used for subsequent model iterations and tuning. It is worth noting that
the online recommendation model has no direct perception of real-time user
feedback, and the impact of the recommendation algorithm on users is
limited to a single recommendation event.



Fig. 4.37 Traditional Recommendation Algorithm Process
In this approach, traditional recommendation algorithms are

characterized by their static nature, assuming that the recommendation
process does not influence the user. The static assumption confines the
recommendation decision-making within a framework of static modeling,
reducing the complexity of understanding space and improving modeling
efficiency and recommendation effectiveness. However, the static nature
also gives rise to some issues. In reality, users are continuously influenced
by the recommendation algorithm’s results. Users may produce the
corresponding feedback behaviors based on changes in the recommended
content. For example, if a user is more interested in science fiction novels,
the recommendation system will continuously suggest items in the science
fiction category. This is reasonable for the recommendation algorithm, as
historical data tell it that this user’s interest is relatively fixed. However, this
may cause user fatigue, resulting in a decline in interest in these
recommended contents, leading to lower click-through rates or conversion
rates. In this case, a static recommendation model must be retrained and
fine-tuned using the latest data to adapt to the changing user interests. As
recommendation systems are increasingly widely used, the impact of
recommendation algorithms on users becomes more significant, which can
lead to recommendation algorithms falling behind users’ dynamically
changing needs and thus giving rise to subsequent dynamic modeling
solutions.

Due to the optimization goal of the model and algorithm for a single
recommendation, this creates a short-term characteristic of the
recommendation behavior. This characteristic makes it difficult for
recommendation algorithms to adjust based on real-time user feedback,
neglecting the long-term impact of the recommendation algorithm on users.
As described in the previous example, if the recommendation algorithm
keeps recommending the same type of product, it is easy to cause user



mental fatigue, leading to a long-term decrease in the effectiveness of the
recommendation algorithm. As shown in Fig. 4.37, to compensate for this
deficiency, traditional recommendation algorithms must frequently update
the model offline, even retraining it. Another example is that the goal of
many recommendation algorithms is to optimize user purchase conversion
rates. User purchase behavior is often cautious and usually results from the
combined effects of multiple recommendation results. In such cases, purely
optimizing the accuracy of a single recommendation may not achieve the
goal of conversion rate optimization.

To address the deficiencies of traditional recommendation algorithms,
researchers have proposed Interactive Recommender Systems (IRS) [61, 85].
As shown in Fig. 4.38, the IRS differs from traditional recommendation
systems in several aspects:

Fig. 4.38 Interactive recommender system

IRS often operates in an online process, adjusting the next
recommendation behavior based on real-time user feedback (dynamic
nature). The system assumes that each recommendation action will have
an impact on the current user and includes it as part of the state
information to determine the next recommended items.
Furthermore, IRS optimizes for long-term objectives (long-term nature),
such as the user’s purchase conversion rate and the user’s active duration
on the recommendation platform, over multiple recommendation
interactions. These optimization objectives require the recommender
system to perform multiple recommendation actions.



As a carrier of intelligent algorithms, IRS models users as the external
environment and different items as choices for interactions with the
environment. The real-time user feedback is modeled as a reward provided
by the environment for the current recommendation action. These
fundamental elements constitute the basis of IRS. There are two main
categories of interactive recommendation algorithms: one based on the
assumption of short-term interactive behavior, known as multi-armed bandit
recommendation algorithms, and the other considering both the interaction
and long-term impact, known as reinforcement learning-based
recommendation algorithms. The following sections will present detailed
introductions of these algorithms.

4.6.1 Multi-armed Bandit-Based Recommendation Algorithms
To address the interactive nature and balance the trade-off between
exploration and exploitation in the recommendation process, some early
research works used Multi-armed Bandit (MAB) algorithms to model
interactive recommendation systems [7, 34, 61, 79]. As shown in Fig. 4.39, a
multi-armed bandit is a common amusement facility in a casino. The basic
interaction involves users choosing one arm from  arms, representing
action , and each arm provides a corresponding reward

.

Fig. 4.39 Illustration of a multi-armed bandit

The multi-armed bandit-based recommendation algorithm treats the
recommendation process as a game where users continuously choose arms of
a slot machine. Different options correspond to different arms, and each



recommendation can be seen as selecting one arm from the available arms
for interaction, i.e., selecting one item from the candidate set as the
recommended result. User feedback corresponds to the reward obtained from
choosing a particular arm. It models user preferences on a per-user basis and
uses a linear function to learn and adjust the user preference continuously as
the user interacts with the slot machine, optimizing the overall cumulative
reward.

When using the multi-armed bandit-based recommendation algorithm to
make decisions initially, there are no direct data or experience about the
reward distribution  of the different arms of the slot machine. This
requires addressing the exploration and exploitation problem. The
exploration process involves trying actions that have not been or have been
infrequently tried in the past to gather information about the reward
distribution of different arms, in order to better select the arm that is most
favorable in the current state. The exploitation process, on the other hand,
uses existing empirical data to make the optimal choice for the current
interaction.

The algorithm simultaneously performs the exploration and exploitation
processes, and its optimization goal is to start the interaction from a
completely unknown state and maximize the overall cumulative reward.

A simple multi-armed bandit algorithm uses previous exploration
experience to directly select the arm with the highest average reward based
on historical data statistics for interaction. In other words, the algorithm
records the reward values of recommending different items to users and
makes the next recommendation decision based on the average reward
information of each item in the past. This basic multi-armed bandit
algorithm adopts the -greedy exploration strategy, where with a probability
of , it selects the item with the highest historical reward as the next
recommended decision, or with a probability of , it randomly selects
another item for recommendation. This approach is straightforward to
implement but utilizes limited information, resulting in a relatively low
theoretical performance bound.

Next, we will introduce the recommendation algorithm based on
Thompson Sampling [7]. This algorithm treats past experience observations
as , where the reward distributions are modeled using a
parameterized likelihood function , where  represents the
function’s parameters. Based on these parameters and given a prior



distribution  for , we can calculate the posterior distribution of these
parameters as .

From a practical perspective, the actual rewards are the outputs of a
stochastic function involving the arm interaction , context information ,
and the unknown true parameters . Ideally, the algorithm’s primary
objective is to select arms that maximize the expected return

.
Of course,  is unknown. If the algorithm only aims to maximize

immediate rewards (“exploitation” process), it only needs to select the action
that maximizes the expected return, which can be expressed as

.
However, in the “exploration/exploitation” scenario, according to the

probability matching hypothesis (sampling actions with probabilities
proportional to their probability distribution), the action obtained by
randomly sampling from the probability distribution will be the optimal one.
In other words, the action  will be sampled according to the probability

(4.204)

Here,  is the indicator function. It is worth noting that the indicator
function does not need to be computed explicitly. It can be obtained based on
the posterior distribution  after sampling  according to Algorithm
1. In this case, we only need to modify the operation of “pulling arms” to
“recommend corresponding items” to apply it to the recommendation
scenario.

Algorithm 1 Thompson Sampling-Based Recommendation Algorithm

Next, let us illustrate a specific example of the multi-armed bandit
recommendation algorithm. Suppose the multi-armed bandit is a K-armed
Bernoulli bandit, where each arm corresponds to a lever, and in the context
of the recommendation system, each arm represents a different item. In other
words, the recommendation algorithm can recommend K different items to
the user each time. The reward of the i-th arm follows a Bernoulli
distribution with a mean . When the i-th arm is selected, corresponding to



recommending the i-th item, the reward probability distribution is defined as
follows:

(4.205)

Since the Beta distribution is the conjugate distribution of the Bernoulli
distribution, we can use the Beta distribution to model the mean reward of
each arm as follows:

(4.206)

Here,  and  represent the number of successes and failures observed in
 Bernoulli trials, respectively. Therefore, Algorithm 1 can be

adjusted to Algorithm 2 to address the recommendation problem in the
context of the K-armed Bernoulli bandit scenario.

Algorithm 2 Thompson Sampling Algorithm for Bernoulli Bandit

Although the models based on the multi-armed bandit consider the
interactive nature, they have a limitation: They assume in advance that the
user preferences will remain unchanged during the recommendation process,
which is not realistic. The multi-armed bandit models do not capture the
dynamics of user preferences [85]. However, modern interactive
recommender systems require understanding the dynamic changes in user
preferences to optimize long-term rewards.

4.6.2 Introduction to Reinforcement Learning
This section introduces the fundamentals of reinforcement learning (RL). RL
consists of two essential elements: the agent and the environment. The agent
learns how to better achieve its optimization objectives through interactions
with the environment, and these objectives are often long term. The agent’s
decisions have continuous effects on the environment, which requires the
agent to optimize its actions continuously. For example, in a
recommendation system, the optimization objectives could include the user’s



final purchase conversion rate after multiple recommendations or the overall
time users spend on the recommendation platform.

Reinforcement learning assumes a dynamic environment, meaning that
the environment can change, especially after certain recommendation actions
are taken. Users might change their interests and behaviors based on the
recommended content.

Reinforcement learning has demonstrated significant achievements and
potential in decision-making and long-term planning in dynamic
environments. In 2014, DeepMind initiated the AlphaGo project, which used
RL to achieve high-level artificial intelligence in the game of Go. AlphaGo
defeated professional Go player Lee Sedol 4-1 in a five-game match and also
defeated the world’s top-ranked Go player Ke Jie in 2017, earning the title of
professional Go nine-dan by the Chinese Weiqi Association. In 2020,
Microsoft’s research team released Suphx, n RL-based AI algorithm that
reached a tenth-dan level on a Japanese mahjong platform. These powerful
AI algorithms all demonstrate the ability of RL to optimize decision-making
within large solution spaces.

Returning to the recommendation scenario, for each user
recommendation, the recommendation system can choose one out of K
items. If the system aims to maximize the total number of clicks over T
consecutive recommendations, the feasible solution space becomes ,
which is much larger than the number of choices in a single
recommendation. Solving in such a vast space poses significant challenges
and optimization difficulties. Therefore, researchers have proposed
sampling- and approximation-based methods for optimization, such as
Monte Carlo sampling and RL-based on deep learning. These techniques
have been widely applied in RL algorithms.

In the following sections, this chapter will sequentially introduce the
core concepts and key techniques of reinforcement learning in the context of
recommendation systems.

4.6.3 Reinforcement Learning-Based Recommendation
Algorithms
Reinforcement learning (RL) typically models the entire system using
Markov Decision Processes (MDP), represented mathematically as

. RL is often used for decision-making tasks, rather
than the prediction and recognition tasks commonly seen in supervised



learning. The elements of an MDP include states, actions, and corresponding
rewards. RL trains an optimal policy to maximize the accumulated reward of
the agent over a certain period of time.

In interactive recommendation scenarios, the user and the
recommendation system engage in an interaction sequence over a period of
time, recording a series of recommended items and the corresponding
feedback. Figure 4.40 illustrates a typical interaction process between a user
and an interactive recommendation system. Throughout the process, the
recommendation system corresponds to the agent in RL, while the user
corresponds to the environment. Generally, the user representation and
context information are considered as states . At time t, the
recommendation system uses the state  provided by the environment to
recommend an item to the user, where this recommendation action is
referred to as . The user, as part of the system environment, provides
feedback to the recommendation system, including real-time rewards

 (e.g., clicks, conversions, time spent, etc.) and the new state .
This interaction process continues in a loop until time T, which can be
defined as the user leaving the recommendation process or ending the
current visit session.

Fig. 4.40 An illustration of reinforcement learning-based recommendation

Next, we will provide a detailed explanation of several important
concepts in the MDP system and their specific meanings in the context of



recommendation scenarios:

State  represents the user’s interest latent vector and contextual
information at time t. It is usually composed of a low-dimensional real-
valued vector. In general, each user can have their unique user vector, for
example, the sum of N item representation vectors that the user has visited
in the past, , or vector concatenation ,
where  is the feature vector of the item the user has accessed.
Contextual information generally includes other information about the
user’s current visit, such as time representation, browser information, and
other client features, which can assist the recommendation algorithm in
making more reasonable recommendations.
Action  represents the recommendation algorithm choosing an
item to recommend to the current user at time t. The action space 
contains all the items available for recommendation. Some literature [84]
defines the algorithm as recommending a whole page of items,

, meaning that a single action can include more than
one item. This setting is also common in real scenarios, such as
recommending multiple items’ content on one page, which also poses new
challenges for the algorithm.
Reward  is generated by the environment’s reward function

 at time t, which defines the gain of the agent
corresponding to the action taken in a particular state. It is also the
optimization objective of the reinforcement learning-based
recommendation algorithm. Generally, the reward function can be
computed based on certain indicators on the environment side. For
example, if the system records user purchase behavior as 1 and other non-
purchase behavior as 0, then the accumulated reward of the
recommendation algorithm over the T interactions is defined as

(4.207)

where  is the discount factor representing the importance attached to
long-term rewards in the computation of cumulative rewards. The design
of the reward function is a crucial part of the reinforcement learning-based
recommendation algorithm, defining the performance measure that the



algorithm designer cares about. Besides the purchase conversion count
mentioned in this paragraph, the reward function can also be defined as
the total number of user clicks within time , the total time user
spent on the platform, etc., according to the business needs.
Transition probability  represents the probability of
user-side state transition. In other words, it describes the probability of the
environment state changing to a new state  given the recommendation
item  provided by the recommendation algorithm at time t.
Discount factor  is a real number between 0 and 1, representing
the agent’s consideration of long-term rewards in the computation of
accumulated rewards. When , from the formula of accumulated
rewards, it can be observed that the agent only cares about the most recent
reward and ignores future rewards, leading the agent to treat accumulated
rewards in a near-greedy manner, optimizing short-term recommendation
behavior. In this case, the reinforcement learning algorithm degenerates
into a multi-armed bandit algorithm. On the other hand, when , the
algorithm takes into account the rewards in the current and future time
periods. When , the agent tends to extend the interaction time
infinitely rather than optimizing cumulative rewards in a finite time,
which is not desirable. Therefore, the algorithm designer generally sets the
discount factor to a value between 0 and 1, .

4.6.4 Modeling and Optimization of Deep Reinforcement
Learning
After defining the MDP, the next step is to model the decision-making
process for the recommendation algorithm based on reinforcement learning.
In real-world recommendation scenarios, there are numerous and diverse
items available for recommendation, resulting in a vast user state space and a
particularly complex action space for recommendation behavior. To address
this challenge, researchers have widely adopted deep neural networks for
their powerful modeling and generalization capabilities in deep learning-
based recommendation algorithms. These methods are collectively referred
to as deep reinforcement learning-based recommendation algorithms.

Next, we introduce an actor–critic-based reinforcement learning
recommendation algorithm. As shown in Fig. 4.41, this algorithm consists of
two main modules: the actor network and the critic network, which are
commonly used in other reinforcement learning domains as well. The actor



network is responsible for executing the recommendation operations and
generating actions by directly interacting with the environment. The critic
network assists the actor during training by evaluating the expected value of
its actions based on the current state and actions generated by the actor. This
helps the actor network to learn and improve. At the same time, the critic
network also optimizes its own value evaluation ability based on the records
generated from interactions between the agent and the environment. We will
now introduce these two modules separately.

Fig. 4.41 Reinforcement learning recommendation algorithm based on actor–critic networks
In general, the actor network and the critic network share a part of the

network called the information extraction network . This network
processes the raw state information into a low-dimensional representation
vector in the latent space:

(4.208)



As mentioned earlier, the raw state information  includes user interest
latent vector representation and contextual information. User interest
representation can be modeled and processed using the methods introduced
in Sect. 4.4 for modeling user behavior sequences. Contextual information
can be processed using other neural network modules, such as the wide and
deep network [10]. After the information extraction network’s processing,
the actor network and the critic network can focus on optimizing the
decision-making and evaluation parts of the network. The sharing of
parameters in the lower-level network can lead to better optimization
performance and has been adopted in many related reinforcement learning
literature.

The actor network specifically refers to the decision-making part of the
network , with parameters . It outputs the action for the state  as
follows:

(4.209)

The process of recommendation based on reinforcement learning is
described in Algorithm 3. In practical use, the reinforcement learning
recommendation algorithm continuously recommends T items or sets of
items (when a single action includes multiple recommended items) for a
specific user environment. The algorithm obtains immediate reward  and
the next state  from the user’s environment. These changing states allow
the recommendation algorithm to update the recommendation plan in real
time based on user-side information without the need to retrain the
recommendation model using offline data. This is one of the advantages of
reinforcement learning recommendation algorithms compared to traditional
recommendation models. It is worth noting that the algorithm includes a
trajectory set, which stores trajectories obtained from continuous T
interactions with the user. Each trajectory consists of “transition
quadruples,” mainly used for training the reinforcement learning policy.
Below is a detailed explanation of the process.

Algorithm 3 Reinforcement Learning-Based Recommendation
Process

After completing the modeling, let us discuss the optimization methods for
reinforcement learning algorithms. Recommendation algorithms based on



reinforcement learning generally adopt the online training paradigm, which
means that the policy network’s parameters are trained while interacting with
the user environment, optimizing the cumulative reward. There are two parts
to be optimized: the actor network and the critic network.

For the actor network, we introduce the policy-based optimization
method. The optimization objective for the actor network is defined as

(4.210)

where the expectation in the optimization objective is defined under the
trajectory probability distribution generated by the policy defined by .
Therefore, empirical averaging can be used to approximate the expected
optimization objective. Next, we can derive the empirical gradient for the
actor network:

(4.211)

Next, the gradient update for the actor network can be performed using
ordinary gradient ascent:1 .

Readers may notice that in the optimization objective of the actor
network described above, for the policy at time , it cannot influence the
reward values  for . Therefore, the algorithm can optimize the
expected future rewards only and take into account the effect of the discount
factor. This leads to the approximation of the value function for the reward
expectation.

First, define the value function as

(4.212)

which represents the expected cumulative reward value at time t under the
policy  for future time steps. The critic network’s parameters are denoted
by , and the objective of  is to directly estimate the expected long-
term cumulative reward at state  for the actor network:



(4.213)

The optimization objective of the critic network is to estimate the
expected future rewards as accurately as possible, which can be formulated
as follows:

(4.214)

The goal of this optimization function is to minimize the error in the
critic network’s estimation of state values. Therefore, we use the gradient
descent formula for optimization: , where  is the
learning rate. The experience gradient for the critic network can be
approximated as

(4.215)

During the training process, we can replace the cumulative expectation
in the optimization objective  of the actor network with the estimated
reward expectation from the critic network. Additionally, to reduce the
variance in the estimation, researchers in reinforcement learning have
proposed using the advantage function

 instead of the original
value function for the optimization objective of the policy network. Here,

. By doing this, we can derive the new optimization gradient
for the actor network as follows:

(4.216)

Finally, we summarize the training process of the reinforcement learning
recommendation algorithm in Algorithm 4. The overall algorithm iteratively
optimizes the actor network and critic network for M epochs until they
converge.



Algorithm 4 Training Process of Reinforcement Learning
Recommendation Algorithm

In summary, with the increase of user data, the widening of user interest
distribution differences, and the growth of item categories, recommendation
systems are bound to face more challenges in terms of dynamics and long-
term behavior. Both collaborative filtering and deep learning-based
algorithms provide solutions to the challenges of dynamics and short-term
behavior in recommendation problems. Particularly, reinforcement learning
algorithms abandon the inherent assumption of static user interest
distribution, incorporate real-time user feedback, and assume that the
recommendation algorithm influences user behavior, providing a direction
for more personalized recommendation optimization. Note that this field
about deep reinforcement learning on recommender system is rapidly
growing with many works publishing recent years. For readers who wish to
delve deeper into this burgeoning area, they could explore comprehensive
surveys like [88] that provides in-depth insights into various cutting-edge
approaches.

4.7 Conclusion
In this chapter, we first introduced the relationship between collaborative
filtering and deep learning and then presented various deep learning-based
collaborative filtering algorithms. Leveraging cutting-edge methods from
deep learning, these algorithms can significantly improve the accuracy,
scalability, diversity, and interpretability of recommendation systems,
offering richer technological choices for recommendation system design.
However, most of these algorithms are optimized for specific problems, and
there are often limitations in practical applications. Therefore, at the system
design level, algorithm integration or fusion needs to be considered.
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It is worth noting that the optimization objective for the actor network is to maximize the expected

cumulative reward, so we use gradient ascent.
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Abstract
This chapter introduces the hotspots of recommender system research, the
key challenges of recommender system application, and how to achieve
responsible recommendation technically. These contents may become the
key of recommender system research and application in the future, so they
need the continuous attention of researchers and developers.

Keywords Hotspots of recommender system research – Key challenges of
recommender system application – Responsible recommendation

Recommender system is a rapidly developing area, and innovative research
work is emerging every day. Only by paying attention to current or even
future research hotspots, can we deeply understand the key to the research
and application of recommender systems. This chapter first summarizes the
research hotspots of recommendation algorithms, then analyzes the
application challenges of recommender systems, and finally introduces how
to implement responsible recommendation.
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5.1 Recommendation Algorithm Hotspots
The previous chapters have described various recommendation algorithms
and their application scenarios. However, there are still many problems to
be studied in the field of recommender systems, which play an important
role in the application of recommender systems. This section introduces 3
key hotspots: conversational recommendation, causal recommendation, and
common-sense recommendation.

5.1.1 Conversational Recommenders
Traditional recommendation algorithms do not have much interactions with
users, making it hard to capture their interests timely and effectively.
Conversational recommender systems (CRSs) can get users’ interests
through in-depth interaction with users, which has become a new research
hotspot in the field of recommender systems. The core of conversational
recommenders is the online interaction between users and recommender
systems, that is, through the conversational interaction process between
users and recommender systems, users’ feedback is obtained and then
integrated into the recommendation model, in order to better understand
users’ interests and improve the recommendation accuracy.

Lei et al., from Nanyang Technological University in Singapore, have
done a summary on conversational recommenders and proposed 4 research
issues that should be paid attention to in this area [25].

Exploration–Exploitation Trade-Off in Cold-Start Scenarios
Conversational systems can easily collect users’ interest information, so it
can help recommender systems solve the problem of cold start. For
example, Christakopoulou et al. [14] proposed a conversational restaurant
recommender system that quickly learns users’ interests by constantly
asking them questions and then making recommendation. This method
needs to consider how many questions it is appropriate to ask the user. If
there are too many questions, users may lose interest in answering or even
lose trust in the recommender systems. If there are too few questions, the
system may have difficulty in accurately capturing users’ interests, resulting
in a lower recommendation accuracy. Therefore, there is a classic trade-off
between exploration and exploitation in solving the cold-start problem of
conversational recommenders. A common technique used to solve such



problems is the multi-armed bandit algorithm. For example,
Christakopoulou et al. [14] designed an exploration–exploitation trade-off
using the multi-armed bandit algorithm. First, they set the user’s trait vector
as the average of all users, then ask the user questions based on the multi-
armed bandit algorithm, and finally update the user’s trait vector based on
the answers to the questions.

Question-Centered Conversational Recommendation
In this type of scenario, the conversation is initiated by the user, and the
recommender system decides how to recommend items based on the user’s
questions and how to go forward and ask more questions. For example, in a
movie recommendation scenario, the user might ask the system to
recommend a recent hit comedy. At this point, the purpose of the
conversation is to better understand the user’s intention, such as what
comedy movies the user has seen in the past, as well as preferences for
something like directors, actors, years, and language, and then based on the
user’s answers, build the user’s trait vector until the recommended movie
meets the user’s needs. In 2018, Li et al. [29] published a conversational
movie recommendation dataset ReDial and proposed an autoencoder-based
recommendation algorithm to realize conversational recommendation,
which can predict users’ opinions on movies based on dialogue and
sentiment classification and then input user preferences into the
autoencoder to make recommendation. The autoencoder method can train a
neural network to reconstruct the input and estimate the unobserved user
ratings in the process of reconstruction. Since the network parameters of the
autoencoder do not need to be retrained for new users, the recommendation
can be completed by giving a user’s rating vector, so it is more suitable for
the conversational recommendation scenarios where users’ historical
interests cannot be observed.

Strategy-Centered Conversational Recommendation
Many real-world conversations are multi-round, meaning the user may
answer multiple different kinds of questions in a single conversation. For
example, when recommending a restaurant to a user, it is necessary to know
not only the user’s preferences, but also other information like the location
of the user. The core is how to determine the properties of the question to be
asked, and then based on the answer to the question, decide on the next



question and what to recommend. Sun et al. [39] proposed a conversational
recommendation system that includes a recommendation module, a belief
tracker module, and a policy network module. The belief tracker module is
used to analyze the intention of the user in the conversation, and then the
policy network module is used to decide whether the next step should be to
ask questions or recommend. If the decision of the policy network module
is recommendation, the system will call the recommendation module and
generate the recommendation result according to the user’s interest
reflected in the conversation and historical interest.

Dialogue Understanding and Generation
The most basic problem in a conversation is understanding exactly what the
user is saying and generating natural and relevant answers. This problem is
also what dialogue system researchers focus on. Different from the general
dialogue system, the dialogue in the recommender system is generally
based on a specific field, such as movies, music, restaurants, etc., so the
knowledge related to the field is very important for the understanding and
generation of the dialogue. Chen et al. [10] proposed to use knowledge
graph to introduce contextual information related to items, such as film
directors, actors, and genres, into the recommendation dialogue. The
introduction of such information enables the recommender system to make
recommendation when users do not mention specific items. Meanwhile, the
introduction of such contextual information can also help improve the
accuracy of the recommender system.

5.1.2 Causal Recommendation
Causal learning studies how to find and use causal relationships between
variables for prediction, rather than relying only on correlation between
variables. The causal relationship reveals the nature of an event, and
changing the “cause” behind the event will often affect the “effect” of the
event. However, correlation is often not the nature of events. Changing one
event may not affect the other that is correlated. For example, association
mining can find a strong correlation between yellow fingers and lung
cancer, but there is no clear causal relationship between the two. Painting a
person’s fingers yellow does not increase their chances of getting lung
cancer. In fact, the “cause” behind the yellow fingers and lung cancer is
smoking, that is, there is a causal relationship between smoking and lung



cancer. Therefore, letting non-smokers smoke will increase their chances of
getting lung cancer significantly. In recommender systems, the lack of
causality analysis may result in the decline of the recommendation effect or
the bias of the model.

First, causality will affect the model training of recommender systems.
Recommender systems generally assume that the user will browse through
all the items and choose the ones they like, but in practice this assumption is
not true. Wang et al. [48] believe that movies are not exposed to users at
random, but users select movies through a biased distribution and then
make assessment within the selected movie range. For this problem, they
designed a deconfounded recommender system. First, the exposure model
of the movie to the user is modeled based on the user rating data, and the
unobserved confounders in the system are estimated based on the model.
Then the recommendation model fits the observed ratings taking into
account confounders. Based on this design, the recommender system can
analyze the relationship between different movie exposures and user
ratings. Experimental analysis shows that, after debiasing the confounding,
the recommendation algorithm shows stronger generalization ability,
especially for new users, and can provide more accurate recommendation.

In addition, causality also affects the evaluation of recommender
systems. When measuring the accuracy of recommender systems, offline
evaluation often cannot accurately measure the recommendation effect. The
reason behind is that it is impossible to intervene with users in offline
evaluation, so it is difficult to calculate what users’ feedback is when
recommending other items. For example, in historical data, the user u
purchased the item a, but in fact if the user had seen the item b, the user was
more likely to purchase the item b. In this case, if the recommender system
recommended the item b to the user u, it would be considered as invalid by
offline evaluation. Such problem can be resolved by moving from offline to
online evaluation. But online evaluation is costly and generally difficult to
use widely. A simpler strategy is to adopt counterfactual reasoning [18],
such as importance sampling to correct the bias in observed samples and
achieve unbiased estimation.

5.1.3 Common-Sense Recommendation
As with other areas of AI, recommender systems suffer from data integrity
issues, where observed data cover only a fraction of real-world situations.



Thus, even if the recommended results are reasonable within the range of
observed data, the results may appear unreasonable by humans, i.e., may
not conform to common sense. The recommendation that does not conform
to common sense will lead to the reduction of recommendation accuracy
and even affect users’ trust in the recommender system. For example, many
current recommender systems do not consider the conflicts between the
items users purchased in the past and the recommended ones. After users
have purchased TV sets, recommender systems of many e-commerce
companies will continue to recommend TV sets, which is obviously not
common sense. However, since there is no common-sense knowledge in the
data observed by recommender systems, it is difficult for the systems to
solve such problems.

Common-sense knowledge base is a key technology to solve the above
problems. To solve the problem of keyword recommendation in search
engines, Tsai et al. [41] proposed to combine ConceptNet and Wikipedia to
associate related semantic keywords with user query keywords and then
sort all related keywords. This method uses the knowledge from the
common-sense knowledge base ConceptNet, so the recommendation can
ensure a high degree of rationality. However, this method is difficult to
extend to a wider range of recommendation scenarios, such as the problem
that TV sets are repeatedly recommended in e-commerce. In addition to
ConceptNet, frequently used common-sense knowledge bases include Tuple
KB, Quasimodo KB, WebChild, and True Knowledge. How to use these
knowledge bases to better guide the generation of recommendation lists is
an important research area to be explored. At present, it is rare to find
research works that combine common sense to improve the quality of
recommendation. This area could be a new direction for recommender
systems in the future.

5.2 Application Challenges for Recommender
Systems
Recommender systems have been successful in many commercial fields,
but they also face many technical challenges, including how to integrate
multiple types of data to improve the recommendation accuracy, how to
extend recommendation algorithms to large-scale data, how to evaluate



recommendation algorithms effectively, and how to recommend for new
users or new items. This section will focus on the four key challenges
aforementioned, but apparently the challenges that recommender systems
face are not limited to these.

5.2.1 Multi-source Data Fusion
The multi-source data fusion problem studies how to improve the
recommendation accuracy by fusing multiple types of data (also known as
multiple modals). User interaction data (such as user ratings) are the most
common data in the recommendation algorithm research. However,
additional information such as user personal information, item attribute
information, and user social relationship, which can further mine the
characteristics of users and items, has also attracted more and more
attention from researchers. Although there are many mature solutions to the
problem of multi-source fusion in computer vision, it still needs to be
further studied in the field of recommender systems. Some complicated
problems in recommender systems can be solved by means of multi-source
data fusion. For example, when a new user joins the system, although there
are no interactive data of the user, the cold-start problem of the new user
can be solved if the user’s personal information can be obtained. The
difficulty and key of multi-source data fusion is how to organically
integrate all types of data according to the characteristics of different types
of data, so as to jointly mine the characteristics of users and items, and
improve the recommendation accuracy.

A common method of multi-source data fusion is to directly concatenate
or sum multiple types of data (usually represented as feature vectors).
Although this kind of method is simple to operate and easy to implement, it
cannot achieve satisfactory results in most cases, and even in some specific
cases, the recommendation accuracy is not as good as those based on rating
data directly. The main reason is that simple splicing operation will make
the dimension of feature vectors expand constantly, increase the difficulty
for model training, and make models overfit easily. And the simple
summation operation will ignore the semantic information of each type of
feature before fusion, resulting in the ambiguity of feature meaning, and
some key features are even covered by noise, resulting in the decrease of
recommendation accuracy.



At present, the method commonly used in academia and industry is to
design a neural network to realize the deep fusion of multi-source data.
Attention mechanism [43] is one of the most commonly used methods to
integrate features. It selects and integrates features by automatically
assigning a weight to each type of feature, and the weight will change with
different users or items, so that features can be integrated according to the
characteristics of users or items. Ensemble learning is also often used to
realize multi-source data fusion at the algorithm level. For example, a
recommendation model can be trained for each type of data to obtain the
corresponding recommendation results, which are then ensembled to give
recommendation. Since ensemble learning integrates directly from
recommendation results, there is no problem of feature meaning ambiguity.
Moreover, all types of data are comprehensively considered in
recommendation, which makes the model with high accuracy. Ensemble
learning requires separate model design and training for each type of data,
which has higher requirements on hardware resources. Especially when
there are many types of data to be fused, this method consumes more
hardware resources, which requires algorithm designers to choose carefully
according to the actual situation.

5.2.2 Scalability
Scalability includes horizontal scalability and vertical scalability.
Horizontal scalability mainly studies how to extend the recommendation
algorithm to large-scale data scenarios without affecting the algorithm
accuracy. Vertical scalability studies how to quickly update models and
recommendation as new user or item interactions occur. The
recommendation algorithm with good scalability should achieve similar
accuracy and acceptable efficiency in large-scale application scenarios
(such as e-commerce recommender systems with millions of users and
items). Otherwise, the user experience of the recommender system will be
seriously affected. Additionally, when a user generates a new interaction
record, the recommendation algorithm with good scalability needs to
quickly analyze the user’s interaction behavior and recommend those more
in line with the user’s preferences. The methods commonly used to solve
the scalability problem of recommendation algorithms mainly include
clustering, dimension reduction, distributed computing, and incremental



recommendation. The advantages and disadvantages of these methods are
briefly discussed below.

Clustering
Clustering algorithms improve the efficiency of recommendation by
narrowing the search space of similar users or items. Recommendation
algorithms that adopt clustering first divide users or items into different
clusters according to their characteristics, so that the similarity of users or
items within the cluster is as large as possible. When a recommendation is
calculated for a user, only other users or items in the same cluster as the
user or item are considered, not all users or items in the entire set. For
example, if the original dataset is evenly divided into 100 clusters, then
each model only needs to process 1% of the original data volume, the
training or prediction of each model can be processed in parallel, and the
scalability will be greatly improved. The advantage of this method is that it
reduces the space of model training and prediction, but it also makes the
accuracy of the recommendation algorithm easily affected by the accuracy
of clustering. If the clustering algorithm cannot provide an optimal
subspace, the recommendation algorithm is likely to give poor
recommendation.

Dimension Reduction
Dimension reduction methods, such as singular value decomposition,
improve the efficiency of recommendation by reducing the dimensions of
user or item’s feature representations, which can be determined by a preset
threshold. Although singular value decomposition and other methods can
improve the efficiency of the algorithm by reducing the feature space of
users and items, and the smaller the feature space is, the higher the
efficiency of the algorithm, it also has a certain impact on the
recommendation accuracy because the reduction of the feature space of
users and items may lead to the loss of some useful information, which will
affect the accuracy of the recommendation results. Therefore, how to
balance the accuracy and efficiency of the algorithm is a key problem to be
solved by dimension reduction methods such as singular value
decomposition.

Distributed Computing



Commercial recommender systems need to process massive user interaction
records every day, which is very difficult by single machine, no matter
whether it is from the perspective of storage or computing. For example, it
may take several days to complete the calculation of user and item
characteristics. In order to ensure real-time performance and high efficiency
of recommendation, commercial recommender systems usually adopt some
distributed computing frameworks (such as Hadoop and Spark) to
accelerate the extraction of user and item features, reducing the model
training time from several days to just a few minutes, which greatly
improves the efficiency of recommendation. Currently, distributed
frameworks such as Spark have implemented common recommendation
algorithms such as matrix decomposition.

Incremental Recommendation
Incremental recommendation can quickly analyze user interaction behavior
and update recommendation model and results after new user interaction
records are generated. When non-incremental recommendation algorithms
are faced with new interaction records, they will retrain the model in
combination with the original user interaction records. However, this way
of training takes longer time and badly affects the real-time performance of
recommendation. Incremental recommendation usually retains the features
of users and items in the previous stage as historical feature information.
When new interaction data are generated, the algorithm can quickly train
the model based on the historical feature information and the new
interaction data, so as to quickly update the recommendation results. After
the model training of the current stage is completed, the historical feature
information is updated with the features obtained from the training to
prepare for the next incremental recommendation. Incremental
recommendation is applicable to recommendation scenarios that require
high real-time performance. Therefore, non-real-time recommendation
scenarios usually do not require incremental recommendation.

5.2.3 Performance Evaluation
There are three main approaches to the performance evaluation of
recommender systems: offline evaluation, online evaluation, and user study.
The principles and challenges of these three approaches are discussed
below.



Offline Evaluation
Offline evaluation is to complete the testing and evaluation of the
recommender system according to some evaluation metrics in the offline
environment. Offline evaluation usually uses easily accessible experimental
datasets and is attractive to researchers due to its ease of implementation.
However, in the process of acquiring datasets, what researchers need to pay
attention to is that the datasets obtained should be able to simulate the real
application scenarios faced by the recommender system. Especially for
recommendation algorithms targeting at multiple application scenarios,
researchers should collect as many different types of datasets as possible to
cover all application scenarios, so as to ensure that the test results are
comprehensive and reliable. The way of dividing dataset and the choice of
evaluation metrics are also problems that need to be considered in offline
evaluation. First, dataset partitioning methods are usually hold-out and
cross validation. The process of hold-out is simple but easy to make the
model overfit. Cross validation can evaluate the generalization ability of the
model more effectively, but the process is complicated. Researchers need to
choose the appropriate dataset partitioning method according to the actual
scenario. Second, different evaluation indices will evaluate the performance
of the recommender system from different perspectives, but usually not all
evaluation metrics can achieve satisfactory results in the evaluation process.
Researchers should consider the pros and cons of different evaluation
metrics according to the application scenario, as well as the emphasis of the
recommender system to ensure the reliability of the evaluation results. It
should be noted that during offline evaluation, users’ responses may vary
depending on what are recommended. For example, as mentioned earlier in
causal recommendation, if the list of recommendation is changed for the
user, the user’s choices may not be consistent with the behavior in the
historical data. Therefore, offline evaluation usually cannot accurately
estimate the actual effect after the recommender system is online.

Online Evaluation
Online evaluation can effectively solve the inaccuracy problem of offline
evaluation. The common method of online evaluation is A/B testing: The
researchers divide the tested users into two groups and recommend with
two different methods. Over time, the researchers collect feedback from
users in each group and compare the two methods. Because of its simple



principle and easy implementation, A/B testing has been widely used in the
testing and evaluation of recommender systems. It can help researchers
quickly choose the appropriate method and effectively guide the
improvement direction of the recommender system. However, there are
some problems with online evaluation. Because online evaluation needs to
be carried out in an online environment, excessive traffic or frequent testing
may affect the practicability and user experience of the system. If these
problems cannot be properly solved, it will result in bias in the selection
and affect the effectiveness and reliability of evaluation results. Therefore,
researchers need to choose appropriate time to use online evaluation, which
generally needs to be used when they are confident at the evaluation
method and the evaluation environment meets certain requirements.
Additionally, researchers should choose appropriate online evaluation
metrics and user grouping methods according to the situation, so as to
ensure the fairness of online evaluation.

User Study
For evaluation metrics that are not able to calculate, user study is a better
method. By recruiting users to use the recommender system and obtain their
real experience, user study can help recommender system adjust and
optimize for real use scenarios. When doing user studies, researchers need
to ensure that the population distribution of the users surveyed is consistent
with that of the real users. For example, if the recommender system is
developed for all age groups, then the users surveyed should also be
recruited from all age groups. Meanwhile, in the process of user testing,
researchers should try their best to guide and help users complete the
system testing to improve user experience and satisfaction. The advantage
of user study is that compared with offline evaluation and online evaluation,
it can obtain users’ experience in real scenarios, which is of great
significance to the adjustment and optimization of recommender system.
However, the recruitment of the users surveyed is the biggest difficulty of
the user study method because the recruitment of users needs to invest a
huge amount of money and manpower. Additionally, it is also hard to
ensure that the recruited users are consistent with the real users.

5.2.4 Cold-Start Problem



The cold-start problem in recommender systems means that when a new
user or item enters the recommender system, the system cannot quickly
recommend the appropriate items to the new user or recommend the new
item to the appropriate users. At present, there are many solutions to the
cold-start problem. This section briefly introduces four common methods,
including popular item recommendation, recommendation with additional
information, recommendation with expert annotations, and conversational
recommendation.

Popular Item Recommendation
Recommender systems can record some popular and hot items. When a new
user comes in, the system can recommend these items to the user.
Recommender systems constantly adjust what to recommend according to
users’ feedback on these items to improve the quality of recommendation
and finally realize personalized recommendation of new users. Although
this method is easy to implement, for users who prefer niche items, the user
experience will be affected because the recommender system cannot obtain
the information about user preferences and provide personalized
recommendation in a short time.

Recommendation with Additional Information
Recommender systems can request access to the registration information of
a new user, such as the user’s gender, age, etc., or study the user’s
preference through questionnaires. For example, a music recommender
system can let users choose the types of music or singers they like when
they register. When the additional information of the user is obtained, the
system can use content-based recommendation algorithms to select items
that meet the user’s preference and recommend to the user. New users’
social information can also help improve the accuracy of recommendation.
Recommender systems can request some information in the user’s social
account, such as friends, groups of interests, to help the systems establish
accurate user profiles and realize personalized recommendation in the early
stage.

Recommendation with Expert Annotations
Before being added into the recommender system, new items can be
annotated by experts to specify some key attributes of the items. For



example, information such as the release time, director, and actors can be
manually added for a new movie, and information such as the type, the
singer, and the album can be added for a new song. After the attribute
annotation of the new item is completed, the recommender system can
quickly calculate the audience of the new item and recommend it to the
appropriate users. This method can effectively improve the accuracy of new
item recommendation, but it needs more manpower.

Conversational Recommendation
Conversational recommendation can understand users’ intentions and
preferences through dialogues with users and then realize personalized
recommendation. For example, after a new user enters the recommender
system, the conversational system constantly understands the user’s needs
based on the user’s input and generates new questions in the meantime, to
further explore the user’s preferences. After collecting enough information,
the system can make personalized recommendation.

5.3 Responsible Recommendation
Recommender systems need to interact with users frequently, which
includes collecting user data, training recommendation models, and
displaying recommendation results. In the process of interaction, how to
ensure that the rights of users will not be infringed by the system is crucial
to the success of the recommender system. Therefore, this section describes
how to technically reduce the potential risk that algorithms pose to users,
that is, how to realize responsible recommendation.

5.3.1 User Privacy
If a recommender system wants to obtain highly personalized and accurate
recommendation, it must obtain and fully understand users’ historical
interaction information and real-time demand. The recommendation quality
depends on the scale, accuracy, diversity, and timeliness of the data
collected by the system. However, the collection, involving a large number
of user behavior records and private information, inevitably makes users
concern about privacy leakage. In existing recommender systems, this is an
inevitable problem of “privacy-personalization trade-off”. Therefore, it is a
problem worth studying in the current era of big data that how to collect



and mine the value of user data while ensuring that user privacy is not
leaked to the recommender system and any third parties.

In 2015, eBay suffered a hacker attack that compromised 145 million
user accounts, including user names, addresses, birth information, and
passwords. In 2018, Facebook suffered a number of privacy breaches, with
the personal information of tens of millions of users, including names and
contact details, leaked due to software vulnerabilities and hacker attacks. In
2018, an information disclosure incident also occurred in a Chinese
domestic express company, with more than 1 billion pieces of delivery data,
including names, mobile phone numbers, and home addresses, being sold
online. At the early stage of the research, the privacy of users in
recommender systems has been highly valued by researchers. The well-
known Netflix Prize recommendation algorithm competition, for example,
had brought researchers’ enthusiasm for recommendation algorithms to a
high point, but it was later forced to stop due to user privacy leakage from
the open datasets. The researchers linked the Netflix dataset with the IMDb
dataset and discovered the political preferences and sensitive information of
some users [36]. In addition to these external factors, some internal factors
may also lead to user privacy infringement. For example, driven by
commercial interests, service providers may violate the privacy provisions
by accessing or collecting user data without authorization and sharing data
with third parties. At the same time, employees in the enterprise may use
their access rights to monitor users’ privacy for some interests or other
reasons.

With the occurrence of such incidents and the enhancement of people’s
awareness of privacy protection, users are paying more and more attention
to protect their data privacy and avoid their private information being
collected by Internet applications. Governments are also aware of the
importance of data privacy and have issued laws and regulations on data
privacy and privacy protection. In recent years, China has issued the
Measures for Data Security Management (Draft for Comments) and the
Data Security Law of the People’s Republic of China. The EU has issued
the General Data Protection Regulation (GDPR). California in the USA has
issued the California Consumer Privacy Act (CCPA). The promulgation of
these regulations guarantees the privacy of user data to some extent, and
commercial organizations cannot collect user data without supervision as
before any more.



In addition to laws and regulations, researchers can also improve the
original algorithms and design a more reasonable recommender system
architecture to protect user privacy. These methods fall into 3 main
categories: architecture-based methods, algorithm-based methods, and
federated-learning-based methods.

The architecture-based methods aim at minimizing the threat of data
leakage. For example, distributed storage of user data can effectively reduce
the damage caused by the disclosure of a single data source, and distributed
recommendation processes can increase the difficulty of unauthorized
access to data. Heitmann et al. [22] proposed a candidate architecture in
which users host profile data and decide which parts of the data can be
accessed by which service providers. Only with a specific certificate can an
application access the corresponding part of the profile data through the API
and use it for recommendation. Based on the idea of distributed
recommendation, Hecht et al. [20] proposed a recommendation process
based on P2P (peer-to-peer) system, comparing the data similarity between
the user and the others to obtain possible recommendation results. This
eliminates the need for a central server to store personal data centrally.
However, these methods can still expose user data to other users and require
high computing power on local devices.

The algorithm-based methods modify the original data so that after
modification user privacy will not be compromised even if the data or
model outputs are obtained by a third party. These methods consist mainly
of data perturbation and homomorphic encryption algorithms. The methods
based on data perturbation design effective data perturbation techniques to
protect user privacy, such as adding noises from zero-mean Gaussian
distribution to user ratings and then sending the perturbed data to the server
to realize privacy protection. Agrawal et al. [2] introduced additive
perturbation technique into the field of data mining for the first time to
protect data privacy by adding Gaussian noise to the original value. In
2009, the concept of differential privacy was introduced into the field of
recommender systems for the first time by McSherry et al. [35] from
Microsoft Research, providing user privacy protection with theoretical
guarantee. Differential privacy is also one of the most important methods in
data perturbation, which can reduce the risk of user privacy disclosure by
disturbing inputs or outputs of recommender systems. In 2015, Berlioz et al.
[5] evaluated the trade-off between privacy effectiveness and



recommendation accuracy when applying differential privacy to matrix
factorization. The solutions based on encryption can reduce the user privacy
leakage problem more strictly. At present, homomorphic encryption is the
main method. Its main characteristic is that the calculation can be
performed on the encrypted data, and the decrypted results are the same as
those based on plain text. In 2002, Canny [7] proposed a matrix
factorization framework based on homomorphic encryption. Users encrypt
local data through public keys and share private keys through distributed
key sharing. More than half of the users complete data decryption through
voting. This means that at least half of the users should be online at the
same time to complete model training and the calculation of
recommendation results. The main disadvantage of this method includes
high computation time, storage space, and communication cost, so it is only
suitable for small -scale recommender systems.

Federated learning is a machine learning framework for privacy
protection proposed by Google in 2016, which can realize model update
without collecting user data. It was first used for model update on mobile
phones and later extended to more application scenarios. Traditional
machine learning methods require training data to be centralized in a single
machine or data center. However, federated learning completes the machine
learning model training through the distributed collaboration of thousands
of users. In the training process, all user data are only saved in users’ own
devices, and only the intermediate calculation results are shared with each
other instead of the original data, so as to protect user privacy. Federated
learning avoids the privacy risks and data security problems caused by
centralized data collection and storage and can use all users’ data to train
the model. In fact, long before the concept of federated learning was
proposed, the same idea had been used to protect user privacy in
recommendation algorithms. For example, in a paper published in 2016,
Dongsheng Li et al. [27] proposed to calculate the similarity between items
based on the sharing of intermediate results among users, which can strictly
protect users’ privacy during the calculation process. In contract, the
federated learning framework is more general, where a host (a central
server or a single member) initiates the learning task. Under the
coordination of the host, every member trains the model based on local
data. The host then collects the training results of all members and safely
aggregates them into a global model and shares the updated global model



with each participant. The process is repeated until the global model
achieves the training objective, such as convergence. Finally, all
participants share the globally optimal machine learning model. Throughout
the process, the original data of the participants are kept locally and will not
be exchanged or transferred. Federated learning allows for some deviation
in the accuracy of the training model but can provide data security and
privacy protection for all participants. In recent years, many researchers are
devoted to the realization of machine learning models based on federated
learning, such as deep neural networks based on federated learning.
Additionally, researchers also try to integrate different privacy protection
methods, such as combining differential privacy, homomorphic encryption,
and other theoretically rigorous methods with federated learning, which
provides a theoretical basis for introducing federated learning into
recommender systems.

As people pay more attention to privacy protection, more and more
privacy protection algorithms will be applied to recommender systems.
Additionally, with the development of other basic information technologies,
such as mobile computing and 5G, many performance bottlenecks of
privacy-preserving recommendation algorithms will be alleviated, and
privacy-preserving recommendation algorithms will be developed further.

5.3.2 Explainability
In addition to providing recommendation results, explainable
recommendation also requires explanation for the recommendation, which
can improve the transparency, persuasiveness, effectiveness, credibility, and
user satisfaction of the recommender system. Additionally, the development
of explainable recommendation can help system designers diagnose, debug,
and improve the recommendation algorithm. Explainable recommendation
mainly includes explanation generation and human–computer interaction.
The former focuses on how to generate explanations, while the latter
focuses on how to present the explanations of recommendation results. This
section will briefly introduce the relevant knowledge of explainable
recommendation from these two aspects.

Technical Routes to Recommendation Generation
According to the position of the generation of recommendation explanation
in the whole recommendation pipeline, explainable recommendation can be



divided into two technical routes: explainable recommendation models and
explaining after recommendation. Some basic ideas and representative
methods of each technical route are introduced below.

Explainable recommendation models are expected to have certain
transparency, so that the explanation of corresponding recommendation
results can be generated at the same time when generating recommendation.
At present, the main techniques applied in recommender systems can be
modified to obtain model explainability. Table 5.1 summarizes the
improvement schemes for explainable recommendation based on different
technical routes and their corresponding representative models. This table is
a partial summary. Explainable recommendation is a rapidly developing
field. In addition to the technical routes and improvement schemes
mentioned in the table, there are many outstanding techniques that have not
been covered.

Table 5.1 Explainable recommendation improvement schemes based on different technical routes
and their corresponding representative Models

 Explainable improvement  

Technical route scheme Representative model

Factorization models Align with explicit features Explicit factor models (EFMs)
[49]

 Neighbor-style explanations Fast influence analysis (FIA) [13]
 Relevant users/items explanations Explainable matrix factorization

(EMF) [1]
 Explanations based on features

extracted from reviews
Sentiment utility logistic model
(SULM) [4]

 Build topic models based on reviews Hidden factor and topic (HFT)
[34]

 Integrate other structural data The FacT [40]

Graph models
(exclusive of graph
neural networks)

Graph propagation TriRank [19]

 Graph clustering Overlapping co-CLuster
Recommendation (OCuLaR) [21]

Deep learning models Apply attention mechanism on review
data

Dual Attention-Based Model (D-
Attn) [37]
Deep Explicit Attentive Multi-
view Learning Model (DEAML)
[16]



 Explainable improvement  

Technical route scheme Representative model

Neural Attentional Regression
model with Review-level
Explanations (NARRE) [9]

 Auto-generated text explanations based
on natural language generation

Automatic Generation of Natural
Language Explanations [15]

 Crowd-based text explanations Crowd-Based Personalized
Natural Language Explanations
for Recommendations [8]

 Visual explanations Visually Explainable
Collaborative Filtering (VECF)
[11]

 Explanations based on capsule network
logit units

Capsule Network-Based Model
for Rating Prediction with User
Reviews (CARP) [26]

 Explanations based on user historical
behavior impacts

Sequential Recommendation with
User Memory Networks (RUM)
[12]

Knowledge graph
models

Entity-based explanations Programming with Personalized
Page Rank (ProPPR) [46]

 Path-based explanations Policy-Guided Path Reasoning
(PGPR) [3]

 Graph propagation RippleNet [44]
 Integrate induction of rules from

knowledge graph with construction of
rule-guided neural recommendation
model

Jointly Learning Explainable
Rules for Recommendation with
Knowledge Graph [33]

Different from the above explainable recommendation models,
explaining after recommendation is to build a separate model to explain the
recommendation results from the recommendation model. When the
recommender system architecture is complex, it is difficult to provide
embedded explainability in the model, but it is often not that hard to
provide a user understandable explanation for the recommendation results.
For example, an e-commerce platform recommends products to users
through a complex hybrid recommender system and gives recommendation
explanations such as “80% of your friends have bought the product” based
on simple statistics. It is worth noting that “finding” an explanation for the
recommendation result is not providing a false explanation. In machine
learning, a prominent idea of model agnostic explanation is to approximate



complex models with simple models because such simple models help to
understand parts of complex models.

From the perspective of cognitive science, constructing explainable
recommendation model and explaining after recommendation correspond to
the two ways in which humans provide explanations for behaviors. The
former can be analogous to asking a person who is used to thinking twice
before he/she acts to explain his/her actions. He/she can analyze in great
detail the reasons for making the decision. But in real life, there are also
many cases where you make a decision based on intuition first and then try
to explain that decision. These cases correspond to the latter. No one way is
better than the other. It needs to consider the application requirements of the
recommender system when deciding how to choose.

Presentation of Explainable Recommendation
According to different technical routes of recommendation generation, there
are various ways to present recommendation explanation, including the
following four: user/item-based explanation, feature-based explanation,
text-based explanation, and visual-based explanation.

User/item-based explanations are common in collaborative filtering
recommender systems, where relevant users/items are provided as
explanations, such as “80% of users similar to you like item A”. It is worth
noting that in recommender systems based on collaborative filtering,
relevant users are generally defined as users with similar behavior patterns.
Under this definition, a user may not know the other relevant users, which
makes the explanation less effective. Additionally, this setting may also lead
to user privacy issues. Social recommendation is a solution to this problem.
Compared with exposing one’s preferences to strangers, sharing preferences
among friends will be more acceptable in terms of privacy and explanation.

Feature-based explanation is closely related to content-based
recommender systems. In content-based recommendation, the system
provides recommendation by matching user features with the features of
candidate items, so intuitive explanations can be made based on the
features. One common approach is to present the features that match the
user, such as the illustration of car recommendation shown in Fig. 5.1.
Compared with the rich features of items, users’ features are usually
relatively simple, among which the demographic information and user
reviews are common in recommender systems. User’s demographic



information can be used to generate demographic-based explanations, such
as “80% of users of your age like item A”. Opinion-based explanation is an
important way to make use of user reviews for recommendation
explanation. This method extracts triplets of the user’s “Aspect-Opinion-
Sentiment” as features from the user’s reviews (or other data sources) and
provides explanations by showing how user preferences match the items in
all aspects.

Fig. 5.1 Illustration of explanation for car recommendation
As the name implies, text-based explanation provides recommendation

explanation in the form of plain text, which can be divided into template-
based text explanation and generative text explanation in terms of
flexibility. Template-based text explanation first creates an explanation
template and then fills the template with different words to provide
personalized explanations for different users. For example, Zhang et al. [49]
proposed that feature-based templates could be designed to explain why
“recommend” and “disrecommend” decisions are made for users. Item
features are variables in the template and are filled adaptively with those
that are considered as the most relevant by the recommendation model. The
template designed by Wang et al. [45] contains both features and
opinionated phrases, providing more opinionated textual explanations
through various combinations of features and opinionated phrases.
Although researchers are constantly improving the complexity of templates,
template-based explanation still suffers from lack of diversity and
personalization. Generative text explanation can solve the explanation



personalization problem by using the technologies such as natural language
generation to generate recommendation explanation directly. Li et al. [28]
used recurrent neural networks to automatically generate recommendation
explanations simulating those on Amazon and Yelp. Lu et al. [32] proposed
a method of jointly learned recommendation and explanation, which uses
the sequence-to-sequence architecture commonly used in the field of natural
language processing to generate text explanation. Compared with template-
based text explanation, generative text explanation has higher degree of
freedom, but also faces more complicated noise problems, such as whether
the explanation sentences are smooth and whether the semantics are
consistent. Therefore, the current recommender systems favor explanation
methods based on templates.

Visual-based explanations are presented by highlighting or boxing in the
picture the parts corresponding to the main features of the generated
recommendation. As shown in Fig. 5.2, the model can capture the most
important areas in the image as explanations manually or by attention
mechanism. Lin et al. [30] studied the explainability problem in outfit
recommendation, proposed a method with mutual attention mechanism to
correlate features in images with features in texts, and then used important
text fragments and image regions as the recommendation explanation. Chen
et al. [11] proposed a region highlighting method to select explanation
regions from images. Since different users have different visual preferences,
this method associates users’ preferences with image regions through the
attention mechanism to provide explainable recommendation. The research
on visually explainable recommendation is still in its early stage and there
are few related studies. As deep learning-based image processing
technology continues to advance, images will be integrated into
recommender systems to obtain better accuracy, efficiency, and
explainability.



Fig. 5.2 Visual explanation of product recommendation

5.3.3 Algorithm Bias
In recent years, social fairness has attracted wide attention from all walks of
life, and the algorithm bias has also become a hot topic in the field of
machine learning. In the field of recommender systems, the algorithm bias
that researchers pay attention to mainly includes: feature bias or popularity
bias, statistical fairness, conformity bias, and long-term fairness, etc.

Feature bias mainly focuses on the unfairness of supervised learning
relying too much on predetermined sensitive features. For example,
recommender systems may amplify the association between “gender” and
“film genre”, so that adventure or horror films favored by male users may
not be recommended to female users or the possibility of recommendation
is very low, leading to the deviation between the recommendation results
and the actual situation, and bringing gender injustice. If popularity is
regarded as a feature of an item, the popularity bias can also be considered
as a special case of feature bias. Popularity bias means that the
recommender system tends to recommend popular items to users, so
unpopular items will be treated unfairly by the recommender system. For
high-quality new items, this popularity bias will bring serious problems. For
example, some high-quality films are rarely recommended to users due to
their small audience or low early ratings. One way to solve feature bias is to
ensure the independence between recommendation results and features, so
that the recommendation scores satisfy the following formula [23]:

(5.1)

where R denotes the rating, and V  represents a given feature, such as
popularity, gender, occupation, etc. The above formula indicates that the
recommendation rating should be independent of the features in V , that is,
to ensure that the rating is unbiased. In order to realize the above
independence in the optimization process, a penalty term can be added to
the optimization objective, that is, to realize the independence of R and V 
by reducing the mutual information of R and V .

Statistical fairness mainly focuses on whether the recommendation
results, obtained by one user or a group of users, are consistent with the
distribution of user interests. One way to measure statistical fairness is
Demographic Parity, that is, whether the distribution of recommendation



results is the same as the distribution of user interest or the distribution of
users’ interests within a group. For example, if 70% of the users in a group
like comedy movies, 30% like action movies, then the recommendation
results should have 70% comedy movies and 30% action movies. For
individual users, one way to achieve statistical fairness is recommendation
calibration [38], that is, to design metrics to measure the statistical fairness
of the recommendation results, such as the KL divergence between the
recommendation distribution and the user interest distribution, and then
reorder the recommendation results according to the metrics. For group
users, one way to achieve statistical fairness is to ensure that the
recommendation bias is no more than the bias of the input data [42], that is,
to not amplify the statistical bias. For example, the probability that an item
is recommended in each group should be the same as the probability that
the item appears in the training data. If there is a deviation between the two,
it can be solved by reordering.

Conformity bias means that users are easily influenced by other users’
opinions and tend to give up their unique interests in order to be in line with
the opinions of the majority, such as the herding effect. Lederrey et al. [24]
did a comparative analysis of two beer rating websites and found that when
the initial ratings of the same beer are quite different, their final ratings will
also have a huge difference. That is, when a beer got a lot of bad reviews
initially, it will have a lower overall rating on the website. On the contrary,
if a beer received more positive initial reviews, that beer will have a higher
overall rating on the website. In order to solve this problem, Liu et al. [31]
proposed a matrix factorization-based conformity modeling technique,
which changes the preference-based recommendation in matrix
factorization to recommendation that comprehensively considers user
preferences and public opinions. In addition to modeling conformity
directly, related research also considers the impact of social relationship on
user conformity and proposes methods to eliminate social conformity from
user prediction ratings. For example, Wang et al. [47] pointed out that there
are strong social ties and weak social ties in social networks, and the
influence of different social ties on users’ interests is also different.
Therefore, they proposed to learn the different social ties of each user, put
the differences in strength into the modeling of recommendation algorithm,
and control the influence of social relations on users’ ratings through
hyperparameters.



The above issues of fairness only consider short-term or static fairness,
while the interaction between the recommender system and users is long-
term and dynamic. Therefore, it is necessary to take into account how to
ensure the fairness in recommendation in a long-term and dynamic
environment, namely, long-term fairness. For popularity bias, which is one
of the issues of fairness in recommender systems, the popularity of the item
changes over time, so the strategy to ensure the fairness in recommendation
needs to track this dynamic bias and applies corresponding correction or
calibration. One way to improve long-term fairness is to adopt the idea of
reinforcement learning and define long-term fairness problem as a
Constrained Markov Decision Process [17]. The model can adjust the
recommendation strategy according to the dynamic bias to ensure that the
demand for fairness can be continuously satisfied. Although the above
method has a strict guarantee on fairness, it is complex in application.
Therefore, a simpler method incorporating randomness can be used to
improve the long-term fairness in recommendation. Borges et al. [6] found
that adding a simple random noise component to the sampling process of
variational autoencoder can improve the long-term fairness of the model,
but this method would compromise the accuracy of the recommendation
results. Experiments show that this method can reduce the algorithm bias by
76% despite a decrease of 5% in the recommendation accuracy.

5.4 Summary
This chapter introduces the hotspots of recommender system research, the
key challenges of recommender system application, and how to achieve
responsible recommendation technically. These contents may become the
key of recommender system research and application in the future, so they
need the continuous attention of researchers and developers.
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Abstract
This chapter focuses on some problems and considerations in industry applications of recommender systems, and
discusses the details of these actual applications based on the code in the Microsoft Recommenders repository and
a cloud-based reference architecture. Readers are encouraged to follow the steps and methods in the text in a
hands-on manner and experiment using the algorithms introduced in previous chapters.

Keywords Industry applications – Microsoft recommenders – Hands-on – Cloud-based architecture

6.1 Introduction
In the previous chapters, the recommender system is introduced and discussed theoretically with details. For the
recommender system that is industrially applicable, there are usually key points in addition to recommender
system algorithms. Examples of such key points are data management and governance, evaluation metrics, system
DevOps, administration, etc. Due to the variety and complexity of the technical details, establishing an industry-
grade recommender system is more complicated than the commonly seen software system. In this chapter, the
practice of building applicable recommender system is discussed. In combination with the theoretical introduction
in the previous chapters, a systematic overview on how to build an industrially applicable recommender system is
presented. In addition, Microsoft Recommenders, an open source repository of best practices on recommender
systems on GitHub, is used to highlight implementation details for each topic. An end-to-end recommender system
is used as an illustration to demonstrate the full lifecycle of building and deploying a recommender system. The
hands-on code examples are provided for the readers to practise.

6.2 Architecture and Implementation of Industry-Grade Recommender
System
6.2.1 Characteristics of Industry-Grade Recommender System
Nowadays, with the proliferation and rapid growth of Internet technology, more and more corporations are starting
to invest in mining the value from their data and information flows to boost revenue growth. Corporations are
moving beyond initial adoption of recommender systems for targeted sections of the business and have begun
applying this technology across many core areas within the organization. Examples can be found in Alibaba’s e-
commerce service, TikTok video app, etc. In addition, other than the Internet industry there are effective
application of the recommender system technology as well. It is observed that in different industry verticals
wherever there are enterprise-client interactions, by nature of the recommender methodology, the uplift of business
growth by leveraging the technology is witnessed thanks to its positive impact on building the channel for
information exchange.

Due to the differences in various industry verticals, the applicable recommender system in those industries
varies. In general, an industry-grade recommender system should be scalable, explainable, maintainable, and
configurable. The uniqueness of the recommender system technology lies in the fact that, deploying a
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recommender system should meet the specifications from various aspects so as to serve to the sophisticated
business request. Examples of such specifications are listed but are not limited to the items below.

In the first place, the mainstream recommender system is mostly based on the machine learning algorithms.
Model training and retraining cycle is vital to the business needs. Usually, the choice of the training cycle is
dependent on the actual demand. For example, for the use case of e-commerce where the user base size is
magnificent, the retraining cycle of the recommender system model would be as short as possible – this is for the
reason that the model is capable of capturing the massive feedback from users in real time. The ask for frequent
retraining leads to the requirement of performing large-scale machine learning algorithm training with high
efficiency, and hence, this becomes one of the critical tasks in designing and developing recommender system. In
some special circumstances, due to the dynamics of training data, online learning or reinforcement learning is used
to replace the conventional machine learning for an enhancement of recommendation quality.

Usually the feature vectors that represent characteristics of user and product for building a model in a
recommender system have high dimensionalities. These high-dimensional representation of data guarantees the
generality of the trained model on the data that are not in the training set. It is a challenge to train a model with
high-dimensional data – the challenge is even bigger if the recommendation model is a deep learning based one.
For the deep learning based model, parameter optimization is pivotal. In some of the deep learning tasks such as
natural language processing, the parameter optimization needs to be performed for only once. The cost of using
and retraining a pre-trained model is not costly even if the tasks require human involvement. As for the
recommender system, however, due to the high velocity and nuanced business relevancy, the parameter
optimization needs to be conducted more iteratively compared to the natural language process model building.
Also, the model building of a recommender system requires system-level support such that the parameter
optimization can be greatly automated for efficiency.

In addition, the algorithms used in recommender systems diversify. Correspondingly, the implementations of
these recommender algorithms also vary. Hence, the support from an architectural perspective is needed. In the
industrial recommender system, there are usually more than one recommender models deployed such that they
collaboratively optimize the final objective. This requires the heterogeneous computing architecture to allow the
workloads of different algorithms. For example, a deep learning model may require the distributed GPU cluster for
model training whilst the Spark-based model may require the distributed CPU cluster for model training.

Evaluation is often neglected but it plays a vital role. In many recommendation scenarios, the online evaluation
metrics are often more important than the offline ones. The offline metrics serve to model selection and parameter
optimization whilst the online metrics help evaluate the final gain of the recommender system for business
application. In many times the output of the online evaluation and the offline evaluation may not align. This
discrepancy requires the human involvement from the engineering side and the business side to jointly choose the
appropriate evaluation metrics for both the online and the offline cases that yield the optimal outcome.

And last but not least, a recommender system does not merely rely on the machine learning algorithms,
heuristics that originate from business logic sometimes help significantly. This requires the algorithmic engineers
who design and implement the recommender systems to take a close eye on the business demand. For those
demands that cannot be conveniently abstracted to algorithmic implementation, business-based rules or such can
be added to help converge the recommender system to get the optimal gain. These rules may be diversified
according to the various needs on the business side, but the general result they help generate may be phenomenal.

6.2.2 Commonly Used Architecture of Recommender System
Technically, a recommender system can be categorized by its deployment characteristics, whether it is an offline
recommender system or a real-time recommender system.

6.2.3 Offline Recommender System
As shown in Fig. 6.1, an offline recommender system consists of the following major components, raw data, data
preprocessing and feature engineering, model training, and recommendation and front-end service.

Fig. 6.1 Offline recommender system

Raw data is composed of the data that is required by building a recommender system. Examples of raw data
are user behavior, item-related data, log information, text, images, etc. Usually, the data size is rather big (TB or



even PB); therefore, saving the data requires technologies such as data lake so that the data of different formats can
be persistent in a centralized way.

Before it is applied for model building, the raw data needs to be preprocessed and featurized. In the
recommender system pipeline, these data preprocessing steps use not only the conventional techniques in machine
learning such as normalization, standardization, duplication, removal of null value, etc. but also the feature
transformation and selection techniques that are unique to recommendation problems. For example, for some
recommender algorithms (e.g., Wide and Deep), feature product is used for building model. As a result, the feature
products can be generated in the feature engineering steps and then get used in the subsequent model building
process. Some deep learning recommender algorithms require embeddings to represent user/item features or the
unstructured data (e.g., text, image, etc.). These embedding vectors can be pre-computed in the feature engineering
process. Usually, due to the large-scale computation in data preparation, this stage is performed on a big-data
platform such as Spark, Kafka, etc.

Model building is the core of the recommender system. Due to the variety of the recommender algorithms, the
platform and framework used for model building vary. As aforementioned, the computing platform for model
building is usually heterogeneous. For the offline recommender system, the recommendation results can be
generated in an offline manner. The collaborative filtering algorithm can be used for offline recommendation. The
results of the recommendation pipeline can be generated immediately once the model has been trained.

One of the uniquenesses of the offline recommender system is that, the recommendation results generated from
the model can be persisted in the data storage medium. This mechanism guarantees that the computational efforts
happening in data preprocessing and model training do not infer the last stage where the front-end service gets
recommendation results so that there is no unnecessary latency. This is not to say that there is zero latency in the
entire system. Instead, the latency of an offline recommender system is dependent on the results-fetching operation
from the front-end service. Therefore, the actual latency of an offline recommender system relies on the data
storage for recommendation results persistence. A common data storage medium used in the recommender system
is a concurrent and high-performance distributed database. This makes sure that the pre-cached recommendation
results in the storage can be obtained consistently and coherently from any circumstances with latency that meets
the engineering specifications.

The front-end service is usually a hosted service that is exposed to either a web or a mobile app client to allow
the users to access to the recommender system. In the offline recommender system, the dataflow underlying the
hood of the user access is that, based on the user-defined information it goes to the database to fetch the pre-
computed recommendation results. The industrial implementations of such front-end service are usually based on
Docker containers or Kubernetes.

In general, offline recommender system is easy to build and maintain. It does not have high requirement for the
latency in data preprocessing and model building. It needs a high-performance underlying infrastructure, especially
the database that preserves the pre-computed recommendation results. The offline recommender system is usually
applicable in the use cases where the recommendation tasks are highly scalable and the requirement for real-time
recommendation is low. Sometimes, the offline recommendation system architecture is also used as a recall layer
in a complex recommender system to generate the candidate set that can be used for re-ranking in the next stage.
This will be discussed with details in the following content.

Real-Time Recommender System
As name suggests, a real-time recommender system generates recommendation results in a real-time manner.
Figure 6.2 demonstrates the architecture of a real-time recommender system. Similar to an offline recommender
system, a real-time recommender system needs to preprocess the raw data before the data can be used for model
building. Differently, the real-time recommender system does not preserve the recommendation results
immediately after the model is built. Instead, the model object will be deployed and hosted onto a service such that
the front-end queries are sent back to the model for scoring in real time. In Fig. 6.2, in addition to the dataflow
from the model training side to the front-end, there is another flow from the data preprocessing module to the
front-end which triggers the model scoring and ranking. In the scoring and ranking procedure, the features that
have been used for model building are used for model scoring, too, to make sure the feature consistency.



Fig. 6.2 Real-time recommender system
Compared to the offline recommender system, the real-time recommender system is beneficial in capturing the

velocity and timely characteristics of the data. Meanwhile, the real-time recommender system is capable of
generating recommendation results with larger varieties so that the recommendation performance is enhanced.
However, due to the complexity, implementation efforts of a real-time recommender system are also higher than an
offline one. The origin of the efforts is mainly model scoring and ranking which needs to be performed in real
time. Both scoring and ranking have relatively high complexity, especially for those large-scale recommendation
tasks, the model scoring should be particularly optimized to make sure the entire recommendation pipeline meets
the latency requirement. Therefore, the front-end of a real-time recommender system usually uses a high-
performance framework.

Nowadays, the recommender system implementation does not rely on merely one of the two recommender
system architectures. A smarter way of building an applicable recommender system is to conduct a hybrid
approach, to allow the two architectures to contribute in various use case scenarios. The benefits of doing this is
that, the actual implementation of the recommender system can be achieved according to the feedback mechanism
of the users at the front-end. On top of the two fundamental recommender system architecture, there are a lot more
components developed in the modern recommender system to optimize and uplift the recommendation
performance.

6.2.4 Industrial Implementation of Recommender System
Compared to other types of the artificial intelligence technologies, recommender system has a closer binding with
its business application. In the recent years, in different industry verticals, recommender systems that aim at
different problems sprout vastly. In this subsection, some of the representative recommender system in industry are
briefly introduced.

Amazon is considered to be one of the first companies that put the recommender system technology into
application for its core business. To effectively promote its products and enhance user loyalty, Amazon developed
the product-based collaborative filtering recommender system. The recommender system calculates the similarity
of the products and find those products that have been purchased by customers in the past, based on which the new
products are recommended. This classic method looks naive today but then it generated significant impact – at the
scale of about 30 million users and millions of products, the product-based recommender system guarantees the
system scalability, and compared to other algorithms at that time it was more impactful and reliable [7].

Netflix started applying recommender system in its media streaming service early. In 2006, Netflix launched
the “Netflix Prize” competition, from which two classic recommender system algorithms, matrix decomposition
and restricted Boltzmann machine, were proposed and shed light on the following research and development of
recommendation algorithms. In the following development, the engineers at Netflix progressed the objective of a
recommender system from “scoring” to “ranking” so that the recommendation results are more close to users’
psychological preferences than before. In the meantime, architecturally, Netflix proposed the online and offline
separation as well as the scoring and ranking components in recommender systems. As shown in Fig. 6.3, the
architecture inspires many following designs which are used as references for sophisticated systems [1].



Fig. 6.3 Netflix recommender system architecture
In addition to the aforementioned vertical applications of recommender system, there are also design and

implementation of reusable modules for building recommender system at organizations where there is a lack of
technological foundation. One of the examples is the Merlin recommender system framework developed by
NVIDIA [9]. Merlin is a framework that allows developers to design and implement an end-to-end recommender
system that consists of the components of data preprocessing, model building, and model scoring. In Fig. 6.4,
compared to the normal recommender system, Merlin is optimized by leveraging the GPU technology to make the
model building, especially the deep learning one, more computationally efficient.

Fig. 6.4 NVIDIA Merlin architecture

6.3 Practices of Recommender System



Microsoft Recommenders collects the classic and advanced methods used in recommender system related topics
since its birth. These methods include the key topics such as data preprocessing, algorithm selection, etc. Microsoft
Recommenders was developed in the era when the recommender system technology sprouted vastly. Though the
research publications in the realm have been produced dramatically, there are pending challenges that apply the
recommender system into production. For the organizations that do not have sufficient technological foundation,
applying recommender system for its business becomes a task that cannot be easily accomplished. The challenges
include but are not limited to the following. In the first place, despite the large volume of publications related to
recommender system being generated every year, references that can be used directly for industrial applications are
rare. In addition, most of the tools and/or packages that are off-the-shelf in the market for building recommender
system are merely aimed at building particular components of a full-fledged system. Also, different packages or
tools are implemented differently and independently such that integrating them together is difficult. The last but
not the least, majorities of the packages that are developed by researchers or engineers with academic background
may not fulfill the requirement of industrial software standard.

Microsoft Recommenders was developed to resolve the aforementioned issues [3]. Microsoft Recommenders
was launched and publicized on GitHub as an open sourced project. It uses MIT license. It supports various
running environment that uses CPU, GPU, or Spark. It is noted that, as of the year when this book is published,
i.e., 2023, Microsoft Recommenders is moved to Linux foundation.

In general, Microsoft Recommenders is featured by the following:

Microsoft Recommenders provides a set of best practices that can be used for developing and deploying
industry-grade recommender system. The best practices cover not merely the classic recommender system
technologies but also the advanced ones, which makes Microsoft Recommenders surpass many of the existing
packages thanks to the rich implementation references it offers.
Microsoft Recommenders is designed and developed by following the commonly used design pattern in the
modern software development. For example, one of the principles used in development is “evidence-based
design.” This principle requires the code implementations in Microsoft Recommenders referenceable, and these
implementations have been validated in the real-world applications. These principles help the developers and
contributors to commit quality codes to Microsoft Recommenders, which makes them deployable into
production environment.
The persona of Microsoft Recommenders is not the developers in enterprise. Researchers in academia, lecturers
in education institute, college school students, etc. can all be the users. Due to the compatibility between the
interfaces in Microsoft Recommenders and the ones used in the common packages or tools, it is convenient to
the users to use the functions from Microsoft Recommenders directly to extend or research the recommender
algorithms.
Compared to some open sourced software that may not have regular maintenance, Microsoft Recommenders is a
community-driven repository with maintainers and contributors that are at the forefront of recommendation
system development and implementation, including data scientists and researchers from Microsoft among
others. All the code commits to the code base need to go through unit/integration tests to make sure that they all
function well. This also requires that the developers who contribute codes to the repository write testing
modules to conduct the tests on the codes. The benefit of doing such is that the codes in Microsoft
Recommenders which are collected from the community are qualified.

The following subsections will introduce the development of an end-to-end recommender system with the open
source code examples that are available in Microsoft Recommenders. Before doing the practices, it is required that
the Microsoft Recommenders needs to be installed. Microsoft Recommenders can be run in multiple environment
such as Windows, Linux, and MacOS. It supports Python 3.6 ˜Python 3.9.

If different Python versions are used, some packages may incur installation errors. It is a common practice to
create a virtual environment by using conda or venv to isolate the packages to be installed. Here, it is assumed that
the readers optional choose to do this on his/her own demand.

After finishing the prerequisites, Microsoft Recommenders can be configured by following the steps below.
Step 1, given that some of algorithm implementations in Microsoft Recommenders require code compiling, it

is therefore needed to guarantee that the tools that are required for the compilation are pre-installed. For example,
assuming the environment to install Microsoft Recommenders is Linux, build-essential should be installed to make
sure that all the compiling tools can be properly used. This can be done by running the command as below in the
Linux environment. (It is worth noting that if Windows system is used, this step can be replaced by installing
Microsoft C++ Build Tools.)



 sudo apt-get install -y build-essential

Step 2, after installing the compiling tools, the Python library of Microsoft Recommenders can be installed by
using PyPI. The name of the corresponding Python library of Microsoft Recommenders is recommenders. Users
can install and configure the library based on the actual needs about how to use it, by using the parameters in the
pip installation. Recommenders support the installation parameters of examples, GPU, spark, dev, all, and
experimental, and different parameters correspond to different installation configurations. The default is the
minimum installation, i.e., examples. If the users want to use the recommender library with the setup of examples,
the following pip install command can be used.

 pip install --upgrade pip

 pip install recommenders[examples]

Step 3, since Microsoft Recommenders supports various development environment, based on needs the users
can choose to install libraries that are required by the running environment. It is worth mentioning that the Python
libraries that are run in different environment have some special requirements that need to take care of.

For the GPU versioned Microsoft Recommenders, since some relevant libraries (e.g., TensorFlow) require the
acceleration toolkit by NVIDIA, users who use Microsoft Recommenders for GPU-based computation need to
pre-install the CUDA-related toolkit. This can be done by the following.

 conda install cudatoolkit=10.0 "cudnn>=7.6"

Microsoft Recommenders supports the Spark-based recommender system development. This can be done by
configuring the parameters for Spark. Meanwhile, Microsoft Recommenders, the Spark version, is configurable
and runnable on not merely the Spark cluster but also the standalone single node. For the Microsoft Azure users,
the two use cases can be conducted conveniently on Azure Databricks or Azure Data Science Virtual Machine,
respectively.

After the installation of Microsoft Recommenders, the Python library can be loaded inside the Python console
by using the following command.

 import recommenders

In the following subsections, the best practices in Microsoft Recommenders are presented with code examples.

6.3.1 Data Management and Preprocessing
Data management and preprocessing plays a vital role in constructing a recommender system. Due to the variety of
recommender systems, at many times, the data preparation and preprocessing should closely follow the use cases
that the recommenders system serves to. In addition, data transformation is also important in building
recommender system. In this subsection, the data split and data transformation, which are the two most sub-tasks
in data preparation in recommender system, will be introduced.

Data Split
Majorities of recommender systems are based on machine learning algorithms. Therefore, when building a
recommender model, the raw data needs to be partitioned into the training set, validating set, and testing set.
Compared to the conventional machine learning algorithms, the recommender system algorithms require special
treatment due to its use case specific requirement. Hereafter, it is assumed the user behavior data in the
recommender system is the most commonly one, which consists of four fundamental pieces of information, i.e.,
“user id,” “item id,” “rating (optional),” and “timestamp.” In the following examples, these four columns are
selected from the raw data of MovieLens dataset. The utility function in Microsoft Recommenders can help
download the MovieLens dataset and load them into the Pandas dataframe. Code examples for doing such are
shown as below.

 from recommenders.dataset.download_utils import \ maybe_download

 import pandas as pd

 # Here the MovieLens 100k dataset is used as an example.



 DATA_URL = http://files.grouplens.org/datasets/movielens/ml-100k/u.data

 DATA_PATH = "ml-100k.data"

 COL_USER = "UserId"

 COL_ITEM = "MovieId"

 COL_RATING = "Rating"

 COL_TIMESTAMP = "Timestamp"

 filepath = maybe_download(DATA_URL, DATA_PATH)

 data = pd.read_csv(filepath, sep="\t", names=[COL_USER, COL_ITEM, COL_RATING, COL_TIMESTAMP])

 data_head()

Data format as read into the dataframe is shown below.

 UserId MovieId Rating Timestamp

 196            242            3              881250949

 186            302            3              891717742

 22            377            1              878887116

 244            51            2              880606923

 166            346            1              886397596

There are multiple ways of performing data split. Random split is simplest way of splitting data. This method
of splitting randomly sample data points from the raw user behavior data by using the given split ratio.

 from recommenders.dataset.python_splitters import python_random_split

 data_train, data_test = python_random_split(data, ratio=0.7)

 data_train.shape[0], data_test.shape[0]

 # The split result has a ratio of 70%

 (70000, 30000)

The split function python_random_split in Microsoft Recommenders also supports multiple ratios as input
parameters. This makes it convenient to get multiple subsets, such as training set, validating set, and testing set,
from the raw data. Also, when specifying the splitting ratio, the user can input any number even though they do not
sum up to 1 – the function normalizes the ratio automatically according to the input number and perform the
corresponding split. Example codes are shown below.

 data_train, data_valid, data_test = python_random_split(

     data,

     ratio=[0.6, 0.2, 0.2]

 )

 data_train.shape[0], data_validate.shape[0], data_test.shape[0]

 # The result split ratio is 60\%, 20\%, and 20\%.

 (60000, 20000, 20000)

In many cases, data split in the recommender model building is performed based on user or item. The
advantage of doing so is that it guarantees the users or items can consistently exist in both the training and the
testing sets, which favors the model evaluating for some recommender algorithms. For example, for most of the
collaborative filtering algorithms, it is very difficult if not impossible to perform recommendation for the “cold-
start” users or items. As a result, when evaluating the model performance, if there are different user groups used in
the evaluation, the comparison becomes unfair because the users-under-test may not even be used for building the
model. The following code examples demonstrate how the function python_stratified_split in Microsoft
Recommenders is used to perform data split by user. In the function call, in addition to the parameter of split ratio,
the parameter of filter_by is also needed to specify whether the data is split by user or item. Also, to make sure that



there are at least certain number of users or items when performing the user-based or item-based splitting, there is
another parameter min_rating for specifying the minimum interaction counts.

 data_train, data_test = python_stratified_split(

     data,

     filter_by="user",

     min_rating=10,

     ratio=0.7,

     col_user=COL_USER,

     col_item=COL_ITEM

 )

Sometimes it is common to consider the user-item interaction time when splitting the data based on either user
or item. The objective of doing this is to make sure that when the training and testing a recommender model, the
user behaviors in the testing set should all happen after those in the training set. By using the python_chrono_split
function in Microsoft Recommenders, the data can be split on the scale of time, and the split is based on either user
or item.

 data_train, data_test = python_chrono_split(

     data,

     ratio=0.7,

     filter_by="user",

     col_user=COL_USER,

     col_item=COL_ITEM,

     col_timestamp=COL_TIMESTAMP

 )

Checking the last ten rows and the first ten rows of the user’s training set and testing set, respectively, it is
shown below that the sequence of the user-item interactions is maintained correctly.

data_train[data_train[COL_USER==1]].tail(10), we can get:

 UserId MovieId Rating Timestamp

 1              90            4             1997-11-03 07:31:40

 1              219            1             1997-11-03 07:32:07

 1              167            2             1997-11-03 07:33:03

 1              162            4             1997-11-03 07:33:40

 1              35            1             1997-11-03 07:33:40

 1              230            4             1997-11-03 07:33:40

 1              61            4             1997-11-03 07:33:40

 1              265            4             1997-11-03 07:34:01

 1              112            1             1997-11-03 07:34:01

 1              57            5             1997-11-03 07:34:19

Printing data_test[data_test[COL_USER==1]].head(10), we can get:

 UserId MovieId Rating Timestamp

 1              49            3             1997-11-03 07:34:38

 1              30            3             1997-11-03 07:35:15

 1              131            1             1997-11-03 07:35:52

 1              233            2             1997-11-03 07:35:52

 1              152            5             1997-11-03 07:36:29

 1              82            5             1997-11-03 07:36:29

 1              141            3             1997-11-03 07:36:48

 1              72            4             1997-11-03 07:37:58

 1              158            3             1997-11-03 07:38:19

 1              33            4             1997-11-03 07:38:19



Data Transformation
In addition to data split, another important operation in the data preprocessing is data transformation. In the build-
up of a recommender system, the data can be transformed in various ways. Many times the algorithm engineers
and the data engineers should collaborate very closely to make sure the data is transformed properly in the entire
system pipeline. In the following, the data transformation methods that are commonly used in recommender
system are reviewed with code examples.

Majorities of the recommender systems are based on the implicit feedback of users. In the use cases of e-
commerce, the examples of such implicit feedback include user clicks on items, user purchases, etc. In the use
cases of video streaming or news feed, implicit feedback may refer to the lingering time that users stay on a media
item. However, due to the fact that the implicit feedback usually does not provide the label for building a
recommender model in a supervised approach, data transformation is therefore required to produce the necessary
data labels from the implicit feedback information, such that the algorithmic model can be effectively trained. The
commonly used methods for such operations are summarized as below.

This method mainly aggregate the users’ implicit interactions with the items by counting the occurrences of
user-item interaction. By using the MovieLens data, an aggregated dataset can be produced from one that does not
have the explicit rating information. Codes for such operation are shown below.

 data_count = data.groupby([’UserId’, ’ItemId’]).agg({’Timestamp’:’count’}).reset_index()

 # Here, the column of Affinity is to indicate the preferences of users.

 data_count.columns = [’UserId’, ’ItemId’, ’Affinity’]

 UserId ItemId Affinity

 1              1              2

 1              2              3

 2              1              2

 2              2              2

 2              3              1

 3              1              1

 3              3              4

In many circumstances, the count of the user-item interactions cannot precisely reflect the preferences of users.
For example, on an e-commerce platform, some users may click an item for multiple times but eventually do not
purchase it. The tendency to purchase of such users is therefore less than those who do not click many but
purchase the item. In such case, the interactions between users and items can be weighted to indicate the
importance of various interaction types. Codes of such weighted count of interactions are shown below.

 data_w = data.copy()

 conditions = [

     data_w[’Type’] == ’click’,

     data_w[’Type’] == ’add’,

     data_w[’Type’] == ’purchase’

 ]

 choices = [1, 2, 3]

 data_w[’Weight’] = np.select(conditions, choices, default = ’black’)

 # The data type of the weight information is changed to numeric.

 data_w[’Weight’] = pd.to_numeric(data_w[’Weight’])

 data_wcount = data_w.groupby([’UserId’, ’ItemId’])[’Weight’].sum().reset_index()

 data_wcount.columns = [’UserId’, ’ItemId’, ’Affinity’]

 # The final data results are obtained as below

 data_wcount



 UserId    ItemId Affinity

 1     1       2

 1     2       5

 2     1       3

 2     2       6

 2     3       3

 3     1       1

 3     3       7

The time-dependent count of interactions considers the time-scale impact of the interactions on top of the
weighted importance of different types of interactions. One of the main rationales for such consideration is that
users’ behaviors drift over time. Therefore, when analyzing the preferences of users toward items, a common
assumption is that a later interaction yields a more reliable indication. Such time-dependent counting method can
be implemented by using the “decay” function. For example, in the following codes, an exponentially decayed
function is applied to calculate the time-dependent count of interactions to indicate the user preferences.

 # When using the time decay function, a base time point should be used as

 reference.

 T = 5

 t_ref = pd.to_datetime(data_w[’Timestamp’]).max()

 # The time decay is calculated in the numpy array. Here, the function to

 # calculate time decay is based on the logarithm function.

 data_w[’Timedecay’] = data_w.apply(

     lambda x: x[’Weight’] * np.power(0.5,

     (t_ref - pd.to_datetime(x[’Timestamp’])).days / T), axis=1

 )

 # The user preferences can be obtained by summing up the time decay.

 data_wt = data_w.groupby([’UserId’, ’ItemId’])[’Timedecay’].sum().reset_index()

 data_wt.columns = [’UserId’, ’ItemId’, ’Affinity’]

 # The results are shown below data_w

 UserId    ItemId  Affinity

 1     1       1.319508

 1     2       3.789291

 2     1       2.400855

 2     2       4.590914

 2     3       2.611652

 3     1       1.000000

 3     3       5.883057

Negative sampling is a commonly used technique to sample the unseen data points from a given sampling
space based on an appropriate assumption on its distribution characteristics. In the examples above, the method to
generate the explicit feedback is based on the statistical properties of the user-item interactions. However, in many
situation the method does not work properly due to the over simplification of the assumption. The theory of the
negative sampling is that, if there are merely the positive feedback in the interaction data, by assuming that there
must be some negative feedback in the items that the users have never interacted with before, the unseen items can
be sampled with a predefined distribution and then added into the set of all the sample data. To use the example
above, if only the positive feedback from the data are selected to form a dataset, it can be done by the following.

 data_b = data[[’UserId’, ’ItemId’]].copy()

 data_b[’Feedback’] = 1

 # Here the duplicated user-item interactions are removed.

 data_b = data_b.drop_duplicates()

 data_b

 UserId    ItemId  Feedback



 1     1       1

 1     2       1

 2     1       1

 2     2       1

 2     3       1

 3     3       1

 3     1       1

The items that the users have not interacted with can then be obtained. Codes are shown as below.

 # All the users and items are obtained in the first place.

 users = data2[’UserId’].unique() items = data2[’ItemId’].unique()

 # Get a user-item interaction cartesian product.

 interaction_lst = []

 for user in users:

     for item in items:

         interaction_lst.append([user, item, 0])

 data_all = pd.DataFrame(

     data=interaction_lst,

     columns= ["UserId", "ItemId", "FeedbackAll"]

 )

 # Lastly, the positive and negative samples are integrated to generate a

 # dataset that have both types of feedback.

 data_ns = pd.merge(

     data_all,

     data2_b,

     on=[’UserId’, ’ItemId’],

     how= ’outer’

 ).fillna(0).drop(’FeedbackAll’, axis=1)

 data_ns

 UserId  ItemId  Feedback

 1     1       1.0

 1     2       1.0

 1     3       0.0

 2     1       1.0

 2     2       1.0

 2     3       1.0

 3     1       1.0

 3     2       0.0

 3     3       1.0

Negative sampling can be done by using the function negative_feedback_sampler from the module
recommenders.dataset.pandas_df_utils of Microsoft Recommenders. The function not only provides the interface
to conveniently construct the negative sampled dataset but also allows configuration on the sampling ratio for the
negative feedback.

6.3.2 Algorithm Selection and Model Training
Recommender algorithm and model are the key to building the recommender system. Microsoft Recommenders
has collected more than 20 algorithms thus far. These algorithms include the classic ones like SVD, ALS, etc. as
well as the recently advanced ones like xDeepFM, LightGCN, etc. Usually the algorithms should be selected based
on the actual use case applications. It is common that the selection of recommender algorithms can be based on
several criteria. Based on the purpose of recommendation, the algorithms can be categorized as collaborative
filtering, content-based filtering, time-based model, etc. Based on the stage in a recommendation pipeline, the
algorithms can be categorized into recall algorithm, re-ranking algorithm, personalized algorithm, etc. Based on



the implementation, algorithms can be categorized into the groups like CPU-based ones, GPU-based ones, deep
learning-based ones, Spark-based ones, etc. The categorization helps the recommender system designer and
developer to consider for selection at the early stage of the recommender system construction. For example, for an
e-commerce platform, the recommender system it is to build should consider the following aspects.

First, the precision of the recommendation results. The precision is generally reflected by the relevancy of the
recommendation results to the users’ preferences. If the relevancy is high, the purchase rate of users will be high.
This requires the selected algorithm performs well in generalizing the patterns it learns from the useful information
in the historical data with which the recommendations can be generated. The algorithms for such purpose include
SVD, FM/FFM, Wide & Deep, etc.

Second, the diversity of the recommendation results. In general, the items that are recommended have a larger
size than the users. As a result, from the recommendations the users want to not merely get the relevant items of
their interest but also have large enough exploration space to find relevant items, the latter of which is guaranteed
by the diversity of the recommendation results. The recommendation algorithm can then be selected to aim at
improving diversity. In the meantime, for the algorithm explainability, if the information provided by the
recommender system can help the users to extend the search path or exploration space of new items, it may help
provide ideal recommendation results. In such algorithms, the relevancy between users and items is analyzed to
generate recommendations, and the graph technology is applied effectively to address the issue. Example
algorithms in such group are DKN, RL-based recommendation algorithm, etc.

Third, the scalability of the recommender system. Due to the vast size of the user and item pool as well as the
dynamics of the user-item interactions at the front-end of the recommender system, the recommender system for e-
commerce needs to be scalable when it is deployed. This requirement restrains the application of many great
algorithms that are published in the academic papers due to its limitation in scalable productionization. In addition,
the system and infrastructure requirement for algorithm implementation should be considered carefully. The
algorithms that are scalable are usually deployable within a framework where the scalable computing is availed.
Examples of such algorithms include the ALS implementation of the SVD algorithm in Spark, Spark-based
LightGBM, SAR+ from Microsoft, etc.

In real-world applications, algorithm selection is much more complex than the above overview. In many
circumstances, engineering optimization is very important. Among all the engineering challenges, the one that tries
to optimize the global objective understand various specifications is the biggest. For example, it is known that a
complicated model is more prone to generalizing the recommendation performance, but some deep learning
algorithms cannot be trained efficiently within the limited time frame (e.g., the time series based deep learning
model). In such case, the engineers should adjust according to the actual needs from the business requirement. One
of the techniques is to deploy the recommendation models hierarchically and apply different algorithms based on
the engineering specifications and the algorithmic characteristics – at the recall stage, a simple yet effective
algorithm is used to maximize the precision without much loss on accuracy; at the re-ranking or the personalized
stage, a sophisticated algorithm is applied due to its desirable performance on the small candidate set. In summary,
the algorithm selection process is a collaborative practice that requires the algorithm engineers, data scientists,
business decision makers, etc. to take part in. Though the algorithm engineers play the vital role in the
technological implementation, to make sure the global objective is optimized the holistic system as well as its
impact on business should be considered at large.

After the selection of algorithms, the key task next is to optimize the model performance in the training
process. For the algorithms implemented in different platforms, the process for model training is more or less the
same. The algorithm engineers and the architects need to set the metrics for evaluating the model and tune the
parameters to achieve the optimal training outcome. Nowadays, there are many tools that make the process
automatic. For the machine learning based algorithms, especially the deep learning based ones, parameter tuning
becomes a time-consuming yet very important task for model building. In Microsoft Recommenders, the code
examples demonstrate how to use the common tool such as NNI, Azure Machine Learning Service, hyperopt, etc.,
for effective parameter tuning. Due to the complexity the code examples are not detailed here. They can be
referenced under the directory of examples in Microsoft Recommenders, in the sub-directory of
04_model_select_and_optimize, where the tools for tuning algorithms like SVD, ALS, NCF, etc. can be found.

In the following part, three different types of algorithms with practices are introduced for building a
recommender model.

Spark-Based ALS
The collaborative filtering recommendation algorithm that uses the ALS method is widely used in many
application scenarios due to its advantage in maintenance and deployment. In the real-world industry applications,



considering the need for scalability, the ALS-based recommendation model is able to handle large-scale user-item
interaction data, to effectively generate the recommendation results. The Spark-based implementation of the ALS
method further leverages the high-scalable and high-performance characteristics of the Spark framework such that
in many collaborative filtering use cases it can deal with the large-scale recommendation problems [2, 4, 8].

Using the Spark-based ALS implementation is similar to other matrix factorization method. The algorithm is
applicable to the data where the user-item interactions are available. The interactions can be either implicit or
explicit. Considering the distributed computing framework of Spark, the method can be applied for the use case
(e.g., recall stage of majorities of the recommender systems) where dataset is large scale and the requirement of the
computational efficiency is high. In addition, given that the Spark framework is commonly used for data
preprocessing in the entire data pipeline of a recommender system, the recommendation models that are based on
Spark can be efficiently used to interface with the processed data in the same Spark platform, such that the data
transformation can be saved to guarantee the consistency of data flow.

To use the Spark-based ALS, the Apache Spark framework should be installed as a prerequisite. The
programming language used in the same chapter is Python, so to use Spark PySpark with the right version should
be installed. The information for installation can be found in the website of Microsoft Recommenders. In the
following code examples, the Spark-based ALS method is demonstrated for analyzing and modeling with the
MovieLens dataset.

First, the modules in PySpark and Microsoft Recommenders that are used in the example are imported.

 import pyspark

 from pyspark.sql import SparkSession

 from pyspark.ml.recommendation import ALS

 import pyspark.sql.functions as F

 from pyspark.sql.functions import col

 from pyspark.ml.tuning import CrossValidator

 from pyspark.sql.types import StructType, StructField

 from pyspark.sql.types import FloatType, IntegerType, LongType

 from recommenders.datasets import movielens

 from recommenders.utils.spark_utils import start_or_get_spark

 from recommenders.evaluation.spark_evaluation import SparkRankingEvaluation,

 SparkRatingEvaluation

 from recommenders.tuning.parameter_sweep import generate_param_grid

 from recommenders.datasets.spark_splitters import spark_random_split

Second, the global variables used for assisting model building are defined.

 # Define the features used in the data.

 COL_USER = "UserId"

 COL_ITEM = "MovieId"

 COL_RATING = "Rating"

 COL_PREDICTION = "prediction"

 COL_TIMESTAMP = "Timestamp"

 # Define the data type information used in the Spark data.

 schema = StructType(

     (

         StructField(COL_USER, IntegerType()),

         StructField(COL_ITEM, IntegerType()),

         StructField(COL_RATING, FloatType()),

         StructField(COL_TIMESTAMP, LongType()),

     )

 )

 # Define the Spark ALS model parameters

 RANK = 10 MAX_ITER = 15 REG_PARAM = 0.05



 # The number of items to recommend

 K = 10 

Next, a new Spark session is created. The MovieLens data is imported. Here, the data loading function in
Microsoft Recommenders is used.

 # Use the start_or_get_spark function in Microsoft Recommenders to create a new

 Spark session.

 spark = start_or_get_spark("ALS Deep Dive", memory="16g")

 # Using the existing Spark session object to read the MovieLens data into the

 Spark Dataframe.

 dfs = movielens.load_spark_df(spark=spark, size="100k", schema=schema)

 dfs.show(5)

 +------+-------+------+---------+

 |UserId|MovieId|Rating|Timestamp|

 +------+-------+------+---------+

 |   196|    242|   3.0|881250949|

 |   186|    302|   3.0|891717742|

 |    22|    377|   1.0|878887116|

 |   244|     51|   2.0|880606923|

 |   166|    346|   1.0|886397596|

 +------+-------+------+---------+

 only showing top 5 rows

The data imported into the Spark session is split randomly into the training set and the testing set. Here the split
ratio for the training and test sets is 75% to 25%.

     dfs_train, dfs_test = spark_random_split(dfs, ratio=0.75, seed=42)

The data after splitting is used for building a Spark ALS model. It is worth mentioning that the data is
represented as Spark DataFrame in the model building process. Therefore, correspondingly, the ALS module in
pyspark.ml is used for model training. Particularly, the parameter of coldStartStrategy in the ALS class is set to
“drop,” such that the even if the users or items are not purposely kept in both the training set and testing set at the
same, the evaluation of the trained ALS model can still be fairly conducted. This is because, when the Spark ALS
coldStartStrategy parameter is set to “drop,” the “cold-start” values of either users or items are neglected so that
the training set and the testing set contain the same group of users or items, which guarantees the fairness of the
model evaluation.

 als = ALS(

     maxIter=MAX_ITER,

     rank=RANK,

     regParam=REG_PARAM,

     userCol=COL_USER,

     itemCol=COL_ITEM,

     ratingCol=COL_RATING,

     coldStartStrategy="drop"

 )

 model = als.fit(dfs_train)

In the end, the model that has been trained is evaluated on the testing data. The following codes demonstrate
how the trained ALS model generates scores and then compare the scores against the ground truth in the testing set
to produce the evaluation results.

 dfs_pred = model.transform(dfs_test).drop(COL_RATING)



 evaluations = SparkRatingEvaluation(

     dfs_test,

     dfs_pred,

     col_user=COL_USER,

     col_item=COL_ITEM,

     col_rating=COL_RATING,

     col_prediction=COL_PREDICTION

 )

 print( "RMSE score = {}".format(evaluations.rmse()), "MAE score =

     {}".format(evaluations.mae()), "R2 score =

     {}".format(evaluations.rsquared()), "Explained variance score =

     {}".format(evaluations.exp_var()), sep="\n"

 )

 RMSE score = 0.9697095550242029

 MAE score = 0.7554838330206419

 R2 score = 0.24874053010909036

 Explained variance score = 0.2547961843833687

The Implementation of the Sequential Recommender Model
In Chap. 4. 4, the sequential recommender is introduced. The user behavior data is usually ordered on the time
basis. The analysis on the user sequences is not merely useful to exploit the pattern of how the users’ interest
evolve but also is beneficial in capturing the short-term and long-term interests of users. For example, if a user
frequently visits the sites to check the mobile phone items, it indicates that the user has interest in purchasing a
mobile phone recently. For the short-term interesting, the more recent the behavior is, the more information it can
reflect. In comparison, the long-term interest of the users reflects the general preferences of the users, and it is
rather stationary over time. Sequential recommendation is a key branch of the recommender system technology. It
has been widely studied in academia and applied in the real-world industrial applications. For example, Shumpei
Okura proposed the GPU-based model to analyze the user histories on the Yahoo Japan news recommendation
platform [10]. Guorui Zhou proposed an improved version of the GRU model and used it in the Alibaba
advertisement recommendation [11, 12]. GRU is a simple yet efficient method for sequential recommendation, and
it has already become the baseline for the following sequential recommendation algorithms. In this section, the
GRU algorithm for building sequential recommender model is demonstrated. The completed code examples can be
found in the code base of Microsoft Recommenders, in the Jupyter notebook of
examples/00_quick_start/sequantil_recsys_amazondataset.ipynb.

First, import the libraries used in the example.

 import sys

 import os

 import logging

 import scrapbook as sb

 import tempfile

 from recommenders.utils.timer import Timer

 from recommenders.utils.constants import SEED

 from recommenders.models.deeprec.deeprec_utils import prepare_hparams

 from recommenders.datasets.amazon_reviews import download_and_extract,

 data_preprocessing

 from recommenders.datasets.download_utils import maybe_download

 

from recommenders.models.deeprec.models.sequential.gru4rec import GRU4RecModel from recommenders.models

 import SequentialIterator

Create a new temporary directory to preserve the config file, the input data and the output files.

 tmp_path = tempfile.mkdtemp()

 data_path = os.path.join(tmp_path, ’gru4rec’)



The data_path variable can be printed to check the detailed path information. The path is generated
automatically by the system, e.g., /tmp/tmpxjq4i3ij/gru4rec

For the sake of conveniently managing the parameters, the parameters and variables that are used for model
definition and model training are saved into the config file. During the model training process, the config file is
loaded. Here, it is necessary to create a file named gru4rec.yaml under data_path.

 yaml_file = os.path.join(data_path, ’gru4rec.yaml’)

Write the following content into the yaml file.

 data:

     user_vocab : ./tests/resources/deeprec/gru4rec/user_vocab.pkl # the map file of user to id

     item_vocab : ./tests/resources/deeprec/gru4rec/item_vocab.pkl # the map file

 of item to id

     cate_vocab : ./tests/resources/deeprec/gru4rec/category_vocab.pkl # the map file of

 category to id

 model:

     method : classification # classification or regression

     model_type : GRU4Rec

     layer_sizes : [100, 64]  # layers’ size of DNN. In this example,

     DNN has two layers, and each layer has 100 hidden nodes.

     activation : [relu, relu] # activation function for DNN

     user_dropout: True

     dropout : [0.3, 0.3]  #drop out values for DNN layer

     item_embedding_dim : 32 # the embedding dimension of items

     cate_embedding_dim : 8  # the embedding dimension of categories

     user_embedding_dim : 16 # the embedding dimension of users

 train:

     init_method: tnormal  # method for initializing model parameters

     init_value : 0.01 # stddev values for initializing model parameters

     embed_l2 : 0.0001 # l2 regularization for embedding parameters

     embed_l1 : 0.0000 # l1 regularization for embedding parameters

     layer_l2 : 0.0001 # l2 regularization for hidden layer parameters

     layer_l1 : 0.0000 # l1 regularization for hidden layer parameters

     cross_l2 : 0.0000  # l2 regularization for cross layer parameters

     cross_l1 : 0.000   # l1 regularization for cross layer parameters

     learning_rate : 0.001

     loss : softmax  # pointwise: log_loss, cross_entropy_loss, square_loss

     pairwise: softmax

     optimizer : lazyadam  # adam, adadelta, sgd, ftrl, gd, padagrad, pgd, rmsprop, lazyadam

     epochs : 50  # number of epoch for training

 

    batch_size : 400  # batch size, should be constrained as an integer multiple of the number of (1 + t

     True

     enable_BN : True # whether to use batch normalization in hidden layers

     EARLY_STOP : 10 # the number of epoch that controls EARLY STOPPING

     max_seq_length : 50 # the maximum number of records in the history sequence

     hidden_size : 40 # the shape of hidden size used in RNN

     need_sample: True # whether to perform dynamic negative sampling in mini-batch

     train_num_ngs: 4 # indicates how many negative instances followed by one positive instances if nee

 info:

     show_step : 100  # print training information after a certain number of mini-batch

     save_model: True  # whether to save models

     save_epoch : 1  # if save_model is set to True, save the model every save_epoch.



     metrics : [’auc’,’logloss’]  # metrics for evaluation.

 

    pairwise_metrics : [’mean_mrr’, ’ndcg@2;4;6’, "group_auc"]  # pairwise metrics for evaluation, avail

     needed

     MODEL_DIR : ./tests/resources/deeprec/gru4rec/model/gru4rec_model/  # directory of saved models.

     SUMMARIES_DIR : ./tests/resources/deeprec/gru4rec/summary/gru4rec_summary/  # directory of saved s

     write_tfevents : True  # whether to save summaries.

It can be observed that the variables in the yaml file are about the data path, model parameters, training
process, and data output. The readers can adjust the parameters based on actual need.

The dataset used in the experiment is the Movies and TV subset in the Amazon Dataset, which is widely used
in the research and study of recommender system.

Microsoft Recommenders provides a few built-in methods for processing the common datasets. These methods
are collected under the directory of recommenders/datasets, where the preprocessing functions for the Amazon
dataset are available. The function download_and_extract can automatically download the Amazon dataset
from the data source website and unpack the raw data files. As usual the raw data is split into the training set, the
validating set, and the testing set. The training set is used for training the model, the validating set is to verify
whether the model parameters are converged, and the testing set is to test the model performance and it cannot be
used for the training process but only for evaluating the trained model. In the raw Amazon dataset, the samples are
all positive, so certain amount of the negative samples should be generated. In the example here, the ratio between
the positive and the negative samples in both the training set and the validating set is 1 to 4 (that is, the variables of
train_num_ngs and valid_num_ngs), whilst that in the testing set is 1 to 9 (i.e., the variable of
test_num_ngs). To quickly check whether the program can be run properly, a small dataset is created. In the
codes below, the variable of sample_rate is to control the sampling proportion of the data used for conducting the
experiment from the raw data. When the entire raw data is used, the parameter can be set to be 1.

 train_file = os.path.join(data_path, r’train_data’)

 valid_file = os.path.join(data_path, r’valid_data’)

 test_file = os.path.join(data_path, r’test_data’)

 user_vocab = os.path.join(data_path, r’user_vocab.pkl’)

 item_vocab = os.path.join(data_path, r’item_vocab.pkl’)

 cate_vocab = os.path.join(data_path, r’category_vocab.pkl’)

 output_file = os.path.join(data_path, r’output.txt’)

 train_num_ngs = 4

 valid_num_ngs = 4

 test_num_ngs = 9

 sample_rate = 0.01

 input_files = [reviews_file, meta_file, train_file, valid_file, test_file,

 user_vocab, item_vocab, cate_vocab]

 data_preprocessing(*input_files, sample_rate=sample_rate,

 valid_num_ngs=valid_num_ngs, test_num_ngs=test_num_ngs)

Next, a variable can be created to preserve all the hyperparameters used for building the model. These
parameters are previously stored in the yaml_file. If setting the parameters explicitly when conducting the
experiment by calling the prepare_hparams function, the values of these parameters will overwrite the ones in
yaml_file.

 hparams = prepare_hparams(

   yaml_file,

   embed_l2=0.,

   layer_l2=0.,

   learning_rate=0.001,

   epochs=EPOCHS, batch_size=BATCH_SIZE, show_step=20,

   MODEL_DIR=os.path.join(data_path, "model/"),

   SUMMARIES_DIR=os.path.join(data_path, "summary/"), user_vocab=user_vocab,

   item_vocab=item_vocab, cate_vocab=cate_vocab, need_sample=True,

   train_num_ngs=train_num_ngs,



 )

Here, a data loader is declared.

 input_creator = SequentialIterator

Usually the data used in the industry-grade recommender system has quite large scale. Therefore, it is hard to
load the data into the memory all at once. The object of SequentialIterator is essentially an iterator, and it
loads data from the files in batches that have sizes of batch_size into memory, and it then converts it into the
matrix or tensor which is readable by TensorFlow. The loaded data is then returned to the model object. The
optimization space for the data loader is quite large. For example, to further improve the efficiency of the program,
the producer-consumer pattern can be leveraged. That is, the data loader becomes a producer, and it produced
batches of data continuously for the model to run on the training process. This process is usually performed on the
CPU devices. On the other side, the model object can be treated as a consumer. It takes the data for deriving the
forward propagation in the neural network and then updating the parameters against the gradient descent. This
process is on the GPU devices. If the producer and the consumer can be parallelized in the pipeline, the waiting
time for the entire process can be greatly reduced. In the tutorial of this section, for simplicity purpose, the
operations for such optimization are not discussed. In the Amazon dataset, the unique IDs of items and its class ID
are concatenated to represent a single item. Each user uses the maximumly max_seq_length times of behavior
for building the model, and for those users who do not have such amount of behavior the vector will be padded
with empty value.

After the preparation work, based on the predefined parameters and data loader, a sequential model based on
the GRU algorithm can be created.

 model = GRU4RecModel(hparams, input_creator, seed=RANDOM_SEED)

The theory of the GRU4Rec algorithm is quite simple. It concatenates the vectors of the user historical
behavior on the item ID as well as its group ID, to feed into a GRU layer to obtain the intrinsic vectors of the
users.

 with tf.name_scope("gru"):

     self.mask = self.iterator.mask

     self.sequence_length = tf.reduce_sum(self.mask, 1)

     self.history_embedding = tf.concat(

         [self.item_history_embedding, self.cate_history_embedding], 2)

     rnn_outputs, final_state = dynamic_rnn(GRUCell(self.hidden_size),

         inputs=self.history_embedding, sequence_length=self.sequence_length,

         dtype=tf.float32, scope="gru",)

     tf.summary.histogram("GRU_outputs", rnn_outputs)

     return final_state

Given that the different users may have different length of historical data, the object of dynamic_rnn can
compute only on the effective users and neglect those with the empty values due to the requirement of the data
format consistency. In the beginning, the model parameters are at the initial state and they do not have the
differentiation power. To verify this, the initialized model can be used on the testing dataset for scoring.

 model.run_eval(test_file, num_ngs=test_num_ngs)

Output:

 {’auc’: 0.4857, ’logloss’: 0.6931, ’mean_mrr’: 0.2665, ’ndcg@2’: 0.1357,

 ’ndcg@4’: 0.2186, ’ndcg@6’: 0.2905, ’group_auc’: 0.4849}

It can be seen that the evaluation metrics of auc and group_auc are both close to 0.5, i.e., an indication of a
random guess. If the model is iteratively trained for ten times on the training set,

 model = model.fit(train_file, valid_file, valid_num_ngs=valid_num_ngs)



The output will be

 eval valid at epoch 1:

 auc:0.4975,logloss:0.6929,mean_mrr:0.4592,ndcg@2:0.3292,ndcg@4:0.5125,ndcg@6:0.5915,group_auc:0.4994

 eval valid at epoch 2:

 auc:0.6486,logloss:0.6946,mean_mrr:0.5567,ndcg@2:0.472,ndcg@4:0.6292,ndcg@6:0.6669,group_auc:0.6363

 eval valid at epoch 3:

 auc:0.6887,logloss:0.8454,mean_mrr:0.6032,ndcg@2:0.537,ndcg@4:0.6705,ndcg@6:0.7022,group_auc:0.683

 eval valid at epoch 4:

 auc:0.6978,logloss:0.7005,mean_mrr:0.6236,ndcg@2:0.5622,ndcg@4:0.6881,ndcg@6:0.7175,group_auc:0.699

 eval valid at epoch 5:

 auc:0.7152,logloss:0.6695,mean_mrr:0.6382,ndcg@2:0.582,ndcg@4:0.7009,ndcg@6:0.7286,group_auc:0.7139

 eval valid at epoch 6:

 auc:0.722,logloss:0.6141,mean_mrr:0.637,ndcg@2:0.5796,ndcg@4:0.6993,ndcg@6:0.7276,group_auc:0.7116

 eval valid at epoch 7:

 auc:0.7287,logloss:0.6183,mean_mrr:0.6417,ndcg@2:0.5875,ndcg@4:0.7031,ndcg@6:0.7312,group_auc:0.7167

 eval valid at epoch 8:

 auc:0.7342,logloss:0.6584,mean_mrr:0.6538,ndcg@2:0.6006,ndcg@4:0.7121,ndcg@6:0.7402,group_auc:0.7248

 eval valid at epoch 9:

 auc:0.7324,logloss:0.6268,mean_mrr:0.6541,ndcg@2:0.5981,ndcg@4:0.7129,ndcg@6:0.7404,group_auc:0.7239

 eval valid at epoch 10:

 auc:0.7369,logloss:0.6122,mean_mrr:0.6611,ndcg@2:0.6087,ndcg@4:0.7181,ndcg@6:0.7457,group_auc:0.731

It can be seen that along with the increase of the epoch, the convergency of the model on the training set
becomes gradually better. After the model has been trained, it can be used to score on the testing set.

 model.run_eval(test_file, num_ngs=test_num_ngs)

Output:

 {’auc’: 0.7174, ’logloss’: 0.6149, ’mean_mrr’: 0.4835, ’ndcg@2’: 0.3939,

 ’ndcg@4’: 0.4982, ’ndcg@6’: 0.5503, ’group_auc’: 0.7073}

To minimize the impact of the randomness in each experiment, multiple experiments are needed to calculate
the statistical mean and variance, with which the hypothesis testing should be conducted to make sure the
conclusion is sound.

Knowledge Graph-Based Recommender System
Chapter 4. 5 of the book introduced the knowledge graph-based recommender system. A knowledge graph collects
large volume of relational information that exists in the world. This information not merely enriches the
descriptions of items but also creates the vast connections between item entities. With the assistance of the
knowledge graph, it is easy and precise to build model for the user-item relationships. This subsection takes the use
case of the academic paper recommendation as an example to practically illustrate the development of a DKN
recommender model. The task of the academic paper recommendation is to predict the papers that authors will
cite, based on the analysis on the historical citations that the authors have. The dataset used in the experiment is
from the Microsoft Academic Graph. The whole codes used in the illustration can be found in the directory of
recommenders/examples/07_tutorials/KDD2020-tutorial. The experiment can be partitioned into preparation, pre-
training word and entity representation, and model training.

The codes and data used in the experiment need to be prepared in the first place. A new directory for the
experiment, namely KRS, can be created and used as the working directory. The contents under
recommenders/examples/07_tutorials/KDD2020-tutorial/utils can be copied into the directory of KRS, because the
codes under utils keep the file processing codes that are used in the experiment. Next, the raw dataset used for such
experiment is downloaded and unpacked.

 wget https://recodatasets.z20.web.core.windows.net/kdd2020/data_folder.zip unzip

 data_folder.zip -d data_folder



Import the dependencies used in the experiment.

 import os

 import pickle

 import time

 from utils.task_helper import *

 from utils.general import *

 from utils.data_helper import *

The core idea of the DKN algorithm is to leverage the knowledge entities to augment the representation of the
academic papers. The following shows the format of paper representation.

 [Newsid] [w1, w2, w3...wk] [e1, e2, e3...ek]

Newsid is the ID for the paper, w1, w2, w3, …, wk are the word ID in the paper titles, e1, e2, e3, …,
ek are the corresponding IDs of the entities. If the corresponding words are not entities, they are padded with zero.
To favor the one-hot encoding of the IDs which are used as model input, the word and entity IDs are encoded into
the integers that start with 1.

 InFile_dir = ’data_folder/raw’

 OutFile_dir = ’data_folder/my’

 create_dir(OutFile_dir)

 Path_PaperTitleAbs_bySentence = os.path.join(InFile_dir,

 ’PaperTitleAbs_bySentence.txt’)

 Path_PaperFeature = os.path.join(OutFile_dir,

 ’paper_feature.txt’)

 max_word_size_per_paper = 15

 word2idx = {}

 entity2idx = {}

 relation2idx = {}

 

word2idx, entity2idx = gen_paper_content(Path_PaperTitleAbs_bySentence, Path_PaperFeature, word2idx, ent

 field=["Title"], doc_len=max_word_size_per_paper )

In a knowledge graph, the entity is a tuple of head entity, tail entity, relationship. Therefore, the data files
should be generated to maintain such tuple representation of the entities.

 Path_RelatedFieldOfStudy = os.path.join(InFile_dir, ’RelatedFieldOfStudy.txt’)

 OutFile_dir_KG = os.path.join(OutFile_dir, ’KG’)

 create_dir(OutFile_dir_KG)

 gen_knowledge_relations(Path_RelatedFieldOfStudy, OutFile_dir_KG, entity2idx,

 relation2idx)

Usually, the Word2Vec algorithm is used to pre-train the words. The pre-training needs to load a collection of
the sentences and make use of the mutual relationship between words in the sentences, to learn the meaningful
word representations in vectors. The following codes are used to generate the corpus for the above purpose.

 Path_SentenceCollection = os.path.join(OutFile_dir, ’sentence.txt’)

 gen_sentence_collection(Path_PaperTitleAbs_bySentence, Path_SentenceCollection,

 word2idx )

 word2idx_filename = os.path.join(OutFile_dir, ’word2idx.pkl’)

 entity2idx_filename = os.path.join(OutFile_dir, ’entity2idx.pkl’)

 with open(word2idx_filename, ’wb’) as f:



     pickle.dump(word2idx, f)

 dump_dict_as_txt(word2idx, os.path.join(OutFile_dir, ’word2id.tsv’))

 with open(entity2idx_filename, ’wb’) as f:

     pickle.dump(entity2idx, f)

Since the task is to predict the author citations based on the historical ones, the historical data needs to be
arranged. This can be done in three main steps: load the authors and their publications in the past, load the
relationships between the publications, and based on the first two steps infer the citations that the authors have.

 Path_PaperReference = os.path.join(InFile_dir, ’PaperReferences.txt’)

 Path_PaperAuthorAffiliations = os.path.join(InFile_dir, ’PaperAuthorAffiliations.txt’)

 Path_Papers = os.path.join(InFile_dir, ’Papers.txt’)

 Path_Author2ReferencePapers = os.path.join(OutFile_dir, ’Author2ReferencePapers.tsv’)

 author2paper_list = load_author_paperlist(Path_PaperAuthorAffiliations)

 paper2date = load_paper_date(Path_Papers)

 paper2reference_list = load_paper_reference(Path_PaperReference)

 

author2reference_list = get_author_reference_list(author2paper_list, paper2reference_list, paper2date)

 output_author2reference_list(author2reference_list, Path_Author2ReferencePapers)

In the last, the training set, the validating set, and the testing set need to be generated. Usually, the papers that
the authors have cited are ordered in time. For the time sequence of each author, the last paper item is put into the
testing set, the second last is put into the validating set, and the remaining ones are put into the training set.

 OutFile_dir_DKN = os.path.join(OutFile_dir, ’DKN-training-folder’)

 create_dir(OutFile_dir_KG)

 

gen_experiment_splits( Path_Author2ReferencePapers, OutFile_dir_DKN, Path_PaperFeature, item_ratio=0.1, 

To make the debugging convenient, a small dataset is generated by using the parameter of
item_ratio=0.1, which indicates that 10% of the raw data is sampled. Also, the file names in the generated
dataset all contain a tag of “small.” If the whole dataset is needed, the parameter and tag value of
item_ratio=1 and “full” can be used.

A good practice before training the DKN model is to pre-train the fundamental components such as word and
entity representation. This is beneficial to allow the model to thoroughly leverage the external general knowledge
and make the training process converge quickly. For word pre-training, the Word2Vec module from the gensim
library is used. Before the pre-training, the dependency library is loaded, and the iterator for the sentence corpus is
defined.

 from gensim.test.utils import common_texts, get_tmpfile

 from gensim.models import Word2Vec

 import time

 from utils.general import *

 import numpy as np

 import pickle

 from utils.task_helper import *

 class MySentenceCollection:

     def __init__(self, filename):

         self.filename = filename

         self.rd = None

     def __iter__(self):

         self.rd = open(self.filename, ’r’, encoding=’utf-8’, newline=’’)

         return self



     def __next__(self):

         line = self.rd.readline()

         if line:

             return list(line.strip(’’).split(’ ’))

         else:

             self.rd.close()

             raise StopIteration

Next, the algorithm in Word2Vec can be used to pre-train the words.

 def train_word2vec(Path_sentences, OutFile_dir):

     OutFile_word2vec = os.path.join(OutFile_dir, r’word2vec.model’)

     OutFile_word2vec_txt = os.path.join(OutFile_dir, r’word2vec.txt’)

     create_dir(OutFile_dir)

     my_sentences = MySentenceCollection(Path_sentences) model =

     Word2Vec(my_sentences, size=32, window=5, min_count=1, workers=8, iter=10)

     model.save(OutFile_word2vec)

     model.wv.save_word2vec_format(OutFile_word2vec_txt, binary=False)

 InFile_dir = ’data_folder/my’

 OutFile_dir = ’data_folder/my/pretrained-embeddings’

 Path_sentences = os.path.join(InFile_dir, ’sentence.txt’)

 train_word2vec(Path_sentences, OutFile_dir)

For the knowledge graph pre-training, the simplest method of TransE is used [5]. The following shell
command is executed to get the embeddings of the knowledge graph entities.

 echo $PWD

 cd data_folder

 git clone https://github.com/thunlp/Fast-TransX.git

 cd Fast-TransX

 cd transE

 g++ transE.cpp -o transE -pthread -O3 -march=native

 inpath="../../my/KG/"

 outpath="../../my/KG/"

 if [ ! -d $outpath ]; then

     mkdir -p $outpath;

 fi ./transE -size 32 -sizeR 32 -input $inpath  -output  $outpath

 -epochs 10 -alpha 0.001

In the DKN model, not only the entity embeddings are used for model building, the context embedding that
represent the auxiliary information about the entities are also used. To further proceed with the follow-up
operations, the entity embeddings and the word embeddings are converted to the numpy arrays, which favors the
pre-loading in the DKN model.

 OutFile_dir_KG = ’data_folder/my/KG’

 OutFile_dir_DKN = ’data_folder/my/DKN-training-folder’

 EMBEDDING_LENGTH = 32

 entity_file = os.path.join(OutFile_dir_KG, ’entity2vec.vec’)

 context_file = os.path.join(OutFile_dir_KG, ’context2vec.vec’)

 kg_file = os.path.join(OutFile_dir_KG, ’train2id.txt’)

 gen_context_embedding(entity_file, context_file, kg_file, dim=EMBEDDING_LENGTH)

 load_np_from_txt(

     os.path.join(OutFile_dir_KG, ’entity2vec.vec’),

     os.path.join(OutFile_dir_DKN, ’entity_embedding.npy’),



 )

 load_np_from_txt(

     os.path.join(OutFile_dir_KG, ’context2vec.vec’),

     os.path.join(OutFile_dir_DKN, ’context_embedding.npy’),

 )

 format_word_embeddings(

     os.path.join(OutFile_dir, ’word2vec.txt’),

     os.path.join(InFile_dir, ’word2idx.pkl’),

     os.path.join(OutFile_dir_DKN,

     ’word_embedding.npy’)

 )

After the preparation work as mentioned above, a DKN model can be trained. The complete code
implementation of DKN model can be found in recommenders/models/deeprec/models/dkn.py. The contents are
too long to be presented here. Here only the core function Kim_CNN that fuses the knowledge text convolution
network is shown below.

 def _kims_cnn(self, word, entity, hparams):

The variables of word and entity represent the index of the word and entity. They can be used to get the
embeddings from the Embedding Table.

 if hparams.use_entity and hparams.use_context:

     entity_embedded_chars = tf.nn.embedding_lookup(self.entity_embedding, entity)

     context_embedded_chars = tf.nn.embedding_lookup(self.context_embedding, entity)

     concat = tf.concat(

         [embedded_chars, entity_embedded_chars, context_embedded_chars], axis=-1

     )

 elif hparams.use_entity:

     entity_embedded_chars = tf.nn.embedding_lookup(

         self.entity_embedding, entity

     )

     concat = tf.concat(

         [

             embedded_chars, entity_embedded_chars

         ], axis=-1

     )

 else:

     concat = embedded_chars

     concat_expanded = tf.expand_dims(concat, -1)

In the text, the representation of the words consists of word vector, entity vector, and context vector. The hyper
parameter hparams.user_entity and hparams.user_context are used for ablation experimentation.
They can be used to control whether to add the entity embedding vector or the context embedding vector.
Following that, the word representation is added into the convolution operation to get the sentence-level
representations.

 pooled_outputs = []

 for i, filter_size in enumerate(filter_sizes):

     with tf.compat.v1.variable_scope(

         "conv-maxpool-%s" % filter_size, initializer=self.initializer

     ):

         if hparams.use_entity and hparams.use_context:

             filter_shape = [filter_size, dim * 3, 1, num_filters]



         elif hparams.use_entity:

             filter_shape = [filter_size, dim * 2, 1, num_filters]

         else:

             filter_shape = [filter_size, dim, 1, num_filters]

         W = tf.compat.v1.get_variable(

             name="W" + "_filter_size_" + str(filter_size),

             shape=filter_shape,

             dtype=tf.float32,

             initializer=tf.contrib.layers.xavier_initializer(uniform=False),

         )

         b = tf.compat.v1.get_variable(

             name="b" + "_filter_size_" + str(filter_size),

             shape=[num_filters], dtype=tf.float32,

         )

         if W not in self.layer_params:

             self.layer_params.append(W)

         if b not in self.layer_params:

             self.layer_params.append(b)

         conv = tf.nn.conv2d(

             concat_expanded,

             W,

             strides=[1, 1, 1, 1],

             padding="VALID",

             name="conv",

         )

         h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")

         pooled = tf.nn.max_pool2d(

             h,

             ksize=[1, hparams.doc_size - filter_size + 1, 1, 1],

             strides=[1, 1, 1, 1],

             padding="VALID",

             name="pool",

         )

         pooled_outputs.append(pooled)

filter_sizes is the size of the convolution network kernels. It is recommended to use [1, 2, 3] in the DKN
model, to represent that there are three different convolution kernels with the sizes of 1, 2, and 3. W and b are the
weight parameter and the bias parameter of the kernel. For each kernel, there is a max pooling layer applied on the
output vector. Given that there are totally num_filter * num_filter_sizes kernels, the size of the
embedding vector of the sentences generated from _kims_cnn is num_filter * num_filter_sizes.

 self.num_filters_total = num_filters * len(filter_sizes)

 h_pool = tf.concat(pooled_outputs, axis=-1)

 h_pool_flat = tf.reshape(h_pool, [-1, self.num_filters_total])

The process of experiment for DKN is similar to that in GRU. That is, the dependency module import, path
definition, config file preparation, data iterator declaration, model training, etc. In the first place, the dependencies
are loaded.

 from recommenders.models.deeprec.deeprec_utils import *

 from recommenders.models.deeprec.models.dkn import *

 from recommenders.models.deeprec.io.dkn_iterator import *

 import tensorflow as tf

Next, the paths of the data-dependent files are defined. These mainly include the pre-trained word vectors and
the entity vectors as well as the training set, the validating set, and the testing set.



 tag = ’small’

 data_path = ’data_folder/my/DKN-training-folder’

 yaml_file = ’./dkn.yaml’

 train_file = os.path.join(data_path, r’train_{0}.txt’.format(tag))

 valid_file = os.path.join(data_path, r’valid_{0}.txt’.format(tag))

 test_file = os.path.join(data_path, r’test_{0}.txt’.format(tag))

 user_history_file = os.path.join(data_path, r’user_history_{0}.txt’.format(tag))

 news_feature_file = os.path.join(data_path, r’../paper_feature.txt’)

 wordEmb_file = os.path.join(data_path, r’word_embedding.npy’)

 entityEmb_file = os.path.join(data_path, r’entity_embedding.npy’)

 contextEmb_file = os.path.join(data_path, r’context_embedding.npy’)

 infer_embedding_file = os.path.join(data_path, r’infer_embedding.txt’)

Then the data iterator and the model objects are declared.

 hparams = prepare_hparams(

     yaml_file,

     news_feature_file=news_feature_file,

     user_history_file=user_history_file,

     wordEmb_file=wordEmb_file,

     entityEmb_file=entityEmb_file,

     contextEmb_file=contextEmb_file,

     epochs=5,

     is_clip_norm=True,

     max_grad_norm=0.5,

     history_size=20,

     MODEL_DIR=os.path.join(data_path, ’save_models’),

     learning_rate=0.001,

     embed_l2=0.0,

     layer_l2=0.0,

     use_entity=True,

     use_context=True

 )

 input_creator = DKNTextIterator model = DKN(hparams, input_creator)

After everything is prepared, the model can be trained.

 model.fit(train_file, valid_file)

In the hyperparameters, there are five epochs defined. In the training process, it can be seen that the score in
the validation set increases.

 at epoch 1

 eval info:

 auc:0.9233, group_auc:0.9227, mean_mrr:0.871, ndcg@2:0.8764, ndcg@4:0.9031, ndcg@6:0.9044

 at epoch 2

 

eval info: auc:0.9389, group_auc:0.9359, mean_mrr:0.8922, ndcg@2:0.8978, ndcg@4:0.9189, ndcg@6:0.9201

 at epoch 3

 eval info: auc:0.9449, group_auc:0.941, mean_mrr:0.8986, ndcg@2:0.905, ndcg@4:0.9241, ndcg@6:0.9249

 at epoch 4

 eval info: auc:0.9483, group_auc:0.9457, mean_mrr:0.906, ndcg@2:0.9126, ndcg@4:0.9298, ndcg@6:0.9305

 at epoch 5

 

eval info: auc:0.9496, group_auc:0.9481, mean_mrr:0.9091, ndcg@2:0.9168, ndcg@4:0.9321, ndcg@6:0.9328

In the last, the model can be tested on the testing set, and the results are shown below.



 model.run_eval(test_file)

 

{’auc’: 0.94, ’group_auc’: 0.9374, ’mean_mrr’: 0.7071, ’ndcg@2’: 0.6735, ’ndcg@4’: 0.746, ’ndcg@6’: 0.76

6.3.3 Evaluation Metrics and Methods
Evaluation is the key step in the application of the machine learning algorithm. For the recommender system,
evaluation is very important and it can be even more sophisticated compared to the conventional machine learning
system. The reason for this is that in addition to the common evaluation, the recommender system needs to be
evaluated online as well, to make sure that in the actual application the recommendation results meet the
expectation [6]. The following content of this chapter introduces the commonly seen evaluation metrics and
methods.

There are mainly two groups of evaluation metrics for recommender systems. One is to evaluate the
performance of the recommender model, and another is to evaluate the business impact of the recommender
system. Correspondingly, the methods that are used in these two different scenarios are called offline evaluation
and online evaluation.

The offline evaluation, as name suggests, is the ones that are usually used for evaluating the performances of
the models that have not been alive. As aforementioned, these metrics are primarily meant for the intrinsic
characteristics of the models themselves. The commonly seen metrics can be classified based on the detailed
aspect they evaluate on the model. For those models that generate scores, many times the rating-based metrics are
effective. These metrics include Root Mean Squared Error (RMSE), coefficient of determination ( ), mean
average error (MAE), and explainable variance. For the sake of saving space, the detailed formulas that calculate
these metrics are not introduced here. The MovieLens dataset as discussed before (noted as df_true as a dataframe
in the code examples) is used to demonstrate the metrics. In the example below, the data consists of three different
dimensions which are user id, item id, and user ratings. To verify the rating-based metrics, there is another
prediction dataset, df_pred, where the predicted ratings of users are presented. The codes that prepare the data are
shown below.

 df_true = pd.DataFrame(

     {

         UserId: [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3,

     3, 3, 3],

         MovieId: [1, 2, 3, 1, 4, 5, 6, 7, 2, 5, 6, 8, 9, 10, 11, 12, 13,

     14],

         Rating: [5, 4, 3, 5, 5, 3, 3, 1, 5, 5, 5, 4, 4, 3, 3, 3, 2, 1],

     }

 )

 df_pred = pd.DataFrame(

     {

         UserId: [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,

     3, 3, 3, 3],

         MovieId: [3, 10, 12, 10, 3, 5, 11, 13, 4, 10, 7, 13, 1, 3, 5,

     2, 11, 14],

         Prediction:

         [14, 13, 12, 14, 13, 12, 11, 10, 14, 13, 12, 11, 10,

     9, 8, 7, 6, 5]

     }

 )

There are several functions available in Microsoft Recommenders for calculating the rating-based metrics. The
prerequisites for using these functions are that both the ground truth and the prediction data should contain the user
ID, item ID, and users ratings (both the predicted ones and the actual ones). The function takes the two datasets as
input and check the items that each user has rated against those that are in the prediction data. The comparison is
averaged to generate the final rating-based metrics. The following codes illustrate how the functions are used for
computing the rating-based metrics. The readers can calculate manually and compare the results with the ones that
are generated from the functions.



 from recommenders.evaluation.python_evaluation import rmse, rsquared, mae,

 exp_var

 # Calculate RMSE

 rmse(df_true, df_pred, col_user=UserId, col_item=MovieId, col_rating=Rating, col_prediction=Prediction

 # Calculate MAE

 mae(df_true, df_pred, col_user=UserId, col_item=MovieId, col_rating=Rating, col_prediction=Prediction)

 # Calculate R Squared

 

rsquared(df_true, df_pred, col_user=UserId, col_item=MovieId, col_rating=Rating, col_prediction=Predicti

 # Calculate explained variance

 

exp_var(df_true, df_pred, col_user=UserId, col_item=MovieId, col_rating=Rating, col_prediction=Predictio

There are usually no absolute metrics to evaluate recommender systems that can hold forever. However, in
general, these metrics can be effectively used for comparing two different recommender system implementations.

There is another group of evaluation metrics, which are termed as ranking metrics. These metrics are mainly
for assessing “whether the recommendation results are relevant to users’ preferences or not.” The way of analyzing
the relevancy is that, after generating the recommendation results, check whether the users show interest to the
recommended items, and, if the users have interests it means the recommendation is “relevant.” In some
applications, the order of the recommendation results matter as well. For example, if the top-ranked items in the
recommendation results have gained users’ interest, then the recommendation model that produced such results
outperforms, in terms of ranking metrics, those models where lower-ranked items have gained interest. There are
several commonly seen metrics, precision (precision@k), recall (recall@k), Mean Average Precision, Normalized
Discounted Cumulative Gain (NDCG@k). It is worth mentioning that the use of the constant “k” that is used in
these metrics is because that the ranking metrics should consider the number of the recommended items, i.e., k,
which affects the evaluation metrics. To comparatively study different recommender models by using these
metrics, the constant of k needs to be fixed.

Similar to the rating metrics, there are a few utility functions available in Microsoft Recommenders for
calculating the ranking metrics. These functions also require the input datasets of the ground truth and the
prediction. The contents of the input datasets are the same as those in the case of the rating metrics calculation
functions. If there are ratings in the two input datasets, the rating column does not have to be ranked before the
data are used in the function for calculating the metrics. The internal implementation will do the ranking based on
the input argument. For example, for the most popular ranking operation (it is called “topk” ranking in Microsoft
Recommenders), the function ranks the actual ratings and the predicted ratings of the same users and then use the
ranked results for calculating the metrics. The results are shown in Table 6.1. The example below illustrates how
the functions are used in the MovieLens dataset for calculating the ranking metrics.

Table 6.1 Comparison between the evaluation metrics

Metrics Value range Criteria of model selection Limitation

RMSE The smaller the better Compared to MSE there may be bias, and the explainability is poor

R2 The closer to 1 the better It depends on the distribution of the variables

MAE The smaller the better It depends on the value range of the variables

Explained Variance The closer to 1 the better It depends on the distribution of the variables

 from recommenders.evaluation.python_evaluation import precision_at_k,

 recall_at_k, ndcg_at_k, map_at_k

 # Compute precision@10

 precision_at_k(

     df_true,

     df_pred,

     col_user="UserId",



     col_item="MovieId",

     col_rating="Rating",

     col_prediction="Prediction",

     relevancy_method= "top_k",

     k=10

 )

 # Compute recall@10

 recall_at_k(

     df_true,

     df_pred,

     col_user="UserId",

     col_item="MovieId",

     col_rating="Rating",

     col_prediction="Prediction",

     relevancy_method= "top_k",

     k=10

 )

 # Compute ndcg@k

 ndcg_at_k(

     df_true,

     df_pred,

     col_user="UserId",

     col_item="MovieId",

     col_rating="Rating",

     col_prediction="Prediction",

     relevancy_method= "top_k",

     k=10

 )

 # Compute MAP

 map_at_k(

     df_true,

     df_pred,

     col_user="UserId",

     col_item="MovieId",

     col_rating="Rating",

     col_prediction="Prediction",

     relevancy_method= "top_k",

     k=10

 )

Similar to the rating metrics, there are few tips for the ranking metrics which are summarized in Table 6.2.

Table 6.2 Comparison between the ranking metrics

Metrics Value
range

Selection criteria Limitation

precision@k & The closer to 1 the
better

It can only be used for evaluating the relevancy of the items in the recommendation results.

recall@k & The closer to 1 the
better

It can only be used for evaluating the relevancy of the items in the ground truth set.

ndcg@k & The closer to 1 the
better

NDCG does not check the missing items, and it cannot evaluate the items that are ranked at the
same position.

MAP & The closer to 1 the
better

It depends on the distribution of the variables.

In many application scenarios, the recommendation results are binary, e.g., “like or dislike,” “click or non-
click,” “purchase or non-purchase,” etc. The offline evaluation for such situation can leverage the evaluation



methods that are used in the classification problem. Common metrics for such application are AUC, logloss, etc.
These metrics check every prediction result and compare it against the real one to see if they are identical. In Table
6.3, the comparison for such binary evaluation methods is summarized. Also, as shown in the code examples, these
metrics can be computed by using the functions in Microsoft Recommenders.

Table 6.3 Comparison between AUC and logloss

Metrics Value
range

Selection criteria Limitation

AUC & The closer to 1 the better. A value of 0.5 indicates a random
guess.

It depends on the size of the recommendation.

logloss The closer to 0 the better. It is not stable when the data of the two classes are not
balanced.

 from recommenders.evaluation.python_evaluation import auc, logloss

 auc(df_true, df_pred, col_user="UserId", col_item="MovieId", col_rating=

     "Rating")

 logloss(df_true, df_pred, col_user="UserId", col_item="MovieId",

 col_rating="Rating", col_prediction="Prediction")

In addition to the offline evaluation metrics, there are some other metrics which are suitable to some special
needs. Such metrics include diversity, serendipity, novelty, etc. These metrics make it possible to design a better
recommender system. Due to the limit of the space, the details of these metrics are not introduced. The readers can
refer to the [6] for more information.

As aforementioned, a recommender system is an online system and hence the online evaluation is vital. Many
engineering and experimenting practices prove that there may be no correlation between the offline and the online
evaluations. This does not say that the offline evaluation is not necessary. Many times, the root cause of the
discrepancy is owing to the dynamics when the system goes alive (e.g., data drift), and this results in the inefficacy
of the deployed model. To avoid the consequence due to the offline-online discrepancy, performing the timely
online evaluation is very important. There are many different methods for online evaluation in recommender
system. The common ones are A/B testing and multi-armed bandits. The main difference between the offline and
the online evaluation is that, in an online setting, the actual feedback from users is collected and used as references
to evaluate whether the system performance meets the requirement. The metrics that are used in the online
evaluation are usually business oriented. In many circumstances of an e-commerce platform, the recommendation
results generated from a system are those that are relevant to the users’ interests, and as a result, the
recommendation results promote the purchase behavior of the users. The business-related metrics here can be the
conversion rate. In the online evaluation, the online evaluating system will assess whether the conversion rate of
users is improved after the recommender system is incorporated. The verification procedure can be conducted by
using the A/B testing or multi-armed bandit framework.

As the name suggests, A/B testing splits the traffic online into the experiment group (group A) and the control
group (group B), and within the limited period of time, the evaluation is performed regarding a particular metric
and the statistical testing is then conducted to assess whether there is a change in the two groups. In the
recommender system, the experiment group consist of the users who are exposed to the recommendation results
whilst those in the control group are not. It is mentioning that, in the traffic split, the two groups need to be isolated
carefully, such that there is no information leakage among the two groups. One of the biggest challenges in A/B
testing is that, by virtue of a statistical method, it requires sufficient large size of the samples to make reliable
conclusion from the experiment. This leads to a strong dependency on the time to conduct the experiment, which
may become a bottleneck for the iteration of the recommender system and thus creates deficiency in refreshing the
recommender model in the system.

The method of multi-armed bandit originated from the slot machine in the casino - the gambler needs to choose
whether to bet on a single machine or try luck on a different in order to optimize the overall gain. A multi-armed
bandit usually models the gain probability for each of the options and dynamically tunes the model parameters to
maximize the overall gain. The dynamic tuning is performed based on the observations from the online feedback.
The commonly used methods in the multi-armed bandit evaluation framework are the Upper Confidence Bound
method, Thompson sampling, etc. The gain of each “arm” in the setup is defined based on the business metrics
such as click-through rate, conversion rate, etc. The idea of the multi-armed bandit is the same as the recommender



system in terms of the philosophy of “exploration or exploitation.” Compared to A/B testing, multi-armed bandit
leverages the dynamics of the online system such that the feedback to one or multiple recommender systems can
be effectively captured to assess whether there is a time point where the overall gain is optimized. The
characteristics of the multi-armed bandit method makes it independent from the statistical testing so that it saves
the time for conducting a sound statistical experiment. In addition, the multi-armed bandit inherits the concept and
methods from reinforcement learning. In some cases, it can work independently even without the offline machine
learning model (Azure Personalizer in the Microsoft Azure cloud platform makes use of the contextual information
to do the personalized recommendation for the items online).

Given that the code base of Microsoft Recommenders does not contain the online evaluation related code
examples, the practical examples are not introduced here. The readers can refer to the online learning materials
from the projects such as Vowpal Wabbit, Azure Personalizer, Ray, etc. for further reading.

6.4 Development and Operation of Recommender Systems in the Cloud
6.4.1 Advantages of Using Cloud for Recommender Systems
Today, it is not easy to build a high-performance and scalable recommender system due to the explosive growth of
data. As discussed in 6.2.3, it takes a lot of time and effort to build an industry-grade recommender system from
scratch. The rapid maturing of cloud computing technologies can greatly simplify the buildout of recommender
systems. Using cloud computing has the following advantages when it comes to recommender systems.

First, cloud platforms provide powerful and elastic computing resources. When it comes to large-scale
recommender systems, scalability is a key design consideration. Training and scoring of large-scale recommender
models often require a lot of computing resources. In addition, the online data processing scale of recommender
systems may change over time, which makes the recommender system’s demand for computing fluctuate.
Therefore, it is very important to have computing resources that can easily adapt to these changes. Cloud platforms
can provide very reliable and convenient services for both of these requirements. Developers can easily set the
allocation of resources in their scheduling programs to minimize the cost of computing while ensuring the
efficiency of computing. At the same time, many cloud platforms have already helped some recommender models
to be trained on large clusters, which greatly improves the efficiency of model development.

Second, in addition to computing power, cloud platforms also provide a rich set of data stores. For complex
recommender systems, it is important to having access to a diverse collection of data store interfaces. This is
because various data stores can play distinct roles at different stages of the data pipeline. For examples, large-scale
data stores that support unstructured data are often needed during data preparation, while distributed document
databases are valuable when retrieving recommended items.

Third, cloud-based services are often easier to deploy and operate. Compared to starting from scratch in an on-
premise environment, developers can readily use the full range of services provided by a cloud platform, making it
easy to develop recommender systems end-to-end. For example, traditionally, when developing a recommender
system requires considering both scalability of the backend systems and latency of the front-end systems. These
requirements are often complex and time-consuming to implement. By using the ready-made cloud services,
developer teams can minimize or avoid such complexities significantly reducing development time.

Fourth, cloud platforms often provide a good environment for developing, experimenting, and deploying
recommender systems. For algorithm engineers, It is productive to have a machine learning development
environment that is not only pre-configured with common models and toolkits but also well-integrated with the
rest of the cloud platform for deployment. Many cloud platforms have such integrated machine learning
environment, including Azure Machine Learning Service on Microsoft Azure. With such integrated environment,
algorithm engineers can focus on developing models and be productive in integration and deployment.

Fifth, cloud platforms typically have built-in security and reliability features important to production-grade
recommender systems. These features may cover diverse aspects such as network, data, and service and often
require significant amount of resources to implement.

6.4.2 Cloud-Based Development and Operations of Recommender Systems
Compared to the traditional development and deployment, building recommender systems on cloud platforms can
take advantage of existing services. A big part of work for development teams is to integrate these services into a
production-grade recommender system. In this section, we will use an example of building a real-time
recommender system based on collaborative filtering on Microsoft Azure cloud platform to illustrate how to



develop and operate a recommender system on cloud platforms. The details of this example can be found in the
code repository of Microsoft Recommenders, at examples/05_operationalize/als_movie_o16n.ipynb.

Figure 6.5 shows the architecture of this recommender system. In this example, we continue to use the
MovieLens dataset. In practice, this kind of recommender system could be used, for example, in an online video
entertainment platform. The system recommends videos to users based on their preferences to improve user
experience.

Fig. 6.5 The architecture diagram of the Azure cloud-based real-time recommender system

The dataflow of this recommender system is as follows:

1. The video entertainment platform collects the viewing history of its users in accordance to relevant privacy
requirements. In particular, the data used to represent the user’s interest in the video content, such as the clicks
and ratings, will be used to train the recommender system.

 

2. The collected data is stored in a cloud storage service. In this example, we use Azure Storage Account. This
service does not require a specific data format, can store and read massive amounts of data, and also encrypts
data for security.

 

3. The data is loaded into Azure Databricks for data processing and model training. Azure Databricks is a
distributed computing service on Azure that supports computing environments such as Spark. Data scientists
and algorithm engineers can write and run code in notebooks on Azure Databricks without having to set up or
maintain the underlying Spark environment or cluster.

 

4. After loaded into the environment in Azure Databricks, the data goes through preprocessing and is split into
training and test sets. The processed data is used to train the recommender model. For the sake of simplicity, in
the example in Microsoft Recommenders, we use the ALS algorithm that comes with Spark. The ALS
algorithm is a matrix factorization algorithm. The Spark implementation of ALS uses Spark’s distributed
computing mechanism to make the least squares iteration in the model training process efficient.

 

5. After the model is trained, we can evaluate the model using metrics discussed in 6.3.3, such as ranking metrics
and rating metrics.  

6. We can use the trained model to recommend products to users who appear in the training data. Since the
collaborative filtering model can generate recommendations immediately after the model is trained, the batch-
based architecture can easily store the recommendations in a high-performance database so that the
recommendations can be retrieved in real time. In this architecture, we use Azure Cosmos DB, a distributed
database service on Azure. It is a NoSQL database supporting different data formats, but it also supports SQL
and other types of data interfaces. In addition, Azure Cosmos DB is globally distributed, allowing
recommendation output to be available in different regions for the recommendation service.

 



A Trained model is deployed to the Azure Kubernetes Service API server using Azure Machine Learning
Service, so that the recommendation results can be easily accessed and used by various applications. In the
special case of the collaborative filtering model, recommendations can be generated immediately and stored in
Azure Cosmos DB. The API deployed by Azure Machine Learning Service does not need to call the model to
score based on the request; instead, the API can directly query Azure Cosmos DB before serving.

7. When the video entertainment platform client needs to be shown a recommended video, the request is sent to
the API on Azure Kubernetes Service via HTTPS. The logic code deployed on Azure Kubernetes Service will
then search for the relevant content in the recommendations stored in Azure Cosmos DB based on the
parameters in the API, such as the user ID, and return the result to be displayed on the user interface.

 

In this example architecture, Azure Databricks, Azure Cosmos DB, and Azure Kubernetes Service are used for
recommendation. To meet the performance requirements of the recommender system, stress tests can be performed
to tune the system configuration and size. As for scalability, it is important to be able to adjust the system scale to
meet changing usage volume. Azure Databricks cluster size (the number of compute nodes) can be adjusted easily
during operations. It also supports auto-scaling to optimize the utilization of computing resources. In the serving
side, the size of Azure Kubernetes Service cluster and the throughput of Azure Cosmos DB can both be adjusted to
improve operational efficiency.

6.5 Summary
This chapter focuses on some problems and considerations in industry applications of recommender systems and
discusses the details of these actual applications based on the code in the Microsoft Recommenders repository and
an cloud-based reference architecture. Readers are encouraged to follow the steps and methods in the text in a
hands-on manner and experiment using the algorithms introduced in previous chapters.

This chapter is not intended to be a comprehensive overview of industry-grade recommender system research
and practice. Up-to-date industry research results can often be found in leading conferences. The industrial paper
section of ACM SIGKDD and the application papers and example presentations of ACM RecSys are good places
to start.
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Abstract
This chapter provides a summary of the book and offers insights into future
trends in the research and application of recommender systems.

Keywords Summary – Future trends of research and application

In the information age, recommender system has become an indispensable
application, helping people obtain information more efficiently in various
fields, such as e-commerce, movies, books, music, and news. In
recommender systems, the two most important elements are users and
items. Around these two elements, researchers in the field of recommender
systems have proposed a large number of innovative research works,
mainly including two categories: content-based recommendation algorithms
and collaborative filtering-based recommendation algorithms. The content-
based recommendation algorithm mainly studies how to model and describe
structured content and unstructured content and then recommend items
similar to user interests to users. The collaborative filtering algorithm
mainly studies how to find neighbors with similar interests for target users,
and how to recommend items for target users based on the interests of
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neighbors. These two ideas are still the basis of recommendation algorithm
research nowadays.

With the continuous development of deep learning technology,
mainstream recommendation algorithms are gradually replaced by deep
learning technology. For example, the traditional description of content is
replaced by representation learning that deep learning is good at, such as the
vector space model of text modeling has been replaced by neural network
models. In addition, according to the characteristics of neural networks,
researchers have explored a new paradigm of recommendation algorithms,
that is, representation learning plus interaction function learning. Among
them, representation learning mainly expresses users and items as vectors
through neural networks, and interaction function learning mainly learns the
relationship between user vectors and item vectors through neural networks.
This new paradigm takes advantage of deep learning to model various types
of information more flexibly, such as user characteristics, item attributes,
sequential information, and graph information as well as more complex
relationships between users and items, such as high-order non-linear
relationship, etc. Deep learning technology has dominated the research and
applications related to recommender systems, and it is believed that this
trend will continue until the emergence of alternative technologies for deep
learning.

As recommender systems gradually penetrate into more scenes of
people’s daily life, the interaction between recommender systems and
people is also facing greater challenges. As an application that is closely
connected with people, the bottom line of recommender systems is not to
harm users, that is, it complies with the relevant guidelines of responsible
artificial intelligence. For this goal, researchers need to pay attention to the
security and privacy of recommender systems, the interpretability of the
algorithm, whether the algorithm is biased, etc. In addition to the impact on
individuals, it is also necessary to pay attention to the impact of
recommender systems on social groups, such as whether a recommender
system will produce an information cocoon effect, etc. Therefore, while
paying attention to technological development, we must also pay attention
to the possible negative social impact of recommender systems. When
researching new technologies, we should try our best to ensure that the
technology is responsible. This point has been recognized by mainstream



research institutions around the world and will be the focus of the
development of recommender system-related technologies in the future.

Recommender systems are closely related to applications, so when
learning the technology related to recommender systems, it is necessary to
combine theoretical knowledge with practical experience. To this end, this
book introduces the practical experience of recommender systems based on
Microsoft Recommenders, an open source project of Microsoft. Readers
can learn more deeply about the design principles and practical methods of
recommendation algorithms based on the source code provided in this book
and can quickly build an accurate and efficient commercial recommender
system from scratch.

“Long, long had been my road and far, far was the journey; I will go up
and down to seek my heart’s desire.” There are still many key problems that
need to be solved in the seemingly mature field of recommender systems,
such as causality, common sense, etc. It is believed that researchers and
engineers will be able to solve them in the near future, bringing a new wave
of recommender system research and application.
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