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Band algorithms for matrix multiplication 
In these algorithms, matrices are divided into continuous sequences of rows or columns (bands). In the 

simplest case, a band can be a separate row or column. 

In the algorithms discussed below, each process is used to compute one row of the resulting matrix product 

AB. In this case, the process must have access to the corresponding row of matrix A and the entire matrix B. Since 

simultaneous storage of the entire matrix B in all processes of a parallel application requires excessive memory 

consumption, calculations are organized in such a way that at any given time the processes contain only part of 

the elements of matrix B (one column or one row), and access to the rest is provided using message passing. 

When describing band algorithms, it is assumed that the number of processes N coincides with the order of 

the multiplied matrices A and B, and the matrices are square. In the case where the order of the matrices M is a 

multiple of the number of processes N, it is sufficient to process bands containing M / N rows or columns in each 

process. 

Band algorithm 1 (horizontal bands) 

At the beginning, the elements of the K-th row of the matrix A and the elements of the K-th row of the 

matrix B are sent to the process of rank K. The elements of the row c, which will contain the result, i.e. the 

corresponding row of the product AB, are set to zero. 

Then a loop is started (the number of iterations is N), during which two actions are performed: 

1) A and matrix B with the same numbers are multiplied, and the results are added to the corresponding row 

element c; 

2) the rows of matrix B are cyclically sent to neighboring processes (the direction of transfer can be arbitrary: 

either in increasing or decreasing ranks of processes). 

After the loop completes, each process will contain the corresponding row of the product AB. All that 

remains is to send these rows to the master process. 

The figure shows a diagram of algorithm 1, provided that cyclic transfer of rows of matrix B is performed in 

the direction of increasing process ranks (process of rank 0 sends its row to process of rank 1, process of rank 1 to 

process 2, etc.). 
 

 

Band algorithm 2 (horizontal and vertical bands) 

At the beginning, the elements of the K-th row of matrix A and the elements of the K-th column of matrix B 

are sent to the process of rank K. 

Then a loop is started (the number of iterations is N), during which two actions are performed: 

1) a multiplication of a row of matrix A and a column of matrix B contained in this process is performed, and 

the result is written to the corresponding element of row c; 

2) the rows of matrix B are cyclically sent to neighboring processes (the direction of transfer can be arbitrary: 

either in increasing or decreasing ranks of processes). 
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After the loop completes, each process will contain a row c equal to one of the strings of the product AB. All 

that remains is to send the rows c to the master process. 

The figure shows a diagram of algorithm 1, provided that cyclic forwarding of the columns of matrix B is 

performed in the direction of increasing process ranks (process of rank 0 sends its row to process of rank 1, 

process of rank 1 to process 2, etc.). 

 

 

Block algorithms multiplication matrices 
In these algorithms, matrices break up on blocks representing submatrices of the original matrices. For 

simplicity, we will assume that all matrices are square of size N  N, and the number of blocks horizontally and 

vertically is the same and equal to q (the size of all blocks is equal to K  K, where K = N / q). In this case, the 

matrix multiplication operation can be represented in block form: 

 
In this case, each block Cij of matrix C is defined as the product of the corresponding blocks of matrices A 

and B : 

 
When partitioning data blockwise, it is natural to associate with each process the task of calculating one of 

the blocks of the resulting matrix C. In this case, the process must have access to all elements of the 

corresponding rows of matrix A and columns of matrix B. Since placing all the required data in each process will 

lead to their duplication and a significant increase in the amount of memory used, it is necessary to organize 

calculations in such a way that at each time the processes contain only one block of matrices A and B required for 

calculations, and access to the remaining blocks would be provided by message passing. 

In these algorithms, it is convenient to introduce a two-dimensional Cartesian topology for processes by 

associating each process with its coordinates (i, j) in this topology (i, j = 0, …, q – 1). It is assumed that the 

number of processes is equal to q
2.

 

Fox’s block algorithm 

Blocks Aij, and Bij of the original matrices are sent to the process with coordinates (i, j). In addition, the 

matrix Cij, intended to store the corresponding block of the resulting product AB, is reset to zero. 
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Then a loop is started in m (m = 0, …, q – 1), during which three actions are performed: 

1) for each row i (i = 0, …, q – 1), block Aij of one of the processes is sent to all processes of the same row; in 

this case, the index j of the forwarded block is determined by the formula j = (i + m) mod q; 

2) the block of matrix A obtained as a result of such transfer and the block of matrix B contained in the 

process (i, j) are multiplied, and the result is added to the matrix Cij; 

3) for each column j (j = 0, …, q – 1), cyclic transfer of blocks of matrix B, contained in each process (i, j) of 

this column, is carried out in the direction of decreasing row numbers. 

After completion of the loop, each process will contain a matrix Cij equal to the corresponding block of the 

product AB. All that remains is to send these blocks to the master process. 

The figure shows a diagram of the Fox’s algorithm in the case of q = 2. 
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Cannon’s block algorithm 

Cannon's algorithm differs from Fox's algorithm in two ways. First, the initial transfer of blocks of matrices 

A and B to processes is performed in such a way that the resulting blocks can immediately be multiplied without 

any data transfers. Secondly, when organizing a loop, cyclic transfer is carried out not only of blocks of matrix B 

(by columns), but also by blocks of matrix A (by rows). Initial forwarding actions consist of the following steps: 

1) blocks Aij and Bij are sent to each process (i, j), the matrix Cij is reset to zero; 

2) for each row i (i = 0, …, q – 1) of the Cartesian grid of processes, a cyclic shift of blocks of matrix A is 

performed by i positions to the left (i.e. in the direction of decreasing column numbers); 

3) for each column j (j = 0, …, q – 1) of the Cartesian grid of processes, a cyclic shift of blocks of matrix B is 

performed by j positions upward (i.e. in the direction of decreasing row numbers). 

The result of such a redistribution of blocks in case q = 2 is shown in the figure. 

 
Then a loop of q iterations is launched, during which three actions are performed: 

1) A and B contained in the process (i, j) are multiplied, and the result is added to the matrix Cij; 

2) for each row i (i = 0, …, q – 1), cyclic transfer of blocks of matrix A, contained in each process (i, j) of 

this row, is performed in the direction of decreasing column numbers; 

3) for each column j (j = 0, …, q – 1), cyclic transfer of blocks of matrix B, contained in each process (i, j) of 

this column, is performed in the direction of decreasing row numbers. 

After completion of the loop, each process will contain a matrix Cij equal to the corresponding block of the 

product AB. All that remains is to send these blocks to the master process. 


