

M. E. Abramyan

Parallel Programming
Based on MPI 2.0

Textbook for students
of computer science and programming

The first section of the textbook describes Message Passing Interface (MPI) standards 1.1 and

2.0 for the C language, and also considers algorithms of parallel matrix multiplication, in the

implementation of which various tools of MPI are used. The description is accompanied by

solutions of typical tasks. The second section contains 265 training tasks included in the elec-

tronic problem book Programming Taskbook for MPI-2 developed by the author and covering

all topics of the first section. The third section gives an overview of the capabilities of the

Programming Taskbook for MPI-2 and provides a set of 24 variants of individual assign-

ments, compiled from the training tasks of the second section. The textbook is supplied with

an index containing all the considered constants, types and functions of the MPI-1 and MPI-2

interfaces.

The textbook is intended for students specializing in science and engineering.

Contents 3

Contents

Preface .. 6

1. MPI: description and examples of use ... 8

1.1. Introduction to MPI ... 8

1.1.1. MPI and its study with the help of the electronic problem book

PT for MPI-2 ... 8

1.1.2. Basic concepts of MPI programming .. 11

1.1.3. Creating a template for a parallel program .. 12

1.1.4. Running a program in parallel mode ... 17

1.1.5. Executing MPI1Proc2 task .. 23

1.1.6. Using additional information in the debug section 28

1.2. Basic capabilities of the MPI interface (MPI-1 standard) 31

1.2.1. Blocking point-to-point communication: basic features 31

1.2.2. Blocking point-to-point communication: examples. Mutual

process deadlocks .. 35

1.2.3. Non-blocking point-to-point communications. Persistent requests

for interaction. Timing functions .. 42

1.2.4. Collective communications ... 45

1.2.5. Reduction operations and using compound datatypes 49

1.2.6. Defining derived datatypes and packing data using dynamic

arrays and vector containers ... 56

1.2.7. Creation of new communicators .. 69

1.2.8. Cartesian topology ... 76

1.2.9. Graph topology .. 85

1.3. Additional features of the MPI interface (MPI-2 standard) 91

1.3.1. Distributed graph topology .. 91

1.3.2. Parallel input-output. File access functions 94

1.3.3. Parallel input-output: an example. Setting up the file view 99

1.3.4. One-sided communications: general description 105

1.3.5. One-sided communications: an example using the simplest

synchronization option .. 111

1.3.6. One-sided communications: an example of a more complex

version of synchronization .. 115

1.3.7. Inter-communicators .. 121

1.3.8. Dynamic process creation .. 130

1.4. Parallel matrix algorithms .. 139

4 M. E. Abramyan. Parallel Programming Based on MPI 2.0

1.4.1. Band and block algorithms for parallel matrix multiplication:

general description ... 139

1.4.2. Implementation of a non-parallel matrix multiplication algorithm 143

1.4.3. Scattering source data: an example of implementation 148

1.4.4. Redistribution of blocks at the initial stage of Cannon's algorithm 153

1.4.5. Result gathering stage: an example of file-based output

implementation ... 159

1.5. Additional techniques for developing parallel programs 165

1.5.1. Debugging parallel programs using taskbook tools 165

1.5.2. Developing and running parallel programs without the taskbook .. 174

1.5.3. Additional debug features. Output redirection 178

2. Learning tasks .. 185

2.1. Processes and their ranks ... 185

2.2. Point-to-point communication... 186

2.2.1. Blocking communications ... 186

2.2.2. Non-blocking communications ... 191

2.3. Collective communications ... 194

2.3.1. Collective data transfer .. 194

2.3.2. Global reduction operations .. 196

2.4. Derived datatypes and data packing .. 198

2.4.1. The simplest derived datatypes ... 198

2.4.2. Data packing .. 200

2.4.3. Additional ways of derived datatypes creation 201

2.4.4. The MPI_Alltoallw function (MPI-2) ... 205

2.5. Process groups and communicators .. 205

2.5.1. Creation of new communicators ... 205

2.5.2. Virtual topologies .. 208

2.5.3. The distributed graph topology (MPI-2) ... 214

2.5.4. Non-blocking collective functions (MPI-3) 215

2.6. Parallel file input-output (MPI-2) ... 220

2.6.1. Local functions for file input-output ... 220

2.6.2. Collective functions for file input-output .. 222

2.6.3. File view setting for file input-output ... 224

2.7. One-sided communications (MPI-2) ... 228

2.7.1. One-sized communications with the simplest synchronization 229

2.7.2. Additional types of synchronization ... 233

2.8. Inter-communicators and process creation .. 238

2.8.1. Inter-communicator creation ... 239

2.8.2. Collective communications for inter-communicators 244

2.8.3. Process creation ... 246

2.9. Parallel matrix algorithms ... 250

2.9.1. Non-parallel matrix multiplication algorithm 251

Contents 5

2.9.2. Band algorithm 1 (horizontal bands) ... 251

2.9.3. Band algorithm 2 (horizontal and vertical bands) 255

2.9.4. Cannon's block algorithm .. 261

2.9.5. Fox's block algorithm .. 267

3. Additions .. 275

3.1. Programming Taskbook for MPI-2 ... 275

3.1.1. General description .. 275

3.1.2. Taskbook tools for initializing tasks and data input-output 278

3.1.3. Debug section .. 279

3.1.4. Functions for outputting and configuring debug information 282

3.2. Options for individual assignments ... 284

3.2.1. Series of similar tasks .. 284

3.2.2. Set of 24 variants of tasks .. 288

References .. 304

Index .. 305

6 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Preface
The textbook offered to your attention is a practical introduction to parallel

programming based on MPI (Message Passing Interface). Currently, MPI is one

of the main parallel programming tools for cluster systems and distributed

memory computers [5–10]. The textbook describes the MPI standards of ver-

sions 1.1 [11] and 2.x [12] (and partially 3.x [13]), on which most modern soft-

ware implementations are based. A version of the MPI interface for the C lan-

guage is used; for input-output, C++ language tools are used.

The textbook consists of two main sections. The first section provides a

systematic description of the capabilities of the MPI interface. The basic capa-

bilities of MPI are considered in detail, including blocking and non-blocking

message exchange between two processes, collective interactions of processes,

definition of derived types, work with groups of processes and communicators,

application of virtual topologies. In addition, new capabilities introduced (or

significantly expanded) in the MPI-2 standard are studied: parallel file input-

output, one-sided communications, use of inter-communicators and dynamic

creation of processes, and some others. Along with various capabilities of the

MPI interface, the first section also considers an important class of parallel algo-

rithms, namely, parallel matrix multiplication algorithms, for which various MPI

capabilities are used. All topics discussed are accompanied by examples of pro-

gram code associated with solving typical tasks.

The second section contains 265 training tasks on all the topics considered

in the first section. It should be noted that for practical study of the main com-

ponents of MPI it is sufficient to use a local computer, simulating parallel execu-

tion of processes on it. However, even in this simplest version, the student in-

evitably encounters additional difficulties in developing parallel programs, due

to the complexity of organizing input-output of data for various processes of a

parallel program and the impossibility of using standard IDE debugging tools

for parallel programs. To facilitate studying MPI technologies in practice, the

author has developed a specialized training system — an electronic problem

book on parallel programming Programming Taskbook for MPI-2 (PT for

MPI-2). All tasks included in the second section of the textbook can be solved

using the PT for MPI-2 in various IDEs including Microsoft Visual Studio

(2017, 2019, 2022), Code::Blocks, Dev-C++, and Visual Studio Code editor.

Thus, the distinctive features of the approach to teaching parallel programming

used in this textbook are the presence of a large number of training tasks related

Preface 7

to all aspects of MPI and the possibility of using specialized software tools that

significantly accelerate the process of solving tasks.

The third, additional section provides a general description of the PT for

MPI-2 taskbook. It also provides information about the series of similar training

tasks presented in the second section of the book. This information may be use-

ful in compiling various sets of individual tasks. As an example, this section

presents 24 variants of individual tasks that cover all the topics covered in the

textbook.

The textbook index includes constants, types, and functions of the MPI in-

terface, The presence of this index allows the textbook to be used as a reference

for MPI technologies.

The textbook is a substantially revised and expanded version of the book

[1]. It examines the capabilities of the MPI -1 standard in more detail and covers

new topics, namely, the new capabilities of the MPI-2 and MPI-3 standard and

parallel matrix algorithms. 165 new problems have been added to the 100 given

in the book [1]; and some previous problems have been provided with new

wordings. A large number of new features have also appeared in the PT for

MPI-2 taskbook, which is an extension of the PT for MPI taskbook used in [1].

You can get more information about the PT for MPI-2 taskbook and down-

load its distribution from the website of the Programming Taskbook

http://ptaskbook.com/.

8 M. E. Abramyan. Parallel Programming Based on MPI 2.0

1. MPI: description and examples of use

1.1. Introduction to MPI

1.1.1. MPI and its study with the help of the electronic problem book
PT for MPI-2

MPI (Message Passing Interface) provides means for transferring informa-

tion between different processes of a parallel application. The first version of the

MPI standard (MPI-1) was developed in 1993–1995 [11]; already in 1997 the

second version (MPI-2) appeared. supplemented with a large number of new

features [12]. The MPI-2 standard was subsequently revised in 2008 and 2009

[12]. Starting from 2012, versions of standard 3 appear [13]; standard 4 is being

developed from 2021. Currently, the most common version of MPI is 1.1, but an

increasing number of implementations are beginning to support the capabilities

of the MPI-2 and MPI-3 standards.

MPI standard is defined for two languages: Fortran and C (the C variant

can be used without any changes in C++ programs). There are MPI implementa-

tions for other languages (for example, Python and C#), but, as a rule, parallel

programs using MPI are developed in C/C++ and Fortran.

In order to achieve maximum efficiency, parallel programs should be ex-

ecuted on supercomputers or computing clusters that allow for efficient distribu-

tion of the launched processes across the supercomputer processors or cluster

nodes. However, to study the capabilities of MPI, it is quite sufficient to use a

local computer for launching all the processes of a parallel application. In such a

situation, one should not expect a significant gain in the speed of parallel algo-

rithms, but with the help of such learning programs a student can become famil-

iar with the the MPI tools and try them out in action. For this purpose, the author

of this textbook has developed an electronic problem book on parallel pro-

gramming Programming Taskbook for MPI-2 (PT for MPI-2). Detailed de-

scription of the PT for MPI-2 taskbook is contained in Section 3.1. This text-

book describes the PT for MPI-2 version 1.6 released in 2024.

The PT for MPI-2 taskbook allows developing parallel programs in C++

using MPI interface for C. Additional capabilities of the C++ language are used

mainly for more convenient organization of input-output (using streams and ite-

rators, see Section 3.1.2), although in some situations other C++ tools are also

useful, e. g. template functions (see the MPI2Send22–MPI2Send25 tasks in Sec-

tion 2.2.1). Since the PT for MPI-2 taskbook is a specialized extension for the

universal problem book Programming Taskbook, it can be used together with all

Part 1. MPI: description and examples of use 9

IDEs for the C++ language that the basic taskbook supports. For the Program-

ming Taskbook version 4.24 released in 2024, the following C++ IDEs are sup-

ported: Microsoft Visual Studio (version 2017, 2019, 2022), Code::Blocks, Dev-

C++, Visual Studio Code. For more information about the IDEs supported by

the taskbook, see its website ptaskbook.com.

Thus, in order to be able to solve training tasks on parallel programming

using the PT for MPI-2 taskbook, you must first install one of the specified

IDEs.

However, to run parallel programs developed on the basis of MPI, the pres-

ence of a programming environment (even with additional MPI libraries) is not

enough. A system is needed that allows you to run parallel program processes

and provides message exchange between them. Among the popular freely distri-

buted MPI support systems are the MPICH/MPICH2 systems developed at the

Argonne National Laboratory (USA) and MS-MPI system developed by Micro-

soft. The PT for MPI-2 taskbook can be used in conjunction with the following

MPI support systems:

 MPICH 1.2.5 (ftp://ftp.mcs.anl.gov/pub/mpi/nt/mpich.nt.1.2.5.exe), supports the

MPI 1.2 standard;

 MPICH2 1.3 (http://www.mpich.org/static/downloads/1.3/mpich2-1.3-win-ia32.msi),

supports the MPI 2.1 standard;

 MS-MPI 10.1.2 (https://www.microsoft.com/en-us/download/details.aspx?id=100593),

supports MPI-2.1 (and partially MPI-3), provides faster operation of pa-

rallel programs for Windows 10 (requires downloading the msmpisetup.exe

installation file).

When using the MPICH system, you can only perform those tasks that are

intended for studying the MPI tools of the 1.1 standard. The MPICH2 system

allows you to perform almost all the tasks included in the PT for MPI-2 task-

book (except the MPI5Comm33–MPI5Comm47 tasks on non-blocking collec-

tive functions from the MPI-3 standard). The MS-MPI system allows you to per-

form all the tasks included in the PT for MPI-2 taskbook.

Note. To install MPICH 1.2.5 or MS-MPI 10.1.2, simply run the installa-

tion file and follow its instructions.

To install the MPICH2 1.3 system correctly, you must run the installation

file mpich2-1.3-win-ia32.msi with administrator rights. If the corresponding

pop-up menu item for this file is missing, you can, for example, run the

command line with administrator rights (Start | All Programs | Standard |

Command Line, use the Run as administrator command from the pop-up

menu of this program), and run the installation file mpich2-1.3-win-

ia32.msi in this command line. If you have the FAR file manager on your

computer, it is more convenient to run this program with administrator

rights and run the installation file in it. If you do not use administrator

rights when installing the MPICH2 system, the installation will proceed

10 M. E. Abramyan. Parallel Programming Based on MPI 2.0

normally, however, when you try to run a parallel application using the

mpiexec.exe program, the message "Unknown option: -d" will be dis-

played, caused by the fact that the system will not be able to start the

smpd.exe process manager, which is part of MPICH2.

Sometimes a situation arises when the Windows system starts blocking the

call of MPICH2 system components that ensure the launch of programs in

parallel mode. In this case, it is usually sufficient to reinstall the MPICH2

system by running the installation program and selecting the Repair

MPICH2 option in it. Some types of antivirus applications may also try to

block the execution of parallel programs, considering them suspicious.

After the programming environment for C++ and the MPI support system

(MPICH, MPICH2 or MS-MPI) are installed, the basic version of the electronic

problem book Programming Taskbook and the PT for MPI-2 taskbook should be

installed (in the order specified). Installation programs for these problem books

can be downloaded from the website of the Programming Taskbook ptask-

book.com (either in the Download section of the Main page or in the Overview

section of the PT for MPI-2 page). The Overview section of the PT for MPI-2

page also contains links for downloading distributions of all MPI systems sup-

ported by the PT for MPI-2 taskbook.

After installing the PT for MPI-2 taskbook, the PT4Setup program win-

dow will appear on the screen, listing all programming environments in which

the taskbook can be used. In this window, those MPI systems that are found on

the computer will additionally appear (Fig. 1).

Fig. 1. The PT4Setup program window with a list of found IDEs

Part 1. MPI: description and examples of use 11

If there are several MPI support systems, one will be active and the others

(with a gray checkbox) will be temporarily disabled. To activate the other MPI

support system, click on its gray checkbox.

After installing all the specified programs, you can start solving tasks from

the PT for MPI-2 taskbook.

Throughout the textbook, we will assume that the Microsoft Visual Studio

2022 environment is used when solving tasks, and MS-MPI is selected as the ac-

tive MPI support system.

1.1.2. Basic concepts of MPI programming

We will begin our introduction to parallel programming by examining the

following simple task from the initial group MPI1Proc (see Section 2.1). This

will allow us not only to become familiar with the basic concepts of parallel

programming based on message passing, but also to study the capabilities of the

electronic taskbook related to data input and output, as well as debug output.

MPI1Proc2. Input an integer A in each process of the MPI_COMM_WORLD

communicator and output doubled value of A. Also output the total number of

processes in the master process (that is, a rank-zero process). For data input

and output use the input-output stream pt. In the master process, duplicate the

data output in the debug section by displaying on separate lines the doubled

value of A and the total number of processes (use two calls of the ShowLine

function, which is defined in the taskbook along with the Show function).

First of all, let us clarify the basic terms of parallel MPI programming.

When a program is executed in parallel, several instances of the program are

launched. Each launched instance is a separate process that can interact with

other processes by exchanging messages. MPI functions provide a variety of

means for implementing such interaction.

To identify each process in a process group, the concept of rank is used.

The rank of a process is the ordinal number of the process in the process group,

counted from zero (thus, the first process has rank 0, and the last process has

rank K – 1, where K is the number of processes in the group). In this case, a

process group may include only a part of all running processes of the parallel

application. Note that in task formulations, the letter K is usually used to denote

the number of processes.

A special entity of the MPI library, called a communicator, is associated

with a group of processes. Any interaction between processes is possible only

within a particular communicator. The standard communicator, which contains

all processes launched during parallel execution of a program, has the name

MPI_COMM_WORLD. The constant MPI_COMM_NULL corresponds to an "empty"

communicator, which cannot be used to send messages. Each process also has a

communicator MPI_COMM_SELF, which is associated only with this process. A

communicator can be interpreted as a channel connecting processes included in

12 M. E. Abramyan. Parallel Programming Based on MPI 2.0

a certain group. It is often convenient to organize additional channels that, for

example, do not contain all processes or in which the order of their sequence is

changed. In this situation, new communicators are created, information about

which is stored in descriptor variables of the MPI_Comm type. Working with

communicators is discussed in MPI5Comm and MPI8Inter task groups (see also

Sections 1.2.7–1.2.9, 1.3.1, and 1.3.7). The tasks of the initial four groups al-

ways use the standard communicator MPI_COMM_WORLD.

A process of rank 0 is often called the master process, and the remaining

processes are slave processes. Typically, the master process plays a special role

with respect to slave processes, passing its data to them or receiving data from

all (or some) slave processes. In the MPI1Proc2 task under consideration, all

processes must perform the same action—read one integer and output its double

value, and the master process, in addition, must perform an additional action—

output the number of all running processes (in other words, the number of all

processes included in the communicator MPI_COMM_WORLD). Note that in this

simple task, the processes do not need to exchange messages with each other (all

tasks of the MPI1Proc group are like this).

1.1.3. Creating a template for a parallel program

The process of solving a task using the PT for MPI-2 taskbook starts with

creation of a project template for the selected task. All necessary libraries (asso-

ciated with the taskbook and with the selected MPI support system) will already

be connected to this project; in addition, the main file of this project will contain

code fragments necessary for the execution of any parallel program.

The PT4Load program, which is part of the taskbook, is intended to create

a template project. The easiest way to run this program is with the Load.lnk or

Panel.lnk shortcuts that are automatically created in the working directory (by de-

fault, the working directory is called PT4Work and is located on the C drive). Af-

ter running the program, its window will appear on the screen (Fig. 2).

Fig. 2. Window of the PT4Load program

Part 1. MPI: description and examples of use 13

This is what the window looks like if the current IDE is Microsoft Visual

Studio 2022 for C++. To change the current environment, simply right-click in

the window (or press the button or key [Shift]+[F10]) and select a new en-

vironment from the pop-up menu that appears (for example, Dev-C++ (C++));

the name of the selected environment will appear in the window header.

The pop-up menu is shown in Fig. 3. In addition to the list of available en-

vironments, the pop-up menu contains a list of available MPI support systems

(indicating the selected one). Also it allows you to select the interface language

(Russian or English), and perform a number of additional actions to configure

the working directory and the PT4Load program.

You should check for task groups that start with the MPI prefix (MPI1Proc,

etc.). They will appear in the task list only after installing the PT for MPI-2

taskbook and only if the C++ language environment is selected as the current

IDE.

Fig. 3. PT4Load window with expanded pop-up menu

Let us select the required IDE, and then input the text MPI1Proc2 in the Task

field (it is not necessary to input the full name of the group; it is enough to input

the text MPI1, which uniquely identifies the group, then press the space bar and

specify the task number 2). As a result, the Load button will become available;

14 M. E. Abramyan. Parallel Programming Based on MPI 2.0

in addition, a brief description of the selected group and the amount of tasks in-

cluded in it will be shown at the bottom of the window (Fig. 4).

Fig. 4. The PT4Load window after the task name input

Pressing the Load button or the [Enter] key, we will create a template

project for the specified task, which will be immediately loaded into the selected

IDE.

The project created for the C++ language always has the name ptprj; this al-

lows, in particular, to significantly reduce the number of files created in the

working directory when performing various tasks. It includes a number of files,

the main one of which is the cpp file with the name which coincides with the

name of the task being performed (in our case, MPI1Proc2.cpp). This file is auto-

matically loaded into the IDE code editor; the solution of the task must be input

in this file. Here are the contents of the MPI1Proc2.cpp file:

#include "pt4.h"
#include "mpi.h"

void Solve()
{
 Task("MPI1Proc2");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

}

At the beginning of the program, there are directives for connecting aux-

iliary header files pt4.h and mpi.h. Then there is the Solve function, which should

contain the solution of the task.

When analyzing the MPI1Proc2.cpp file, a natural question arises: where is

the "start" function of the application (usually named main or WinMain)? This

Part 1. MPI: description and examples of use 15

function is located in another file of the project, since its contents do not require

editing. In it, the initialization of the taskbook is performed, after which the Solve

function is called. Then, if necessary, exceptions that may arise during the ex-

ecution of the Solve function are caught, and at the end, final actions related to

the analysis of the obtained solution are performed.

The program template for parallel programming tasks contains additional

statements that are not present in the templates for "non-parallel" tasks. These

statements must be used in almost any parallel MPI program, so they are auto-

matically added to the program when it is created.

Let us discuss the contents of the Solve function in more detail. Its first

statement is the call for the Task function, which initializes the required task (see

Section 3.1.2). This statement is present in the template programs for all tasks,

including those not related to parallel programming. The Task function is imple-

mented in the core of the Programming Taskbook (the dynamic library) and is

available in the program due to the header file pt4.h connected to it. In addition

to the header file pt4.h, the working directory must contain the pt4.cpp file, which

contains definitions of the functions declared in the file pt4.h (all these files are

automatically added to the working directory when creating a template project).

The remaining statements of the Solve function are associated with the MPI

library. In Section 1.1.1, it was noted that the taskbook uses the MPI library,

which is part of the MPICH or MS-MPI systems, a widely used free software

implementation of the MPI for Windows. The functions and constants of the

MPI library are available to the program due to the header file mpi.h connected to

it. The implementation of the functions from the mpi.h file is contained in the ob-

ject file mpich.lib, which must be connected to any project in C/C++ languages

that uses the MPI library. However, in our case, this connection has already

been made during the creation of the template project, so no additional actions

related to this connection are required.

Note 1. The object lib file for the MPICH2 and MS-MPI systems has the

name mpi.lib, but the taskbook uses the name mpich.lib for these libraries,

which coincides with the name of the similar library for the MPICH 1.2.5

version. This allows you to specify the same settings for projects regardless

of which version of the MPICH system should be used (the version of the

mpich.lib library that is contained in the working directory is always linked

to the project).

Note 2. To connect an additional lib file to the project in the Visual Studio,

you need to call the project properties window (Project < project name >

Properties… command), go to the Configuration Properties | Linker |

Input section in this window and specify the name of the required file in

the Additional Dependencies input field, for instance, mpich.lib; (with a

trailing semicolon).

16 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Similar actions need to be performed in the Code::Blocks and Dev-C++

environment. In Code::Blocks, execute the Project | Build options…

command; in the window that appears, go to the Linker settings tab and

specify the required library in the Link libraries section. In Dev-C++, ex-

ecute the Project | Project options… command; in the window that ap-

pears, go to the Parameters tab and specify the required library in the

Linker section.

As for the Visual Studio Code editor, an additional compilation option

must be input in the tasks.json file located in the .vscode subdirectory of the

working directory. This option has the form "${fileDirname}\\\mpich.lib" and

should be located at the end of the args section.

The MPI_Initialized(int *flag) function call allows us to determine whether the

parallel mode is initialized for the program or not. If the mode is initialized, the

output parameter flag takes a non-zero value. It should be noted that the parallel

mode is initialized by the MPI_Init function (see Note 3), which is missing in the

given code. This is because the taskbook itself is responsible for the initializa-

tion, and it is performed before the program proceeds to executing the code con-

tained in the Solve function. However, such initialization is not always performed

by the taskbook. If the program is launched in demo mode (for this, it is suffi-

cient to supplement the task name with the "?" symbol when calling the Task

function, for example, Task("MPI1Proc2?")), then the taskbook does not initialize

the parallel mode. In this situation, calling MPI functions (other than

MPI_Initialized) in the Solve function may lead to incorrect program working. The

call to the MPI_Initialized function and the conditional statement that follows it are

intended to "skip" all other statements of the Solve function during program ex-

ecution if the program is not running in parallel mode.

Note 3. The MPI_Init function has two parameters: (int *argc, char ***argv); the

first parameter specifies the number of command line parameters, and the

second contains these parameters themselves as an array of type char*. The

parameters are passed by reference; this is due to the fact that the MPI

standard provides for the possibility of implementing this function in such a

way that the parameters are passed not from the parallel program to the

MPI environment, but vice versa: from the MPI environment to the parallel

program. Note also that the MPI_Init function must be called by all processes

of the parallel application.

The last two program statements allow us to define two characteristics ne-

cessary for the normal working of any process of any parallel program: the total

number of processes (function MPI_Comm_size(MPI_Comm comm, int *size)) and the

rank of the current process (function MPI_Comm_rank(MPI_Comm comm, int *rank)).

The current process is the one that called this function. The required characteris-

tic is returned in the second parameter of the corresponding function (which is a

pointer); the first parameter is the comm communicator, which specifies the

Part 1. MPI: description and examples of use 17

group of processes. By calling these functions, we can immediately use the size

(the total number of processes in the MPI_COMM_WORLD communicator) and rank

values in our program (the rank value must be in the range from 0 to size – 1).

Note 4. Any MPI function returns information about the success of its ex-

ecution. In particular, upon successful completion, the function returns the

value MPI_SUCCESS. However, as a rule, the return values of MPI functions

are not analyzed, and errors that occur are processed by a special error

handler. When solving tasks on parallel programming using the PT for

MPI-2 taskbook, a special error handler is used, which is defined in the

taskbook and provides output of information about errors in a special sec-

tion of the taskbook window, namely, the debug section (see Section 3.1.3).

Some MPI capabilities related to error handling are discussed in

MPI5Comm23–MPI5Comm24 tasks; a more detailed description of the

MPI facilities related to error handling is given, for example, in [8, Chap-

ter 8] and [10, Chapter 11].

Note 5. The MPI library also provides the MPI_Finalize() function without pa-

rameters, which finishes the parallel part of the program (after calling this

function, other functions of the MPI library cannot be used). However, in

the part of the program that is developed by the student, this function can-

not be called, since after executing this part of the program, the taskbook

must "collect" all the results obtained in the slave processes (in order to

analyze them and display them in the window of the master process), and

for this purpose, the program must be in parallel mode. Therefore, the task-

book takes on the responsibility not only to initialize the parallel mode (by

calling the MPI_Init function at the beginning of the program execution), but

also to terminate it (by calling the MPI_Finalize function at the end of the

program).

As noted above, the MPI_Initialized function returns a non-zero flag if the

MPI_Init function was called in the program. However, calling the

MPI_Finalize function does not affect the result of the MPI_Initialized function.

The ability to check whether the MPI_Finalize function was called was im-

plemented only in the MPI-2 standard. It added the MPI_Finalized(int *flag)

function, which returns a non-zero value for the flag parameter if the pro-

gram has already called the MPI_Finalize function.

1.1.4. Running a program in parallel mode

Now let us find out how this project can be launched in parallel mode.

When compiling and launching any program from the integrated environment

(even with the MPI library connected), it will be launched in a single copy. It

will also be launched in a single copy if we exit the integrated environment

and launch the compiled exe file of this program.

18 M. E. Abramyan. Parallel Programming Based on MPI 2.0

To run a program in parallel mode, a control program (a host application)

is required, which, firstly, ensures that the required number of instances of the

original program are launched and, secondly, intercepts messages sent by these

instances (processes) and forwards them to their destination.

In Section 1.1.1, it was already noted that instances of "real" parallel pro-

grams are usually launched on different computers connected in a network (a

computer cluster), or on supercomputers equipped with a large number of pro-

cessors. It is in the situation where each process is executed on its own processor

that the maximum efficiency of parallel programs is ensured. Of course, to

check the correctness of our learning programs, it is enough to launch all their

instances on one local computer. However, the control program is necessary in

this case too.

As a control program for parallel programs, the PT for MPI-2 taskbook

uses an application included in the MPI support system. In MPICH, it is named

MPIRun.exe (and is contained in the MPICH\mpd\bin directory), in MPICH2 and

MS-MPI, it is named mpiexec.exe (and is contained in the MPICH2\bin and Microsoft

MPI\bin directories respectively). To run an executable file in parallel mode, it is

sufficient to run the corresponding control program (MPIRun.exe or mpiexec.exe),

passing it the full file name, the required number of processes, and some addi-

tional parameters. Since such runs will have to be performed repeatedly during

program testing, it is advisable to create a batch file (a file with the .bat exten-

sion) containing a call to the control program with all the necessary parameters.

However, even in this case, the process of testing a parallel program will not be

very convenient: each time after making the necessary corrections to the pro-

gram, it will have to be recompiled, after which, leaving the IDE, the batch file

will have to be run. After analyzing the results of the program's work, you will

need to return to the IDE to make further changes to it, then compile it again and

run the batch file, etc.

Note 1. Microsoft Visual Studio provides a mechanism that simplifies test-

ing programs that require a control program to run. In the project settings

(menu command Project | < project name > Properties...) in the Debug-

ging section, you can specify this control program in the Command field;

in our case, it will be MPIRun.exe or mpiexec.exe. The program launch

parameters are specified in the Command Arguments field; the parame-

ters required in our case are described further in this section. You should

also configure the Working Directory field by specifying the directory

where the executable file for our parallel program is located.

After making such settings, launching the application under development

will lead to launching the control program. Thus, there is no need to launch

a separate batch file. However, in this case, it will be necessary to add a

fragment to the program that ensures its suspension at the end of execution,

since without it, the control program window will be immediately closed,

Part 1. MPI: description and examples of use 19

and it will not be possible to view the results obtained. It should also be

noted that in many other IDEs (in particular, in Code::Blocks and Dev-

C++), the control program can only be specified when testing libraries, so

when using such environments, it will not be possible to do without aux-

iliary batch files to launch the program in parallel mode.

To ensure that actions to launch a parallel program do not distract from

solving the task, the PT for MPI-2 taskbook performs them itself. Let us demon-

strate this by means of the example of our project for solving the MPI1Proc2

task, which is ready to run. Press the [F5] key in the Visual Studio; as a result,

the program will be compiled and, if the compilation is successfully completed,

the program will be launched. Since we have not made any changes to the tem-

plate, the compilation should be completed successfully. When the program is

launched, a console window similar to the one shown in Fig. 5 will appear on

the screen.

Fig. 5. Console window with information about running the program in parallel mode

After a few lines of informational message, this window displays a com-

mand line that runs the ptprj.exe program in parallel mode under the control of

mpiexec. exe:

C:\PT4Work>"C:\Program Files\Microsoft MPI\bin\mpiexec.exe"
 -n 5 "C:\PT4Work\ptprj.exe"

The number "5" specified before the full name of the exe file

(C:\PT4work\ptprj.exe) means that the corresponding process will be launched in

five copies. MPICH systems may use some additional parameters, for example,

the -nopopup_debug parameter, which disables the output of error messages in a

separate window, and the -localonly parameter, which ensures that all instances of

the program are launched on the local computer.

20 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Immediately after the console window appears, if the parallel program

named ptprj.exe has not been launched before, another window may appear on the

screen (Fig. 6), in which you should select the Allow access (Разрешить дос-

туп) option.

Fig. 6. Window with a request to block a running parallel program

Finally, the taskbook window will appear on the screen (Fig. 7). This win-

dow is no different from the window that appears when executing a usual, "non-

parallel" program. However, in this case, the information that none of the input-

output operations were performed applies to all processes launched in parallel

mode.

To complete the program, you must, as usual, close the taskbook window

(for example, by clicking the Exit (Esc) button or pressing the [Esc] key). After

closing the taskbook window, the console window will immediately close too,

and we will return to the IDE from which our program was launched.

Thus, having compiled and launched the program from the IDE, we able to

immediately ensure its execution in parallel mode. This happens due to a rather

complicated mechanism that is implemented in the core of the Programming

Taskbook. In order to successfully solve the training tasks, a detailed under-

standing of this mechanism is not required, so we will only give a brief descrip-

tion of it here.

Part 1. MPI: description and examples of use 21

Fig. 7. Acquaintance running of the MPI1Proc2 task

In fact, the program launched from the IDE does not try to solve the task

and is executed in the usual, "non-parallel" mode. Having found that the task be-

longs to the group of tasks on parallel programming, it only creates a batch file

pt_run.bat with comment lines and a command line that calls the program mpiex-

ec.exe with the necessary parameters. Then it launches this batch file for execu-

tion and goes into the mode of waiting for the completion of the batch file. The

program mpiexec. exe launched by the batch file, in turn, launches the required

number of program instances (processes) in parallel mode, and these processes

actually try to solve the task. In particular, the taskbook offers each process its

set of initial data and expects a set of results from it.

Because, in out program, no input-output operation was specified in any

process, this launch of the parallel program is considered as acquaintance one,

and the corresponding message is shown in the information section of the task-

book window. Note that this window is displayed by the main process of the pa-

rallel program, while all slave processes (as well as the first instance of the pro-

gram that created and launched the batch file) work in "invisible" mode.

22 M. E. Abramyan. Parallel Programming Based on MPI 2.0

When the task window is closed, all processes of the parallel program are

terminated, after which the batch file is terminated too, and finally, having dis-

covered that the batch file has successfully completed its work, the instance of

our program that was launched from the IDE also terminates its work.

Note 2. The "starting" copy of the program performs one more action: it

automatically unloads all parallel program processes from memory if they

"hang" as a result of incorrect programming. If, during the execution of a

parallel program, the taskbook window does not appear within 20–30

seconds, this usually means that the program has hung (sometimes a pro-

gram hangs after closing the taskbook window; in this case, the console

window does not close immediately, i. e., the batch file does not complete

its work). In any of these situations, you must close the console window by

following the instructions given in it, namely, by pressing the key combina-

tion [Ctrl]+[C] or [Ctrl]+[Break] several times (or simply by clicking the

close button X on the window header). If the starting copy of the program

detects that the batch file has completed its work, but hung parallel pro-

gram processes remain in memory, it automatically unloads all these

processes from memory. Note that while hung processes remain in memo-

ry, they do not allow you to change the executable file of the program (in

particular, replace the executable file with a new compiled version). In such

a situation, it is necessary to call the Windows Task Manager (using the

combination [Crtl]+[Alt]+[Del]) and manually terminate the execution of

all hung processes in the Processes tab. The automatic unloading of hung

processes performed by the starting copy of the program saves the student

from having to perform such actions.

Note 3. Sometimes only some of the slave processes of a parallel applica-

tion hang. In this case, the master process usually displays its window and

reports which slave processes are hanging (and also displays the results

from those slave processes that are not hanging). This information can be

useful when troubleshooting errors.

The master process considers a slave process to be hung if it

does not receive a response from it within a certain period of time (propor-

tional to the number of processes). By default, the interval is 3 * K seconds,

where K is the number of processes (this is reported in the comment that is

displayed in the console window). In some rare cases, when executing tasks

on low-performance computers, a situation may arise when some slave

processes do not have time to complete their part of the work within the al-

lotted waiting time, and the master process considers them to be hung, al-

though the solution to the problem is correct. In such cases, you can in-

crease the waiting time using the command in the pop-up menu of the task-

book window Increase the waiting time for a response from slave

processes.

Part 1. MPI: description and examples of use 23

1.1.5. Executing MPI1Proc2 task

Now we have become familiar with the mechanism of the program's opera-

tion in parallel mode, and solving our task will not be a problem for us.

Let us start with the input data. By task condition, one integer is given in

each process. Let us go to the empty line located below the call of the

MPI_Comm_rank function. If this section of code is reached during the execution

of the program, it means that the program was launched as one of the processes

of the parallel application (otherwise, the return statement specified in the condi-

tional statement would have been executed). Thus, in this place of the program,

you can input an element of the initial data, having previously described it (here

and below, we will only provide the contents of the Solve function):

Task("MPI1Proc2");
int flag;
MPI_Initialized(&flag);
if (flag == 0)
 return;
int rank, size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
int n;
pt >> n;

The added operators are highlighted in bold. To input the initial data, we

used a special input stream pt defined in the taskbook (see Section 3.1.2). This

stream allows you to input data of any scalar type, in particular, int, double, and

char* (note that in the tasks included in the PT for MPI-2 taskbook, only data of

these types are used). Having launched the new version of the program, we will

see the taskbook window on the screen (Fig. 8).

The taskbook has detected that the input data has been completed, and thus

the program has started solving the task. However, no resulting data element has

been output. Strictly speaking, this indicates an erroneous solution, but the first

step towards the correct solution has been taken: all the initial data has been in-

put correctly. In such a situation, the taskbook displays the message on a light

blue background "Correct data input: all required data are input, no data are

output".

Note that the data input is performed in all processes of the parallel appli-

cation. Also note that the number of processes is different for each running of

the program. The number of processes changes for all runs of the program; this

allows us to test the solution for different numbers of processes.

Let us close the taskbook window and return to our program code. In each

process, we need to output the doubled value of the input number, so we add the

following statement to the end of the Solve function:

pt << 2 * n;

24 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 8. The taskbook window with information about the correct input of the initial data

The same pt stream is used to output data when solving problems; thus, this

stream is an input-output stream.

Running the new version will result in an error message (Fig. 9).

Now all the slave processes output the required results. In addition, the

doubled number has been output in the master process. This data is correct, as

can be verified by comparing the values output in the results section and those

shown in the section with the example of the correct solution.

However, the master process also needed to output the number of processes

included in the communicator, and this was not done. Therefore, the information

panel contains the message "Some data are not output. The error has occured in

the process 0", and the message is displayed on an orange background. Orange

is used to highlight errors related to the input or output of an insufficient amount

of data. When trying to input or output excess data, the information panel is hig-

hlighted in crimson; if errors occur related to the use of data of the wrong type,

the color of the panel becomes purple. The red background color is used for all

other errors.

Part 1. MPI: description and examples of use 25

Fig. 9. The taskbook window with information about the error in the master process

The number of processes is stored in the size variable. Let us try to output

the value of this variable at the end of the Solve function:

pt << size;

The taskbook window will look like the one shown in Fig. 10.

We can verify that all the resulting data has been output. However, the so-

lution is still considered to be erroneous, since we have now attempted to output

superfluous data (namely the size value) in the slave processes. As noted above,

the crimson color is used to highlight errors related to an attempt to input or out-

put superfluous data.

If errors are found in slave processes, then the taskbook window displays

an additional debug section, which displays more detailed error information for

each slave process.

26 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 10. The taskbook window with information about an attempt to output superfluous data

You can determine the process associated with a particular message dis-

played in the debug section by the number indicated on the left side of the line

(before the "|" symbol). All lines associated with a particular process are num-

bered independently; their numbers are indicated after the process number and

separated from the message text by the ">" symbol. To display only messages

associated with a particular process in the debug section, simply click the mark-

er with the number (rank) of this process (all markers are located on the lower

border of the window) or press the corresponding numeric key. To display

summary information on all processes, select the marker with the "*" symbol or

enter this symbol from the keyboard (you can also cycle through the markers us-

ing the arrow keys [] and []). If a message line in the debug section begins

with the "!" symbol, then this means that this message is an error message and

Part 1. MPI: description and examples of use 27

was added to the debug section by the taskbook itself. The program can output

its own messages to the debug section; This possibility will be discussed in de-

tail below (see also Section 4.1.4).

If the taskbook detects an error in at least one slave process, it does not

analyze the result obtained in the master process (this is also reported in the de-

bug section, see Fig. 10).

In order for the size value to be output only in the master process, it is ne-

cessary to make sure that the rank of the current process is 0 before performing

this action. By adding the appropriate check, we get a solution that the taskbook

will consider correct:

Task("MPI1Proc2");
int flag;
MPI_Initialized(&flag);
if (flag == 0)
 return;
int rank, size;
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
int n;
pt >> n;
pt << 2 * n;
if (rank == 0)
 pt << size;

When a new solution version is launched, five console windows will be

displayed on the screen in sequence, each of which is associated with the paral-

lel program being executed. Thus, a single launch of the program from the IDE

leads to a whole series of launches of this program in parallel mode, which al-

lows you to immediately test the resulting solution on several sets of input data.

The test series is completed either when an error is detected or when the re-

quired number of tests is successfully completed (for all tasks included in the PT

for MPI-2 taskbook, the number of tests is five). This feature further simplifies

the process of checking the correctness of the task solution.

After five successful test runs, the taskbook window will appear on the

screen with a message that the task has been solved (Fig. 11).

In this case, all square markers located on the indicator panel (under the in-

formation panel) are green.

Each time the program is launched, the taskbook saves the results of its

work in a special results file named results.dat. This file can be viewed using the

PT4Results program, which is part of the taskbook (to launch this program,

there is a shortcut Results.lnk in the working directory). In addition, the results

can be viewed directly from the taskbook window by clicking on the Results

(F2) label or the [F2] key. A window with a protocol of all program runnings for

all tasks will appear on the screen. In our case, it will contain text like this:

28 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI1Proc2 c12/14 15:44 Acquaintance with the task.
MPI1Proc2 c12/14 15:49 Correct data input.
MPI1Proc2 c12/14 15:54 Some data are not output.
MPI1Proc2 c12/14 15:59 An attempt to output superfluous data.
MPI1Proc2 c12/14 16:03 The task is solved!

After the task name, there is a symbol corresponding to the programming

language used (in this case, the symbol "c", meaning that the C++ language was

used), the date and time of the program launch, and a description of the result of

its execution.

Fig. 11. The taskbook window with a message about successful solving the MPI1Proc2 task

1.1.6. Using additional information in the debug section

If you analyze the resulting solution, you will notice that it is still incom-

plete, since the task requires that some data be output not only in the results sec-

tion, but also in the debug section.

We have already encountered the use of the debug section: it displays addi-

tional information about errors that occurred in slave processes. The second pur-

pose of this section is to provide the ability to display various debug data on the

Part 1. MPI: description and examples of use 29

screen during the solution of a task. This ability is especially important when

developing parallel programs, since such standard debugging tools of the inte-

grated environment as breakpoints and watches of variables cannot be used for

them.

The additional part of the MPI1Proc2 task (and other initial tasks of the

MPI1Proc group) is devoted to familiarization with various options for debug

information output. Although the taskbook does not analyze the contents of the

debug section, this part of the task is as mandatory as the output of the obtained

results, and it will be checked by the teacher. It should be taken into account that

the taskbook only notes that "from its point of view" the task is solved; the final

decision on whether to accept this solution is made by the teacher; he/she, in

particular, pays attention to what MPI tools are used to solve the problem,

whether the solution is efficient, etc. Note that displaying data in the debug sec-

tion is also required in the MPI2Send and MPI5Comm group tasks related to

studying non-blocking data transfer (Sections 2.2.2 and 2.5.4), as well as in the

MPI8Inter group tasks devoted to dynamic process creation (Section 2.8.3).

Recall the final part of the MPI1Proc2 task formulation: "In the master

process, duplicate the data output in the debug section by displaying on sepa-

rate lines the doubled value of A and the total number of processes (use two

calls of the ShowLine function, which is defined in the taskbook along with the

Show function)". Note that in the input data section of the taskbook window, a

comment is displayed explaining how the debug section should look if the solu-

tion is correct (see any of the figures with the taskbook window given in the

previous section).

To output data in the debug section, the taskbook provides two functions:

Show and ShowLine, each of which has several overloaded versions that allow you

to customize the appearance of the output data and provide them with additional

comments (details are given in Section 3.1.4). These functions differ in that the

ShowLine function provides the line break in the debug section after data output,

while the Show function does not do this (however, when the right border of the

debug section is reached, an automatic move to a new line also occurs).

Note. A full description of the capabilities associated with the output of de-

bug information is given in the information window in the Debugging sec-

tion. If the taskbook window is active, then to display the information win-

dow, simply click the button on the right-hand side of the taskbook

window header or press the [F1] key.

To obtain the required contents of the debug section, we only need to add

two calls of the ShowLine function at the end of the Solve function. Since the re-

quired data should be output only in the part of the debug section that is asso-

ciated with the master process, the calls to these functions should be placed in

the conditional statement already present in the program. Here is the final part of

the Solve function, containing the full text of the task solution:

30 M. E. Abramyan. Parallel Programming Based on MPI 2.0

int n;
pt >> n;
pt << 2 * n;
if (rank == 0)
{
 pt << size;
 ShowLine(2 * n);
 ShowLine(size);
}

After launching a new version and testing it on five test data sets, a task-

book window will appear on the screen (Fig. 12).

By comparing the contents of the debug section with the sample shown in

the source data section, we can verify that the task is now completely solved.

Note that since the debug section in this case only contains data output from the

master process, the bottom border of the window displays a single marker, "0",

corresponding to this process.

Fig. 12. The taskbook window with the final solution of the MPI1Proc2 task

Part 1. MPI: description and examples of use 31

So, we have solved the MPI1Proc2 task. In the process of solving it, we got

acquainted with the actions for creating a template project, studied the features

of executing parallel programs and those capabilities of the taskbook that simpli-

fy their launch from the IDE. We learned about the taskbook tools intended for

input initial data, output results and displaying additional information in the de-

bug section. In addition, we saw how the taskbook handles various types of er-

rors. All this information will be useful when solving tasks devoted to various

methods of message passing between parallel application processes.

1.2. Basic capabilities of the MPI interface (MPI-1 standard)

1.2.1. Blocking point-to-point communication: basic features

MPI library includes a large number of functions that implement various

options for sending data between two processes. Such interaction between

processes is called point-to-point communication.

There are two main ways for point-to-point communication: blocking and

non-blocking.

In blocking communication, any function associated with a message send-

ing or receiving operation exits only after that operation has completed. There

are four functions for blocking message sending:

MPI_Send – standard mode;

MPI_Bsend – buffered mode;

MPI_Ssend – synchronous mode;

MPI_Rsend – ready mode.

All these functions have the same set of parameters, and all parameters are

input:

void *buf – message sending buffer;

int count – the number of sending elements;

MPI_Datatype datatype – type of sending elements;

int dest – the rank of the receiving process;

int msgtag – message identifier (non-negative number not exceeding the con-

stant MPI_TAG_UB);

MPI_Comm comm – communicator.

Note that according to the MPI standard, the constant MPI_TAG_UB cannot

be less than 32767.

Here and below, when describing parameters, the fact that a parameter is an

input parameter is not specifically mentioned; only the situation is noted when

the parameter is an output parameter or both an input and output parameter.

Output parameters are always passed as pointers to a variable whose value is

changed.

The parameters datatype and comm have special types defined in the MPI li-

brary. We are already familiar with the MPI_Comm type; this type is used for

32 M. E. Abramyan. Parallel Programming Based on MPI 2.0

communicator descriptors. The MPI_Datatype type is intended to store information

about the type of data being sent. Variables of this type are descriptors asso-

ciated either with standard datatypes included in the MPI library or with user da-

tatypes defined using the corresponding MPI functions (see Section 1.2.6).

When solving tasks, we will use the standard types MPI_INT (corresponds to the

signed type int of C language), MPI_DOUBLE (the double type) and MPI_CHAR (the

char signed type). Other numeric types of C language also are associated with

standard MPI types, for instance, the long int signed type corresponds to the

MPI_LONG datatype, and the float type corresponds to the MPI_FLOAT datatype. The

MPI_BYTE datatype corresponds to a byte, an integer in the range from 0 to 255.

There are also standard compound datatypes designed to store pairs of numbers,

for instance, MPI_2INT and MPI_DOUBLE_INT (the type MPI_DOUBLE_INT will be

used when solving the MPI3Coll23 task in Section 1.2.5).

Let us return to the blocking message sending modes and describe their

main features.

In standard mode, the MPI environment itself determines whether a special

system buffer (which is created automatically in this case) will be used. If a sys-

tem buffer is used, then the send operation completes after the data has been sent

to this buffer, regardless of whether the receiving process has started receiving

the message (thus, in this case, standard mode works similarly to the buffered

mode). If a system buffer is not used, then the send operation completes only af-

ter the receiving process has started receiving the message (in this case, standard

mode works similarly to the synchronous mode). The send operation in standard

mode is non-local, i. e., its completion may depend on the actions of another

process.

Before using buffered mode, the sending process must define a user buffer

of sufficient size (using the MPI_Buffer_attach function). The send operation com-

pletes after the data has been sent to this buffer, regardless of whether the re-

ceiving process has started receiving the message, so the buffered send operation

is local.

In synchronous mode, the send operation can begin regardless of whether

the receiving process has initiated the message, but will not complete until the

receiving process has begun receiving the message. This operation is non-local.

In ready mode, the send operation can only begin if the receiving process

has already initiated the receiving the message (otherwise the send operation is

considered as an erroneous and its result is undefined). This operation is non-

local and is used quite rarely.

For blocking message receiving, the MPI_Recv function is used with the fol-

lowing parameters:

void *buf – message receiving buffer (output parameter);

Part 1. MPI: description and examples of use 33

int count – the maximum number of elements in the received message (or, in

other words, the size of the buffer buf in elements of the received

message);

MPI_Datatype datatype – type of receiving elements;

int source – the rank of the sending process;

int msgtag – identifier of the receiving message;

MPI_Comm comm – communicator;

MPI_Status *status – additional information about the receiving message (out-

put parameter).

The exit from the MPI_Recv function is completed only after the buffer buf is

filled. As the parameters source and msgtag, you can use the special constants

MPI_ANY_SOURCE and MPI_ANY_TAG, meaning, respectively, that the message can

be received from any process or can have any message identifier.

The status parameter, the last parameter of the MPI_Recv function, has a

structured type MPI_Status, all fields of which are integer. By accessing these

fields, we can determine:

 rank of the process that sent the message (the MPI_SOURCE field);

 message identifier (the MPI_TAG field);

 error code associated with this message (the MPI_ERROR field).

In addition, the MPI_Status type contains a special field that allows you to

determine the number of elements in the message. Instead of directly accessing

this field, you should use the function MPI_Get_count(MPI_Status *status,

MPI_Datatype datatype, int *count) with input parameters status and datatype and output

parameter count, which is the number of received elements of type datatype.

Note. If the program does not need to use the information provided by the

status parameter, then the constant MPI_STATUS_IGNORE, which appeared in

the MPI-2 standard, can be specified instead. Note that when using the

MPICH system, which implements the MPI-1 standard, this constant

should not be used (despite the fact that it is present in the MPICH library).

Sometimes it is desirable to obtain additional information about the ex-

pected message before it is received by the MPI_Recv function (for example, to

determine the size of the buffer buf, sufficient to store the received message). For

this purpose, the auxiliary function MPI_Probe(int source, int msgtag, MPI_Comm

comm, MPI_Status *status) can be used, the parameters of which have the same

meaning as the parameters of the MPI_Recv function with the same names. This

function, like the MPI_Recv function, is blocking; exit from it is performed only

after completion of receiving data from the sending process.

When organizing the sending of a message in buffered mode, it is neces-

sary to use the auxiliary functions MPI_Buffer_attach and MPI_Buffer_detach.

The MPI_Buffer_attach(void *buf, int size) function allows you to define a buffer

buf, which is used later when sending messages in buffered mode. The buffer size

is specified in bytes and must be sufficient to store both the messages being sent

34 M. E. Abramyan. Parallel Programming Based on MPI 2.0

and the service information. The memory size (in bytes) required to contain the

service information is determined by the constant MPI_BSEND_OVERHEAD. At any

time, a process can use only one buffer, and after it has been defined and until it

has been freed, it should not be accessed by the program itself.

The MPI_Buffer_detach (void *buf, int *size) function is used to free a previously

defined buffer; both of its parameters are output (the buf parameter returns the

address of the beginning of the freed buffer, and the size parameter returns its

size in bytes).

Here is a program fragment demonstrating the correct creating, attaching

and subsequent detaching the buffer buf used in the buffering sending mode. It is

assumed that messages containing not more than 10 real numbers will be sent in

this mode. Once again, we emphasize that the buf buffer cannot be specified

when calling the MPI_Bsend function.

int bufsize = 10 * sizeof(double) + MPI_BSEND_OVERHEAD;
char *buf = new char[bufsize];
MPI_Buffer_attach(buf, bufsize);
// …
// The MPI_Bsend function can be called here to send data.
// The buf buffer must not be used!
MPI_Buffer_detach(buf, &bufsize);
delete[] buf;

MPI library provides the functions MPI_Sendrecv and MPI_Sendrecv_replace for

combined communication requests, which, when called, both send and receive

messages simultaneously (not necessarily for the same pair of communicating

processes). Both functions perform simultaneous sending and receiving of mes-

sages in standard blocking mode. The difference is that MPI_Sendrecv_replace uses

a single buffer, which initially contains the message being sent, and, after exit-

ing the function, the received message (thus, this buffer is an input and output

parameter).

Here is a list of parameters of these functions (in fact, it is a combined list

of parameters of the functions for sending and receiving messages). Parameters

of the MPI_Sendrecv function:

void *sbuf – message sending buffer;

int scount – the number of sending elements;

MPI_Datatype stype – type of sending elements;

int dest – the rank of the receiving process;

int stag – identifier of the sending message;

void *rbuf – message receiving buffer (output parameter);

int rcount – the maximum number of elements in the receiving message;

MPI_Datatype rtype – type of receiving elements;

int source – the rank of the sending process;

int rtag – identifier of the receiving message;

MPI_Comm comm – communicator;

Part 1. MPI: description and examples of use 35

MPI_Status *status – additional information about the receiving message (out-

put parameter).

It should be emphasized that for the MPI_Sendrecv function, you cannot use

the same (or even overlapping) sbuf and rbuf buffers.

The number of parameters in the MPI_Sendrecv_replace function is smaller,

since in this case, the message sending and receiving buffer is common,

and therefore has common characteristics (size and type of elements):

void *buf – common buffer for sending and receiving messages (input and

output parameter);

int count – the size of the message sending and receiving buffer (determin-

ing the number of elements in the sending message, as well as the

maximum number of elements in the receiving message);

MPI_Datatype datatype – type of sending and receiving elements;

int dest – the rank of the receiving process;

int stag – identifier of the sending message;

int source – the rank of the sending process;

int rtag – identifier of the receiving message;

MPI_Comm comm – communicator;

MPI_Status *status – additional information about the receiving message (out-

put parameter).

In some cases, combined requests for interaction make it possible to avoid

mutual deadlocking (see the next section) that could occur when using separate

requests for sending and receiving messages.

All possibilities related to blocking point-to-point communication are stu-

died in the first subgroup of the MPI2Send group (see Section 2.2.1).

1.2.2. Blocking point-to-point communication: examples. Mutual process
deadlocks

To get acquainted with the features of the functions used to exchange mes-

sages between individual processes, let us consider one of the tasks of the

MPI2Send group.

MPI2Send11. A real number is given in each process. Send the given

number from the master process to all slave processes and send the given

numbers from the slave processes to the master process. Output the received

numbers in each process. The numbers received by the master process should

be output in ascending order of ranks of sending processes. Use the MPI_Ssend

function to send data.

Note. The MPI_Ssend function provides a synchronous data transfer mode,

in which the operation of sending a message will be completed only after the

receiving process starts to receive this message. In the case of data transfer in

synchronous mode, there is a danger of deadlocks because of the incorrect or-

der of the function calls for sending and receiving data.

36 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Let us create a project template for solving this task and run the resulting

program. The taskbook window that appears on the screen (Fig. 13).

Fig. 13. Acquaintance running of the MPI2Send11 task

To read the initial data, it will be enough for us to use a single variable of

real type, since in each process only one real number is given.

The initial data must be sent to other processes of the parallel program. To

do this, you need to use a pair of MPI library functions: one for sending the

message, the other for receiving it. Since this subgroup of the MPI2Send group

studies blocking message sending options, you must use the MPI_Recv function

for receiving. To send a message in blocking mode, four types of functions are

provided (see the previous section). The most commonly used function is

MPI_Send, but in our case, we must use the MPI_Ssend function, since this is ex-

plicitly stated in the task.

The MPI_Ssend function (like other functions for sending messages, such as

MPI_Send) is called by the sending process and specifies which process will re-

ceive sending data. The MPI_Recv function is called by the receiving process; it

specifies the sending process and the buffer variable into which the received da-

ta will be written (see the previous section for a description of the parameters of

these functions).

Part 1. MPI: description and examples of use 37

Let us first deal with receiving and sending data for slave processes, with-

out implementing the actions that need to be performed in the master process.

Add the following code fragment to the end of the Solve function:

double a;
MPI_Status s;
if (rank > 0)
{
 pt >> a;
 MPI_Ssend(&a, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
 MPI_Recv(&a, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &s);
 pt << a;
}

Note that the first parameter of both functions is the address of the variable

that contains (or should receive) the sending data.

Let us run our program. The console window appears immediately, and af-

ter 20–30 seconds, the taskbook window appears on the screen with an informa-

tion about an error message in the slave processes (Fig. 14).

Fig. 14. The taskbook window with information about hung slave processes

38 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Error message of the type "MPI error. The processes 1–3 do not response"

means that the master process of our parallel program was unable to "contact"

the slave processes within a certain time in order to obtain information from

them about their input and output data (for information on how to determine and

change the response time from slave processes, see Note 3 in Section 1.1.4).

As follows from the second line of the message, the error occurred when

trying to contact all slave processes (three processes at this program launch).

The reason for the error is that the MPI_Ssend function for sending a mes-

sage waits until the receiving (in this case, the master) process calls the corres-

ponding receive function (MPI_Recv), and only after that it sends the data and

completes its work (synchronous send mode). But our program does not yet con-

tain a call to the MPI_Recv function in the master process. Therefore, the wait for

the MPI_Ssend function will last forever (more precisely, until the execution of

the slave processes will be terminated). This is an example of a parallel program

hang, which usually occurs because one or more processes are blocked waiting

for information that has not been sent to them (in this case, the MPI_Ssend func-

tion is waiting for information that the master process has started receiving da-

ta).

Note that if we had used another function to send the message, for example

MPI_Bsend, which does not wait for information from the receiving process, but

simply sends the data to a special send buffer and immediately terminates (buf-

fered send mode), then the program would still hang, but for a different reason:

now the MPI_Recv function would forever wait for the data that the master

process should have sent to it.

When you close the taskbook window, the console window will remain on

the screen. The reason is clear: the console window is controlled by the mpiexec

program, which terminates only when all processes of the running parallel pro-

gram terminate, but in this case, only the master process terminated (the slave

processes remain blocked). To terminate the mpiexec program and close the con-

sole window, you need to press the key combination [Ctrl]+[C] or

[Ctrl]+[Break] several times (as stated in the comment displayed

in the console window).

Note 1. When the mpiexec program terminates, hung processes of the paral-

lel program remain in memory. This will prevent our program from being

recompiled in the future, since while the process is in memory, the exe file

associated with it is not available for modification. However, when per-

forming tasks using the PT for MPI-2 taskbook, this problem is solved au-

tomatically by the taskbook inself (see Note 2 in Section 1.1.4).

So, we have become familiar with the situation when one or more slave

processes are blocked. A similar situation can happen to the master process. Let

us supply our program with a fragment related to the master process, and in this

Part 1. MPI: description and examples of use 39

fragment we will also organize the call of MPI functions in the same order (first

sending data, then receiving it):

else
{
 pt >> a;
 for (int i = 1; i < size; i++)
 MPI_Ssend(&a, 1, MPI_DOUBLE, i, 0, MPI_COMM_WORLD);
 for (int i = 1; i < size; i++)
 {
 MPI_Recv(&a, 1, MPI_DOUBLE, i, 0, MPI_COMM_WORLD, &s);
 pt << a;
 }
}

If you run this program, you can wait as long as you like after the console

window appears, but the taskbook window will not appear on the screen. This is

due to the fact that the master process of our parallel program was blocked: be-

fore displaying the taskbook window, the master process must execute the frag-

ment of the program developed by the student, and in our case, this fragment led

to the blocking. Therefore, the master process simply did not reach the place in

the program where the taskbook window is displayed on the screen.

Why does the blocking occur again? It would seem that every process is

now ready to both send and receive a message. However, in order for the

MPI_Ssend function to complete, the MPI_Recv function must have already been

called in the receiving process, but the receiving process cannot reach this func-

tion, since the MPI_Ssend function has also been called in it. This phenomenon is

called a deadlock.

If the task window does not appear within 20–30 seconds, then it can be as-

sumed that the master process has hung. In this situation, as in the situation de-

scribed earlier, it is necessary to explicitly interrupt the execution of the parallel

program by pressing the keyboard combination [Ctrl]+[C] or [Ctrl]+[Break]

several times in the console window.

Note 2. Any of the above-described "emergency" methods of program ter-

mination is recorded by the taskbook in the results file. However, if only

the slave processes hang (and the taskbook window appears on the screen),

the text "MPI error" will be written to the results file, whereas in case of a

hang of the master process, the text will be different: "The test run is inter-

rupted".

The simplest way to fix our program is to delete the second letter "s" in the

name of at least one MPI_Ssend function, i. e. replace the call to the MPI_Ssend

function (either in the slave or in the master process) with a call to the MPI_Send

function, which implements the standard data transfer mode. This is due to the

fact that in the MPI library of the MPICH, MPICH2, and MS-MPI systems, the

standard mode, like the buffered mode, uses a buffer to store the data being sent

40 M. E. Abramyan. Parallel Programming Based on MPI 2.0

(and, unlike the buffered mode, the buffer for the standard mode is created au-

tomatically). After sending the data to the buffer, the MPI_Send function termi-

nates, even if by this time the receiving process has not called the MPI_Recv func-

tion.

Let us describe the sequence of actions in this situation, assuming that we

have changed the MPI_Ssend function to MPI_Send in the slave processes. In each

of the slave processes, the MPI_Send function is called; it copies the data being

sent to the buffer, and then immediately terminates; after that, the MPI_Recv func-

tion is called, which waits for data to be received from the master process. At

the same time, the MPI_Ssend function is called in a loop in the master process,

which suspends execution until the MPI_Recv function is called in the slave

processes. But the MPI_Recv function in the slave processes will definitely be

called, at which point the MPI_Ssend function in the master process sends the data

and terminates. Thus, all MPI_Ssend functions in the loop will work successfully,

after which the MPI_Recv functions will be called in the second loop in the master

process, which will receive the data from the slave processes that were previous-

ly placed in the buffer. Finally, after the MPI_Ssend functions in the master

process complete their work, the MPI_Recv functions in the slave processes that

were waiting to receive data will also be successfully executed. So, no mutual

blocking will occur.

When you run the corrected program, it will be successfully tested on five

sets of input data, and a taskbook window will appear on the screen with a mes-

sage that the task has been solved.

However, the correction described above does not fully correspond to the

task condition, since the task requires using only the MPI_Ssend functions. A va-

riant of the correction with preservation of the MPI_Ssend function is in changing

the order of calling the functions for sending and receiving messages either in

the program fragment for the slave processes or in the program fragment for the

master process. For example, you can change the order of calling the functions

in the master process (the changed code fragment is highlighted in bold):

double a;
MPI_Status s;
if (rank > 0)
{
 pt >> a;
 MPI_Ssend(&a, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
 MPI_Recv(&a, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &s);
 pt << a;
}
else
{
 for (int i = 1; i < size; i++)
 {
 MPI_Recv(&a, 1, MPI_DOUBLE, i, 0, MPI_COMM_WORLD, &s);

Part 1. MPI: description and examples of use 41

 pt << a;
 }
 pt >> a;
 for (int i = 1; i < size; i++)
 MPI_Ssend(&a, 1, MPI_DOUBLE, i, 0, MPI_COMM_WORLD);
}

In this situation, mutual blocking will not occur. Indeed, the MPI_Recv func-

tions are immediately called in the master process, so the corresponding

MPI_Ssend functions in the slave process will successfully work and transfer data

to the master process. Then, in turn, the MPI_Recv functions will be called in the

slave processes, which will allow the MPI_Ssend functions in the master process

to work successfully.

Note 3. The described version of the correction has another advantage. The

fact is that in the MPI standard it is not guaranteed that the MPI_Send func-

tion will necessarily use a buffer for intermediate storage of the data being

sent. This is determined by the MPI runtime environment itself, so it is

possible that the MPI_Send function will use a synchronous mode rather than

a buffered mode of sending; in such a situation, a deadlock will still occur.

The resulting program can be simplified if in the else section we use an aux-

iliary real variable b to receive data from slave processes. This will allow us to

place the input statement pt >> a before the conditional statement, and will also

make it possible to perform all the actions in the else section in a single loop.

Here is a corresponding solution:

double a;
MPI_Status s;
pt >> a;
if (rank > 0)
{
 MPI_Ssend(&a, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);
 MPI_Recv(&a, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD, &s);
 pt << a;
}
else
 for (int i = 1; i < size; i++)
 {
 double b;
 MPI_Recv(&b, 1, MPI_DOUBLE, i, 0, MPI_COMM_WORLD, &s);
 pt << b;
 MPI_Ssend(&a, 1, MPI_DOUBLE, i, 0, MPI_COMM_WORLD);
 }

Another small simplification can be achieved by removing the declaration

of the variable s of type MPI_Status and replacing the parameter &s in the MPI_Recv

functions to the special "stub" constant MPI_STATUS_IGNORE (see the note in Sec-

tion 1.2.1). The constant MPI_STATUS_IGNORE is convenient to use in a situation

42 M. E. Abramyan. Parallel Programming Based on MPI 2.0

where the program does not need to access the information provided by the pa-

rameter of type MPI_Status.

Note that a more efficient solution to this task can be obtained by using col-

lective communications (see Section 1.2.4).

1.2.3. Non-blocking point-to-point communications. Persistent requests
for interaction. Timing functions

This section describes the capabilities of the MPI interface related to non-

blocking communications and persistent requests. These capabilities are covered

in the second subgroup of the MPI2Send group (see Section 2.2.2).

In non-blocking point-to-point communications, the send/receive message

operations only initiate the corresponding actions, and then immediately termi-

nate returning a special MPI object, an exchange request of the MPI_Request type.

With the help of the exchange request, the state of this non-blocking operation

can be checked later, using either the Wait group functions, which block the pro-

gram execution until the operation is completed, or the non-blocking Test group

functions. When a non-blocking operation completes, the associated exchange

request is "reset", taking the value MPI_REQUEST_NULL (this occurs either upon

return from the Wait function, or upon such a call to the Test function, in which

information about the completion of the operation is returned).

As for blocking communications, there are four non-blocking message

sending functions with identical parameter sets and one non-blocking message

receiving function. The names of these functions coincide with the names of the

corresponding functions for blocking message sending or receiving, with the

prefix "I" ("immediate") added: MPI_Isend, MPI_Ibsend, MPI_Issend, MPI_Irsend,

MPI_Irecv.
The functions MPI_Isend, MPI_Ibsend, MPI_Issend, MPI_Irsend initiate a non-

blocking message sending operation in one of four possible modes (see Section

1.2.1), returning an exchange request of type MPI_Request associated with this

operation. The output parameter request is the last parameter of these functions;

all preceding parameters coincide with the parameters of the blocking message

sending functions: buf, count, datatype, dest, msgtag, and comm. Until the exchange

request is reset (i. e., until the non-blocking operation is completed), the buffer

buf cannot be reused.

The MPI_Irecv function initiates a non-blocking message receiving operation,

returning an associated exchange request of type MPI_Request. This parameter is

the last one and is located in place of the status parameter of the MPI_Recv func-

tion; all other parameters (buf, count, datatype, source, msgtag, and comm) are the

same for these functions. Before the exchange request is reset, the buffer buf

cannot be used to read the received data.

The Wait blocking group contains four functions:

MPI_Wait(MPI_Request *request, MPI_Status *status),

Part 1. MPI: description and examples of use 43

MPI_Waitall(int count, MPI_Request *requests, MPI_Status *statuses),

MPI_Waitany(int count, MPI_Request *requests, int *index, MPI_Status *status),
MPI_Waitsome(int count, MPI_Request *requests, int *outcount, int *indices,

MPI_Status *statuses).

The MPI_Wait function waits for the completion of a non-blocking message

sending or receiving operation associated with a request (input and output para-

meter) and returns the output parameter status, which is typically used only for

non-blocking receivings.

All other functions accept an array requests of size count.

The MPI_Waitall function blocks the execution of a process until all commu-

nication operations associated with the specified requests are completed (the sta-

tuses parameter of size count returns an array of elements of type MPI_Status with

additional information about each of the completed operations).

The MPI_Waitany function blocks execution of the process until any ex-

change operation associated with the specified requests is completed. The index

parameter returns the index of the completed operation, and the status parameter

returns additional information about this operation (all other exchange requests

in the requests array are unchanged).

Finally, the MPI_Waitsome function blocks the process until at least one of

the communication operations associated with the specified requests is com-

pleted. Unlike the MPI_Waitany function, this function can return information

about multiple completed operations: the number of completed operations is re-

turned in the outcount parameter, the indices of the completed operations are re-

turned in the first outcount elements of the indices array, and additional informa-

tion about the completed operations is returned in the first outcount elements of

the statuses array.

The Test group also includes four functions:

MPI_Test(MPI_Request *request, int *flag, MPI_Status *status),

MPI_Testall(int count, MPI_Request *requests, int *flag, MPI_Status *statuses),

MPI_Testany(int count, MPI_Request *requests, int *index, int *flag, MPI_Status *status),
MPI_Testsome(int count, MPI_Request *requests, int *outcount, int *indices,

MPI_Status *statuses).

The MPI_Test function checks the completion of a non-blocking sending or

receiving operation associated with a request and immediately terminates, return-

ing the result of the check in the output parameter flag. If the operation is com-

plete, the flag parameter returns a non-zero value (in this case, the exchange re-

quest value is reset to MPI_REQUEST_NULL, and additional information about the

completed operation is returned in the status parameter); otherwise, a zero value

is returned in the flag parameter (in this case, the request and status parameters are

not changed). The other functions behave the same as the MPI_Test function, i. e.

they check the completion of non-blocking operations (in this case, associated

with an array requests) and immediately terminate, returning the result in the flag

44 M. E. Abramyan. Parallel Programming Based on MPI 2.0

parameter (or, for the MPI_Testsome function, in the outcount parameter). The

meaning of the remaining parameters of these functions is similar to the mean-

ing of the parameters of the corresponding functions of the Wait group.

There is also a non-blocking version of the MPI_Probe function:
MPI_Iprobe(int source, int msgtag, MPI_Comm comm, int *flag, MPI_Status *status)

This version differs from the blocking version by the presence of the output

parameter flag. The MPI_Iprobe function does not wait for the message receiving

operation to complete. If the receiving operation is not completed, then a zero

value is returned in the flag parameter (in this case, the status parameter should

not be used). This function, like its blocking version MPI_Probe, is usually used in

a situation where the number of elements in the sending message is not known

in advance.

A special type of non-blocking operations are persistent requests. These re-

quests are formed using the functions MPI_Send_init, MPI_Bsend_init, MPI_Ssend_init,

MPI_Rsend_init, MPI_Recv_init, which have the same parameters as the previously

considered non-blocking functions MPI_Isend, MPI_Ibsend, MPI_Issend, MPI_Irsend,

MPI_Irecv. However, unlike the "usual" non-blocking functions, the functions of

the Init group do not immediately execute the corresponding operation; they only

return a persistent request, the request parameter of the MPI_Request type, which

contains all the settings for the required operation.

To start persistent requests generated using the Init group functions, the

MPI_Start(MPI_Request *request) and MPI_Startall(int count, MPI_Request *requests) func-

tions are provided. The first of them starts (in non-blocking mode) the operation

associated with the request (input and output parameter), and the second starts

(also in non-blocking mode) all operations associated with the array requests of

size count. In the future, to check the completion of the operations, it is necessary

to use the previously discussed functions of the Wait and Test groups.

The request returned by the Init group functions has one important feature: it

is persistent. This means that after the completion of the corresponding non-

blocking operation, the value of the request associated with it is not reset to

MPI_REQUEST_NULL, but remains valid. Therefore, the persistent request can be

reused later by calling the starting function MPI_Start or MPI_Startall for it again

(of course, before this, the contents of the buffer buf containing the data being

sent must be changed). To reset the request generated by one of the Init group

functions, use the function MPI_Request_free(MPI_Request *request).

Some tasks involving non-blocking operations (see Section 2.2.2) require

the use of a special MPI function designed for measuring time: double

MPI_Wtime(). This function is one of two special MPI functions that return not in-

formation about the success of their launch, but the result itself, namely, the time

in seconds that has passed since some point in the past. Thus, to determine the

duration of execution of some program fragment, it is sufficient to call this func-

tion at the beginning and at the end of this fragment, and then find the difference

Part 1. MPI: description and examples of use 45

between the obtained values. The second special MPI function is also related to

measuring time: this is the double MPI_Wtick() function, which returns the duration

in seconds between successive timer ticks and, thus, characterizes the accuracy

of the time measurement.

1.2.4. Collective communications

A large group of MPI functions is intended for organizing collective inte-

raction of processes. "Collective" MPI functions, in contrast to the previously

considered functions MPI_Send, MPI_Recv, etc., allow organizing the exchange of

messages not between two separate processes (sender and receiver), but between

all processes included in a certain communicator. In particular, when using the

communicator MPI_COMM_WORLD, it is possible to organize collective exchange

of messages between all running processes of a parallel program.

The use of collective communications is more preferable than multiple

calls of individual point-to-point operations, which is due to two circumstances.

First, when implementing collective functions in the MPI library, efficient algo-

rithms are used and, second, in supercomputer or cluster systems, collective ex-

change operations can be implemented at the hardware level, which can be taken

into account when developing MPI libraries for these systems.

In MPI-1 and MPI-2, all operations related to collective interaction of

processes are performed in blocking standard mode (the MPI-3 standard added

non-blocking functions for collective operations, these functions are briefly de-

scribed at the end of this section). For successful execution of a collective opera-

tion, it is necessary that the corresponding function be called in all processes of

the communicator for which this collective operation is performed.

If a process that plays a special role is associated with a collective opera-

tion, then the corresponding function has the root parameter containing the rank

of this process (and, in addition, some parameters of this function will be used

only in a process of rank root). If the root parameter is absent in a collective func-

tion, then all processes are equal when executing the collective operation.

The simplest collective function with equal processes is

MPI_Barrier(MPI_Comm comm). It blocks the work of the processes that called it un-

til all processes of the communicator comm also call this function. Thus, the

MPI_Barrier function allows synchronization of processes of a parallel application.

The simplest collective function with a selected root process is MPI_Bcast(void

*buf, int count, MPI_Datatype datatype, int root, MPI_Comm comm). This function broad-

casts data from the root process to all processes of the communicator comm. The

buf parameter specifies the buffer for message broadcast/receive; this parameter

is an input parameter in the root process, and it is an output parameter in other

processes. The other parameters are input in all processes: the count parameter

specifies the number of elements to be broadcast, and the datatype parameter is

their type.

46 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Example:
 buf buf
Process 0: (b0 b1 b2 b3)
Process 1: (b0 b1 b2 b3) ==> (b0 b1 b2 b3)
Process 2: (b0 b1 b2 b3)

The MPI_Gather function collects data from all communicator processes into

the buffer of the receiver process root, with the same number of data elements

received from each process. Its parameters are:

void *sbuf – send buffer;

int scount – the number of elements in the sending message;

MPI_Datatype stype – type of elements of the sending message;

void *rbuf – data collection buffer (this is an output parameter that is used on-

ly in the root process);

int rcount – the number of elements received from each process (this

and the next parameter are also used only in the root process; note that

this parameter is not equal to the size of the rbuf buffer);

MPI_Datatype rtype – type of elements of the receiving message;

int root – the rank of the process receiving data;

MPI_Comm comm – communicator.

The root process also accepts its own data.

Example (scount = 2, rcount = 2):

 sbuf rbuf
Process 0: (a0 a1)
Process 1: (b0 b1) ==> (a0 a1 | b0 b1 | c0 c1)
Process 2: (c0 c1)

A more complicated version of the MPI_Gather function is the MPI_Gatherv

function, which allows a different number of data elements to be received from

each process. This function has the following set of parameters:
MPI_Gatherv(void *sbuf, int scount, MPI_Datatype stype, void *rbuf, int *rcounts,

int *displs, MPI_Datatype rtype, int root, MPI_Comm comm)
In this case, the scount parameters may have different values in different

processes, and instead of the integer rcount parameter, the rcounts array is used,

which specifies the number of elements received from each process. Additional

flexibility of this function is provided by the displs parameter, an array of offsets

(in elements) from the beginning of the data receiving buffer rbuf. Data received

from each process is written to the buffer of the receiving process with an offset

determined by the corresponding element of the displs array. The displs parameter

is taken into account only in the root process; offsets can be positive or negative.

Example (rcounts = {2, 1, 3}, displs = {0, 2, 3}):

 sbuf rbuf
Process 0: (a0 a1)
Process 1: (b0) ==> (a0 a1 | b0 | c0 c1 c2)
Process 2: (c0 c1 c2)

Part 1. MPI: description and examples of use 47

The "inverse" operation to the gather operation is the scatter operation,

which sends data from the selected root process to all processes of the given

communicator. This operation is also implemented as two functions: MPI_Scatter

and MPI_Scatterv. The parameters of the MPI_Scatter function are:

void *sbuf – broadcast buffer (this and the next two parameters are used only

in the root process);

int scount – the number of elements sent to each process (note that this para-

meter is not equal to the size of the sbuf buffer);

MPI_Datatype stype – type of elements of the sending message;

void *rbuf – data receiving buffer (output parameter);

int rcount – the number of elements in the data receiving buffer;

MPI_Datatype rtype – type of elements of the receiving message;

int root – the rank of the process sending data;

MPI_Comm comm – communicator.

Example (scount = 2, rcount = 2):

 sbuf rbuf
Process 0: (b0 b1)
Process 1: (b0 b1 | b2 b3 | b4 b5) ==> (b2 b3)
Process 2: (b4 b5)

The MPI_Scatterv function has the following parameters:
MPI_Scatterv(void *sbuf, int *scounts, int *displs, MPI_Datatype stype, void *rbuf,

int rcount, MPI_Datatype rtype, int root, MPI_Comm comm)
In this case, the array parameters are scounts (an array that specifies the

number of elements sent to each process) and displs (an array of offsets, in ele-

ments, from the start of the sending buffer).

Example (scounts = {2, 1, 3}, displs = {0, 2, 3}):

 sbuf rbuf
Process 0: (a0 a1)
Process 1: (a0 a1 | b0 | c0 c1 c2) ==> (b0)
Process 2: (c0 c1 c2)

The gather operation has a modification in which the collected data is sent

to all processes. This operation is implemented as the MPI_Allgather and

MPI_Allgatherv functions. These functions do not have the root parameter, since all

processes are equal: they provide their part of the data and receive the combined

data. Here is a list of the parameters of these functions and an example of their

action:
MPI_Allgather (void *sbuf, int scount, MPI_Datatype stype, void *rbuf, int rcount,

MPI_Datatype rtype, MPI_Comm comm)

Example (scount = 2, rcount = 2):
 sbuf rbuf
Process 0: (a0 a1) (a0 a1 | b0 b1 | c0 c1)
Process 1: (b0 b1) ==> (a0 a1 | b0 b1 | c0 c1)
Process 2: (c0 c1) (a0 a1 | b0 b1 | c0 c1)

48 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Allgatherv(void *sbuf, int scount, MPI_Datatype stype, void *rbuf, int *rcounts,
int *displs, MPI_Datatype rtype, MPI_Comm comm)

Example (rcounts = {2, 1, 3}, displs = {0, 2, 3}):
 sbuf rbuf
Process 0: (a0 a1) (a0 a1 | b0 | c0 c1 c2)
Process 1: (b0) ==> (a0 a1 | b0 | c0 c1 c2)
Process 2: (c0 c1 c2) (a0 a1 | b0 | c0 c1 c2)

The most complex collective operation is the all-to-all operation, in which

each process sends different data to all processes of the communicator. The

MPI_Alltoall function sends the same amount of data from each process to all

processes:
MPI_Alltoall(void *sbuf, int scount, MPI_Datatype stype, void *rbuf, int rcount,

MPI_Datatype rtype, MPI_Comm comm)
Example (scount = 2, rcount = 2):

 sbuf rbuf
Process 0: (a0 a1 | a2 a3 | a4 a5) (a0 a1 | b0 b1 | c0 c1)
Process 1: (b0 b1 | b2 b3 | b4 b5) ==> (a2 a3 | b2 b3 | c2 c3)
Process 2: (c0 c1 | c2 c3 | c4 c5) (a4 a5 | b4 b5 | c4 c5)

The MPI_Alltoallv function causes each process to broadcast different data to

all other processes, and each process may receive a different number of data

elements from different processes. The data sent to each process must be placed

in the source buffer at an offset determined by the corresponding element of the

sdispls array. The data received from each process is written to the destination

buffer at an offset determined by the corresponding element of the rdispls array:
MPI_Alltoallv(void *sbuf, int *scounts, int *sdispls, MPI_Datatype stype, void *rbuf,

int *rcounts, int *rdispls, MPI_Datatype rtype, MPI_Comm comm)
Example:
 sbuf rbuf
Process 0: (a0 a1 | a2 | a3 a4) (a0 a1 | b0 | c0 c1 c2)
Process 1: (b0 | b1 b2 b3 | b4 b5) ==> (a2 | b1 b2 b3 | c3)
Process 2: (c0 c1 c2 | c3 | c4) (a3 a4 | b4 b5 | c4)

The collective functions described above (except for the MPI_Barrier func-

tion) are considered in the tasks of the first subgroup of the MPI3Coll group (see

Section 2.3.1). In addition, they are actively used in subsequent task groups. In

particular, when solving the MPI5Comm3 task (see Section 1.2.7), the

MPI_Gather function is used, and when solving the MPI5Comm17 task (see Sec-

tion 1.2.8), the MPI_Scatter function is used. The MPI_Barrier function is used in the

final tasks of the MPI7Win and MPI8Inter groups (Sectons 2.7.2 and 2.8.3).

In all collective functions of the MPI-1 standard that contain array of dis-

placements displs, these displacements are specified in elements of the send-

ing/receiving data. However, in some situations involving the exchange of com-

pound datatypes, it is desirable to specify displacements in bytes rather than in

elements. Therefore, in the MPI-2 standard, the set of collective functions was

Part 1. MPI: description and examples of use 49

supplemented by the MPI_Alltoallw function, which performs the same action as

the MPI_Alltoallv function, but allows displacements to be specified in bytes. In

addition, in this version of the collective function, each process can send data of

different types to different processes:
MPI_Alltoallw(void *sbuf, int *scounts, int *sdispls, MPI_Datatype *stypes, void *rbuf,

int *rcounts, int *rdispls, MPI_Datatype *rtypes, MPI_Comm comm)
The MPI_Alltoallw function can be used to implement variants of the gather

and scatter operations, in which offsets are specified in bytes, and data of differ-

ent types is gathered or scattered. A special subgroup of the MPI4Type group is

devoted to this function (see Section 2.4.4). The inclusion of tasks for the

MPI_Alltoallw function into the section devoted to derived types is due to the fact

that this function is intended, first of all, for collective exchange of compound

datatypes. This function is subsequently used in the subgroup of the MPI9Matr

group, devoted to the Fox’s block algorithm for matrix multiplication (see Sec-

tion 2.9.5).

The MPI-3 standard added non-blocking functions for collective opera-

tions. All blocking collective functions discussed above have non-blocking ver-

sions. As in the case of non-blocking point-to-point operations (see Section

1.2.3), the names of non-blocking collective functions are derived from the

names of the corresponding blocking functions by adding the prefix "I"

(MPI_Ibarrier, MPI_Ibcast, MPI_Igather, MPI_Iscatter, MPI_Iallgather, MPI_Ialltoall, etc.),

and an additional output parameter MPI_Request *request is added at the end of the

parameter list. The request parameter is further used in the Wait and Test group

functions (see Section 1.2.3) to check that a given collective operation has com-

pleted in a given process.

The PT for MPI-2 taskbook, starting with version 1.6, includes tasks con-

nected with non-blocking collective functions (except for MPI_Ibarrier and

MPI_Ialltoallw functions). They are contained in the last part of the MPI5Comm

group (see Section 2.5.4). The inclusion of these tasks into the MPI5Comm

group, which is devoted to creation of new communicators, is due to the fact that

these tasks require to apply a non-blocking collective operation to a part of

processes of a parallel application, and for this purpose you need to create a new

communicator containing this part of processes. To solve tasks on non-blocking

collective functions, it is necessary to use the MS-MPI system, because the

MPICH and MPICH2 systems do not support the MPI-3 standard.

1.2.5. Reduction operations and using compound datatypes

MPI functions includes a group of functions that perform reduction opera-

tions, i. e. operations associated with sending not the original data, but the re-

sults of their processing by some group operation of the MPI_Op type. The most

frequently used operations are finding the sum MPI_SUM, the product MPI_PROD,

the maximum MPI_MAX or the minimum MPI_MIN value. The logical operations

50 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_LAND, MPI_LOR, MPI_LXOR and their bitwise analogs MPI_BAND, MPI_BOR,

MPI_BXOR are also provided. Among the reduction operations, a special place is

occupied by the operations MPI_MAXLOC and MPI_MINLOC, which allow finding

not only the maximum or minimum element among the elements of each

process, but also its number (the rank of the process containing this extremal

element is usually used as the number).

The user can define a new reduction operation op; the function

MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op) is provided for

this purpose. The first parameter function is a pointer to the function in which the

new operation is defined. The operation being defined must necessarily be asso-

ciative. If it is also commutative, then the flag parameter commute must be non-

zero. The prototype of the function parameter has the following form:
typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

The parameters invec and inoutvec are pointers to arrays containing len ele-

ments of type datatype. The array elements invec[i] and inoutvec[i], i = 0, …, len–1,

are considered, respectively, as the left-hand and right-hand operands of the us-

er-defined operation; the result of applying this operation to the elements invec[i]

and inoutvec[i] is to be stored in the element inoutvec[i]. Thus, the array invec is the

input parameter, and the array inoutvec is both the input and output parameter

(which explains the choice of their names).

If a user operation is intended to be applied only to data of a fixed type,

then when defining it, you can assume that the invec and inoutvec arrays have the

required type and not analyze the datatype parameter.

The MPI-1 standard defines four functions that perform reduction opera-

tions: MPI_Reduce, MPI_Allreduce, MPI_Reduce_scatter, and MPI_Scan.

The MPI_Reduce function performs a global operation, returning the results

to the specified destination process root. The parameters of this function are:

void *sbuf – buffer for arguments;

void *rbuf – buffer for the result (output parameter that is used only in the root

process);

int count – the number of arguments for each process;

MPI_Datatype datatype – type of arguments;

MPI_Op op – operation identifier;

int root – the rank of the process receiving data;

MPI_Comm comm – communicator.

Example (count = 3):

 sbuf rbuf
Process 0: (a0 a1 a2)
Process 1: (b0 b1 b2) ==> (a0+b0+c0 a1+b1+c1 a2+b2+c2)
Process 2: (c0 c1 c2)

Part 1. MPI: description and examples of use 51

The MPI_Allreduce function is a version of the MPI_Reduce function in which

the result of the global operation is returned to all processes. Therefore, the

MPI_Allreduce function does not have the root parameter, and the output parameter

rbuf is used in all processes of the comm communicator:
MPI_Allreduce(void *sbuf, void *rbuf, int count, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)
Example (count = 3):
 sbuf rbuf
Process 0: (a0 a1 a2) (a0+b0+c0 a1+b1+c1 a2+b2+c2)
Process 1: (b0 b1 b2) ==> (a0+b0+c0 a1+b1+c1 a2+b2+c2)
Process 2: (c0 c1 c2) (a0+b0+c0 a1+b1+c1 a2+b2+c2)

Another version of the MPI_Reduce function is the MPI_Reduce_scatter func-

tion. It also does not contains the root parameter. Unlike the MPI_Allreduce func-

tion, it does not send the full set of results of the global operation to all

processes, but distributes the obtained results among the processes, and each

process can receive a different number of result elements:
MPI_Reduce_scatter(void *sbuf, void *rbuf, int *rcounts, MPI_Datatype datatype,

MPI_Op op, MPI_Comm comm)
In this case, the third parameter rcounts is an array that specifies the number

of result elements sent to each process (note that the sum of the values of the

rcounts array elements determines the size of the sbuf buffer in each process).

Example (rcounts = {1, 3, 2}):

 sbuf rbuf
Process 0: (a0 a1 a2 a3 a4 a5) (a0+b0+c0)
Process 1: (b0 b1 b2 b3 b4 b5) ==> (a1+b1+c1 a2+b2+c2 a3+b3+c3)
Process 2: (c0 c1 c2 c3 c4 c5) (a4+b4+c4 a5+b5+c5)

Finally, the MPI_Scan function performs a sequence of partial global opera-

tions: the result of the global operation for processes from zero to i inclusive is

sent to the i-th process of the communicator. This function has the same set of

parameters as the MPI_Allreduce function.

Example (count = 3):
 sbuf rbuf
Process 0: (a0 a1 a2) (a0 a1 a2)
Process 1: (b0 b1 b2) ==> (a0+b0 a1+b1 a2+b2)
Process 2: (c0 c1 c2) (a0+b0+c0 a1+b1+c1 a2+b2+c2)

Note 1. In the MPI-2 standard, two new functions have been added to the

set of functions related to reduction operations: MPI_Reduce_scatter_block and

MPI_Exscan. The function MPI_Reduce_scatter_block(void *sbuf, void *rbuf, int

rcount, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) is a simplified ver-

sion of the MPI_Reduce_scatter function, in which each process is sent a block

of the result data of the same size rcount (as opposed to the rcounts array used

in the MPI_Reduce_scatter function). The value of rcount determines the size of

the result buffer rbuf. The buffer for the arguments sbuf must contain

52 M. E. Abramyan. Parallel Programming Based on MPI 2.0

K*rcount elements, where K is the number of processes in the communicator

comm. The MPI_Reduce_scatter_block function is used in the MPI8Inter group

tasks (see Section 2.8.3).

The MPI_Exscan function has the same set of parameters as the MPI_Scan

function and, like MPI_Scan, performs a sequence of partial global opera-

tions, but these operations are exclusive ("exclusive scan"): each process

receives the result of a partial global operation performed on the elements

of all previous processes (i. e., processes with lower ranks). In particular, a

process of rank 0 receives no results at all. The MPI_Exscan function is more

universal than the MPI_Scan function ("inclusive scan"), as it allows to model

the MPI_Scan function without performing additional collective operations

it is enough, after applying the MPI_Exscan function, to call the local func-

tion MPI_Reduce_local, which also appeared in the MPI-2 standard). It should

be noted that the inverse action (modeling the MPI_Exscan function with the

MPI_Scan function) is not possible for some reduction operations (in particu-

lar, such an action is not possible for the operations of finding the mini-

mum or maximum).

Note 2. The MPI-3 standard introduced non-blocking versions of all reduc-

tion operations, namely, the functions MPI_Ireduce, MPI_Iallreduce,

MPI_Ireduce_scatter, MPI_Ireduce_scatter_block, MPI_Iscan, and MPI_Iexscan. They

have the same features as the usual non-blocking collective functions (see

their brief description at the end of the previous section). In particular, the

output parameter MPI_Request *request is added at the end of their parameter

list. Tasks for all non-blocking reduction operations, like tasks for usual

non-blocking collective operations, are contained in the final part of the

MPI5Comm group (see Section 2.5.4).

The second subgroup of the MPI3Coll group (see Section 2.3.2) is devoted

to blocking collective reduction operations. Let us consider one of the tasks in-

cluded in it. During solving of this task, we will also become acquainted with an

example of the use of compound datatypes (structures) in MPI programs.

MPI3Coll23. A sequence of K + 5 real numbers is given in each process;

K is the number of processes. Using the MPI_Allreduce function with the

MPI_MINLOC operation, find the minimal value among the elements of all giv-

en sequences with the same order number and also the rank of process that

contains this minimal value. Output received minimal values in the master

process and output corresponding ranks in each slave process.

When we run the template program created to solve the MPI3Coll23 task,

we will see a window on the screen similar to the one shown in Fig. 15.

Each process provides an array of numbers of the same size, and the reduc-

tion operation is applied individually to the elements of the provided arrays with

the same index; the result is an array of the same size.

Part 1. MPI: description and examples of use 53

Fig. 15. Acquaintance running of the MPI3Coll23 task

When using the MPI_MAXLOC and MPI_MINLOC operations, the source data

sets must contain pairs of numbers: the actual number to be processed and its

index. Therefore, the program must define an auxiliary structure for storing such

pairs. In our case, real numbers must be processed, so the first element of the

pair must be real, and the second must be integer:

struct MINLOC_Data
{
 double a;
 int n;
};

To store the initial data, each process must allocate an array of elements of

the MINLOC_Data type, and the same array must be used to store the results of the

reduction operation. The size of the data set that will have to be stored in these

arrays is not known in advance, since it is related to the number of processes in

the parallel program. Therefore, you can either allocate memory for arrays dy-

namically (after the program obtains the value of the size variable), or use static

arrays, the size of which will be sufficient for any sets of initial data. When solv-

ing the MPI3Coll23 task, we will use static arrays (the features associated with

the use of dynamic arrays, as well as vector<T> containers, will be discussed in

the next section). Having run the created template program several times, we can

54 M. E. Abramyan. Parallel Programming Based on MPI 2.0

see that the number of processes can vary in the range from 3 to 5. Thus, given

that the size of the initial data sets is K + 5, where K is the number of processes,

it is enough for us to declare arrays of size 10 in the Solve function:

MINLOC_Data d[10], res[10];

Initialization of the source array d must be performed in each process of the

parallel program:

for (int i = 0; i < size + 5; i++)
{
 pt >> d[i].a;
 d[i].n = rank;
}

After running this version of the program, we will receive a message that

all initial data have been successfully input (Fig. 16).

Fig. 16. The taskbook window with information about the successful input of the initial data

Before output the results, it is necessary to perform the corresponding col-

lective reduction operation. It must be performed in all processes. Then in the

master process (of rank 0), it is necessary to output the field a of each element of

the resulting array res (i. e., the minimum value selected from all elements of the

initial arrays with a given index), and in the remaining (slave) processes, it is

necessary to output the field n (i. e., the rank of the process with this minimum

value):

MPI_Allreduce(d, res, size + 5, MPI_DOUBLE_INT, MPI_MINLOC,
 MPI_COMM_WORLD);
for (int i = 0; i < size + 5; i++)

Part 1. MPI: description and examples of use 55

 if (rank == 0)
 pt << res[i].a;
 else
 pt << res[i].n;

Note two important points. First, the source and result arrays are passed to

MPI functions as pointers to their initial element, so the first two parameters of

the MPI_Allreduce function are simply the array identifiers d and res. Second, the

type name specified as the fourth parameter must match the element type of the

arrays being processed (in this case, one of the standard MPI types must be spe-

cified: MPI_DOUBLE_INT, which corresponds to a structure of two fields, a real

field and an integer field). In situations when the standard datatypes provided by

the MPI library are insufficient, new MPI datatypes must be defined (this topic

is covered in the MPI4Type task group; see the next section).

When you run the resulting program, a message will be displayed stating

that the task has been solved. In conclusion, we present the full text of the solu-

tion to the MPI3Coll23 task:

struct MINLOC_Data
{
 double a;
 int n;
};

void Solve()
{
 Task("MPI3Coll23");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MINLOC_Data d[10], res[10];
 for (int i = 0; i < size + 5; i++)
 {
 pt >> d[i].a;
 d[i].n = rank;
 }
 MPI_Allreduce(d, res, size + 5, MPI_DOUBLE_INT,
 MPI_MINLOC, MPI_COMM_WORLD);
 for (int i = 0; i < size + 5; i++)
 if (rank == 0)
 pt << res[i].a;
 else
 pt << res[i].n;
}

56 M. E. Abramyan. Parallel Programming Based on MPI 2.0

1.2.6. Defining derived datatypes and packing data using dynamic arrays
and vector containers

MPI library provides a large set of functions for defining new types (de-

rived datatypes). The use of derived datatypes allows to simplify and speed up

the actions on sending complex data. Examples of complex data are structures

consisting of fields of different types, as well as fragments of multidimensional

arrays with "empty" gaps (for example, any column of a two-dimensional ma-

trix). In order to take into account both of these features when defining a new

datatype, two sets of characteristics are associated with the new datatype: a se-

quence of base types and a sequence of displacements. Thus, a derived datatype

can contain elements of different base types and, in addition, these elements may

not be located consecutively, but with some displacements relative to each other

(the displacements can be both positive and negative). Not only standard MPI

types (for example, MPI_INT or MPI_DOUBLE) can be used as base types, but also

previously defined derived datatypes.

The simplest of the MPI functions for defining new datatypes is

MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype), which

creates a derived datatype newtype consisting of count consecutive elements of the

base type oldtype. In this and all subsequent functions for defining a new type, the

only output parameter is the last parameter, a reference to the derived datatype.

Example (count = 5):

Original datatype: [T1]
Derived datatype: [T1][T1][T1][T1][T1]

Datatypes created with the MPI_Type_contiguous function are typically used

as "building blocks" in defining more complex datatypes.

More useful features are provided by the function MPI_Type_vector(int count,

int blocklen, int stride, MPI_Datatype oldtype, MPI_Datatype *newtype), which creates a de-

rived datatype newtype consisting of count blocks, each of which contains the

same number blocklen of elements of the base type oldtype and is located at the

same distance stride from the beginning of the previous block (the distance is

specified in the number of elements of the base type).

Example (count = 3, blocklen = 2, stride = 5):

Original datatype: [T1]
A memory area equal to the length of the original datatype: [..]
Derived datatype:
[T1][T1][..][..][..][T1][T1][..][..][..][T1][T1]

The datatype given in the example can be interpreted as two adjacent col-

umns of a 3 by 5 matrix (3 rows, 5 columns), not necessarily the first two col-

umns. If, for example, the position of the third element in the first row of the

matrix is specified as the starting address, then this type will contain elements of

the third and fourth columns.

Part 1. MPI: description and examples of use 57

If the blocks in the new type are of different sizes or there should be differ-

ent distances between them, then the more complex MPI_Type_indexed function

should be used with array parameters: MPI_Type_indexed(int count, int *blocklens, int

*displs, MPI_Datatype oldtype, MPI_Datatype *newtype). This function creates a derived

datatype newtype consisting of count blocks, each of which can contain a different

number of elements of the base type oldtype and is located at a specified distance

from the starting position of the datatype being defined. The number of elements

for the different blocks is specified in the blocklens array of size count, and the dis-

tances are measured in elements of the base type and are contained in the displs

array of size count.

Example (count = 4, blocklens = {2, 3, 1, 2}, displs = {0, 3, 8, 12}):

Original datatype: [T1]
A memory area equal to the length of the original datatype: [..]
Derived datatype:
[T1][T1][..][T1][T1][T1][..][..][T1][..][..][..][T1][T1]

Note that the MPI_Type_vector function specifies the distance between the

beginnings of adjacent blocks, while the MPI_Type_indexed function specifies an

array of distances from the starting position of the derived datatype.

The most flexible of the functions for defining new datatypes is

MPI_Type_struct with parameters (int count, int *blocklens, MPI_Aint *displs, MPI_Datatype

*oldtypes, MPI_Datatype *newtype). In the MPI-2 standard, the name of this function

was changed to MPI_Type_create_struct. This function differs from

MPI_Type_indexed in two ways: first, the array displs of offsets from the starting

position of the datatype being defined contains offsets in bytes, and second, each

block has its own base datatype (the base datatypes are specified in the oldtypes

array). The elements of the array of offsets displs have the MPI_Aint type; this type

is intended to store offsets between different addresses in memory and is im-

plemented as a signed integer type, the size of which is sufficient to store any

possible offset in the address space.

Example:

Initial datatypes: [T1], [T2], [T3], [T4]
A section of memory equal to 1 byte (denoted by a dot): .
Derived datatype: [T1][T1].[T2][T2][T2]...[T3].....[T4][T4]

Note that the MPI library provides versions of the MPI_Type_vector and

MPI_Type_indexed functions, for which the offsets are also specified in bytes ra-

ther than elements (and are of type MPI_Aint). In the MPI-1 standard, these func-

tions are named MPI_Type_hvector and MPI_Type_hindexed, and in the MPI-2 stan-

dard, they are named MPI_Type_create_hvector and MPI_Type_create_hindexed.

In the MPI-2 standard, the set of functions for defining new datatypes was

expanded. Without describing all the added functions, we will note one of them,

which occupies an intermediate position between MPI_Type_vector and

MPI_Type_indexed. This is the function MPI_Type_create_indexed_block(int count, int

58 M. E. Abramyan. Parallel Programming Based on MPI 2.0

blocklen, int *displs, MPI_Datatype oldtype, MPI_Datatype *newtype). It defines a derived

datatype newtype consisting of count blocks, each of which consists of blocklen

elements of the base type oldtype and is at a specified distance from the starting

position of the datatype being defined (the distances are specified in the number

of elements of the base datatype and are contained in the displs array of size

count). This function differs from MPI_Type_indexed in that all blocks in the data-

type it defines have the same size, and therefore it is specified not by an array,

but by the scalar parameter blocklen of an integer type (as in MPI_Type_vector).

All the functions described are local, i. e. they can be called only in some

parallel processes, which subsequently use new datatypes (to define other new

datatypes or send/receive data).

If a new type is to be used when sending/receiving messages, it must be

additionally registered by calling the MPI_Type_commit(MPI_Datatype *datatype)

function for it. In this case, the datatype parameter is both input and output. Un-

registered types can be used when defining new datatypes, but they cannot be

used when sending/receiving data.

Note 1. The absence of a call to the MPI_Type_commit function does not pre-

vent the execution of parallel programs on the local computer when using

the MPICH system. However, in the case of the MPICH2 and MS-MPI

systems, an attempt to specify an unregistered type when sending/receiving

data results in an error.

A derived datatype can be destroyed by releasing the descriptor (of type

MPI_Datatype) associated with it. This is done by the function

MPI_Type_free(MPI_Datatype *datatype), in which the parameter datatype is both input

and output. After calling this function, the value MPI_DATATYPE_NULL is assigned

to its parameter. It should be emphasized that derived types defined using this

datatype are preserved even after its destruction.

The two main characteristics of an MPI datatype are extent and size. Extent

is the number of bytes that the type occupies in memory (including all empty

spaces before and after its blocks). Size is the total size (in bytes) of all blocks,

excluding empty spaces. While extent characterizes the amount of memory allo-

cated to store an element of the given datatype, size determines the number of

bytes used to send an element of the given datatype to other processes (since

empty spaces are not included in the generated message). For standard MPI da-

tatypes (MPI_INT, MPI_DOUBLE, MPI_CHAR, etc.), their extent and size are the

same.

Two functions are provided in the MPI-1 standard for determining extent

and size: MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent) and

MPI_Type_size(MPI_Datatype datatype, int *size). The first returns the extent of the type

datatype, and the second returns its size.

Sometimes, when defining a new datatype, it is desirable to specify a start-

ing or ending empty space (a "hole") for it. The MPI -1 standard provides spe-

Part 1. MPI: description and examples of use 59

cial base types (pseudotypes) for this purpose: MPI_LB and MPI_UB, which are not

associated with any actual data and have zero size and extent. They can be used

in the MPI_Type_struct function as "markers" for the starting and ending position

of the datatype being defined. For example, if in the MPI_Type_struct function,

when defining the type1 type, we include three elements in the oldtypes array:

MPI_LB, MPI_INT, MPI_UB and define the blocklens and displs arrays as follows:

blocklens = {1, 1, 1}, displs = {-3, 0, 6}, then the type1 type will contain one integer

element with an initial empty space (a hole) of 3 bytes, and the upper limit of

the datatype will be located at a distance of 6 bytes from the first byte occupied

by the integer element. Thus, the size of the created datatype will be equal to the

size of the MPI_INT type (usually 4 bytes), and the extent will be equal to 9 bytes

(byte number 6 is not included in the extent, since the MPI_UB type, like MPI_LB,

has no extent):

MPI_LB MPI_INT MPI_UB
| . . [. . .] . |
-3 -2 -1 0 1 2 3 4 5 6

If we now use the MPI_Type_contiguous function with parameters (2, type1,

&type2) to define a new type2 datatype, then this new type will contain two integer

elements and its length will be 18 bytes:

MPI_LB MPI_INT MPI_INT MPI_UB
| . . [. . .] [. . .] . |
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Note that when merging multiple types with explicitly specified boundary

markers, all markers are removed except for the leftmost boundary marker

MPI_LB and the rightmost boundary marker MPI_UB.

The way of defining initial and final empty spaces based on the use of

markers used in the MPI-1 standard has a drawback: explicitly specified boun-

daries of the original type cannot be reduced when defining a new datatype;

they can only be increased by specifying new markers MPI_LB and MPI_UB. For

this reason, a new, more flexible and convenient method of specifying the initial

and final empty spaces when defining a new datatype was proposed in the

MPI-2 standard. It uses the function MPI_Type_create_resized(MPI_Datatype oldtype,

MPI_Aint lb, MPI_Aint extent, MPI_Datatype *newtype). In it, to define a new datatype

newtype, the base datatype oldtype, the new position of the left boundary lb and the

new extent are specified. For example, to define the datatype type1 described

above, it is sufficient to use the following call:

MPI_Type_create_resized(MPI_INT, -3, 9, &type1);

If the original datatype oldtype already had initial and final empty spaces,

then the MPI_Type_create_resized function removes them and creates new ones;

thus, for the new datatype, initial and final empty spaces can be either increased

or decreased. If only the final empty space is required, then the lb parameter

should be set equal to 0.

60 M. E. Abramyan. Parallel Programming Based on MPI 2.0

A new function was also added to the MPI-2 standard that allows us to si-

multaneously determine the left bound lb and the extent of a datatype:

MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb, MPI_Aint *extent). The previous

function MPI_Type_extent was declared deprecated in MPI-2.

Note 2. Additional features related to the size and extent of MPI datatypes

are also discussed in the note to the MPI4Type5 task (see Section 2.4.1).

MPI interface also provides another way to form messages containing data

of different types. This method is based on packing data in the sending process,

sending data and then unpacking it in the receiving process. The advantage of

this method is that it does not require defining new datatypes, and the disadvan-

tage is the need to use an additional buffer to store the packed data.

MPI_Pack function is used for data packing with the following parameters:

void *inbuf – input buffer with initial data;

int incount – the number of elements in the input buffer;

MPI_Datatype datatype – type of elements in the input buffer;

void *outbuf – output buffer with packed data (output parameter);

int outsize – output buffer size (in bytes);

int *position – current position in the output buffer in bytes (input and output

parameter);

MPI_Comm comm – the communicator for which data is packed.

The MPI_Pack function packs incount elements of type datatype into the output

buffer outbuf, starting at the specified position. After this operation, the position pa-

rameter is incremented, defining the new current position in the output buffer.

The first time the function is called for a given output buffer, the position parame-

ter should be set to 0. After the last call to the function for a given output buffer,

the position parameter will be equal to the size of its filled part (in bytes). Care

must be taken to ensure that the outsize of the output buffer is large enough to

hold all the packed data (i. e., that the final value of the position parameter does

not exceed the outsize value).

Note that when packing (and subsequently unpacking) you must specify the

communicator used to send the packed data.

When sending packed data, a special type MPI_PACKED must be specified,

and the size is specified in bytes.

The MPI_Unpack function unpacks the received message on the receiving

process side. Its parameters are:

void *inbuf – input buffer (with packed data);

int insize – input buffer size (in bytes);

int *position – current position in the input buffer in bytes (input and output

parameter);

void *outbuf – buffer with unpacked data (output parameter);

int outcount – the number of elements extracted from the input buffer;

MPI_Datatype datatype – the type of elements extracted from the input buffer;

Part 1. MPI: description and examples of use 61

MPI_Comm comm – the communicator used to receive the packed message.

Unpacking starts at the specified position of the input buffer. After this oper-

ation, the value of the position parameter is incremented, defining the new current

position in the input buffer. The first time MPI_Unpack is called for a given input

buffer, the position parameter should be set to 0.

There is also a function MPI_Pack_size(int incount, MPI_Datatype datatype,

MPI_Comm comm, int *size) that allows you to determine the memory size (in bytes)

that is sufficient to store incount packed data of type datatype. It should be noted,

however, that the returned value size may be larger than what is actually re-

quired to store the specified number of packed data.

Tasks that allow you to get acquainted with all the capabilities described

above are collected in the MPI4Type group (see Section 2.4). The first subgroup

of this group examines basic methods for defining new datatypes, the second

subgroup is devoted to sending packed data. The third subgroup presents more

complex examples of defining new datatypes, associated mainly with parts of

two-dimensional arrays (matrices); in these examples, in particular, it is neces-

sary to additionally define types with final empty spaces. Let us consider the

first task from the third subgroup of the MPI4Type group.

MPI4Type14. Two sequences of integers are given in the master process:

the sequence A of the size 3K and the sequence N of the size K, where K is the

number of slave processes. The elements of sequences are numbered from 1.

Send NR elements of the sequence A to each slave process R (R = 1, 2, …, K)

starting with the AR and increasing the ordinal number by 2 (R, R + 2, R + 4,

…). For example, if N2 is equal to 3, then the process 2 should receive the

elements A2, A4, A6. Output all received data in each slave process. Use one

call of the MPI_Send, MPI_Probe, and MPI_Recv functions for sending numbers to

each slave process; the MPI_Recv function should return an array that contains

only elements that should be output. To do this, define a new datatype that

contains a single integer and an additional empty space (a hole) of a size that

is equal to the size of integer datatype. Use the following data as parameters

for the MPI_Send function: the given array A with the appropriate displace-

ment, the amount NR of sending elements, a new datatype. Use an integer ar-

ray of the size NR and the MPI_INT datatype in the MPI_Recv function. To de-

termine the number NR of received elements, use the MPI_Get_count function in

the slave processes.

Note. Use the MPI_Type_create_resized function to define the hole size for a

new datatype (this function should be applied to the MPI_INT datatype). In the

MPI-1, the zero-size upper-bound marker MPI_UB should be used jointly with

the MPI_Type_struct function for this purpose (in MPI-2, the MPI_UB pseudo-

datatype is deprecated).

When you run the template program created for this task, a window will

appear on the screen with an example of the initial data and an example of the

62 M. E. Abramyan. Parallel Programming Based on MPI 2.0

correct results (Fig. 17). In order to reduce the size of the window, the section

with the task formulation is hidden in it (to hide and then restore the section with

the formulation, simply press the [Del] key).

Fig. 17. Acquaintance running of the MPI4Type14 task

In this task, it is necessary to send elements of array A from the master

process to the slave processes, going through "every other one" of them. If you

do not create new datatypes, you will have to either send "extra" data (which

will lead to an increase in the size of the messages being sent, as well as the

need to allocate additional memory in the receiving processes), or preliminarily,

before sending, copy the required elements into an auxiliary buffer (which will

require the allocation of additional memory in the sending process, as well as

additional actions in this process to copy the necessary data into the auxiliary

buffer).

In order to implement the transfer of the required data in an efficient man-

ner both on the sender and on the receiver side, an auxiliary datatype should be

defined, and only for the sending process. Using this datatype, we will be able to

form a message containing only the necessary elements of the array A. For the

receiving process, a new datatype is not required, since the message received by

this process will not contain "extra" data.

At the first stage of the solution, we will deal with the input of the initial

data in the master process. Since the sizes of the initial arrays depend on the

number of parallel processes, we will use dynamic memory allocation for them:

if (rank == 0)
{
 int k = size - 1;
 int *a = new int[3 * k];
 int *n = new int[k];

Part 1. MPI: description and examples of use 63

 for (int i = 0; i < 3 * k; i++)
 pt >> a[i];
 for (int i = 0; i < k; i++)
 pt >> n [i];
 // Define a new datatype and send a message
 delete[] a;
 delete[] n;
}

After finishing working with the created dynamic arrays, we free the mem-

ory allocated for them using the delete[] operator.

When you launch a new version of the program, the taskbook window will

display the message "Correct data input: all required data are input, no data

are output".

Now we will define the new datatype (the corresponding statements should

be placed in the position marked with a comment). To illustrate the capabilities

of both the MPI-1 and MPI-2 standards, we will describe two versions of such a

definition.

In the first version, we will use only the means of the MPI-1 standard:

MPI_Datatype t;
int int_sz;
MPI_Type_size(MPI_INT, &int_sz);
int blocklens[] = {1, 1};
MPI_Datatype oldtypes[] = {MPI_INT, MPI_UB};
MPI_Aint displs[] = {0, 2 * int_sz};
MPI_Type_struct(2, blocklens, displs, oldtypes, &t);

First, we use the MPI_Type_size function to determine the size of an element

of the integer type MPI_INT. Then, using the MPI_Type_struct function, we create a

structure of two blocks (each of length 1), the first block containing a single in-

teger and the second block containing an MPI_UB element (upper bound marker)

that can be used to specify the final empty space for the defined datatype t. Re-

call that the offsets for each block (specified in the displs array) are in bytes and

are counted from the beginning of the first block.

To check the correctness of the created datatype, we will display its charac-

teristics (size and extent) in the debug section:

if (rank == 0)
{
 int t_sz;
 MPI_Aint t_ext;
 MPI_Type_size(t, &t_sz);
 MPI_Type_extent(t, &t_ext);
 Show("size = ", t_sz);
 Show("extent = ", (int)t_ext);
}

64 M. E. Abramyan. Parallel Programming Based on MPI 2.0

When running this version of the program, the taskbook window will look

like the one shown in Fig. 18. We see that the extent of the created type is in-

deed twice the size of the base type MPI_INT (equal to 4 bytes). The sizes of the

new type and the MPI_INT type coincide, since the created type contains a single

integer element.

Fig. 18. The taskbook window with information about the created datatype

If we use the tools introduced in the MPI-2 standard, then we do not need

auxiliary arrays when defining a new datatype t:

MPI_Datatype t;
int int_sz;
MPI_Type_size(MPI_INT, &int_sz);
MPI_Type_create_resized(MPI_INT, 0, 2 * int_sz, &t);

The characteristics of a type created using the MPI_Type_create_resized func-

tion will, of course, coincide with the corresponding characteristics of a type

created using the MPI-1 standard (see Fig. 18).

To complete the program fragment corresponding to the master process, we

only need to use the created datatype to send the required data to the slave

processes, having previously registered it using the MPI_Type_commit function:

MPI_Type_commit(&t);
for (int i = 1; i < size; i++)
 MPI_Send(&a[i - 1], n[i - 1], t, i, 0, MPI_COMM_WORLD);

Note 3. If the MPI_Type_commit function had not been called in the program,

then when using the MPICH2 or MS-MPI system, the following MPI error

Part 1. MPI: description and examples of use 65

message would have been displayed in the taskbook window: "Error

MPI_ERR_TYPE: Datatype has not been committed".

It remains to define the fragment corresponding to the slave processes by

adding the else branch to the if (rank == 0) statement:

else
{
 MPI_Status s;
 MPI_Probe(0, 0, MPI_COMM_WORLD, &s);
 int n;
 MPI_Get_count(&s, MPI_INT, &n);
 int *a = new int[n];
 MPI_Recv(a, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &s);
 for (int i = 0; i < n; i++)
 pt << a[i];
 delete[] a;
}

To determine the amount of data to receive, we use the MPI_Probe function,

then create a receiving buffer of the required size and filled it in the MPI_Recv

function.

Note that when solving this task, we, for the first time, encounter a situa-

tion when the type of data being sent (t) does not match the type of data being

received (MPI_INT). In addition, it should be emphasized that in the slave

processes we did not use the new datatype and at the same time we received ex-

actly the data that needed to be sent from the master process, and in the receiv-

ing buffer (unlike the sending buffer) the received data are located without any

"holes".

When you run the final version of the program, a message will be displayed

stating that the task has been solved. Here is the full text of the resulting solution

(without debug output), which uses the capabilities added to the MPI-2 standard:

#include "pt4.h"
#include "mpi.h"
void Solve()
{
 Task("MPI4Type14");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if (rank == 0)
 {
 int k = size - 1;
 int *a = new int[3 * k];

66 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 int *n = new int[k];
 for (int i = 0; i < 3 * k; i++)
 pt >> a[i];
 for (int i = 0; i < k; i++)
 pt >> n[i];
 MPI_Datatype t;
 int int_sz;
 MPI_Type_size(MPI_INT, &int_sz);
 MPI_Type_create_resized(MPI_INT, 0, 2 * int_sz, &t);
 MPI_Type_commit(&t);
 for (int i = 1; i < size; i++)
 MPI_Send(&a[i - 1], n[i - 1], t, i, 0,
 MPI_COMM_WORLD);
 delete[] a;
 delete[] n;
 }
 else
 {
 MPI_Status s;
 MPI_Probe(0, 0, MPI_COMM_WORLD, &s);
 int n;
 MPI_Get_count(&s, MPI_INT, &n);
 int *a = new int[n];
 MPI_Recv(a, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &s);
 for (int i = 0; i < n; i++)
 pt << a[i];
 delete[] a;
 }
}

Instead of arrays (static or dynamic) in C++ programs, we can use the "vec-

tor" container std::vector<T> from the Standard Template Library STL [2]. This

will allow us using additional capabilities for input-output related to the pt

stream iterators (see Section 3.1.2). Here is a solution to the MPI4Type14 task,

in which vectors are used instead of arrays (added program fragments are hig-

hlighted in bold, and deleted fragments are striked out):

#include "pt4.h"
#include "mpi.h"
#include <vector>
#include <algorithm>
void Solve()
{
 Task("MPI4Type14");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;

Part 1. MPI: description and examples of use 67

 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if (rank == 0)
 {
 int k = size - 1;
 int *a = new int[3 * k];
 int *n = new int[k];
 for (int i = 0; i < 3 * k; i++)
 pt >> a[i];
 for (int i = 0; i < k; i++)
 pt >> n[i];
 std::vector<int> a(ptin_iterator<int>(3 * k),
 ptin_iterator<int>()),
 n(ptin_iterator<int>(1 * k), ptin_iterator<int>());
 MPI_Datatype t;
 int int_sz;
 MPI_Type_size(MPI_INT, &int_sz);
 MPI_Type_create_resized(MPI_INT, 0, 2 * int_sz, &t);
 MPI_Type_commit(&t);
 for (int i = 1; i < size; i++)
 MPI_Send(&a[i - 1], n[i - 1], t, i, 0,
 MPI_COMM_WORLD);
 delete[] a;
 delete[] n;
 }
 else
 {
 MPI_Status s;
 MPI_Probe(0, 0, MPI_COMM_WORLD, &s);
 int n;
 MPI_Get_count(&s, MPI_INT, &n);
 int *a = new int[n];
 std::vector<int> a(n);
 MPI_Recv(&a[0], n, MPI_INT, 0, 0, MPI_COMM_WORLD, &s);
 copy(a.begin(), a.end(), ptout_iterator<int>());
 for (int i = 0; i < n; i++)
 pt << a[i];
 delete[] a;
 }
}

To be able to work with vectors, the standard header <vector> must be in-

cluded in the program. In addition, we have included the header <algorithm>,

which allows the use of STL algorithms in the program.

When creating a vector, you can immediately fill it with the initial data by

specifying the iterator of the beginning and end of the input stream in the con-

structor. In our case, we use the input stream pt, for which the input iterator

ptin_iterator<T> is defined in the taskbook, allowing you to organize the reading of

68 M. E. Abramyan. Parallel Programming Based on MPI 2.0

data of type T. Constructor ptin_iterator<T>(int count) with one parameter count

creates an iterator for reading the required number of elements from the pt

stream, the parameterless constructor ptin_iterator<T>() creates an iterator for the

end of the input stream. If the vector is intended to store a data set received from

another process, then to create it, it is sufficient to use a constructor with one pa-

rameter, namely, the required vector size (we used this constructor option in the

else branch of the conditional statement). In this case, the vector is filled with ze-

ro values of type T.

It is worth paying special attention to the fact that to create the vector n we

specified the expression as the parameter of the first iterator 1 * k instead of vari-

able k. This is explained by the fact that the declaration

std::vector<int> n(ptin_iterator<int>(k), ptin_iterator<int>());

is interpreted by C++ lexical analyzer as a declaration of a function prototype n

with two parameters. In order for this declaration to be interpreted in the way we

need (i. e., as a declaration of the vector n initialized with two iterators), it is

enough to represent the parameter of the first iterator as an expression, since in

this case the resulting declaration can no longer be interpreted as a function pro-

totype:

std::vector<int> n(ptin_iterator<int>(1 * k),
 ptin_iterator<int>());

When passing a vector as a buffer for sending or receiving data, it is neces-

sary to specify the address of the initial element of the buffer (in particular, in

the else branch we had to change the first parameter a of the MPI_Recv function to

&a[0]). The required buffer address can also be specified using the data function

of the vector<T> class: a.data().

To output all elements of a vector, it is sufficient to use the copy algorithm,

specifying the begin and end iterators of the beginning and end of the vector as

the first two parameters, and the ptout_iterator iterator for the output stream pt as

the last parameter.

If you use the loop by container elements, which appeared in the C++11

standard, you can organize the output of vector elements as follows:

for (auto e : a)
 pt << e;

Starting with the taskbook version 4.22, to output all elements of a vector,

it is enough to pass the vector name to the pt stream:

pt << a;

Using C++ template library (and the related means of the taskbook), we are

able to describe the actions for input and output of data sets more briefly. In ad-

dition, we did not need to perform special actions related to freeing memory,

since the memory allocated for vectors is freed in their destructors, which are

called automatically.

Part 1. MPI: description and examples of use 69

1.2.7. Creation of new communicators

Often, for efficient implementation of data transfer, it is convenient to use

auxiliary communicators, which include not all processes of the parallel applica-

tion, but only the required part of them (a group of processes). Tasks for using

auxiliary communicators are collected in four subgroups of the MPI5Comm

group (see Section 2.5). It should be noted that the tasks of the MPI5Comm

group consider only the so-called intra-communicators, associated with one

group of processes. In MPI, it is possible to create another type of communica-

tors, namely, inter-communicators, which are associated not with one, but with

two groups of processes. The MPI8Inter task group (Section 2.8) is devoted to

inter-communicator. Most of tasks of this group can be executed only in the

MPICH2 and MS-MPI systems that support the MPI-2 standard.

New communicators can be created in three ways.

The simplest way to create a new communicator is to create a copy of an

existing communicator. The MPI_Comm_dup(MPI_Comm comm, MPI_Comm

*newcomm) function is intended for this purpose, which must be called in all

processes of the original communicator comm. The new communicator newcomm

includes the same group of processes and has the same additional characteristics

(in particular, some virtual topology, see Section 1.2.8) as the original commu-

nicator comm. Messages sent using one of these communicators do not affect

messages sent using the other in any way; they are sent "over different chan-

nels". Copies of the communicator MPI_COMM_WORLD are often created in addi-

tional parallel libraries and are used to send internal information between

processes that is necessary for the normal operation of these libraries. The user

of the libraries does not have access to these copies and therefore cannot influ-

ence the data transfer performed using them.

Let us emphasize that a usual assignment of the form

MPI_Comm newcomm = comm;

does not create a copy of the communicator comm, it only creates a copy of the

handle associated with the same communicator.

To compare communicators, the function MPI_Comm_compare(MPI_Comm

comm1, MPI_Comm comm2, int *result) is provided. When comparing different de-

scriptors associated with the same communicator, this function returns the value

MPI_IDENT in the result variable. If different communicators containing the same

set of processes are compared, and these processes are ordered in the same way,

then the value MPI_CONGRUENT is returned (this is the value that will be returned

when comparing the original communicator and its copy created using the

MPI_Comm_dup function). If two communicators contain the same sets of

processes, but the order of the processes in them is different, then the value

MPI_SIMILAR is returned. If communicators contain different sets of processes,

then the value MPI_UNEQUAL is returned.

70 M. E. Abramyan. Parallel Programming Based on MPI 2.0

The second way to create a new communicator requires a preliminary

definition of a new group of processes within an existing communicator. Having

such a group included in the original communicator comm, it is possible to create

a new communicator newcomm that will contain only processes from the group.

The function MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm

*newcomm) is intended for this purpose. It must be called in all processes included

in the communicator comm; for those processes that are not included in the speci-

fied group, the value MPI_COMM_NULL will be returned in the newcomm parameter.

Note. In the MPI-2 standard, the capabilities of the MPI_Comm_create func-

tion were extended so that, when it is called once, it is possible to create

several new communicators associated with disjoint groups of processes

from the original communicator. To do this, in the processes of each of

these groups, it is sufficient to call the MPI_Comm_create function with the

group parameter equal to the required group (the MPI_Comm_create function

must still be called in all processes of the original communicator comm).

Note that the new capabilities of the MPI_Comm_create function make it close

to the MPI_Comm_split function (see below for a description of the third way

to create new communicators).

To work with process groups (objects of type MPI_Group), the MPI library

provides many different functions, as well as two constants: MPI_GROUP_EMPTY

(corresponds to an empty group, i. e. a group that does not contain processes) and

MPI_GROUP_NULL (a value used to indicate an erroneous group).

To create a group of all processes of the communicator comm, the function

MPI_Comm_group(MPI_Comm comm, MPI_Group *group) is provided.

For groups, as well as for communicators, there are functions that allow

you to determine the size of the group, i. e. the number of processes included in

it (the function MPI_Group_size(MPI_Group group, int *size)), as well as the rank of the

current (i. e., calling this function) process in the specified group (the function

MPI_Group_rank(MPI_Group group, int *rank)). If the current process is not in the spe-

cified group, then the value MPI_UNDEFINED is returned in the rank parameter.

There is also the function MPI_Group_translate_ranks(MPI_Group group1, int n, int

*ranks1, MPI_Group group2, int *ranks2), which allows us to determine the ranks of

processes in group2 if their ranks in group1 are known. In this case, the known

ranks of processes in group1 are specified in the ranks1 array (of size n), and the

ranks of the same processes in group2 are returned in the ranks2 array of the same

size (the output parameter). If some of the processes in the first group is not in-

cluded in the second group, then the corresponding element of the ranks2 array is

assigned the value MPI_UNDEFINED.

Groups, like communicators, can be compared. The function

MPI_Group_compare(MPI_Group group1, MPI_Group group2, int *result) returns one of

three values in the result variable:

Part 1. MPI: description and examples of use 71

MPI_IDENT – two groups contain identical sets of processes, and these sets

are ordered identically;

MPI_SIMILAR – two groups contain the same sets of processes, but the order

of the processes in them is different;

MPI_UNEQUAL – two groups contain different sets of processes.

Given a group, you can create a new group containing only a part of the

processes of the original group. For this purpose, the MPI_Group_incl and

MPI_Group_excl functions are intended, with the same set of parameters:
(MPI_Group group, int n, int *ranks, MPI_Group *newgroup).

When using the MPI_Group_incl function, the new group includes those

processes of the original group whose ranks are specified in the array ranks of

size n; therefore, the new group will contain n processes. The order of the

processes in the new group corresponds to the order of the ranks in the array

ranks; thus, a process of the new group of rank i, i = 0, …, n –1, will coincide with

a process of rank ranks[i] of the original group (the array ranks cannot contain

identical elements). If the parameter n is 0, then an empty group equal to the

constant MPI_GROUP_EMPTY is returned.

When using the MPI_Group_excl function, the new group includes those

processes of the original group whose ranks are not specified in the ranks array of

size n; therefore, the new group will contain n fewer processes than the original

group. The order of the processes in the new group corresponds to the order of

the processes in the original group; the order of the elements in the ranks array

does not matter, it is only required that the ranks array does not contain identical

elements. If the parameter n is 0, then a group equal to the original group is re-

turned.

There are versions of the functions MPI_Group_incl and MPI_Group_excl that

are convenient to use if the ranks of the included (or, respectively, excluded)

processes form regular ranges. These versions have the names

MPI_Group_range_incl and MPI_Group_range_excl and the same set of parameters:

(MPI Group group, int n, int ranges[][3], MPI Group *newgroup). The ranges parameter is

an array of size n, and its elements are triples, that is, arrays of three integers.

Each such a triple defines a range of ranks of the form (first, last, step), which

includes ranks from the first up to and including the last with the step step (step

cannot be zero, but can be negative; in this case, first must be greater than last).

"Degenerate" ranges are allowed, consisting of one process of rank R and de-

fined by a triple of the form (R, R, 1). For the MPI_Group_range_incl function, the

ranges array defines the ranks of processes from the group group included in the

group newgroup (in the specified order), and for the MPI_Group_range_excl function,

the ranges array defines the ranks of processes excluded from the group group to

obtain the group newgroup. The ranges in the ranges array must be pairwise dis-

joint.

72 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Given two original groups group1 and group2, one can apply one of the set

operations to them: union, intersection, difference, resulting in a new group new-

group. For this purpose, the functions MPI_Group_union, MPI_Group_intersection,

MPI_Group_difference are provided, with the same set of parameters: (MPI_Group

group1, MPI_Group group2, MPI_Group *newgroup).

The union consists of all processes of the first group (taken in the same or-

der) supplemented by those processes of the second group (in the same order)

that are not in the first group. The intersection consists of those processes of the

first group (taken in the same order) that are in the second group. The difference

consists of those processes of the first group (taken in the same order) that are

not in the second group. The intersection and difference operations may result in

an empty group; in this case, the newgroup parameter returns the value

MPI_GROUP_EMPTY. The union and intersection operations are not commutative,

since swapping the original groups may change the order of the processes in the

new group.

Groups and communicators created in the program can be destroyed

by freeing the descriptors associated with them. The functions

MPI_Group_free(MPI_Group *group) and MPI_Comm_free(MPI_Comm *comm) are in-

tended for this purpose. As a result of executing these functions, the value

MPI_GROUP_NULL is returned in the group parameter, and the value

MPI_COMM_NULL is returned in the comm parameter.

The third way to create a new communicator is associated with the

MPI_Comm_split function, which splits the original communicator into a set of

communicators with pairwise disjoint process groups. We will demonstrate the

use of this function using the example of solving one of the tasks included in the

first subgroup of the MPI5Comm group (see Section 2.5.1). The tasks from the

next two subgroups, associated with virtual topologies, are discussed in Sec-

tions 1.2.8 and 1.2.9.

MPI5Comm3. Three integers are given in each process whose rank is a

multiple of 3 (including the master process). Using the MPI_Comm_split func-

tion, create a new communicator that contains all processes with ranks that

are a multiple of 3. Send all given numbers to the master process using one

collective operation with the created communicator. Output received integers

in the master process in ascending order of ranks of sending processes (in-

cluding integers received from the master process).

Note. When calling the MPI_Comm_split function in processes that are not

required to include in the new communicator, one should specify the constant

MPI_UNDEFINED as the color parameter.

Here is the taskbook window that was displayed on the screen during the

acquaintance running of the program template for this task (Fig. 19).

Part 1. MPI: description and examples of use 73

Fig. 19. Acquaintance running of the MPI5Comm3 task

Note that the console window displayed text indicating that eight processes

were running in the parallel program:

C:\PT4Work>"C:\Program Files\Microsoft MPI\bin\mpiexec.exe"
 -n 8 "C:\PT4Work\ptprj.exe"

Thus, we need to organize interaction only between some of the existing

processes. Of course, we can use MPI functions that provide data exchange be-

tween two processes (as in the solution to the MPI2Send11 task given in Sec-

tion 1.2.2), but a more efficient way would be with a suitable collective data

transfer operation. However, collective operations are performed for all

processes included in a certain communicator, so the program must first create a

communicator that includes only processes whose rank is divisible by 3. This

can be done in various ways; we will use the MPI_Comm_split function mentioned

in the task formulation.

The function MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm

*newcomm) splits the set of processes included in the communicator comm into

separate communicators. This function must be called in all processes included

in the communicator comm.

As a result of executing this function, each process of the communicator

comm receives one new communicator newcomm from the created set, which in-

cludes this process. A situation is also possible when some processes will not be

74 M. E. Abramyan. Parallel Programming Based on MPI 2.0

included in any of the created communicators; for such processes, the function

MPI_Comm_split returns an "empty" communicator MPI_COMM_NULL.

The MPI_Comm_split function uses the color parameter to split processes into

new groups. All processes that specify the same color parameter when calling

MPI_Comm_split are included in the same new communicator. Any color must be

specified as a non-negative number. There is also an "undefined color"

MPI_UNDEFINED; it must be specified for processes that should not be included in

any of the new communicators.

The second characteristic used in the MPI_Comm_split function when creating

a new set of communicators is the key parameter. It determines the order in

which the processes will be located in each of the new communicators: the

processes in each communicator are ordered by their keys (if some processes

have the same keys, their order is determined by the MPI environment that con-

trols the parallel program). To preserve the original order of the processes in

each of the newly created communicators, it is sufficient to specify the rank of

this process in the original communicator as the key parameter for each process.

The ability of the MPI_Comm_split function to use the MPI_UNDEFINED con-

stant allows new communicators to be created for only some of the existing

processes. Because of the importance of this feature, it is mentioned in the note

for this task.

Taking into account the features of the MPI_Comm_split function, we can use

it to create a communicator that includes only processes of rank multiple of 3:

MPI_Comm comm;
int color = rank % 3 == 0 ? 0: MPI_UNDEFINED;
MPI_Comm_split(MPI_COMM_WORLD, color, rank, &comm);
if (comm == MPI_COMM_NULL)
 return;

You can run this version of the program to make sure that you did not make

any mistakes when creating a new communicator (the taskbook will still consid-

er the program launch as acquaintance one, since no input or output of data is

performed in it).

The last conditional statement ensures immediate exit from the process if

the communicator MPI_COMM_NULL is associated with it. Of course, in our case,

the exit condition could analyze the remainder of dividing rank by 3, but the

checking the communicator MPI_COMM_NULL is more universal.

In all other processes, it remains to input three integers, send all the input

numbers to the master process using the collective function MPI_Gather, and out-

put the resulting numbers. To input the given numbers in each process, you can

use an array data of three elements. The size of the resulting array res, which will

be obtained in the master process, depends on the number of processes in the pa-

rallel application. When discussing the MPI3Coll23 task, we noted that in such a

situation you can use either a static array of a sufficiently large size, or a dynam-

Part 1. MPI: description and examples of use 75

ic array (or a vector std::vector<T>), the size of which will be determined after the

number of processes becomes known. In Section 1.2.5, when solving the

MPI3Coll23 task, we used a static array. When solving the MPI4Type14 task,

we used dynamic arrays, as well as their alternative from the standard C++ tem-

plate library, std::vector<T> vectors. In this program we will once again use the

STL library tools, describing the original and resulting data sets (data and res) as

vectors and using stream iterator pt for their input and output:

MPI_Comm_size(comm, &size);
std::vector<int> res(3 * size),
 data(ptin_iterator<int>(3), ptin_iterator<int>());
MPI_Gather(&data[0], 3, MPI_INT, &res[0], 3, MPI_INT,
 0, comm);
if (rank == 0)
 copy(res.begin(), res.end(), ptout_iterator<int>());

Let us recall that if you use vectors and algorithms from the STL library in

your program, you need to include the standard headers <vector> and <algorithm>

to it.

To find the total number of elements received, we first determined the

number of processes in the created communicator comm (using the

MPI_Comm_size function), writing this number to the size variable. Since each

process of the communicator comm sends three elements to the master process,

the size of the vector res is assumed to be equal to 3 * size.

Then the MPI_Gather function is called (see Section 1.2.4). Recall that in the

MPI_Gather function, the fifth parameter is not the size of the res buffer, but the

number of elements received from each process. Note also that the MPI_Gather

function receives data from all processes of the comm communicator, including

the root process that is the receiver of all data. When specifying the root process,

we took into account that the process of rank 0 in the MPI_COMM_WORLD com-

municator is also the process of rank 0 in the comm communicator.

After running the resulting program, we will receive a message that the task

has been solved. Here is the full text of the resulting solution:

#include "pt4.h"
#include "mpi.h"
#include <vector>
#include <algorithm>
void Solve()
{
 Task("MPI5Comm3");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);

76 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm comm;
 int color = rank % 3 == 0 ? 0: MPI_UNDEFINED;
 MPI_Comm_split(MPI_COMM_WORLD, color, rank, &comm);
 if (comm == MPI_COMM_NULL)
 return;
 MPI_Comm_size(comm, &size);
 std::vector<int> res(3 * size),
 data(ptin_iterator<int>(3), ptin_iterator<int>());
 MPI_Gather(&data[0], 3, MPI_INT, &res[0], 3, MPI_INT,
 0, comm);
 if (rank == 0)
 copy(res.begin(), res.end(), ptout_iterator<int>());
}

1.2.8. Cartesian topology

When executing a parallel program, each process can exchange data with

any other process via the standard communicator MPI_COMM_WORLD. If it is ne-

cessary to use some part of the existing processes for organizing interaction be-

tween them (for example, for collective data exchange within only this part of

the processes), then it is necessary to define a new communicator for the re-

quired processes (see Section 1.2.7). However, in a number of situations it is de-

sirable not only to use the required part of the processes (and/or arrange the

processes in a different order), but also to establish additional connections be-

tween them. For these purposes, the MPI library provides tools that allow you to

define a virtual topology.

A virtual topology defines a structure on a set of processes that allows these

processes to be ordered in a more complex way than in usual communicators (in

which processes are ordered linearly). There are two types of virtual topology:

Cartesian topology and graph topology. In the case of Cartesian topology, all

processes are interpreted as nodes of some n-dimensional grid of size

k1 k2 … kn (if n = 2, then the processes can be considered as elements of

a rectangular matrix of size k1 k2). In the case of graph topology, processes

are interpreted as vertices of some graph; in this case, connections between

processes are defined by specifying a set of edges for this graph. In the MPI-2

standard, a special type of graph topology was added, namely, the distributed

graph topology.

Information about the virtual topology is connected with the communica-

tor. To check the presence of a virtual topology for the comm communicator, one

can use the function MPI_Topo_test(MPI_Comm comm, int *status), which returns the

detected topology type in the output parameter status. The status parameter can

take the following values:

MPI_CART – the Cartesian topology is associated with the communicator;

MPI_GRAPH – the graph topology is associated with the communicator;

Part 1. MPI: description and examples of use 77

MPI_DIST_GRAPH – the distributed graph topology is associated with the

communicator (this constant appeared in the MPI-2 standard);

MPI_UNDEFINED – no virtual topology is associated with the communicator.

In this section, we will consider the functions of the MPI library related to

the Cartesian topology. They can be divided into four groups:

 creation of Cartesian topology for some communicator (the

MPI_Cart_create function, as well as the helper function MPI_Dims_create);

 characterization of the existing Cartesian topology (the MPI_Cartdim_get,

MPI_Cart_get, MPI_Cart_rank, MPI_Cart_coords functions);

 splitting the original Cartesian grid into subgrids of lower dimension

(the MPI_Cart_sub function);

 finding the ranks of senders and receivers when shifting data along

some coordinate of the Cartesian grid (the MPI _Cart_shift function).

Some of these functions (MPI_Cart_create, MPI_Cart_coords, MPI_Cart_rank,

MPI_Cart_sub) will be considered when discussing the MPI5Comm17 task, and

the rest functions will be described at the end of the section, after completing the

discussion of the task.

MPI5Comm17. The number of processes K is a multiple of 3: K = 3N,

N > 1. A sequence of N integers is given in the processes 0, N, and 2N. Define

a Cartesian topology for all processes as a (3 × N) grid. Using the MPI_Cart_sub

function, split this grid into three one-dimensional subgrids (namely, rows)

such that the processes 0, N, and 2N were the master processes in these rows.

Send one given integer from the master process of each row to each process

of the same row using one collective operation. Output the received integer in

each process (including the processes 0, N, and 2N).

When you run the program template for this task, the taskbook window will

look similar to that shown in Fig. 20.

This example corresponds to case N = 4: there are 12 processes that should

be interpreted as elements of a 3 4 matrix. In this case, in the processes that

are the initial elements of the rows (in other words, in the processes included in

the first column of the matrix), four numbers are given, each of which must be

sent to the corresponding process of the same row of the matrix.

The first stage in solving the task is to determine the required Cartesian to-

pology. For this purpose, the MPI_Cart_create function is provided, which has the

following parameters:

MPI_Comm oldcomm – the original communicator for whose processes the

Cartesian topology is defined (in our case, MPI_COMM_WORLD);

int ndims – the number of dimensions of the created Cartesian grid (in our

case, 2);

int *dims – an integer array, each element of which defines the size of the

corresponding dimension (in our case, the array must consist of two

elements with values 3 and size / 3);

78 M. E. Abramyan. Parallel Programming Based on MPI 2.0

int *periods – an integer array of flags that determine the periodicity of each

dimension (in our case, it is sufficient to use an array of two zero

elements);

int reorder – an integer flag that determines whether the MPI environment

can automatically change the order of processes (in our case, we need

to set this parameter to 0);

MPI_Comm *cartcomm – the resulting communicator with Cartesian topology

(output parameter).

Fig. 20. Acquaintance running of the MPI5Comm17 task

It is convenient to use periodicity for some dimension of the Cartesian grid,

for example, when performing cyclic data transfer between processes along this

dimension (see the description of the MPI_Cart_shift function at the end of this sec-

tion); in this case, the corresponding element in the periods flag array must be set

to something other than 0.

Automatic process reordering when creation of the Cartesian topology al-

lows taking into account the physical configuration of the computer system on

which the parallel program is executed, and thereby increasing the efficiency of

its execution. However, in learning programs executed under the control of the

PT for MPI-2 taskbook, the order of processes in the generated Cartesian topol-

ogies must remain unchanged, so process reordering should be disabled.

Part 1. MPI: description and examples of use 79

Here is a program fragment that defines the Cartesian topology and con-

nects it to the new communicator comm (this fragment should be placed at the

end of the Solve function):

MPI_Comm comm;
int dims[] = {3, size / 3},
periods[] = {0, 0};
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);

The communicator comm created as a result of executing the MPI_Cart_create

function contains the same processes (and in the same order) as the original

communicator MPI_COMM_WORLD. However, these communicators are different:

the data transfer operations performed using the communicators comm and

MPI_COMM_WORLD are performed independently and do not affect each other. In

addition, the comm communicator is associated with a virtual topology, while the

MPI_COMM_WORLD communicator does not have any virtual topology.

Due to the presence of Cartesian topology, each process of the communica-

tor comm is associated not only with an ordinal number (the rank of the process),

but also with a set of integers defining the coordinates of this process in the cor-

responding Cartesian grid. The coordinates, like the rank, are numbered from 0.

The coordinates of a process in a Cartesian topology can be determined by

its rank using the MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords)

function, and the MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank) function al-

lows you to solve the inverse problem. Note that in the MPI_Cart_coords function,

you must specify an additional parameter maxdims, the size of the output array
coords.

To solve our task, we do not need to use the MPI_Cart_coords function, but in

some cases (in particular, when debugging parallel programs), it may be useful.

Therefore, we will give an example of its use, displaying the coordinates of all

processes included in the Cartesian grid in the debug section of the taskbook

window. To do this, we will supply the Solve function with the following state-

ments:

int coords[2];
MPI_Cart_coords(comm, rank, 2, coords);
Show(coords[0]);
Show(coords[1]);

When you launch the modified program, the taskbook window will look

like that shown in Fig. 21.

Recall that the first number in each line of the debug section (before the "|"

symbol) denotes the rank of the process that output the data specified in that

line. The second number (followed by the ">" symbol) denotes the order number

of the output line for that process. In our case, each process outputs one line

containing two numbers: its coordinates in the Cartesian topology.

80 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 21. Output of Cartesian coordinates of processes in the debug section

We see that the process of rank 0 has coordinates (0, 0), i. e. it is the first

element of the first row of the matrix, and the process of rank 11 has coordinates

(2, 3), i. e. it is the last (the fourth) element of the last (the third) row. In addi-

tion, in this case, the first row of the matrix includes processes of ranks 0, 1, 2,

3, and the first column includes processes of ranks 0, 4, and 8.

Let us return to our task. To solve it, we must first split the resulting matrix

of processes into separate rows, associating a new communicator with each row.

After that, we must perform the collective operation MPI_Scatter (see Section

1.2.4) for all processes included in one row for sending fragments of the data set

from one process to all processes included in the communicator.

Splitting a Cartesian grid into a set of subgrids of lower dimension (in par-

ticular, splitting a matrix into a set of rows or columns) and associating a new

Part 1. MPI: description and examples of use 81

communicator with each resulting subgrid is performed using the function

MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm *newcomm).

Its first parameter comm should be the original communicator with Carte-

sian topology, and the second parameter remain_dims should be an array of flags:

if the corresponding dimension should remain in each subgrid, then a non-zero

flag is indicated in its place in the array, and if the original grid is split along this

dimension (and, consequently, this dimension "disappears" in the resulting sub-

grids), then the value of the flag associated with this dimension must be zero.

MPI_Cart_sub function must be called in all processes of the original com-

municator comm. As a result of its call, a set of new communicators is created,

each of which is connected to one of the obtained subgrids (all created commu-

nicators are automatically supplied with a Cartesian topology). However, this

function returns (as the third, output parameter newcomm) only one of the created

communicators, namely, the communicator that includes the process that called

this function. Note that the MPI_Comm_split function, considered in the previous

section, behaves in a similar way.

To split the original process matrix into a set of rows, you need to specify

an array of two integer elements as the second parameter of the MPI_Cart_sub

function; the first element must be equal to 0, and the second element must be

non-zero (for example, equal to 1). In this case, all matrix elements with the

same value of the first (deleted) coordinate will be combined in a new commu-

nicator (let us name it comm_sub).

The first process of each row (the one that, according to the task conditions,

must send its data to all other processes of the same row) has a rank of 0 in the

comm_sub communicator. To determine the rank, use the MPI_Comm_rank function.

After that, if the rank is 0, you need to read the original data and send one data

element to each process of the same communicator using the MPI_Scatter

function. At the end, it remains to output the element received by each process.

Here is the final part of the solution:

MPI_Comm comm_sub;
int remain_dims[] = {0, 1};
MPI_Cart_sub(comm, remain_dims, &comm_sub);
MPI_Comm_size(comm_sub, &size);
MPI_Comm_rank(comm_sub, &rank);
int b, *a = new int[size];
if (rank == 0)
 for (int i = 0; i < size; i++)
 pt >> a[i];
MPI_Scatter(a, 1, MPI_INT, &b, 1, MPI_INT, 0, comm_sub);
pt << b;
delete[] a;

Having launched the new version of the program, we will receive a mes-

sage that the task has been solved. There is no need to remove the fragment that

82 M. E. Abramyan. Parallel Programming Based on MPI 2.0

provides debug output of process coordinates, since the output of debug data

does not affect the verification of the correctness of the solution.

Here is the final text of the solution (without debug output of coordinates):

void Solve()
{
 Task("MPI5Comm17");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm comm;
 int dims[] = {3, size / 3},
 periods[] = {0, 0};
 MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
 MPI_Comm comm_sub;
 int remain_dims[] = {0, 1};
 MPI_Cart_sub(comm, remain_dims, &comm_sub);
 MPI_Comm_size(comm_sub, &size);
 MPI_Comm_rank(comm_sub, &rank);
 int b, *a = new int[size];
 if (rank == 0)
 for (int i = 0; i < size; i++)
 pt >> a[i];
 MPI_Scatter(a, 1, MPI_INT, &b, 1, MPI_INT, 0, comm_sub);
 pt << b;
 delete[] a;
}

Note. A common error associated with the use of the MPI_Cart_sub function

is the incorrect specification of its second parameter, the remain_dims flag ar-

ray. If, for example, we swap the elements with values 0 and 1 in the re-

main_dims array in the given program, then when the program is run, the

taskbook window will display error messages similar to those shown in

Fig. 22.

Let us analyze these messages. Due to an incorrect flag array specification,

the MPI_Cart_sub function split the original matrix into columns instead of

rows; as a result, 4 new communicators are created, each of which contains

3 processes included in the same column of the matrix. In this case, the

process that is the first in the column is considered to be a process of rank 0

for the corresponding communicator. Therefore, the condition in the last if

statement of our program will be true for processes 0, 1, 2, and 3, and it is

for them that the input operators of the given data will be executed.

Part 1. MPI: description and examples of use 83

Fig. 22. Taskbook window when the MPI5Comm17 task is executed incorrectly

However, in processes 1, 2, and 3, the initial data are not provided, there-

fore, when executing the program, the error message "An attempt to input

superfluous data" is displayed for these processes. On the other hand,

processes 4 and 8 (which are the initial processes in the second and third

rows of the matrix) have a non-zero rank in the new communicators, and

therefore no data input is performed for them, which is noted in the error

message for these processes: "Some required data are not input. The pro-

gram has input 0 data item(s) (of 4)". Note also that process 0 sent its ini-

tial data not to the processes in the first row of the matrix (as required by

the task), but to the processes in the first column. Since processes 1, 2,

and 3 did not have any initial data, zeros were sent to the other processes in

84 M. E. Abramyan. Parallel Programming Based on MPI 2.0

the corresponding columns. Note that the received zeros were not output in

processes 1, 2, and 3, since the taskbook had previously detected an input

error in each of these processes and therefore blocked all subsequent input-

output operations for these processes.

Thus, the information provided in the taskbook window is sufficient to

identify the cause of the error and make the necessary corrections to the

program.

Having completed the discussion of the MPI5Comm17 task, we now de-

scribe those functions associated with the Cartesian topology that were not re-

quired in its solution.

When defining a Cartesian topology using the MPI_Cart_create function, two

main characteristics must be specified: the Cartesian topology size (the number

of dimensions, ndims) and the number of nodes (i. e. processes) in each dimen-

sion, an array of integers dims of size ndims. The MPI library provides an auxiliary

function MPI_Dims_create(int nnode, int ndims, int *dims), which allows us to determine

the optimal number of nodes in each dimension of the Cartesian grid if the total

number of nodes nnodes and the number of dimensions ndims are known. The

found number of nodes is returned in the dims array.

The elements of the dims array that need to find must have zero initial val-

ues; the initial positive values of the elements of the dims array are considered

fixed and do not change. The values of the elements of the dims array determined

by the function are always sorted in non-ascending order and are chosen as

close to each other as possible (for example, from the options {6, 1} and {3, 2}, the

option {3, 2} will be chosen). In the case of negative initial values or the impossi-

bility of choosing at least one option of the required Cartesian grid, an error oc-

curs (recall that in this case, the function returns a value different from

MPI_SUCCESS).

Here are some examples (the initial values of the parameters are indicated

to the left of the ==> arrow, and the resulting contents of the dims array are indi-

cated to the right):

nnodes = 6, ndims = 2, dims = {0, 0} ==> dims = {3, 2}
nnodes = 7, ndims = 2, dims = {0, 0} ==> dims = {7, 1}
nnodes = 6, ndims = 3, dims = {0, 0, 0} ==> dims = {3, 2, 1}
nnodes = 6, ndims = 3, dims = {0, 3, 0} ==> dims = {2, 3, 1}
nnodes = 7, ndims = 3, dims = {0, 3, 0} ==> error

Functions MPI_Cartdim_get(MPI_Comm comm, int *ndims) and

MPI_Cart_get(MPI_Comm comm, int maxdims, int *dims, int *periods, int *coords) allow us to

obtain the characteristics of the Cartesian grid for an existing communicator

comm with Cartesian topology. The first of them returns the size of the Cartesian

grid in the ndims parameter. The second function contains three output parame-

ters:

Part 1. MPI: description and examples of use 85

dims – array with the number of processes along each dimension of the Car-

tesian grid;

periods – array of flags that define the periodicity of each dimension (a di-

mension is periodic if the corresponding flag is not equal to 0);

coords – array of Cartesian coordinates of the current process.

All these parameters are integer arrays of size maxdims.

We still have one more useful feature provided by the Cartesian topology

to describe: finding the ranks of the source and destination processes for the cur-

rent process when sending data along a specified coordinate (i. e., when per-

forming data shifting). This feature is provided by the MPI_Cart_shift function,

which has the following parameters:

MPI_Comm comm – communicator with Cartesian topology;

int direction – the index of the Cartesian coordinate along which the shift is

performed (indexing starts from 0);

int disp – shift step along the selected coordinate;

int *rank_source – rank of the source process (output parameter);

int *rank_dest – rank of the destination process (output parameter).

The returned data will correspond to a cyclic shift if the coordinate along

which the shift is performed is periodic (this means that when defining the

communicator comm, a non-zero element corresponding to this coordinate was

specified in the periods array). Due to the disp parameter, the shift can be per-

formed with any step, including negative (in the case of a negative step, the shift

is performed in the decreasing direction of the given coordinate).

If the shift is not cyclic, it is possible that the current process does not have

a source process and/or a destination process. For example, when shifting with a

step 1, processes with a shift coordinate 0 do not have a source, and when shift-

ing with a step –1, these processes do not have a destination. In such a situation,

the corresponding output parameter takes the value MPI_PROC_NULL.

1.2.9. Graph topology

Now let us consider another type of virtual topology, the graph topology. It

should be noted that the MPI library provides significantly fewer tools for work-

ing with graph topologies than for working with Cartesian topologies. Recall

that for processes included in a Cartesian topology, it is possible to determine

Cartesian coordinates by their ranks (and ranks by Cartesian coordinates); in ad-

dition, it is possible to create subgrids of smaller dimension (with each subgrid

automatically associated with a new communicator); there is also the

MPI_Cart_shift function, which simplifies message sending along a certain coordi-

nate of the Cartesian grid.

As for the graph topology, after its definition using the MPI_Graph_create

function, it is only possible to restore its characteristics (using functions

MPI_Graphdims_get and MPI_Graph_get), as well as obtain information about the

86 M. E. Abramyan. Parallel Programming Based on MPI 2.0

number and ranks of all neighboring processes of a certain process in the graph

defined by this topology (the MPI_Graph_neighbors_count and MPI_Graph_neighbors

functions are provided for this).

To get acquainted with the possibilities associated with graph topology, let

us solve the following task.

MPI5Comm29. The number of processes K is an even number: K = 2N

(1 < N < 6). An integer A is given in each process. Using the MPI_Graph_create

function, define a graph topology for all processes as follows: all even-rank

processes (including the master process) are linked in a chain 0 — 2 — 4 — 6

— … — (2N − 2); each process with odd rank R (1, 3, …, 2N − 1) is con-

nected by edge to the process with the rank R − 1. Thus, each odd-rank

process has a single neighbor, the first and the last even-rank processes have

two neighbors, and other even-rank processes (the "inner" ones) have three

neighbors (Fig. 23). Using the MPI_Sendrecv function, send the given integer A

from each process to all its neighbors. The amount and ranks of neighbors

should be determined by means of the MPI_Graph_neighbors_count and

MPI_Graph_neighbors functions respectively. Output received data in each

process in ascending order of ranks of sending processes.

Fig. 23. Example of graph topology from the MPI5Comm29 task

When you run the program template for this task, the taskbook window will

look like the one shown in Fig. 24. Simultaneously with the taskbook window, a

picture from the task formulation will be displayed in the upper right corner of

the screen, illustrating the topology used.

For greater clarity, let us show the processes together with their initial data

in the form of a graph of the structure described in the task formulation

(Fig. 25).

Since process 0 has two neighbors (processes of rank 1 and 2), it must send

them the number 39 and receive from them the numbers 76 and 20. Process 1

has only one neighbor (process 0), so it must send it the number 76 and receive

from it the number 39. Process 2, which has three neighbors, must send them the

number 20 and receive from them the numbers 39, 31, and 96, and so on.

Part 1. MPI: description and examples of use 87

Fig. 24. Acquaintance running of the MPI5Comm29 task

Process 0

39

Process 2

20

Process 4

96

Process 6

66

Process 8

74

Process 1

76

Process 3

31

Process 5

58

Process 7

71

Process 9

16

Fig. 25. Example of initial data for the MPI5Comm29 task

If each process had information about the number of its neighbors, as well

as their ranks (in ascending order), then this would allow for a programming of

data transfer actions for any process uniformly, regardless of how many neigh-

bors it has. The required information about neighbors can be easily obtained if

the appropriate graph topology is defined on the set of all processes by means of

the MPI_Graph_create function, which has the following parameters:

88 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Comm oldcomm – the original communicator for whose processes the

graph topology is defined;

int nnodes – the number of graph vertices;

int *index – integer array of vertex degrees, the i-th element of which is equal

to the total number of neighbors for the first i vertices of the graph;

int *edges – integer array of edges containing an ordered list of neighbors for

all vertices (vertices are numbered from 0);

int reorder – an integer flag that determines whether the MPI environment

can automatically reorder processes;

MPI_Comm *graphcomm – the resulting communicator with graph topology

(output parameter).

As for the Cartesian topology tasks (see Section 1.2.8), reordering of

processes should be disabled by setting the reorder flag to 0.

To better understand the meaning of the array parameters that define the

characteristics of the graph being created, let us list their elements for the graph

shown in Fig. 25. The first vertex of the graph (a process of rank 0) has two

neighbors, so the first element of the index array of vertex degrees will be equal

to 2. The second vertex of the graph (a process of rank 1) has one neighbor, so

the second element of the vertex degree array will be equal to 3 (1 is added to

the value of the previous element). The third vertex (a process of rank 2) has

three neighbors, so the third element of the vertex degree array will be equal to

6, and so on. We obtain the following set of values: 2, 3, 6, 7, 10, 11, 14, 15, 17, 18

(the last but one element of the array is 17, since a process of rank 8, like a

process of rank 0, has two neighbors). Note that the value of the last element of

the vertex degree array will always be twice the total number of edges in the

graph.

In the edges array, it is necessary to indicate the ranks of all neighbors for

each vertex (for greater clarity, we separate the groups of neighbors of each ver-

tex with additional spaces, and indicate the rank of the vertex whose neighbors

are listed below in brackets above):
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
1 2 0 0 3 4 2 2 5 6 4 4 7 8 6 6 9 8

The size of the resulting edge array is equal to the value of the last element

of the vertex degree array.

If the number of processes is size, then the vertex degree array must contain

size elements. The size of the edge array depends on the graph structure; in our

case, the edge array size is 2 (size – 1), where size is the number of processes.

When filling the index and edges arrays, it is convenient to separately

process the first two (ranks 0 and 1) and the last two (ranks size – 2 and size – 1)

graph vertices, and to use a loop for the rest vertices, processing two vertices

(rank 2 and 3, 4 and 5, …, size – 4 and size – 3) at each iteration. It is convenient

Part 1. MPI: description and examples of use 89

to use an auxiliary variable n equal to half the number of processes. Here is a

fragment of the program that fills the arrays index and edges:

int n = size / 2;
int *index = new int[size],
 *edges = new int[2 * (size - 1)];
index[0] = 2;
index[1] = 3;
edges[0] = 1;
edges[1] = 2;
edges[2] = 0;
int j = 3;
for (int i = 1; i <= n - 2; i++)
{
 index[2 * i] = index[2 * i - 1] + 3;
 edges[j] = 2 * i - 2;
 edges[j + 1] = 2 * i + 1;
 edges[j + 2] = 2 * i + 2;
 index[2 * i + 1] = index[2 * i] + 1;
 edges[j + 3] = 2 * i;
 j += 4;
}
index[2 * n - 2] = index[2 * n - 3] + 2;
index[2 * n - 1] = index[2 * n - 2] + 1;
edges[j] = 2 * n - 4;
edges[j + 1] = 2 * n - 1;
edges[j + 2] = 2 * n - 2;

To check the correctness of this part of the algorithm, we output the values

of the elements of the obtained arrays to the debug section of the taskbook win-

dow (since these arrays are formed in the same way in all processes, it is suffi-

cient to output their values only in the master process):

if (rank == 0)
{
 for (int i = 0; i < size; i++)
 Show(index[i]);
 ShowLine();
 for (int i = 0; i < j + 3; i++)
 Show(edges[i]);
}

If the number of processes is 10 when the program is launched, then in the

debug section we will see sets of values that match those that we obtained earlier

(Fig. 26). To reduce the size of the window, the section with the task formula-

tion is hidden in the figure.

90 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 26. Debug output of elements of the vertex degree array and the edge array

Once we have verified that the arrays are formed correctly, we create the

graph topology by calling the MPI_Graph_create function in each process of the

parallel application:

MPI_Comm g_comm;
MPI_Graph_create(MPI_COMM_WORLD, size, index, edges, 0, &g_comm);

Note that for obtaining characteristics of existing communicator comm with

graph topology, MPI provides two functions: MPI_Graphdims_get(MPI_Comm comm,

int *nnodes, int *nedges) and MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges,

int *index, int *edges). The first of them allows to obtain the number of vertices

nnodes and the number of edges nedges of the graph for the communicator comm,

and the second returns the vertex degree array index (the size of the array is spe-

cified in the variable maxindex) and the edge array edges (the size of this array is

specified in the variable maxedges). The functions MPI_Graphdims_get and

MPI_Graph_get play the same role for the graph topology as the functions

MPI_Cartdim_get and MPI_Cart_get for the Cartesian topology.

It remains to implement the final part of the algorithm related to data trans-

fer. In this part, for the current process (process of rank rank), the number count of

its neighbors and the array neighbors of their ranks in the current graph topology

should be determined, after which data exchange between the current process

and each of its neighbors should be performed.

To determine the number of neighbors count of a process of rank rank in-

cluded in a communicator comm with graph topology, the function

Part 1. MPI: description and examples of use 91

MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *count) is provided. Knowing

the number of neighbors, one can allocate memory of the required size for the

neighbors array of ranks of neighbors and determine these ranks using the func-

tion MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors, int *neighbors),

where the maxneighbors parameter specifies the size of the neighbors array. Note

that by means of these functions, any process can determine not only its

neighbors, but also the neighbors of any other process from this communicator.

To send data between a process and its neighbors, according to the task

formulation, the MPI_Sendrecv function should be used, which ensures both re-

ceiving a message from a certain process and sending another message to it or to

another process (see Section 1.2.1).

Thus, the final part of the solution will take the following form:

int count;
MPI_Graph_neighbors_count(g_comm, rank, &count);
int *neighbors = new int[count];
MPI_Graph_neighbors(g_comm, rank, count, neighbors);
int a, b;
MPI_Status s;
pt >> a;
for (int i = 0; i < count; i++)
{
 MPI_Sendrecv(&a, 1, MPI_INT, neighbors[i], 0,
 &b, 1, MPI_INT, neighbors[i], 0, g_comm, &s);
 pt << b;
}
delete[] index;
delete[] edges;
delete[] neighbors;

After running the program, we will receive a message that the task has been

solved.

1.3. Additional features of the MPI interface (MPI-2 standard)

1.3.1. Distributed graph topology

The MPI-2 standard includes a new type of virtual topology, the distributed

graph topology. The tasks included in the third subgroup of the MPI5Comm

group are devoted to it (see Section 2.5.3).

Distributed graphs have the following main differences compared to "regu-

lar" graphs (discussed in Section 1.2.9):

 while to define the topology of a regular graph it is necessary to com-

pletely describe its structure in all processes of the defined communica-

tor, a distributed graph can be defined "in parts", specifying in each

process only those components of the structure of the distributed graph

92 M. E. Abramyan. Parallel Programming Based on MPI 2.0

that are "known" to this process (it is for this reason that the new type of

graph is called a distributed graph);

 the edges of a distributed graph, unlike the edges of a regular graph, are

oriented; each edge connects a source process and a destination process;

it can be considered that each edge of a distributed graph is supplied

with an "arrow" that determines the preferential direction of data trans-

fer;

 each edge of the distributed graph can be supplied with an additional

numerical characteristic, weight, which can be taken into account in one

way or another by the MPI system when choosing optimal data transfer

routes. Weights are non-negative; in addition to its numerical values,

additional information in a parameter of the MPI_Info type can be asso-

ciated with weights.

To create a communicator with a distributed graph topology, the MPI-2

standard provides two functions: MPI_Dist_graph_create_adjacent and

MPI_Dist_graph_create. Both of these functions are collective; they must be called

for all processes that are members of the original communicator oldcomm.

When using the function MPI_Dist_graph_create_adjacent(MPI_Comm oldcomm, int

indegree, int *sources, int *sourceweights, int outdegree, int *destinations, int *destweights,

MPI_Info info, int reorder, MPI_Comm *distcomm), each process must determine only the

set of graph edges that are associated with it, i. e. those edges, for which the giv-

en process is either a source or a receiver. For the first set of edges, their number

indegree and an array sources containing the ranks of source processes are speci-

fied; the second set defines destination processes (receivers), namely, its size

outdegree and an array of its ranks destinations; in addition, for each of these sets,

the values of the edge weights are specified (the arrays sourceweights and dest-

weights, respectively). If it is not necessary to specify weights, then the constant

MPI_UNWEIGHTED must be specified as the sourceweights and destweights parame-

ters in all processes of the oldcomm communicator.

Of course, the information specified must be consistent between the source

and destination processes; in particular, both the source and receiver must speci-

fy the same weight for their common edge.

The info and reorder parameters are the same for both functions; they will be

described below, along with the other parameters of the MPI_Dist_graph_create

function.

MPI_Dist_graph_create function provides more flexible capabilities for defin-

ing the topology of a distributed graph (note that this is the function that is re-

quired to be used in the tasks devoted to the distributed graph topology, see Sec-

tion 2.5.3). Using the MPI_Dist_graph_create function, each process can define any

part of the distributed graph being created. Its parameters are as follows:

MPI_Comm oldcomm – the original communicator for whose processes the

distributed graph topology is defined;

Part 1. MPI: description and examples of use 93

int n – the number of source processes for which edges are defined in this

process;

int *sources – array of size n containing the ranks of the defined source

processes;

int *degrees – array of size n that specifies the number of destination

processes for each of the defined source processes;

int *destinations – array containing the ranks of all destination processes for

the defined source processes (its size is equal to the sum of all ele-

ments of the degrees array);

int *weights – array containing the weights of all defined edges (its size is al-

so equal to the sum of all elements of the degrees array), or the con-

stant MPI_UNWEIGHTED if weights do not need to be specified;

MPI_Info info – additional information related to the defined weights; if it is

not provided, then the constant MPI_INFO_NULL is specified as this pa-

rameter;

int reorder – an integer flag that determines whether the MPI environment

can automatically reorder processes;

MPI_Comm distcomm – the resulting communicator with distributed graph to-

pology (output parameter).

If the constant MPI_UNWEIGHTED is used, it must be specified when calling

the MPI_Dist_graph_create function in all processes of the oldcomm communicator.

When defining a distributed graph using the MPI_Dist_graph_create function,

various strategies can be used. We illustrate them using the example of a simple

distributed graph shown in Fig. 27 (assuming for simplicity that weights are not

specified).

Fig. 27. Example of a distributed graph

We can define for each process only those edges for which it is a source:

Process 0: n = 1, sources = {0}, degrees = {1}, destinations = {3}
Process 1: n = 1, sources = {1}, degrees = {1}, destinations = {0}
Process 2: n = 1, sources = {2}, degrees = {1}, destinations = {3}
Process 3: n = 1, sources = {3}, degrees = {2}, destinations = {1, 2}

Another way (which is required to be applied in the MPI5Comm group

tasks) is that the graph is completely defined in some single process:

Process 0: n = 4, sources = {0, 1, 2, 3}, degrees = {1, 1, 1, 2},
 destinations = {3, 0, 3, 1, 2}
Process 1: n = 0, sources = {}, degrees = {}, destinations = {}
Process 2: n = 0, sources = {}, degrees = {}, destinations = {}
Process 3: n = 0, sources = {}, degrees = {}, destinations = {}

0 1

2 3

94 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Any intermediate variants are also possible.

Here is a variant of defining the same distributed graph using the

MPI_Dist_graph_create_adjacent function:

Process 0: indegree = 1, sources = {1},
 outdegree = 1, destinations = {3}
Process 1: indegree = 1, sources = {3},
 outdegree = 1, destinations = {0}
Process 2: indegree = 1, sources = {3},
 outdegree = 1, destinations = {3}
Process 3: indegree = 2, sources = {0, 2},
 outdegree = 2, destinations = {1, 2}

For the distributed graph topology, as for the regular graph topology, there

are two functions that allow restoring its characteristics. However, unlike the

corresponding functions for the regular graph topology, which allow any process

to obtain complete information about the neighbors of any process, the functions

for the distributed graph topology return information about the neighbors of the

process in which they are called.

The function MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree, int

*outdegree, int *weighted) allows to determine the number of source and destination

processes (output parameters indegree and outdegree, respectively). In addition, the

output flag parameter weighted takes a non-zero value if the constant

MPI_UNWEIGHTED was not used when defining the distributed graph topology.

The function MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int

*sources, int *sourceweights, int maxoutdegree, int destinations, int *destweights) returns in-

formation about the ranks of source and destination processes (output arrays

sources and destinations of size maxindegree and maxoutdegree, respectively). In addi-

tion, if the MPI_Dist_graph_neighbors_count function returned a non-zero weighted

flag, then the weights of the edges associated with the source and destination

processes are returned in the sourceweights and destweights arrays.

1.3.2. Parallel input-output. File access functions

One of the important innovations of the MPI-2 standard is support for pa-

rallel file input-output.

In parallel programs, the initial data are usually read from files, and the re-

sults are written to files. Due to the lack of parallel file access facilities in

MPI -1, it was necessary to organize data reading in some selected (usually mas-

ter) process, and then send them to all other processes of the parallel application.

Similarly, to save the obtained results, it was necessary to first send these results

to some process and organize their writing to a file in this process. If in a paral-

lel application it was necessary to provide access to the same file for several

processes, then special synchronization actions had to be performed to correctly

organize such an access.

Part 1. MPI: description and examples of use 95

In the MPI-2 standard, it became possible to read or write file data in each

process of a parallel application without making any special efforts to synchron-

ize access to the file.

The file input-output mechanisms defined in the MPI-2 standard are ex-

tremely flexible. They include both local and collective file access functions,

with three positioning options provided for each type of access: either explicit,

by specifying the file position in a special function parameter, or implicit, using

the current value of an individual (own for each process) or shared (by all

processes) file pointer; both types of file pointers can be used for both local and

collective access functions. In addition, all the types of parallel file access de-

scribed above are implemented in two variants: blocking and non-blocking (the

differences between them are similar to the differences between blocking and

non-blocking data transfer operations, see Sections 1.2.1 and 1.2.3).

Thus, by combining the options described above, we can obtain 2 2 3 2 =

24 variants of parallel file access:

 reading or writing (2 options); the name of the reading functions uses

the word read, the name of the writing functions uses the word write;

 local or collective access (2 options); the word all is added to the name

of collective access functions (except for functions that use shared file

pointers, for which the word shared is used in the case of local access,

and the word ordered is used in the case of collective access);

 explicit positioning or individual file pointer or shared file pointer

(3 options); the word at is added to the name of functions for explicit

positioning, the word shared or ordered is added to the name of functions

using a shared pointer;

 blocking or non-blocking access (2 options); for local functions, in case

of non-blocking access, the prefix i is added to the words read and write

(iread and iwrite); collective non-blocking functions are paired, the name

of the first of them ends with the word begin, and the name of the second

ends with the word end.

Each file access variant has its own MPI function (or pair of functions for

collective non-blocking access options), so the total number of functions is 30.

The name of a function can easily determine the associated file access va-

riant. For example, MPI_File_read_at_all provides a blocking read option (read)

based on explicit positioning (at) and is collective (all), while MPI_iwrite_shared

provides a non-blocking write option (iwrite), uses a shared file pointer, and is

local (both of which are specified by the word shared). The simplest file read and

write functions are named MPI_File_read and MPI_File_write; these functions are

blocking, local, and use individual file pointers.

Table 1 lists the names of all functions related to file access. The functions

are grouped into the categories described above: Positioning (explicit position-

96 M. E. Abramyan. Parallel Programming Based on MPI 2.0

ing, local file pointer, or shared file pointer), Access (blocking or non-blocking),

Coordination (local or collective functions).

Table 1

MPI file access functions

Positioning Access
Coordination (input and output)

Local Collective

Explicit Blocking MPI_File_read_at
MPI_File_write_at

MPI_File_read_at_all
MPI_File_write_at_all

Non-

blocking

MPI_File_iread_at
MPI_File_iwrite_at

MPI_File_read_at_all_begin
MPI_File_read_at_all_end
MPI_File_write_at_all_begin
MPI_File_write_at_all_end

Individual

file pointer

Blocking MPI_File_read
MPI_File_write

MPI_File_read_all
MPI_File_write_all

Non-

blocking

MPI_File_iread
MPI_File_iwrite

MPI_File_read_all_begin
MPI_File_read_all_end
MPI_File_write_all_begin
MPI_File_write_all_end

Shared

file pointer

Blocking MPI_File_read_shared
MPI_File_write_shared

MPI_File_read_ordered
MPI_File_write_ordered

Non-

blocking

MPI_File_iread_shared
MPI_File_iwrite_shared

MPI_File_read_ordered_begin
MPI_File_read_ordered_end
MPI_File_write_ordered_begin
MPI_File_write_ordered_end

Let us describe the blocking functions in more detail, since they are the

ones that need to be used in learning tasks.

Blocking functions with explicit positioning (MPI_File_read_at,

MPI_File_write_at, MPI_File_read_at_all, MPI_File_write_at_all) have the following pa-

rameters:

MPI_File f – file variable (file descriptor);

MPI_Offset offset – file position from which data reading/writing begins;

void *buf – buffer for storing read (for read functions) or written data (for

write functions); for read functions, it is an output parameter;

int count – the size of the buffer buf (in elements of type datatype);

MPI_Datatype datatype – type of elements of the buffer buf;

MPI_Status *status – additional information about the completed read/write

operation (output parameter).

A file descriptor f of type MPI_File is defined when opening a file, which is

performed by the function MPI_File_open. This function is collective and must be

called for all processes of some communicator; as a result, all processes of this

communicator gain access to the file. A detailed description of the function

MPI_File_open is given in Section 1.3.3.

Part 1. MPI: description and examples of use 97

The MPI_Offset type is similar to the previously discussed MPI_Aint type (see

Section 1.2.6); it is intended to store offsets between different file positions and

is implemented as a signed integer type, the size of which is sufficient to store

any possible offset in the disk address space.

Using the output parameter status, you can determine the number of ele-

ments actually read/written (for this, as usual, you need to use the MPI_Get_count

function, see Section 1.2.1), and also get the error code (using the field

MPI_ERROR). Other fields of the MPI_Status structure are not used in file access

functions.

Calling functions with explicit positioning does not affect the current posi-

tion of the individual and shared file pointer.

All other blocking functions (MPI_File_read, MPI_File_write, MPI_File_read_all,

MPI_File_write_all, MPI_File_read_shared, MPI_File_write_shared, MPI_File_read_ordered,

MPI_File_write_ordered) have the same set of parameters, differing only absence the

offset parameter: when using these functions, the starting position for read-

ing/writing file data is determined by the position of the individual or shared file

pointer.

The position of the file pointer used in the function is automatically

changed during read/write operations. In addition, this position can be set expli-

citly using the functions MPI_File_seek (for the individual file pointer) and

MPI_File_seek_shared (for the shared file pointer). These functions have the same

set of parameters:

MPI_File f – file variable;

MPI_Offset offset – the required offset of the file pointer (can be either posi-

tive or negative);

int whence – the offset mode to use.

Three constants are provided to specify the whence offset mode:

MPI_SEEK_SET – the offset is counted from the starting file position;

MPI_SEEK_CUR – the offset is counted from the current position of the file

pointer;

MPI_SEEK_END – the offset is counted from the end-of-file marker.

In the MPI_SEEK_SET mode, only positive values of the offset parameter are

allowed; in the MPI_SEEK_END mode, only negative values are allowed.

To determine the current position of the individual and shared file pointer,

the functions MPI_File_get_position and MPI_File_get_position_shared are provided,

which have the same set of parameters:

MPI_File f – file variable;

MPI_Offset *offset – current position of the file pointer (output parameter).

It is necessary to take into account that when using local functions asso-

ciated with a shared file pointer (MPI_File_read_shared and MPI_File_write_shared),

no additional synchronization is performed, i. e. the order of reading data will

98 M. E. Abramyan. Parallel Programming Based on MPI 2.0

depend on the moment of time at which the functions were called in different

processes.

Collective functions associated with a shared file pointer

(MPI_File_read_ordered and MPI_File_write_ordered) provide the synchronization.

When they are called (the function call, as for any collective functions, must be

performed in all processes of the communicator for which the file was opened),

the actions to read/write data using the shared file pointer are performed sequen-

tially, in ascending order of the ranks of the processes in this communicator.

For all the functions discussed above, the offset position is specified in the

elements of the elementary type etype and is calculated taking into account the

initial offset disp, specified when defining the file datatype (see the description of

the MPI_File_set_view function in Section 1.3.3).

To convert the offset position (in elements of elementary type) to the disp

offset in bytes measured from the beginning of the file, the helper function

MPI_File_get_byte_offset(MPI_File f, MPI_Offset offset, MPI_Offset *disp) is provided.

The function MPI_File_get_size(MPI_File f, MPI_Offset *size) returns the size of

the file f in the size parameter (in bytes). Its "pair" is the function

MPI_File_set_size(MPI_File f, MPI_Offset size), which allows changing the size of the

file f by setting it equal to size bytes. It is allowed to both decrease the file size

(in this case, its final part is deleted) and increase it (in this case, the content up

to the added final part is undefined). The MPI_File_set_size function is collective

and must be called (with the same value of the size parameter) by all processes of

the communicator in which the file was opened.

In addition to various options for organizing reading and writing, MPI-2

provides a flexible way to configure the type of file data (file view): from the

simplest, in which the file is interpreted as a set of sequentially located bytes, to

very complex ones, in which the file view can include not necessarily conti-

guous groups of elements (empty spaces are allowed at the beginning, at the

end, and between some elements). In addition, each process can define its own

file data view. These possibilities are discussed in detail in the next section.

By executing the tasks of the MPI6File group (see Section 2.6), you can

become familiar with most of the features of parallel file input-output. The first

subgroup of this group (MPI6File1–MPI6File8) studies local file operations, the

second subgroup (MPI6File9–MPI6File16) studies collective file operations, and

the final subgroup (MPI6File17–MPI6File30) is devoted to various methods of

defining complex types of file data. The tasks of each of the first two subgroups

use all three positioning options (based on explicit indication of the position or

on the use of individual or shared file pointers); the third group uses collective

file operations, which mainly use individual file pointers. Only additional fea-

tures related to rather rarely used non-blocking file access remain outside the

MPI6File group.

Part 1. MPI: description and examples of use 99

1.3.3. Parallel input-output: an example. Setting up the file view

As an example of a task related to parallel file input-output, we consider

the MPI6File26 task, which is part of the third subgroup of the MPI6File group

(see Section 2.6.3).

MPI6File26. The name of file is given in the master process. In addition,

four real numbers, namely, A, B, C, D, are given in each process. The number

of processes is equal to K. Create a new file of real numbers with the given

name and write the given real numbers to this file as follows: A0, A1, …, AK–1,

BK–1, …, B1, B0, C0, C1, …, CK–1, DK–1, …, D0 (an index indicates the process

rank). To do this, use one call of the MPI_File_write_all collective function and a

new file view with the MPI_DOUBLE elementary datatype, the appropriate dis-

placement (the displacement will be different for different processes), and a

new filetype that consists of two real numbers (with an additional empty

space between these numbers) and a terminal empty space of the appropriate

size.

In this task, we will learn about the steps required to open a file in parallel

mode, to use one of the most common collective file operations, MPI_File_write_all,

and to define complex file datatypes. When you run this task for the first time,

the taskbook window will look like the one shown in Fig. 28.

Tasks related to parallel file input-output have a number of special features.

First, these tasks are the first to include string input data containing a file name.

This name is always given in the master process; the easiest way to send it to

other processes of the parallel application is to use the collective function

MPI_Bcast. The preamble to the MPI6File group states that it is sufficient to use

the char[12] array to store the file name. When sending this array, the MPI_CHAR

type should be used. Note that to input a string s (of the char* or char[] type) into

the taskbook, it is sufficient to use a single call to the pt input stream: pt >> s.

The second feature of the task is the inclusion of file data. In some tasks,

file data is specified in the input data section (if the task requires processing an

existing file), in others, file data is specified in the results section (if a new file is

required to be created or an existing file must be transformed). File data is dis-

played in the taskbook window on several lines, with the current file element

number indicated at the beginning of each line (elements are numbered from 1).

All tasks use typed binary files consisting of either integers or real numbers.

Note that the contents of such files cannot be viewed in text editors, so the abili-

ty to display them in the taskbook window is especially useful. The method for

splitting file elements into lines in the taskbook window depends on the features

of the task. In our case, we need to write to the file the first elements given in

each process, then the second elements (in reverse order), then the third ele-

ments, and finally the fourth elements (also in reverse order). Therefore, it is

most convenient to represent the contents of the file as four lines, each of which

contains elements of all processes that have the same order number.

100 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 28. Acquaintance running of the MPI6File26 task

You should also pay attention to the special type of output indicator in the

indicators section (located above the task formulation section). This indicator is

displayed in gray and does not contain any accompanying text. This means that

the results obtained during the task solving do not need to be sent to the task-

book (using the pt output stream); you only need to write the required data to a

file with the specified name, after which the taskbook itself will check the cor-

rectness of the created file.

Let us start to solve the task. At the first stage, we will organize the input of

the given data and the transfer of the file name to all processes:

char name[12];
if (rank == 0)
 pt >> name;
MPI_Bcast(name, 12, MPI_CHAR, 0, MPI_COMM_WORLD);
double a[4];
for (int i = 0; i < 4; i++)
 pt >> a[i];

Part 1. MPI: description and examples of use 101

After launching a new version of the program, a message will be displayed

in the taskbook window stating that all the data are input, but the resulting file is

not created (Fig. 29).

Fig. 29. The first stage of solving the MPI6File26 task (input of given data)

In the next stage, we will perform actions related to opening and closing a

file:

MPI_File f;
MPI_File_open(MPI_COMM_WORLD, name,
 MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &f);
// Access to the contents of file f
MPI_File_close(&f);

First, a file variable f of type MPI_File is declared, which will be used in all

functions related to file operations. Then, the function MPI_File_open(MPI_Comm

comm, char *filename, int amode, MPI_Info info, MPI_File *f) is called. This function is

collective and must be called in all processes of the communicator comm speci-

fied as its first parameter. The file name filename is specified in the second para-

meter, and the access mode amode is specified in the third parameter; both of

these parameters must have the same values in all processes. To combine the op-

tions of the access mode, they must be combined with the " | " operator. For ex-

102 M. E. Abramyan. Parallel Programming Based on MPI 2.0

ample, in our case, it is necessary to create a file (MPI_MODE_CREATE), and then

open it for writing only (MPI_MODE_WRONLY). Here are some more of the availa-

ble options of the access mode:

MPI_MODE_RDONLY – open for reading only;

MPI_MODE_RDWR – open for reading and writing;

MPI_MODE_APPEND – automatically move all file pointers (both individual

and shared) to the end of the file when it is opened;

MPI_MODE_DELETE_ON_CLOSE – automatically delete a file when it is

closed.

The info parameter of the MPI_Info type allows you to specify additional file

characteristics; if this is not necessary (as is usually the case), then the constant

MPI_INFO_NULL is specified.

The last parameter of the MPI_File_open function is a file variable f asso-

ciated with the open file. This parameter is an output parameter, so it must be

passed using a pointer.

After finishing working with the file, it must be closed with the function

MPI_File_close(MPI_File *f), which, like the MPI_File_open function, is collective and

must be called in all processes in which the file was opened. The file variable f is

passed to this function as a pointer; as a result of executing the MPI_File_close

function, the value of the file variable f becomes equal to MPI_FILE_NULL.

When you run a new version of the program, the message on the informa-

tion panel will change slightly: "Correct data input: all required data are input,

resulting file is empty". This message indicates that the file was created.

Note that after the program is completed, the taskbook automatically de-

letes all files created during its working. You can verify that the required file

was actually created by viewing the contents of the working directory before

closing the taskbook window.

To simplify the actions of filling the file with the required data as much as

possible, it is necessary to define the file data view. For this purpose, the

MPI_File_set_view function is provided with a large number of parameters:
(MPI_File f, MPI_Offset disp, MPI_Datatype etype, MPI_Datatype filetype, char *datarep,

MPI_Info info).

The first parameter f specifies a file variable associated with the open file.

The next three parameters define the basic characteristics of the file datatype:

disp – the starting offset (in bytes) that will be performed in this process be-

fore reading the first file element;

etype – the elementary datatype on the basis of which the filetype is defined

(in all processes using this file, the same elementary datatype must be

specified);

filetype – a filetype used when directly reading or writing file data; it is a set

of elements of the elementary type, as well as empty spaces (the size

of which must also be a multiple of the size of the elementary type).

Part 1. MPI: description and examples of use 103

Positioning in a file is always performed in elements of the elementary

type, and empty spaces included in the filetype are not taken into account. Note

that by default (if the MPI_File_set_view function is not called), the initial offset

disp is assumed to be 0, and the etype and filetype types are assumed to be

MPI_BYTE.

The datarep parameter determines how file data should be interpreted. In the

simplest case, when all processes are running on the same computer (or on dif-

ferent computers with the same architecture), the "native" option can be used, in

which the file representation exactly matches the representation of the same data

in RAM. In more complex situations (in particular, when the program is running

on heterogeneous hardware), other data representation options are used, in

which the data stored in memory undergoes additional transformation before be-

ing written to the file (and a similar transformation is performed when reading

data from the file into memory). In our case, it is sufficient to use the "native" op-

tion.

Finally, the info parameter allows you to specify additional information re-

lated to the file view being defined. Typically, this parameter is set to

MPI_INFO_NULL.

Let us define the type of file data that will be most convenient for solving

our task. If we denote by [R] the file elements (of type MPI_DOUBLE) that need to

be written in the process R (R = 0, 1, …, K–1), then the distribution of these

elements in the file will be as follows:

[0][1][2]...[K–1][K–1]...[2][1][0][0][1][2]...[K–1][K–1]…[2][1][0]

Thus, the file will contain two fragments of the same structure (the first

fragment is highlighted in bold). We only need to define a filetype that allows us

to correctly read the data from the first fragment (the second fragment that

match the structure of the first fragment will also be read correctly).

It is natural to select the MPI_DOUBLE type as the elementary type. The file-

type will include two real numbers with an empty space between them. The size

of the space depends on the rank of the process: for process 0 this size is the

largest and equal to the size of 2*K–2 real numbers, for process K–1 there is no

space between the elements.

Thus, if for a process of rank R we set the initial offset disp to be equal to

R*d, where d is equal to the size of the MPI_DOUBLE type in bytes, then the file-

types for different processes can be represented as follows (an element of the

MPI_DOUBLE type is denoted by [*], and the size of the empty interval in ele-

ments of the MPI_DOUBLE type is indicated in parentheses):

process 0: [*](2*K–2)[*]

process 1: [*](2*K–4)[*](2)

process 2: [*](2*K–6)[*](4)

…

process K–1: [*][*](2*K–2)

104 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Note that the filetype extent is the same for all processes and equals 2*K (in

elements of type MPI_DOUBLE); the total size of empty spaces is also the same, it

is equal to 2*K–2 (also in elements of type MPI_DOUBLE).

When defining data types containing initial or final empty spaces, we will

use the new convenient and flexible approach introduced in the MPI-2 standard

(another approach, based on the use of the capabilities of the MPI -1 standard, is

described in Section 1.2.6).

Recall that in our program the number of processes K is stored in the varia-

ble size, and the rank of the process R is stored in the variable rank. We find the

size of the MPI_DOUBLE type using the MPI_Type_size function and save it in the

variable dbl_sz.

First, we define an auxiliary type t0 containing two real numbers with the

required space between them, and then we supplement this type with a final

empty space using the MPI_Type_create_resized function (see Section 1.2.6), obtain-

ing the final type t:

int dbl_sz;
MPI_Type_size(MPI_DOUBLE, &dbl_sz);
MPI_Datatype t0, t;
MPI_Type_vector(2, 1, 2 * (size - rank) - 1, MPI_DOUBLE, &t0);
MPI_Type_create_resized(t0, 0, 2 * size * dbl_sz, &t);

Once we have defined the type t, we can use it in the MPI_File_set_view func-

tion:

MPI_File_set_view(f, rank * dbl_sz, MPI_DOUBLE, t, "native",
 MPI_INFO_NULL);

Now, to write the required data to the file, we only need to perform a single

call to the collective function MPI_File_write_all, passing to it an array a of 4 given

real numbers:

MPI_File_write_all(f, a, 4, MPI_DOUBLE, MPI_STATUS_IGNORE);

The actions for setting the file view and writing data to the file must be per-

formed between the file opening and closing operations (this position of our

program was marked with the comment "Access to the contents of file f").

Here is the full text of the resulting solution:

void Solve()
{
 Task("MPI6File26");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 char name[12];

Part 1. MPI: description and examples of use 105

 if (rank == 0)
 pt >> name;
 MPI_Bcast(name, 12, MPI_CHAR, 0, MPI_COMM_WORLD);
 double a[4];
 for (int i = 0; i < 4; i++)
 pt >> a[i];
 MPI_File f;
 MPI_File_open(MPI_COMM_WORLD, name,
 MPI_MODE_WRONLY | MPI_MODE_CREATE, MPI_INFO_NULL, &f);
 int dbl_sz;
 MPI_Type_size(MPI_DOUBLE, &dbl_sz);
 MPI_Datatype t0, t;
 MPI_Type_vector(2, 1, 2 * (size - rank) - 1, MPI_DOUBLE, &t0);
 MPI_Type_create_resized(t0, 0, 2 * size * dbl_sz, &t);
 MPI_File_set_view(f, rank * dbl_sz, MPI_DOUBLE, t, "native",
 MPI_INFO_NULL);
 MPI_File_write_all(f, a, 4, MPI_DOUBLE, MPI_STATUS_IGNORE);
 MPI_File_close (&f);
}

After running the program, we will receive a message that the task has been

solved.

1.3.4. One-sided communications: general description

One-sided communications, introduced in the MPI-2 standard, allow data

transfer between processes to be organized without performing special actions

on the side of both participants in the interaction. Recall that in the traditional

scheme of interaction between two processes, it is necessary to call one of the

sending functions (MPI_Send or its variants, both blocking and non-blocking) on

the side of the source process (sender), as well as one of the receiving functions

(MPI_Recv or its non-blocking variant) on the side of the destination process (re-

ceiver). However, a situation is possible when the source process "does not

know" what part of its data will be needed by other processes, or, conversely,

the destination process "does not know" what data will be sent to it by other

processes. In the latter case, however, it is possible to use the MPI_ANY_SOURCE

and MPI_ANY_TAG parameters, which allow receiving data from arbitrary sources,

as well as determining the nature of the received data based on the msgtag tag.

But such a possibility usually requires preliminary analysis of the received mes-

sage (by calling the MPI_Probe function or its non-blocking version) and thus

complicates the algorithm on the side of the destination process. If the source

process "does not know" who may need its data, then the use of the traditional

MPI "send–receive" mechanism becomes impossible.

Meanwhile, in multithreaded programming, it is precisely one-sided inte-

ractions that are the standard way of exchanging information: a thread can write

data to some area of shared memory, after which any other thread will be able to

106 M. E. Abramyan. Parallel Programming Based on MPI 2.0

access this memory and obtain the required part of the data. To implement this

type of interaction in MPI, it is necessary that the processes of a parallel MPI

application have the ability to define "shared areas" of their memory, which oth-

er processes of the same application could directly access. For this reason, the

mechanism of one-sided communications in MPI is also called remote memory

access (RMA).

A section of memory of some process that can be accessed by any process

of a parallel application is called a window.

To create a window, there is a collective function MPI_Win_create(void *base,

MPI_Aint size, int disp_unit, MPI_Info info, MPI_Comm comm, MPI_Win *win), which must

be called for all processes of the communicator comm. One call to this function

allows creating shared memory areas (i. e. windows) in all processes included in

the specified communicator; all these areas will be associated with the same

window handle win of type MPI_Win, which is returned in the last parameter of the

function. Using this handle, any process can access the window of any other

process.

The starting address base of the window for the current process and its size

(in bytes) are specified as the first two parameters of the MPI_Win_create function.

Windows defined in different processes may have different sizes; if it is not ne-

cessary to create a window for some processes, then when calling the

MPI_Win_create function in these processes, it is sufficient to set the size parameter

to zero.

The third parameter of the MPI_Win_create function, named disp_unit, is in-

tended to simplify the address arithmetic used when calling the window access

functions (described below): the offset (in bytes) from the beginning of the win-

dow specified in the access functions is automatically multiplied by the disp_unit

value. If the window is intended to store elements of some array, then it is con-

venient to specify the size of the array element as the disp_unit parameter. This

will allow us to specify the element index in the access functions when access-

ing a particular array element. If we set the disp_unit parameter to 1, then the off-

set in the access functions must be specified in bytes.

The fourth parameter info allows additional information to be associated

with the window being created; it is usually not used and in this case is equal to

the constant MPI_INFO_NULL.

After finishing working with the access window, it must be destroyed by

calling the function MPI_Win_free(MPI_Win *win); the handle of the destroyed win-

dow receives the value MPI_WIN_NULL, meaning that no operations can be per-

formed with this window.

To access a window, the MPI library provides three functions: MPI_Get

(read access), MPI_Put (write access), and MPI_Accumulate (modify access). The

process that calls these functions is called the origin process; the process con-

taining the window being accessed is called the target process. It is the origin

Part 1. MPI: description and examples of use 107

process that provides one-sided communication, while the target process plays a

passive role, not performing any special actions. Both the origin and target

processes can act as either a source or a receiver of data. If the MPI_Get function

is used, then the origin process is the receiver of data, and the target process is

the source; if the MPI_Put or MPI_Accumulate function is used, then the origin

process is the source, and the target process is the receiver of data.

Most of the parameters of all access functions (MPI_Get, MPI_Put,

MPI_Accumulate) are the same. The first three parameters define the data "on the

side" of the origin process: these are void *origin_addr, int origin_count, MPI_Datatype

origin_datatype. The first parameter specifies the address of the beginning of the

data buffer, the second specifies the number of elements in the buffer, and the

third specifies the type of elements in the buffer. The next four parameters de-

fine the data "on the side" of the target process: int target_rank, MPI_Aint target_disp,

int target_count, MPI_Datatype target_datatype. The first parameter specifies the rank

of the target process, the second is the offset from the start of the window in this

target process (in disp_unit units specified when defining the window, see the de-

scription of the MPI_Win_create function above), the third and fourth determine

the number and type of window elements to be accessed (note that the number is

measured in elements of the specified type and is not related to disp_unit units).

If the types of elements in the buffer of the origin process (origin_datatype)

and in the window of the target process (target_datatype) match, as is most often

the case, then the specified sizes (origin_count and target_count) must also match.

The last parameter in all access functions specifies the window descriptor

win of the MPI_Win type.

The MPI_Accumulate function has the same parameters and one additional pa-

rameter op of type MPI_Op, specified before the win parameter. The op parameter

specifies the operation used to change the contents of the window: the operation

is applied to the buffer element in the origin process and to the corresponding

window element in the target process, and the result of the operation is written

to the same window element.

Any standard reduction operation defined in the MPI library (see Sec-

tion 1.2.5) can be used as the operation op. User-defined operations cannot be

used.

The MPI_Accumulate function is implemented in such a way that it can be

safely used in the situation when some window section of the target process is

modified by several origin processes. Note that the MPI_Put function does not

have this property: if two origin processes try to write their data to the same

window section of the target process during one access period, then only the da-

ta of one of the origin processes will be stored in this window, and it is impossi-

ble to say in advance which one).

When calling the MPI_Get function, the contents of the buffer in the origin

process are changed; when calling the MPI_Put and MPI_Accumulate functions, the

108 M. E. Abramyan. Parallel Programming Based on MPI 2.0

contents of the specified section of the window in the target process are

changed.

An important aspect of the one-sided communication mechanism is the

synchronization of access to the window. Since, unlike the standard two-sided

"send–receive" exchange scheme, the target process does not perform special

actions in one-sided exchanges, it is necessary to take additional efforts to coor-

dinate access to the data stored in the window. In particular, if the target process

plays the role of a data receiver (in this case, it is called an active target

process), then it must know when it can access the window to read the received

data, and if the data receiver is the origin process, then it must know when it can

access the data received from the target process. In both cases, synchronization

is required. The only exception, in which synchronization is not required on the

side of the target process, is the variant of one-sided interaction with the so-

called passive target process, in which the target process does not access its

window at all. The window of the passive target process is used as a data store

to which other processes of the parallel application access (this type of one-sided

communication is closest to the shared memory model used in multithreaded

programming).

Synchronization functions allow you to set so-called access epochs on the

side of origin processes and exposure epochs on the side of active target

processes. All results of one-sided interactions performed during the access

epoch (and associated exposure epoch) will be available to the process only

when this epoch ends. In other words, until the current access epoch has ended,

the origin process should not access data obtained using MPI_Get functions, and

until the exposure epoch has ended, the active target process should not access

its window to read data passed to this window using MPI_Put or MPI_Accumulate

functions.

The simplest synchronization option is provided by the function

MPI_Win_fence(int assert, MPI_Win win). This is a collective function that must be

called in all processes in which the window win is defined.

In addition to the win parameter, which defines the window for which the

access epoch is set, this function includes the assert parameter, which may con-

tain a set of constants specifying properties of the access epoch being defined

(for example, the MPI_MODE_NOPUT constant means that no actions related to

changing the window contents by the MPI_Put or MPI_Accumulate functions will be

performed during this access epoch). Such constants allow the MPI environment

to optimize actions performed during one-sided communications. If properties of

the access epoch does not need to be specified, then the number 0 is specified as

the assert parameter. Note that the assert parameter is also included in other syn-

chronization functions (described below).

The first call to MPI_Win_fence begins the first access epoch (and associated

exposure epoch) for the window. Each subsequent call to this function ends the

Part 1. MPI: description and examples of use 109

previous access epoch (and associated exposure epoch) and simultaneously be-

gins a new access epoch (and associated new exposure epoch). Thus, when us-

ing this synchronization function, at least two calls to this function must be made

in each process with a window. This type of synchronization is used when the

same processes act as both origin processes and active target processes during an

access epoch. Its limitation is that it is global: a single synchronization is estab-

lished for all processes for which the window is defined.

Note 1. If the MPI_Win_fence function is called only to terminate the last

access epoch, then this fact can be noted by specifying the special value

MPI_MODE_NOSUCCEED as the assert parameter:

MPI_Win_fence(MPI_MODE_NOSUCCEED, w);

Another option for synchronization allows it to be done locally, defining an

access epoch (and an associated exposure epoch) for only some of the processes

in which the window is defined. This flexibility comes at the cost of a more

complex way of configuring access epochs, in which special functions are pro-

vided for the beginning and end of both the access epoch and the exposure

epoch:

 the function MPI_Win_start(MPI_Group group, int assert, MPI_Win win) function

starts the access epoch for all processes in which it is called, and it spe-

cifies the group of processes group that can act as active target processes

for this epoch;

 the function MPI_Win_complete(MPI_Win win) ends the access epoch started

by the MPI_Win_start function;

 the function MPI_Win_post(MPI_Group group, int assert, MPI_Win win) begins an

exposure epoch for all processes in which it is called, and it specifies the

group of processes group that can act as origin processes for this epoch;

 the function MPI_Win_wait(MPI_Win win) ends the exposure epoch started by

the MPI_Win_post function.

Exit from the MPI_Win_wait function means that all origin processes have

completed the access epoch by calling the MPI_Win_complete function.

Note 2. There is also a non-blocking version of the MPI_Win_wait function,

MPI_Win_test, which has an additional output parameter flag. The

MPI_Win_test(MPI_Win win, int *flag) function returns a non-zero flag value if all

origin processes have completed the access epoch, which in turn means that

the exposure epoch has ended. The MPI_Win_test function should be called

again within a current exposure epoch only if its previous call returned a

zero flag value. In the tasks included in the PT for MPI-2 taskbook, the

MPI_Win_test function is not used.

Both considered synchronization options assume that the target processes

are active. For the one-sided communications, in which the target processes are

passive, i. e. do not access their windows, a third synchronization option based

110 M. E. Abramyan. Parallel Programming Based on MPI 2.0

on blocking is provided. The main feature of the blocking synchronization op-

tion is that in this option the target process does not have to call any synchroni-

zation functions (and, therefore, no exposure epoch is specified for it). Special

synchronization functions are intended only for the beginning and end of the

access epoch in the origin processes. To begin the blocking access epoch, the

origin process must call the MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

function, and to end the blocking access epoch, the MPI_Win_unlock(int rank,

MPI_Win win) function is intended. The rank parameter determines the target

process. The lock can be exclusive or shared; the type of lock is specified by the

lock_type parameter, which can take the value of one of two constants:

MPI_LOCK_EXCLUSIVE and MPI_LOCK_SHARED. If any process attempts to organ-

ize access with an exclusive lock to a target process for which a lock (of any

type) is currently set by another process, then granting access is postponed until

the previously set lock is released (the exclusive lock mode is usually used if

several origin processes access the window of the target process for writing or

modifying). Unlike an exclusive lock, several processes can simultaneously or-

ganize access with a shared lock to the same target process (the shared lock

mode is used if the origin processes access the window of the target process only

for reading).

The tasks of the MPI7Win group allow you to get acquainted with all as-

pects of one-sided communications. The first subgroup of this group

(MPI7Win1–MPI7Win17, Section 2.7.1) uses the simplest synchronization

based on the use of the collective function MPI_Win_fence; various options for us-

ing all three types of one-sided communications (with read, write, and modify

access) are considered. In the initial tasks of this subgroup (MPI7Win1–

MPI7Win6), shared memory within the access window is created only

in one process, and in the remaining tasks, shared memory areas are created in

groups of processes or in all processes of the application. In the second subgroup

(see Section 2.7.2), more complex types of synchronization are studied: local

synchronization based on the use of four functions MPI_Win_start,

MPI_Win_complete, MPI_Win_post, MPI_Win_wait (MPI7Win18–MPI7Win23), and

blocking synchronization based on the use of the functions MPI_Win_lock and

MPI_Win_unlock (MPI7Win24–MPI7Win27, MPI7Win29); in MPI7Win28 and

MPI7Win30 tasks, it is necessary to use both synchronization options consi-

dered in the second subgroup.

To demonstrate the various features associated with one-sided communica-

tions, in the next two sections we will consider one task from each subgroup of

the MPI7Win group.

Part 1. MPI: description and examples of use 111

1.3.5. One-sided communications: an example using the simplest
synchronization option

Let us start with the MPI7Win13 task, which uses the simplest synchroni-

zation based on the MPI_Win_fence function, and at the same time uses the most

complex of the access functions, MPI_Accumulate.

MPI7Win13. Three integers N1, N2, N3 are given in each process; each

given integer is in the range 0 to K − 1, where K is the number of processes

(the values of some of these integers in each process may coincide). In addi-

tion, an array A of R + 1 real numbers is given in each process, where R is the

process rank (0, …, K − 1). Create an access window containing the array A in

all the processes. Using three calls of the MPI_Accumulate function in each

process, add the integer R + 1 to all elements of the arrays A given in the

processes N1, N2, N3, where R is the rank of the process that calls the

MPI_Accumulate function (for instance, if the number N1 in the process 3 is

equal to 2, then a real number 4.0 should be added to all the elements of array

A in the process 2). If some of the integers N1, N2, N3 coincide in the process

R, then the number R + 1 should be added to the elements of the correspond-

ing arrays several times. Output the changed arrays A in each process.

Here is the taskbook window when the program is launched with a tem-

plate for this task (Fig. 30). To reduce the size of the window, the section with

the task formulation is hidden.

Fig. 30. Acquaintance running of the MPI7Win13 task

The transformation of initial array A required in the task is difficult (al-

though possible) to implement using traditional MPI tools. The main problem is

that the receiving process does not know from which source processes it will re-

112 M. E. Abramyan. Parallel Programming Based on MPI 2.0

ceive data that must be added to the elements of its array A. At the same time,

using the one-sided communication mechanism, the required transformation is

implemented quite simply. Since in this case all processes act as origin

processes and, in addition, most processes are also target processes, the collec-

tive synchronization option is the most natural.

In the example shown in Fig. 30, only one process is not the target: this is

process 5, for which the contents of array A will not change (this is due to the

fact that among the integers given to the processes there is no number equal

to 5). It should also be noted that in some cases the same process acts as both the

origin and the target process (for example, process 1 must increase the elements

of its array, since among the integers given to this process there is the num-

ber 1). In addition, for most processes, the arrays they contain will be modified

by several origin processes (for example, the array from process 4 will be mod-

ified by processes 0, 1, 2, 4, 5, and 6, with processes 2 and 4 modifying this ar-

ray twice; as a result, each element of array from process 4 will increased by the

number 32 = 1 + 2 + 3 + 3+ 5+ 5+ 6 + 7).

At the initial stage of the solution, we will declare all the necessary arrays

and ensure that they are filled with the initial data. In addition to the array a giv-

en in the task formulation, we will declare an array n of three elements contain-

ing the given integers N1, N2 and N3, as well as an array b, which will contain the

values added by the origin process to the arrays a of target processes. As the size

of the array b, it is sufficient to specify the maximum of the sizes of the arrays a

(equal to the maximum rank plus 1, or, in other words, equal to size, the number

of processes).

Here is the first part of the solution:

int n[3];
for (int i = 0; i < 3; i++)
 pt >> n[i];
double *a = new double[rank + 1];
for (int i = 0; i < rank + 1; i++)
 pt >> a[i];
double *b = new double[size];
for (int i = 0; i < size; i++)
 b[i] = rank + 1;

When we run this version of the program, we will receive a message that

all the required initial data are input, but no results are output.

Now we need to define a window that contains the memory areas that other

processes of the application can access. In our case, the window should include

arrays a from each process. Let us give the corresponding code fragment and

then comment on it:

int dbl_sz;
MPI_Type_size(MPI_DOUBLE, &dbl_sz);
MPI_Win win;

Part 1. MPI: description and examples of use 113

MPI_Win_create(a, (rank + 1) * dbl_sz, dbl_sz, MPI_INFO_NULL,
 MPI_COMM_WORLD, &win);

First we define, in the variable dbl_sz, the size of the MPI_DOUBLE type

in bytes (using the debug output, we can verify that it is 8). Then we create a

window win using the MPI_Win_create function. In Section 1.3.4, we noted that this

function is collective and therefore must be called in all processes of the com-

municator for which the window is created (we create a window for the

MPI_COMM_WORLD communicator, which is specified as the last but one parame-

ter of this function).

The first parameter of the function specifies the address of the beginning of

the memory area associated with the window in the given process; in our case,

this is always the beginning of the array a. Then, the size of this memory area in

bytes is specified (recall that it is permissible to specify a size equal to 0; this

means that no memory area is associated with the window in the given process).

As the third parameter of the MPI_Win_create function, we specify the size (in

bytes) of the array elements stored in the window; this will allow us to specify

the index of the required array element in the window access functions. The

fourth parameter is assumed to be equal to the constant MPI_INFO_NULL. The last

parameter win returns the window handle, which must be specified in all func-

tions used when working with this window.

Recall that after finishing working with the access window, it must be de-

stroyed by the MPI_Win_free function. In addition, in our program, it is necessary

to free the memory allocated for the dynamic arrays a and b. Therefore, we add

to the Solve function the following final statements:

MPI_Win_free(&win);
delete[] a;
delete[] b;

The result of running the new version of the program will not differ from

the previous one. All subsequent additions to the solution must be specified be-

fore the fragment that leads to the destruction of the access window.

Now we need to organize access to the created window from different

processes. Since such access is possible only within the access epoch, we should

start such an epoch by calling the MPI_Win_fence function:

MPI_Win_fence(0, win);

Since the additional properties of this access epoch do not need to be speci-

fied, the number 0 is used as the first parameter.

Once the access epoch has started, we can call the window access func-

tions. In this case, we need to call the MPI_Accumulate function three times in each

process. For this we organize a loop:

for (int i = 0; i < 3; i++)
 MPI_Accumulate(b, n[i] + 1, MPI_DOUBLE, n[i], 0, n[i] + 1,
 MPI_DOUBLE, MPI_SUM, win);

114 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Recall that the first three parameters of any window access function define

the data "on the side" of the origin process: the address of the start of the data

buffer, the number of elements in the buffer, and the type of the buffer elements.

The next four parameters define the data "on the side" of the target process: the

rank of the target process, the offset from the start of the window in this target

process, and the number and type of window elements to be accessed. The last

but one parameter defines the operation used to modify the window elements.

Since in our case we need to add new terms to the original values of the window

elements, we used the MPI_SUM operation.

In order to be able to access the modified elements of the window, the

access epoch (and the associated exposure epoch on the target processes side)

during which the window modification actions were performed must be com-

pleted. Therefore, before outputting the modified array a, the synchronization

function MPI_Win_fence must be called one more time:

MPI_Win_fence(0, win);
for (int i = 0; i < rank + 1; i++)
 pt << a[i];

After running the latest version of the program, we will receive a message

that the task has been solved.

Here is the full text of the solution:

void Solve ()
{
 Task("MPI7Win13");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 int n[3];
 for (int i = 0; i < 3; i++)
 pt >> n[i];
 double *a = new double[rank + 1];
 for (int i = 0; i < rank + 1; i++)
 pt >> a[i];
 double *b = new double[size];
 for (int i = 0; i < size; i++)
 b[i] = rank + 1;
 int dbl_sz;
 MPI_Type_size(MPI_DOUBLE, &dbl_sz);
 MPI_Win win;
 MPI_Win_create(a, (rank + 1) * dbl_sz, dbl_sz, MPI_INFO_NULL,
 MPI_COMM_WORLD, &win);
 MPI_Win_fence(0, win);

Part 1. MPI: description and examples of use 115

 for (int i = 0; i < 3; i++)
 MPI_Accumulate(b, n[i] + 1, MPI_DOUBLE, n[i], 0, n[i] + 1,
 MPI_DOUBLE, MPI_SUM, win);
 MPI_Win_fence(0, win);
 for (int i = 0; i < rank + 1; i++)
 pt << a[i];
 MPI_Win_free(&win);
 delete[] a;
 delete[] b;
}

Note: Both calls to MPI_Win_fence in the above program are mandatory. If

you comment out at least one of them, the program will terminate without

reporting any MPI errors, but the results will be different from what is re-

quired.

1.3.6. One-sided communications: an example of a more complex
version of synchronization

Now let us turn to the MPI7Win23 task from the second subgroup, which

requires using a different synchronization method.

MPI7Win23. An array A of 5 real numbers is given in each process. In

addition, two arrays N and M of 5 integers are given in the master process. All

the elements of the array N are in the range 1 to K, where K is the number of

slave processes, all the elements of the array M are in the range 0 to 4. Some

elements of both the array N and the array M may have the same value. Create

an access window containing the array A in each slave process. Using the re-

quired number of calls of the MPI_Get function in the master process, receive

the element of A with the index MI from the process NI (I = 0, …, 4) and add

the received element to the element AI in the master process. After changing

the array A in the master process, change all the arrays A in the slave

processes as follows: if some element of the array A from the slave process is

greater than the element, with the same index, of the array A from the master

process, then replace this element in the slave process by the corresponding

element from the master process (to do this, use the required number of calls

of the MPI_Accumulate function in the master process). Output the changed ar-

rays A in each process. Use two calls of the MPI_Win_post and MPI_Win_wait

synchronization functions in the slave processes and two calls of the

MPI_Win_start and MPI_Win_complete synchronization functions in the master

process.

Fig. 31 shows the taskbook window for this task. As with the previous task,

the window hides a section with the task formulation.

116 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 31. Acquaintance running of the MPI7Win23 task

In this case, it is necessary to create a window to access arrays A in slave

processes; thus, the master process acts as the origin process, and the slave

processes act as the target processes. In such a situation, it makes sense to use

synchronization that takes into account the specified features of exchange opera-

tions.

Another feature of this task is that it requires two series of sequentially ex-

ecuted one-sided exchanges. First, it is necessary to modify array A in the master

process. Since this process acts as the origin process, the MPI_Get function should

be used to perform this action. Then, the modified array A from the master

process should be used to change some elements of array A in the slave

processes. Since the master process still acts as the origin process, the

MPI_Accumulate function should be used in this case. Since it is necessary to start

changing the arrays in the slave processes only after the array in the master

process has been modified, the program must use two access epochs: in the first

epoch, the array in the master process is modified, and in the second epoch, the

arrays in the slave processes are changed.

At the initial stage, we organize the input of all initial data and the defini-

tion of the access window:

int win_sz = 5;
int n[5], m[5];
double a[5];
for (int i = 0; i < 5; i++)
 pt >> a[i];
if (rank == 0)
{

Part 1. MPI: description and examples of use 117

 win_sz = 0;
 for (int i = 0; i < 5; i++)
 pt >> n[i];
 for (int i = 0; i < 5; i++)
 pt >> m[i];
}
int dbl_sz;
MPI_Type_size(MPI_DOUBLE, &dbl_sz);
MPI_Win win;
MPI_Win_create(a, win_sz * dbl_sz, dbl_sz, MPI_INFO_NULL,
 MPI_COMM_WORLD, &win);
// Perform one-sided exchanges and output the result
MPI_Win_free(&win);

Running this version of the program will result in a message stating that all

the initial data are input, but no results are output.

It should be noted that some initial data (arrays n and m) are input only in

the master process, and also that a shared memory area is not created in the mas-

ter process (the second parameter size of the MPI_Win_create function in the master

window has the value 0).

The rest of the solution should be placed in the position marked with the

comment "Perform one-sided exchanges and output the result".

In the synchronization functions MPI_Win_start and MPI_Win_post, which are

to be used in this task, it is necessary to specify the target process group and the

origin process group, respectively. Such groups are most conveniently obtained

from the process group associated with the communicator MPI_COMM_WORLD:

MPI_Group g0, g;
MPI_Comm_group(MPI_COMM_WORLD, &g0);

Given a group g0 of all processes, we can simply remove the process of

rank 0 from the group g0 to obtain a group of target processes, and take the first

element of the group g0 (i. e., the process of rank 0) to obtain a group of origin

processes.

Thus, to implement the first access epoch in the master process (and the as-

sociated exposure epoch in the slave processes), it is sufficient to perform the

following actions:

int b = 0;
if (rank == 0)
{
 MPI_Group_excl(g0, 1, &b, &g);
 MPI_Win_start(g, 0, win);
 // Call to access functions
 MPI_Win_complete(win);
 // Output of results
}
else

118 M. E. Abramyan. Parallel Programming Based on MPI 2.0

{
 MPI_Group_incl(g0, 1, &b, &g);
 MPI_Win_post(g, 0, win);
 MPI_Win_wait(win);
}

Let us recall that the first parameter of the MPI_Win_start and MPI_Win_post

functions is a group of processes, the second is the assert parameter, which has

the same meaning as the parameter of the MPI_Win_fence function of the same

name (it is enough to set it equal to 0), the third parameter determines the access

window used. The MPI_Win_complete and MPI_Win_wait functions, which complete

the current access epoch, are simpler: they only specify the access window.

Between the calls to the MPI_Win_start and MPI_Win_complete functions, it is

possible to call access functions, in our case, the MPI_Get functions, which allow

us to obtain elements from slave processes that should be added to the elements

of the array a of the master process. To store the data obtained from the slave

processes, we allocate an auxiliary buffer of real numbers a0 of size 5 (the buffer

size corresponds to the number of numbers obtained from the slave processes).

The contents of the buffer can be accessed only after the end of the access epoch

(i. e., after calling the MPI_Win_complete function). Thus, to obtain data from the

slave processes, it is sufficient to add the following fragment before the

MPI_Win_complete(win) call (in the position marked with the comment "Call to

access functions"):

double a0[5];
for (int i = 0; i < 5; i++)
 MPI_Get(&a0[i], 1, MPI_DOUBLE, n[i], m[i], 1, MPI_DOUBLE,
 win);

In this fragment, the elements of the auxiliary array a0 are filled in a loop:

the value of the element with index i is assumed to be equal to the value of the

element of array a with index m[i] located in the process of rank n[i].

After the MPI_Win_complete(win) call (in the position marked with the com-

ment "Output of results"), it is necessary to add a fragment that ensures the mod-

ification and output of the array a in the master process:

for (int i = 0; i < 5; i++)
 a[i] += a0[i];
for (int i = 0; i < 5; i++)
 pt << a[i];

In this fragment, the obtained elements of array a0 are added to the corres-

ponding elements of array a of the master process, after which the modified ar-

ray is output.

Note that between the calls to the MPI_Win_post and MPI_Win_wait functions

we did not need to perform any actions in the slave processes.

When running this version of the program, a message will appear in the

taskbook window stating that the resulting data has not been output in the slave

Part 1. MPI: description and examples of use 119

processes, but the contents of array a in the master process will be correct

(Fig. 32).

Fig. 32. The first stage of solving the MPI7Win23 task

The second part of the one-sided exchanges remains to be performed: add-

ing the modified contents of array a from the master process to all arrays in the

slave processes. To do this, a new access epoch must be started in the master

process and an associated exposure epoch must be started in the slave processes.

Within the new access epoch, the master process must execute the

MPI_Accumulate function, transferring data from array a of the master process to

the windows of all slave processes:

MPI_Win_start(g, 0, win);
for (int i = 1; i < size; i++)
 MPI_Accumulate(a, 5, MPI_DOUBLE, i, 0, 5, MPI_DOUBLE,
 MPI_MIN, win);
MPI_Win_complete(win);

In accordance with the task formulation, we use the MPI_MIN operation in

the MPI_Accumulate function.

Within the new exposure epoch (in slave processes), as for the first expo-

sure epoch, no action needs to be performed, but after this epoch ends, we can

output the changed contents of the array a:

120 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Win_post(g, 0, win);
MPI_Win_wait(win);
for (int i = 0; i < 5; i++)
 pt << a[i];

By running this version of the program, we will receive a message that the

task has been solved.

The output of results in the master process and in the slave processes can

be combined by taking the corresponding loop out of the two parts of the condi-

tional statement and placing it immediately before the window destruction

statement MPI_Win_free(&win).

Here is the final version of the solution:

void Solve ()
{
 Task("MPI7Win23");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 int win_sz = 5;
 int n[5], m[5];
 double a[5];
 for (int i = 0; i < 5; i++)
 pt >> a[i];
 if (rank == 0)
 {
 win_sz = 0;
 for (int i = 0; i < 5; i++)
 pt >> n[i];
 for (int i = 0; i < 5; i++)
 pt >> m[i];
 }
 int dbl_sz;
 MPI_Type_size(MPI_DOUBLE, &dbl_sz);
 MPI_Win win;
 MPI_Win_create(a, win_sz * dbl_sz, dbl_sz, MPI_INFO_NULL,
 MPI_COMM_WORLD, &win);
 MPI_Group g0, g;
 MPI_Comm_group(MPI_COMM_WORLD, &g0);
 int b = 0;
 if (rank == 0)
 {
 MPI_Group_excl(g0, 1, &b, &g);
 MPI_Win_start(g, 0, win);
 double a0[5];

Part 1. MPI: description and examples of use 121

 for (int i = 0; i < 5; i++)
 MPI_Get(&a0[i], 1, MPI_DOUBLE, n[i], m[i], 1,
 MPI_DOUBLE, win);
 MPI_Win_complete(win);
 for (int i = 0; i < 5; i++)
 a[i] += a0[i];
 MPI_Win_start(g, 0, win);
 for (int i = 1; i < size; i++)
 MPI_Accumulate(a, 5, MPI_DOUBLE, i, 0, 5, MPI_DOUBLE,
 MPI_MIN, win);
 MPI_Win_complete(win);
 }
 else
 {
 MPI_Group_incl(g0, 1, &b, &g);
 MPI_Win_post(g, 0, win);
 MPI_Win_wait(win);
 MPI_Win_post(g, 0, win);
 MPI_Win_wait(win);
 }
 for (int i = 0; i < 5; i++)
 pt << a[i];
 MPI_Win_free(&win);
}

1.3.7. Inter-communicators

Inter-communicators (or intercommunicators) appeared already in the

MPI-1 standard. Unlike the "regular" communicator, also called the intra-comm-

unicator (or intracommunicator), which connects to a certain group of processes

and provides various types of interaction between any processes included in this

group, the inter-communicator connects to two groups of processes and is in-

tended to provide interaction between processes from different groups; in this

case, the ranks of the processes in these groups are used. This type of interaction

is convenient if the parallel algorithm assumes the distribution of actions be-

tween several groups of processes and at the same time requires the exchange of

information between processes included in different groups.

In the MPI-2 standard, the concept of inter-communicators was further de-

veloped: the possibilities for creating inter-communicators were expanded, col-

lective interactions of processes within inter-communicators became possible,

and, finally, inter-communicators became the tool that was used as the basis for

the mechanism for dynamic process creation.

Any inter-communicator is connected to two groups of processes. A

process from any group can initiate data exchange with a process from another

group within the inter-communicator that connects these groups. In this case, the

group, to which the process that calls the function to send or receive a message

122 M. E. Abramyan. Parallel Programming Based on MPI 2.0

belongs, is called the local group, and the group, containing the processes with

which the connection is established, is called the remote group. Thus, for the

sending process, the remote group is the one in which the receiving process is

located, and for the receiving process, the remote group is the one in which the

sending process is located.

The function MPI_Comm_size(MPI_Comm comm, int *size) to determine the num-

ber size of processes included in the communicator comm, can also be used for

the inter-communicator; in this case, it returns the number of processes of the

local group, i. e. the inter-communicator group to which the process that called

this function belongs. Similarly, for an inter-communicator, the function

MPI_Comm_rank(MPI_Comm comm, int *rank) returns the rank rank of the process in the

local group. There is also an additional function MPI_Comm_remote_size(MPI_Comm

comm, int *size), which is available only to inter-communicators; it returns the size

of the remote group, i. e. the group of the inter-communicator comm to which the

process calling this function does not belong.

The function MPI_Comm_group(MPI_Comm comm, MPI_Group *group), in the case

of an inter-communicator comm, returns its local group group, and to get a remote

group, the function MPI_Comm_remote_group is provided with the same set of pa-

rameters.

You can check whether the communicator comm is an inter-communicator

using the function MPI_Comm_test_inter(MPI_Comm comm, int *flag), which returns a

non-zero value of the flag parameter for inter-communicators and a zero value

for intracommunicators.

To get acquainted with the basic method of creating an inter-communicator

and the simplest techniques for organizing interaction between its groups, let us

consider the following task.

MPI8Inter9. The number of processes K is an even number. An integer C

is given in each process. The integer C is in the range 0 to 2, the first value

C = 1 is given in the process 0, the first value C = 2 is given in the process

K/2. Using the MPI_Comm_split function, create two communicators: the first

one contains processes with C = 1 (in the same order), the second one con-

tains processes with C = 2 (in the same order). Output the ranks R of the

processes included in these communicators (output the integer −1 if the

process is not included into the created communicators). Then combine these

communicators into an inter-communicator using the MPI_Intercomm_create

function. A group containing processes with C = 1 is considered to be the first

group of the created inter-communicator and the group of processes with

C = 2 is considered to be its second group. Input an integer X in the processes

of the first group, input an integer Y in the processes of the second group. Us-

ing the required number of calls of the MPI_Send and MPI_Recv functions for all

the processes of the inter-communicator, send all the integers X to each

process of the second group and send all the integers Y to each process of the

Part 1. MPI: description and examples of use 123

first group. Output all received numbers in ascending order of ranks of send-

ing processes.

When you run the program with a template for a given task, a window

similar to the one shown in Fig. 33 will appear on the screen (this window hides

a section with the task formulation).

Fig. 33. Acquaintance running of the MPI8Inter9 task

At the first stage of solving the task, it is necessary to create two new

communicators containing processes with identical non-zero values of C. An in-

dication of successful completion of this stage will be the output of the correct

values of ranks R of processes in the new communicators.

Since at this stage there is no need to use the new MPI library tools, we will

immediately provide the corresponding program fragment (the features of using

the MPI_Comm_split function were previously discussed in detail in Section 1.2.7

devoted to creating new communicators):

int c;
pt >> c;
if (c == 0)
 c = MPI_UNDEFINED;
MPI_Comm local;
MPI_Comm_split(MPI_COMM_WORLD, c, rank, &local);
if (local == MPI_COMM_NULL)
{
 pt << -1;
 return;
}
int local_rank;

124 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Comm_rank(local, &local_rank);
pt << local_rank;

After input of the number C, we immediately correct its value if it is 0: the

zero value is replaced by MPI_UNDEFINED, so as not to create a communicator for

processes with C = 0. The new communicator containing the current process is

associated with the variable named local (the variable name indicates that the

group of this communicator will later become the local group of the inter-

communicator). If a new communicator is not associated with the process, then

the value –1 is output in it and the program exits; otherwise, the rank local_rank of

the process in the new communicator is obtained and output.

When the program is launched, a message will be displayed stating that in

some processes not all the given data has been input (since the input of numbers

X and Y has not yet been performed in our program), however, the values R will

be found correctly for all processes (Fig. 34).

Fig. 34. The first stage of solving the MPI8Inter9 task

Let us proceed to the main stage of the solution: defining an inter-

communicator that contains both previously created groups of processes. The

main tool for creating inter-communicators is the MPI_Intercomm_create function.

This is a collective function that must be called in all processes that need to be

included in the inter-communicator being created. In other words, it must be

Part 1. MPI: description and examples of use 125

called in all processes of those two "regular" communicators (intra-communi-

cators) that contain groups of processes included in the inter-communicator.

The main problem in creating an inter-communicator is defining a remote

group. As a local group, it is sufficient to specify the corresponding communica-

tor, which includes the process calling the MPI_Intercomm_create function. Howev-

er, a communicator created for processes of another (remote) group is not avail-

able in this process. The problem is solved by specifying the "representative"

processes (leaders) of each of the two groups. In this case, it is necessary that

both selected leaders are included in some common communicator, a peer. A

natural candidate for the role of a peer is the universal communicator

MPI_COMM_WORLD, however, in order to avoid possible conflicts when sending

data, it is desirable to use a copy of the communicator MPI_COMM_WORLD, by

means of the MPI_Comm_dup function.

Let us list the parameters of the MPI_Intercomm_create function:

MPI_Comm local – a communicator associated with the local group of the

created inter-communicator;

int local_leader – rank of the local group leader (in the local communicator);

MPI_Comm peer_comm – a peer communicator; this parameter is taken into

account only in the process that is a leader of the local group;

int remote_leader – the rank of the leader of the remote group (in the

peer_comm communicator); this parameter, like the previous one, is

taken into account only in the process that is a leader of the local

group;

int tag – an integer "security tag" that must be the same in all processes that

calls the MPI_Intercomm_create function to create this inter-

communicator (other values for this tag should be used when creating

other inter-communicators);

MPI_Comm *intercomm – pointer to the created inter-communicator (output pa-

rameter).

Thus, to create an inter-communicator, a leader of each group must know

the rank of the leader of the other group in the peer communicator. In our case,

we can use the following part of the task formulation: "The first value C = 1 is

given in the process 0, the first value C = 2 is given in the process K/2" (K de-

notes the total number of processes). This means that the first of the groups we

created (for processes with C = 1) is guaranteed to include a process of rank 0 of

the communicator MPI_COMM_WORLD, and this process is the first process of the

created group (i. e., it has rank 0 in the corresponding communicator), and the

second of the groups we created (for processes with C = 2) is guaranteed to in-

clude a process of rank K/2 of the communicator MPI_COMM_WORLD, and this

process is also the first process of the created group.

Therefore, when calling the MPI_Intercomm_create function in all processes,

we can set the local_leader parameter to 0. As for the remote_leader parameter, its

126 M. E. Abramyan. Parallel Programming Based on MPI 2.0

value can be determined by the rank of the calling process in the

MPI_COMM_WORLD communicator: if this rank is 0 (this means that the process is

a leader of the first group), then the remote_leader parameter should be set to K/2,

and if the rank of the calling process in the MPI_COMM_WORLD communicator is

K/2, then the remote_leader parameter should be set to 0 (in the remaining

processes, the value of the remote_leader parameter can be arbitrary, for example,

equal to 0). Another way to do this is to analyze not the rank of the process in

the MPI_COMM_WORLD communicator, but the value of C; in this case, for

processes with C = 1, the remote_leader parameter should be set equal to K/2, and

for the remaining processes (with C = 2), it should be set equal to 0.

To make sure that the required inter-communicator has been created cor-

rectly, you can use the following simple test: determine the remote group size

for each inter-communicator process by calling the MPI_Comm_remote_size func-

tion (and displaying this size in the debug section). Note that we will need this

size later when organizing data transfers.

When implementing the second stage of solving the task, it is easy to make

a serious mistake by trying to create a copy of the MPI_COMM_WORLD communi-

cator after some processes exit the Solve function. This will inevitably lead to a

hang of the parallel application. It is necessary to define an auxiliary peer com-

municator before the conditional statement in which the return statement is ex-

ecuted (for example, at the very beginning of the solution).

Here is an expanded version of the solution, in which new fragments are

highlighted in bold:

MPI_Comm peer;
MPI_Comm_dup(MPI_COMM_WORLD, &peer);
int c;
MPI_Comm local;
pt >> c;
if (c == 0)
 c = MPI_UNDEFINED;
MPI_Comm_split(MPI_COMM_WORLD, c, rank, &local);
if (local == MPI_COMM_NULL)
{
 pt << -1;
 return;
}
int local_rank;
MPI_Comm_rank(local, &local_rank);
pt << local_rank;
MPI_Comm inter;
int lead = 0;
if (rank == 0)
 lead = size / 2;
MPI_Intercomm_create(local, 0, peer, lead, 100, &inter);
int remote_size;

Part 1. MPI: description and examples of use 127

MPI_Comm_remote_size(inter, &remote_size);
Show(remote_size);

When running this solution, the message in the information section will not

change, but in the debug section, along with error messages, for each process

with a non-zero C value, the correct size of the corresponding remote group in

the created communicator will be displayed (see Fig. 35; in this case, for

processes with C = 1, the size of the remote group is 2, and for processes with

C = 2, the size is 1).

Fig. 35. The second stage of solving the MPI8Inter9 task

The final stage of the task solution is the simplest, since it requires using

the well-known MPI_Send and MPI_Recv functions to exchange messages between

two processes. The only feature is that, in this case, these functions are called for

the inter-communicator, and therefore the rank of the receiving process (in the

MPI_Send function) and the rank of the sending process (in the MPI_Recv function)

should be specified as the rank of the process in the remote group:

MPI_Status s;

128 M. E. Abramyan. Parallel Programming Based on MPI 2.0

int a, b;
pt >> a;
for (int i = 0; i < remote_size; i++)
{
 MPI_Send(&a, 1, MPI_INT, i, 0, inter);
 MPI_Recv(&b, 1, MPI_INT, i, 0, inter, &s);
 pt << b;
}

Note that the number of iterations in the loop is equal to the size of the re-

mote group.

After running this version of the program, we will receive a message

that the task has been solved.

Note 1. The solution uses only those MPI library tools that are already

available in the MPI-1 standard, so this program will also work successful-

ly under the control of the MPICH system. As noted in the preamble to the

MPI8Inter task group, five tasks in this group (numbers 1–4 and 9) can be

executed in the MPI-1 version.

The MPI-2 standard introduced a number of new features related

to the creation of inter-communicators (see tasks MPI8Inter5–MPI8Inter8). In

this standard, the functions MPI_Comm_create and MPI_Comm_split can be used not

only to create new intra-communicators based on existing ones, but also to

create new inter-communicators (also based on existing ones).

If the function MPI_Comm_create (MPI_Comm comm, MPI_Group group, MPI_Comm

*newcomm) is called for processes of the inter-communicator comm, then in the

processes of each group of the inter-communicator comm it is necessary to speci-

fy the same parameter group, which determines the subset of processes from this

group, which will become the corresponding group of the new inter-

communicator newcomm. This function must be called in all processes included

in the communicator comm; in this case, for those processes of each group that

are not included in the specified group, the value MPI_COMM_NULL will be re-

turned in the parameter newcomm.

Flexible capabilities for creating a whole family of new inter-communi-

cators with pairwise disjoint groups of processes are provided by the function

MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm) function.

When it is called for the inter-communicator comm, a set of new inter-communi-

cators is created, the groups of which include the processes of the original inter-

communicator with the same values of the color parameter (the key parameter, as

usual, is used to determine the order of processes in the created groups; see the

description of this parameter for this function in Section 1.2.7). If one of the

groups of the inter-communicator comm does not contain processes with the color

value specified in any processes of another group, then MPI_COMM_NULL is re-

turned in the processes with this color value (this is due to the fact that the inter-

communicator must contain two non-empty groups of processes). As usual, the

Part 1. MPI: description and examples of use 129

MPI_COMM_NULL value is also returned for those processes in which the color pa-

rameter has the value MPI_UNDEFINED.

Note 2. It should be noted that in the MPICH2 system, the MPI_Comm_split

function behaves incorrectly in some special situations related to the crea-

tion of new inter-communicators. These situations are described in detail in

the note to the MPI8Inter7 task (see Section 2.8.1). In the MS-MPI system,

the MPI_Comm_split function behaves correctly in all special situations.

Another important innovation of the MPI-2 standard is the possibility of

using collective operations for inter-communicators. The tasks MPI8Inter10–

MPI8Inter15 are devoted to these possibilities. When performing collective ex-

changes, the same functions are used for both intra-communicators and inter-

communicators (see Sections 1.2.4 and 1.2.5); it should only be taken into ac-

count that collective exchanges are always performed between different groups

of the inter-communicator (in other words, the processes of one group exchange

data only with the processes of another group).

As an example of applying the collective operation to the inter-com-

communicator we can show the second variant of the final fragment of the

MPI8Inter9 task solution, in which, instead of multiple calls of the MPI_Send and

MPI_Recv functions in the loop, we use one collective MPI_Allgather function call

in each process:

int a;
pt >> a;
int *b = new int[remote_size];
MPI_Allgather(&a, 1, MPI_INT, b, 1, MPI_INT, inter);
for (int i = 0; i < remote_size; i++)
 pt << b[i];
delete[] b;

Note that in the case of inter-communicators, collective functions without

the root parameter act "bidirectionally" by sending data from processes of each

inter-communicator group to processes of the other group.

Note 3. In the case where collective functions for inter-communicators use

a special process specified by the root parameter (such as the MPI_Bcast,

MPI_Scatter, and MPI_Gather functions), special rules apply. Recall that for in-

tra-communicators, the root parameter defines the rank of the special

process and must have the same value in all processes. For inter-

communicators, the rank of the special process is specified only in the

processes of the group that does not contain the special process. In the

processes of the group that contains the special process, one of two prede-

fined values must be specified as the root parameter: in the special process,

the root parameter must have the MPI_ROOT value, and in the other processes

of this group, the root parameter must have the MPI_PROC_NULL value. Ex-

130 M. E. Abramyan. Parallel Programming Based on MPI 2.0

amples of using such collective functions will be given in the next section

when solving the MPI8Inter15 task.

1.3.8. Dynamic process creation

The inter-communicators discussed in the previous section are also used for

dynamically creating new processes during the execution of a parallel applica-

tion. The ability to create new processes appeared in the MPI-2 standard. Such

an ability allows implementing parallel algorithms for which the number of

processes can be increased while the application is running. In addition, inclu-

sion of this feature into the MPI standard simplifies the transition to MPI tech-

nologies for those developers who previously used other parallel technologies

allowing to generate processes dynamically (for example, Parallel Virtual Ma-

chine, PVM).

There are two functions for creating new processes: MPI_Comm_spawn and

MPI_Comm_spawn_multiple. The first of these functions allows you to create the re-

quired number of new processes by running the same executable file with the

same command line parameters (thus, it acts similarly to the MPI environment,

which performs the initial launch of a parallel application). The second function

is more flexible: it allows you to use different sets of command line parameters

and even different executable files for different processes in the created group.

The MPI_Comm_spawn function has the following set of parameters:

char *command – a string defining the file to be launched (this parameter is

only taken into account in the root process; see below for a descrip-

tion of the root parameter);

char **argv – a string array containing command line parameters (this para-

meter is also taken into account only in the root process); if parame-

ters are not required, then it is sufficient to specify a null pointer

(NULL or nullptr) as argv;

int maxproc – maximum number of launched processes (the parameter is tak-

en into account only in the root process);

MPI_Info info – additional information related to the file being launched (the

parameter is taken into account only in the root process); if additional

information is not used, then it is sufficient to specify the constant

MPI_INFO_NULL as info;

int root – the rank of the process from the parent communicator comm, in

which the values of the four previous parameters must be specified;

MPI_Comm comm – parent communicator that provides creation of a new

process group;

MPI_Comm *intercomm – a pointer to the resulting inter-communicator (output

parameter); one of its groups is the group of all processes of the par-

ent communicator comm, and the other is the group of all created

processes;

Part 1. MPI: description and examples of use 131

int *array_of_errcodes – an integer array containing error codes associated with

each of the created processes (output parameter). If all processes are

created successfully, then all elements of the array are equal to

MPI_SUCCESS. If the program does not use error codes, the constant

MPI_ERRCODES_IGNORE can be specified as this parameter.

The MPI_Comm_spawn function is collective; it must be called by all

processes of the parent communicator comm (however, the values of the parame-

ters defining the properties of the created processes need only be specified in

one process of this communicator, which has the rank root). Successful exit from

this function occurs only if all the required new processes are launched and each

new process calls the MPI_Init function, which initializes the parallel mode. The

exit from all MPI_Init functions in the new processes will occur simultaneously

with the exit from the MPI_Comm_spawn functions in the parent processes.

The MPI_Comm_spawn_multiple function differs from the MPI_Comm_spawn

function only in that all the settings for the parameters of the processes being

launched are specified in arrays, each of which has a size equal to count (the first

parameter of the function). There is a parameter list for the function

MPI_Comm_spawn_multiple: (int count, char **array_of_commands, char ***array_of_argv, int

*array_of_maxprocs, MPI_Info *array_of_info, int root, MPI_Comm comm, MPI_Comm
*intercomm, int *array_of_errcodes).

All features of the MPI_Comm_spawn function that are described below also

apply to the MPI_Comm_spawn_multiple function. In the tasks included in the PT for

MPI-2 taskbook, the MPI_Comm_spawn_multiple function is not used.

By default, call to the MPI_Comm_spawn function is considered successful if

all maxproc processes are launched. It is possible to change this behavior by spe-

cifying additional settings in the info parameter; in this case, for the success of

the MPI_Comm_spawn function, it is enough to launch fewer processes than speci-

fied in the maxproc parameter (we will not discuss this option in more detail).

Communication between the initial (parent) and new (child) processes is

established using a new inter-communicator intercomm, returned by the

MPI_Comm_spawn function.

However, as a result of calling the MPI_Comm_spawn function, this inter-

communicator will be accessible only to parent processes. Сhild processes

access this inter-communicator using the special function

MPI_Comm_get_parent(MPI_Comm *parent). If this function is called by one of the

child processes, i. e. processes created after the parallel application has been

launched, then its parameter parent returns a descriptor of the inter-communicator

that connects the parent and child processes. If the MPI_Comm_get_parent function

is called by one of the initial processes of the parallel application, then the con-

stant MPI_COMM_NULL is returned in the parent parameter.

Since the same executable file is often used to start both the initial and new

(child) processes, it is the MPI_Comm_get_parent function that allows you to rec-

132 M. E. Abramyan. Parallel Programming Based on MPI 2.0

ognize the initial processes and thus ensure that different code fragments are ex-

ecuted for the initial and new processes.

For new processes, there is also a communicator MPI_COMM_WORLD

defined, which includes all processes created during the call of the

MPI_Comm_spawn function. We can think of the inter-communicator returned by

the MPI_Comm_spawn function as combining two "regular" intra-communicators

MPI_COMM_WORLD, one containing all parent processes, and the other containing

all child processes.

If two calls to MPI_Comm_spawn are made in the parent communicator, then

two new process groups will be created in the parallel application, each of which

will be connected to the parent group via its own inter-communicator. Another

scheme is possible in which the child process group (child1) itself calls

MPI_Comm_spawn; as a result, a new process group (child2) is created, for which

the parent group will be child1.

Thus, to create new processes and ensure their subsequent interaction with

parent processes, it is sufficient to use two MPI functions (MPI_Comm_spawn and

MPI_Comm_get_parent) and to apply the data transfer functions that are provided

for inter-communicators.

As an illustration of the described possibilities, let us consider the first task

from the subgroup of the MPI8Inter group, which is devoted to the creation of

new processes (see Section 2.8.3).

MPI8Inter15. A real number is given in each process. Using the

MPI_Comm_spawn function with the first parameter "ptprj.exe", create one new

process. Using the MPI_Reduce collective function, send the sum of the given

numbers to the new process. Output the received sum in the debug section us-

ing the Show function in the new process. Then, using the MPI_Bcast collective

function, send this sum to the initial processes and output it in each process.

When we launch the template program for this task, we will see a window

similar to the one shown in Fig. 36.

Note the sample content of the debug section given in the input data sec-

tion. The process rank specified there contains, in addition to the numeric value

"0", the prefix "a". This prefix means that this process was created during the ex-

ecution of the parallel application (if several groups of new processes are

created in the parallel application, then different letter prefixes are associated

with them in the debug section: "a", "b", "c", etc.).

Let us start to solve the task. First of all, we need to create a new process.

In all tasks of this subgroup, the standard communicator MPI_COMM_WORLD

should be used as the parent communicator. In addition, in all tasks, we need to

specify the same name of the executable file "ptprj.exe", since any project created

by the PT4Load program has such a name. The number of processes to be

created is defined in the task formulation, the values of other settings for new

Part 1. MPI: description and examples of use 133

process groups are defined in the preamble to the MPI8Inter group (see Sec-

tion 2.8).

Fig. 36. Acquaintance running of the MPI8Inter15 task

When executing tasks to create processes, it is necessary to take into ac-

count that the code of the Solve function will be executed not only in the initial

processes of the parallel application, but also in the created processes. Note that

for the created processes, as well as for the initial ones, you cannot call the

MPI_Init function, since this call is automatically executed by the taskbook before

calling the Solve function in each process.

To ensure that the MPI_Comm_spawn function is called only in the initial

processes, it is necessary to call the MPI_Comm_get_parent function at the begin-

ning of the Solve function and analyze its result. If it returns the value

MPI_COMM_NULL, then this process is one of the initial processes, and the

MPI_Comm_spawn function should be called for it; if a non-empty communicator

is returned, this means that the process is a child process, and this communicator

can be used to communicate with parent processes.

To check that the new process was created successfully, we can output the

size and rank values for each process of the parallel application in the debug sec-

tion. We get the following code fragment:

MPI_Comm inter;

134 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Comm_get_parent(&inter);
if (inter == MPI_COMM_NULL)
{
 MPI_Comm_spawn("ptprj.exe", NULL, 1, MPI_INFO_NULL, 0,
 MPI_COMM_WORLD, &inter, MPI_ERRCODES_IGNORE);
}
Show(size);
Show(rank);

When you launch this version of the program, the taskbook window will

look like that shown in Fig. 37.

Fig. 37. The first stage of solving the MPI8Inter15 task

At the beginning of each line in the debug section, the rank of the process

is indicated. Along with the "usual" ranks 0–3, the section contains a rank start-

ing with the prefix "a". As was said above, dynamically created processes are

marked in this way. So, in our case, the program includes 4 initial processes (for

them, size = 4, and ranks vary from 0 to 3) and one new process. The standard

communicator MPI_COMM_WORLD is also associated with this process, but it in-

cludes only one process (since when calling the MPI_Comm_spawn function, we

specified the value 1 as the maxproc parameter), so the line with the label "a0"

displays the numbers 1 (the number of processes in the communicator) and 0

(the rank of the process). So, our program correctly creates a new process.

Part 1. MPI: description and examples of use 135

At the second stage of the solution, we must obtain in the new process the

sum of the numbers specified in the initial processes. According to the task for-

mulation, the collective function MPI_Reduce must be used for this. Obviously, it

must be applied to the inter-communicator inter, which is defined both in the ini-

tial processes and in the new process.

When defining the root parameter for the MPI_Reduce function, it is neces-

sary to take into account the peculiarities of using collective operations for inter-

communicators (see Note 3 in Section 1.3.7): in all processes sending their data

to another inter-communicator group, we must specify the "actual" rank of the

receiving root process in the remote group (in this case, 0), and in the receiving

process, a special value MPI_ROOT must be specified. If the group of new

processes contains more than one process, then in the remaining processes, the

value MPI_PROC_NULL must be specified as the root parameter.

Thus, before calling the MPI_Reduce function, we need not only to perform

the data input (in the initial processes), but also to determine the value of the root

parameter in all processes. After calling this function, we need to output the ob-

tained result in the debug section corresponding to the new process.

Let us present a new version of the solution, highlighting the added frag-

ments in bold:

double a, sum;
int root;
MPI_Comm inter;
MPI_Comm_get_parent(&inter);
if (inter == MPI_COMM_NULL)
{
 MPI_Comm_spawn("ptprj.exe", NULL, 1, MPI_INFO_NULL, 0,
 MPI_COMM_WORLD, &inter, MPI_ERRCODES_IGNORE);
 pt >> a;
 root = 0;
}
else
 root = MPI_ROOT;
Show(size);
Show(rank);
MPI_Reduce(&a, &sum, 1, MPI_DOUBLE, MPI_SUM, root, inter);
if (root == MPI_ROOT)
 Show(sum);

We replaced the previous Show(size) and Show(rank) functions with a single

Show(sum) statement that outputs the resulting sum of the given numbers in the

new process. Note that we also used the root value to "distinguish" the new

process from the initial ones.

As a result of launching this version of the program, the window will look

like that shown in Fig. 38.

136 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 38. The second stage of solving the MPI8Inter15 task

Note that the contents of the debug section exactly match the sample shown

in the input data section. The message in the information section is "Correct da-

ta input" because the program has all the required input, but no output has been

performed in any of the initial processes.

Let us perform the last part of the task: send the found sum from the new

process to all initial processes and output the received data. To do this, we also

need to use a collective function (in this case, MPI_Bcast), but now the sending

process is the new (child) process, and the receiving processes are the initial

(parent) processes. For the MPI_Bcast function, you need to set the same values

for the root parameter as for the previously called MPI_Reduce function; indeed, in

this case, the process sending data (the root process) is the new process, so we

need to use the root parameter equal to MPI_ROOT in this process, and all

processes in the other (receiving) group must indicate that they receive data

from process 0 of the sending group.

Thus, after calling MPI_Reduce, we only need to add a call to the new collec-

tive function MPI_Bcast and provide the last conditional statement with an else

branch (executed in the initial processes), in which we organize the output of the

resulting sum. Here is the final version of the solution, highlighting the new

statements in bold:

double a, sum;
int root;
MPI_Comm inter;
MPI_Comm_get_parent(&inter);
if (inter == MPI_COMM_NULL)

Part 1. MPI: description and examples of use 137

{
 MPI_Comm_spawn("ptprj.exe", NULL, 1, MPI_INFO_NULL, 0,
 MPI_COMM_WORLD, &inter, MPI_ERRCODES_IGNORE);
 pt >> a;
 root = 0;
}
else
 root = MPI_ROOT;
MPI_Reduce(&a, &sum, 1, MPI_DOUBLE, MPI_SUM, root, inter);
MPI_Bcast(&sum, 1, MPI_DOUBLE, root, inter);
if (root == MPI_ROOT)
 Show(sum);
else
 pt << sum;

After launching this version of the program, we will receive a message that

the task has been solved.

In the final part of this section, we describe two more features related to in-

ter-communicators and dynamic process creation. These features are the subject

of the four final tasks of the MPI8Inter group.

The communicator that is created when new processes are created is an in-

ter-communicator; one its group includes the parent processes and the other its

group includes the child processes. Sometimes, after creating new processes, it

is convenient to merge the parent and child processes into one common intra-

communicator. For this purpose, MPI provides a special function

MPI_Intercomm_merge(MPI_Comm comm, int high, MPI_Comm *newcomm) with three pa-

rameters: the original inter-communicator comm, the high parameter, which de-

termines the order of processes in the created intra-communicator, and the out-

put parameter newcomm, a pointer to the created intra-communicator. The

MPI_Intercomm_merge function must be called in all processes of the original inter-

communicator.

The high parameter is an integer flag; all processes in each group of the

original inter-communicator must specify the same value for the high parameter.

If the high parameter is 0 in one of the groups and 1 in the another, then the

processes of the first group (with high = 0) are placed first in the created intra-

communicator in the order in which they appear in this group, and then the

processes of the second group (with high = 1) are placed in the intra-

communicator, also in the order in which they appear in this group. If the value

of the high parameter is the same in all processes of the inter-communicator, then

the order of the groups is undefined, but even in this case the order of the

processes from each group coincides with the order of the processes in this

group.

The MPI_Intercomm_merge function is used in the MPI8Inter19–MPI8Inter20

tasks.

138 M. E. Abramyan. Parallel Programming Based on MPI 2.0

A situation is possible when two groups of processes do not have a com-

mon inter-communicator (for example, if each of these groups was created

using a separate call to the MPI_Comm_spawn function). To establish communica-

tion between such groups, a special client-server interaction mechanism imple-

mented in MPI-2 can be used. One of the groups of processes between which

communication needs to be established plays the role of a server, and the other

plays the role of a client. The processes of the server group create a port for

communication (using the function MPI_Open_port(MPI_Info info, char *port_name),

the port_name parameter is output) and define the public name of this port (using

the function MPI_Publish_name(char *service_name, MPI_Info info, char *port_name), all

parameters are input), after which they start listening to this port waiting for the

client to connect. For this purpose, the processes of the server group use the

function MPI_Comm_accept(char *port_name, MPI_Info info, int root, MPI_Comm comm,

MPI_Comm *newcomm). This function is collective and must be called for all

processes of the communicator comm, however, the port name port_name only

needs to be specified in the process of rank root.

Processes of the client group obtain the port created by the server group us-

ing the public name service_name of this port (by means of the function

MPI_Lookup_name (char *service_name, MPI_Info info, char *port_name); the last parame-

ter is output), after which they connect to the server on this port using the func-

tion MPI_Comm_connect(char *port_name, MPI_Info info, int root, MPI_Comm comm,

MPI_Comm *newcomm). This function, like the MPI_Comm_accept function, is collec-

tive and must be called for all processes of the comm communicator, and, like for

the MPI_Comm_accept function, the port name port_name only needs to be specified

in the process of the rank root.

When the MPI_Comm_accept and MPI_Comm_connect functions complete suc-

cessfully, they return an inter-communicator newcomm that joins the client group

and the server group.

The port (the port_name parameter) is a text string generated by the MPI en-

vironment when calling the MPI_Open_port function; its maximum length (with

the terminating null character) does not exceed the MPI_MAX_PORT_NAME con-

stant. It is sufficient to create the port in one of the processes of the server group

and receive it in one of the processes of the client group. The public name of the

port (the service_name parameter), unlike the parameter port_name, must be known

in advance to both the processes of the server group and the processes of the

client group; this is a kind of "password" exchanged between these groups.

All these functions provide an additional parameter info, which can be set to

MPI_INFO_NULL.

Let us give a standard sequence of actions on the server group side:

char port[MPI_MAX_PORT_NAME];
if (rank == 0)
{

Part 1. MPI: description and examples of use 139

 MPI_Open_port(MPI_INFO_NULL, port);
 MPI_Publish_name("password", MPI_INFO_NULL, port);
}
MPI_Comm_accept(port, MPI_INFO_NULL, 0, comm, &inter);

The sequence of actions on the client group side is as follows:

char port[MPI_MAX_PORT_NAME];
if (rank == 0)
 MPI_Lookup_name("password", MPI_INFO_NULL, port);
MPI_Comm_connect(port, MPI_INFO_NULL, 0, comm, &inter);

It is important to coordinate the function calls so that the MPI_Publish_name

function in the root process of the server group is called earlier in time than the

MPI_Lookup_name function in the root process of the client group.

Three functions are intended for releasing resources allocated during a

client-server connection:

 MPI_Close_port(char *port_name) closes the port port_name created by the

MPI_Open_port function;

 MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name) releas-

es the port public name service_name previously connected with the port

port_name (the public name of the port should be released before the

closing the port itself);

 MPI_Comm_disconnect(MPI_Comm *comm) destroys communicator comm

created for client-server connection and returns MPI_COMM_NULL in the

comm parameter. Unlike the standard function MPI_Comm_free, the func-

tion MPI_Comm_disconnect waits for all communication operations per-

formed using the communicator comm to complete, and only then de-

stroys this communicator.

The client-server interaction mechanism is used in the tasks MPI8Inter21–

MPI8Inter22. The notes to these tasks describe ways to coordinate the order of

calling the MPI_Publish_name and MPI_Lookup_name functions based on the

MPI_Barrier function.

1.4. Parallel matrix algorithms

1.4.1. Band and block algorithms for parallel matrix multiplication:
general description

The MPI9Matr group, unlike the previous groups, is devoted not to some

specific section of the MPI library, but to parallel matrix algorithms, which use

various tools of this library, including various options for interaction between

processes, new derived datatypes, communicators with virtual topologies, and

parallel file input-output. Thus, the MPI9Matr group can be considered as a final

group, allowing you to repeat and consolidate most of the previously studied

topics related to MPI technologies.

140 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Matrix processing is one of those types of computational tasks for which

efficient parallelization methods have been developed, including those based on

MPI technologies. It should be noted that the MPI library contains a number of

tools specifically designed for working with matrices; such tools include derived

datatypes associated with various matrix fragments (columns, sets of columns,

blocks), as well as additional capabilities of communicators with Cartesian to-

pology.

A typical representative of matrix algorithms is the matrix multiplication

algorithm. The MPI9Matr group considers two main types of parallel distributed

matrix multiplication algorithms: band algorithms, in which the distribution of

computations between processes is achieved by dividing matrices into bands,

including sets of adjacent rows or columns, and block algorithms, in which ma-

trix division into rectangular blocks is used. In addition, the group includes the

introductory task MPI9Matr1 (see Section 2.9.1), which describes the matrix da-

ta storage format, provides the necessary formulas, and requires the implementa-

tion of the simplest non-parallel matrix multiplication algorithm.

For each type of parallel matrix multiplication algorithm, two variants are

considered, differing in implementation details.

In the band algorithm 1 (Section 2.9.2, MPI9Matr2–MPI9Matr10), only

horizontal bands (sets of adjacent rows) are used, and their transfer does not re-

quire new derived datatypes.

In the band algorithm 2 (Section 2.9.3, MPI9Matr11–MPI9Matr20), both

horizontal and vertical bands are used, which, on the one hand, somewhat simpl-

ifies the implementation of the multiplication algorithm itself (since it is based

on multiplying the rows of one matrix by the columns of another), and on the

other hand, requires the use of new datatypes that provide more efficient transfer

of vertical bands (i. e., sets of adjacent columns).

In the first version of the block algorithm (Cannon's algorithm, Sec-

tion 2.9.4, MPI9Matr21–MPI9Matr31), before the iterative calculation of the

fragments of the final matrix product, an initial stage of block redistribution be-

tween processes is performed, which simplifies subsequent actions for sending

data. To send blocks at any stage of the algorithm, an auxiliary communicator

equipped with a topology of a square matrix of processes is used.

In the second version of the block algorithm (Fox's algorithm, Sec-

tion 2.9.5, MPI9Matr32–MPI9Matr44), the special stage of initial redistribution

is absent and, as a consequence, each step of calculating the final matrix product

requires more complex actions for sending blocks. In this sending, it is proposed

to use not only a communicator with the topology of a square matrix of

processes, but also communicators generated on its basis and associated with in-

dividual rows and columns of this matrix.

In each of the variants of the block algorithm, it is necessary to define a

new derived datatype that simplifies the transfer of matrix blocks; in Cannon's

Part 1. MPI: description and examples of use 141

algorithm, it is proposed to use the MPI_Send and MPI_Recv functions to transfer

blocks, and in Fox's algorithm, it is proposed to use the collective function

MPI_Alltoallw (provided that the MPI-2 library is used).

In each of the considered matrix multiplication algorithms, three main stag-

es can be distinguished:

 source data scattering stage: initial scattering source matrix fragments

(bands or blocks) to all processes;

 computation stage: sequential computation of fragments of the final ma-

trix product, each step of which is accompanied by the transfer of frag-

ments of the original matrices between processes (for Cannon's algo-

rithm, the computation stage is preceded by an initialization stage,

which performs the initial redistribution of blocks between processes);

 result gathering stage: sending the calculated fragments of the matrix

product to the master process in order to obtain the final matrix.

Each of these stages is associated with a separate task (or series of tasks);

in this case, the initial data in each task is a set of data that must be formed as a

result of the execution of the previous stage. This simplifies the development

and testing of each stage, and also makes it possible to implement separate stag-

es of the algorithm without first developing all the previous stages.

The task series that are associated with the computation stage are the most

complex. The initial task of each series requires the development of the simplest

version of the computation used in the first step of the algorithm, and in subse-

quent tasks, this version is modified to be applicable to each step of the compu-

tational stage. An exception is Cannon's algorithm, for which the actions at each

step do not depend on the step number (see the note to the MPI9Matr25 task).

There are also tasks associated with the modified initial and final stages of

each algorithm using parallel file input-output:

 file data reading stage: each process obtains fragments of the source

matrices directly from the files containing these matrices;

 final file writing stage: each process writes the received fragments of

the final product to the corresponding part of the resulting file.

In addition, for those algorithms that require the use of new datatypes or

communicators with Cartesian topology, additional tasks are provided related to

the creation of the corresponding objects (of type MPI_Datatype or MPI_Comm).

In all tasks devoted to the implementation of various stages of matrix algo-

rithms, as well as the creation of auxiliary objects (new derived datatypes or

communicators), it is necessary to formalize the corresponding actions in the

form of an auxiliary function. Functions that create new objects are used later

when implementing various stages of the algorithm, and functions associated

with the stages themselves are used in final tasks in which it is necessary to im-

plement the corresponding matrix algorithm in full.

142 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Tables 2 and 3 below list the task numbers associated with implementing

the various stages of each algorithm and also provide the names of the functions

that must be developed in these tasks.

Table 2

MPI9Matr group tasks related to band algorithms

Algorithm stage Band algorithm 1 Band algorithm 2

Defining a new

derived datatype

Absent MPI9Matr11:
 Matr2CreateTypeBand
 (p, k, q, t)

Source data

scattering stage

MPI9Matr2:
 Matr1ScatterData()

MPI9Matr12:
 Matr2ScatterData()

Computation stage MPI9Matr3: Matr1Calc()

MPI9Matr4–MPI9Matr5:
 Matr1Calc(I)

MPI9Matr13: Matr2Calc()

MPI9Matr14–MPI9Matr15:
 Matr2Calc(I)

Result gathering

stage

MPI9Matr6:
 Matr1GatherData()

MPI9Matr16:
 Matr2GatherData()

Full implementation

of the algorithm

MPI9Matr7 MPI9Matr17

File data reading

stage

MPI9Matr8:
 Matr1ScatterFile()

MPI9Matr18:
 Matr2ScatterFile()

Final file writing

stage

MPI9Matr9:
 Matr1GatherFile()

MPI9Matr19:
 Matr2GatherFile()

Full implementation

of the algorithm us-

ing file input-output

MPI9Matr10 MPI9Matr20

Table 3

MPI9Matr group tasks related to block algorithms

Algorithm stage Cannon's block algorithm Fox's block algorithm

Defining a new

derived datatype

MPI9Matr21:
 Matr3CreateTypeBlock
 (m0, p0, p, t)

MPI9Matr32:
 Matr4CreateTypeBlock
 (m0, p0, p, t)

Defining new com-

municators with

Cartesian topology

MPI9Matr22:
 Matr3CreateCommGrid
 (comm)

MPI9Matr33:
 Matr4CreateCommGrid
 (comm),
 Matr4CreateCommRow
 (grid, row)
MPI9Matr34:
 Matr4CreateCommCol
 (grid, col)

Source data

scattering stage

MPI9Matr23:
 Matr3ScatterData()

MPI9Matr35:
 Matr4ScatterData()

Part 1. MPI: description and examples of use 143

Table 3 (continued)

Algorithm stage Cannon's block algorithm Fox's block algorithm

Initialization stage MPI9Matr24: Matr3Init() Absent

Computation stage MPI9Matr25–MPI9Matr26:
 Matr3Calc()

MPI9Matr36: Matr4Calc1()

MPI9Matr37: Matr4Calc2()

MPI9Matr38–MPI9Matr39:
 Matr4Calc1(I), Matr4Calc2()

Result gathering

stage

MPI9Matr27:
 Matr3GatherData()

MPI9Matr40:
 Matr4GatherData()

Full implementation

of the algorithm

MPI9Matr28 MPI9Matr41

File data reading

stage

MPI9Matr29:
 Matr3ScatterFile()

MPI9Matr42:
 Matr4ScatterFile()

Final file writing

stage

MPI9Matr30:
 Matr3GatherFile()

MPI9Matr43:
 Matr4GatherFile()

Full implementation

of the algorithm us-

ing file input-output

MPI9Matr31 MPI9Matr44

Another feature of the tasks of the MPI9Matr group is the creation of spe-

cialized template projects, which already contain declarations of global variables

for storing various objects used when solving the task (this feature is noted in

the preamble to this group of tasks, see Section 2.9).

1.4.2. Implementation of a non-parallel matrix multiplication algorithm

Let us start by looking at the introductory task of the MPI9Matr group,

which is intended to introduce the techniques of working with matrices that are

necessary when solving any tasks in this group.

MPI9Matr1. Integers M, P, Q, a matrix A of the size M × P, and a matrix

B of the size P × Q are given in the master process. Find and output a M × Q

matrix C that is the product of the matrices A and B.

The formula for calculating the elements of the matrix C under the as-

sumption that the rows and columns of all matrices are numbered from 0 is as

follows: CI,J = AI,0·B0,J + AI,1·B1,J + … + AI,P–1·BP–1,J, where I = 0, …, M − 1,

J = 0, …, Q − 1.

To store the matrices A, B, C, use one-dimensional arrays of size M·P,

P·Q, and M·Q placing elements of matrices in a row-major order (that is, the

matrix element with indices I and J will be stored in the element of the cor-

responding array with the index I·N + J, where N is the number of columns of

the matrix). The slave processes are not used in this task.

MPI9Matr1.cpp file, created as a template for solving this task, contains the

following code:

144 M. E. Abramyan. Parallel Programming Based on MPI 2.0

#include "pt4.h"
#include "mpi.h"
include <cmath>

int k; // number of processes
int r; // rank of the current process

int m, p, q; // sizes of the given matrices

int *a_, *b_, *c_;
 // arrays to store matrices in the master process

void Solve()
{
 Task("MPI9Matr1");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 k = size;
 r = rank;

}

Let us describe the features of the created template. First, it includes the

standard header <cmath>, since many tasks of the MPI9Matr group require the

use of the rounding functions ceil and floor declared in this header. Second, the

file contains declarations of a set of global variables associated with the task be-

ing solved (the purpose of the variables is indicated in the comments located

next to the declarations). In particular, shorter names are introduced for the

number of processes and the rank of the current process: k and r. The variables k

and r, unlike the variables size and rank added to the template of any program as-

sociated with the PT for MPI-2 taskbook, can be used not only in the Solve func-

tion, but also in auxiliary functions that need to be developed when solving most

of the tasks in the MPI9Matr group.

It should be noted that the names of the pointer variables a_, b_, c_, which

must be associated with the arrays containing the given matrices A and B, as

well as the result of their multiplication C = AB, are provided with the unders-

core character. This is explained by the fact that the shorter names of the va-

riables a, b, c are associated with matrix fragments (bands or blocks) that are

processed in each process. The variables a_, b_, c_, unlike the variables a, b, c,

must be used only in the master process. Besides the MPI9Matr1 task, the va-

riables a_, b_, c_ are required only in those tasks in which fragments of the given

Part 1. MPI: description and examples of use 145

matrices are sent to all processes, as well as fragments of the resulting matrix

product are sent to the master process.

When you launch this template, a taskbook window will appear on the

screen (Fig. 39). To reduce the size of the window, the section with the task

formulation is hidden in this and subsequent figures.

Fig. 39. Acquaintance running of the MPI9Matr1 task

Although the created project (like all other projects for tasks included in the

PT for MPI-2 taskbook) runs as a parallel application, it does not require the use

of slave processes: data input, processing, and output of results must be per-

formed only in the master process.

In all MPI9Matr group tasks, matrices must be stored in one-dimensional

dynamic arrays (row by row). Two-dimensional arrays should not be used in this

case, since this complicates the transfer of matrix fragments between processes.

At the first stage of the solution, we organize the input of the initial data.

To do this, we add the following statements to the Solve function:

if (r != 0)
 return;
pt >> m >> p >> q;
a_ = new int[m*p];
b_ = new int[p*q];
for (int i = 0; i < m*p; i++)

146 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 pt >> a_[i];
for (int i = 0; i < p*q; i++)
 pt >> b_[i];

At the beginning of this fragment, we analyze the rank of the process and

immediately exit the Solve function if the process is not the master process (i. e.,

a process of rank 0). Then the matrix sizes are input and memory is allocated for

the given arrays a_ and b_, after which the elements of the matrices A and B are

read into these arrays. Since the taskbook always passes matrix elements row by

row, it is sufficient to use a single loop to input these elements into each of the

one-dimensional arrays.

When you launch this version of the program, a message will appear in the

taskbook window stating that all initial data are successfully input.

At the second stage of the solution, we allocate memory for the array c_ in-

tended for storing the resulting matrix product C, set its elements equal to zero

and perform matrix multiplication using the formula given in the formulation of

the task (the element of matrix C with indices I and J is obtained as a result of

pairwise multiplication of the elements of the I-th row of matrix A and the J-th

column of matrix B and summing the resulting products):

CI,J = AI,0 B0,J + AI,1 B1,J + … + AI,P –1 BP–1,J

Since all matrices are stored in one-dimensional arrays (by rows), and in-

dexing of both matrix elements and array elements starts from 0, to access a ma-

trix element with indices I and J, one should access the array element with index

I · N + J, where the symbol N denotes the number of matrix columns.

After finding the matrix product, all its elements must be output. Thus, the

second part of the solution looks like this:

c_ = new int [m*q];
for (int i = 0; i < m*q; i++)
 c_[i] = 0;
for (int i = 0; i < m; i++)
 for (int j = 0; j < q; j++)
 for (int n = 0; n < p; n++)
 c_[i*q+j] += a_[i*p+n] * b_[n*q+j];
for (int i = 0; i < m*q; i++)
 pt << c_[i];

Note that to output the obtained results (as well as to input the elements of

the given matrices), it is sufficient to use a single loop; in this case, the taskbook

itself provides a visual display of the resulting matrix in its window.

In the final part of the solution, we free the memory allocated for arrays a_,

b_ and c_:

delete[] a_;
delete[] b_;
delete[] c_;

Part 1. MPI: description and examples of use 147

As a result of launching this version of the program, a message will be dis-

played in the taskbook window stating that the task has been solved.

So, this task allowed us to become familiar with the methods of input and

output of matrix data, and also demonstrated the standard algorithm of matrix

multiplication.

Note that instead of dynamic arrays, when solving tasks on implementing

matrix algorithms, you can use std::vector<T> containers (see Sections 1.2.6 and

1.2.7). This allows you to represent the matrix input-output actions in a more

concise and visual manner. Let us present the corresponding solution to the

MPI9Matr1 task, highlighting the modified or added fragments in bold:

#include "pt4.h"
#include "mpi.h"
#include <cmath>
#include <vector>
#include <algorithm>

int k; // number of processes
int r; // rank of the current process

int m, p, q; // sizes of the given matrices

std::vector<int> a_, b_, c_;
 // arrays to store matrices in the master process

void Solve()
{
 Task("MPI9Matr1");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 k = size;
 r = rank;
 if (r != 0)
 return;
 pt >> m >> p >> q;
 a.assign(ptin_iterator<int>(m*p), ptin_iterator<int>());
 b.assign(ptin_iterator<int>(p*q), ptin_iterator<int>());
 c.assign(m*q, 0);
 for (int i = 0; i < m; i++)
 for (int j = 0; j < q; j++)
 for (int n = 0; n < p; n++)
 c_[i*q+j] += a_[i*p+n] * b_[n*q+j];

148 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 copy(c_.begin(), c_.end(), ptout_iterator<int>());
//or:
// pt << c_;
}

1.4.3. Scattering source data: an example of implementation

Now let us turn to the MPI9Matr2 task, which is related to the implementa-

tion of the first stage of the algorithm, namely, input of the source data in the

master process and sending them to other processes of the parallel application.

This task is the first in the subgroup devoted to the first version of the band algo-

rithm (in which both matrices are divided into horizontal bands).

MPI9Matr2. Integers M, P, Q, a matrix A of the size M × P, and a matrix

B of the size P × Q are given in the master process. In the first variant of the

band algorithm of matrix multiplication, each matrix multiplier is divided into

K horizontal bands, where K is the number of processes (hereinafter bands are

distributed by processes and used to calculate a part of the total matrix prod-

uct in each process).

The band of the matrix A contains NA rows, the band of the matrix B con-

tains NB rows. The numbers NA and NB are calculated as follows:

NA = ceil(M/K), NB = ceil(P/K), where the operation "/" means the division of

real numbers and the function ceil performs rounding up. If the matrix con-

tains insufficient number of rows to fill the last band, then the zero-valued

rows should be added to this band.

Add, if necessary, the zero-valued rows to the initial matrices, save them

in one-dimensional arrays in the master process, and then send the matrix

bands from these arrays to all processes as follows: a band with the index R is

sent to the process of rank R (R = 0, 1, …, K − 1), all the bands AR are of the

size NA × P, all the bands BR are of the size NB × Q. In addition, create a band

CR in each process to store the part of the matrix product C = AB which will

be calculated in this process. Each band CR is of the size NA × Q and is filled

with zero-valued elements.

The bands, like the initial matrices, should be stored in one-dimensional

arrays in a row-major order. To send the matrix sizes, use the MPI_Bcast col-

lective function, to send the bands of the matrices A and B, use the MPI_Scatter

collective function.

Include all the above mentioned actions in a Matr1ScatterData function

(without parameters). As a result of the call of this function, each process will

receive the values NA, P, NB, Q, as well as one-dimensional arrays filled with

the corresponding bands of the matrices A, B, C. Output all obtained data (that

is, the numbers NA, P, NB, Q and the bands of the matrices A, B, C) in each

process after calling the Matr1ScatterData function. Perform the input of initial

data in the Matr1ScatterData function, perform the output of the results in the

Solve function.

Part 1. MPI: description and examples of use 149

Note. To reduce the number of the MPI_Bcast function calls, all matrix siz-

es may be sent as a single array.

The template for this task is as follows:

#include "pt4.h"
#include "mpi.h"
include <cmath>

int k; // number of processes
int r; // rank of the current process

int m, p, q; // sizes of the given matrices
int na, nb; // sizes of the matrix bands

int *a_, *b_, *c_;
 // arrays to store matrices in the master process
int *a, *b, *c;
 // arrays to store matrix bands in each process

void Solve()
{
 Task("MPI9Matr2");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 k = size;
 r = rank;

}

In this case, the global variables additionally include arrays a, b, c for stor-

ing matrix bands in each process, as well as variables na and nb, which determine

the sizes of these bands.

When you launch the created template, the taskbook window will appear

on the screen (Figs. 40–41). The first figure shows the section with the input da-

ta, the second figure shows the section with an example of correct results.

As follows from the figures, the tasks of the MPI9Matr group can use a

large number of given and resulting data (for the variant shown in the figures,

the number of given numbers is 133, and the number of resulting data is 198).

However, despite the large amount of data, all of them are displayed in the task-

book window in a clear form thanks to special formatting and comments.

150 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 40. Acquaintance running of the MPI9Matr 2 task (input data section)

All given data must be input in the master process. The output for each

process must be the band sizes (these values are the same for all processes) and

the bands themselves; the bands for the final product C must be zero. In some

processes, the final rows of the bands associated with the initial matrices A and

B may also be zero. In our case, two zero rows are contained in the band of ma-

trix B associated with the last process (of rank 2).

According to the task condition, all actions related to the input of given da-

ta and their distribution must be implemented in the function Matr1ScatterData

without parameters (global variables declared in the program template must be

used in this function). At the first stage, we will perform data input in the master

process:

void Matr1ScatterData()
{
 if (r == 0)
 {
 int m;
 pt >> m >> p >> q;
 na = (int)ceil(m / (k*1.0));
 nb = (int)ceil(p / (k*1.0));
 a_ = new int[na*k*p];

Part 1. MPI: description and examples of use 151

 b_ = new int[nb*k*q];
 for (int i = 0; i < m*p; i++)
 pt >> a_[i];
 for (int i = m*p; i < na*k*p; i++)
 a_[i] = 0;
 for (int i = 0; i < p*q; i++)
 pt >> b_[i];
 for (int i = p*q; i < nb*k*q; i++)
 b_[i] = 0;
 }
}

Fig. 41. Acquaintance running of the MPI9Matr2 task (example of the correct solution)

152 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Note that it is necessary to input into arrays a_ and b_ not only the elements

of the given matrices, but also the terminating zero rows, which will allow us to

obtain bands of the same size in each process.

The Solve function must be supplemented by calling the Matr1ScatterData

function.

When you run this version of the program, a message will be displayed

stating that all given data are input.

Now let us add the final fragment to the Matr1ScatterData function, which en-

sures data transfer:

MPI_Bcast(&na, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&p, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&nb, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&q, 1, MPI_INT, 0, MPI_COMM_WORLD);
a = new int[na*p];
b = new int[nb*q];
c = new int[na*q];
MPI_Scatter(a_, p*na, MPI_INT, a, p*na, MPI_INT, 0,
 MPI_COMM_WORLD);
MPI_Scatter(b_, q*nb, MPI_INT, b, q*nb, MPI_INT, 0,
 MPI_COMM_WORLD);
for (int i = 0; i < na*q; i++)
 c [i] = 0;

In this fragment, we have not used the recommendation from the task note

and have not placed the transferred sizes in an auxiliary array (the reader is ad-

vised to perform such a modification of the algorithm). In addition to transfer-

ring the bands of matrices A and B, we create a band for the final product C in

each process and set its elements to zero.

The result of launching a new version will not differ from the previous one.

All that remains is to output the results. This action should not be included

in the Matr1ScatterData function, since this function will be used later in the final

MPI9Matr7 task, which does not require outputting the results obtained in the

first stage of the algorithm. Therefore, we will place the output statements at the

end of the Solve function (the added statements are highlighted in bold):

void Solve()
{
 Task("MPI9Matr2");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 k = size;
 r = rank;

Part 1. MPI: description and examples of use 153

 Matr1ScatterData();
 pt << na << p << nb << q;
 for (int i = 0; i < na*p; i++)
 pt << a[i];
 for (int i = 0; i < nb*q; i++)
 pt << b[i];
 for (int i = 0; i < na*q; i++)
 pt << c [i];
}

After running the program, we will see a message that the task has been

solved.

1.4.4. Redistribution of blocks at the initial stage of Cannon's algorithm

When implementing the next stages of matrix multiplication algorithms, we

are not need to perform input of given data in the master process and send them

to other application processes, since the corresponding tasks in each process al-

ready provide the initial data associated with this process.

As an example of such a task, let us consider the MPI9Matr24 task, which

is devoted to the step that must be performed immediately after the initial scat-

tering the source data (in this case, we select the task from the subgroup asso-

ciated with one of the block algorithms, namely Cannon's algorithm).

MPI9Matr24. Integers M0, P0, Q0 and one-dimensional arrays filled with

the corresponding blocks of matrices A, B, C are given in each process (thus,

the given data coincide with the results obtained in the MPI9Matr23 task).

Implement the initial block redistribution used in the Cannon's algorithm for

block matrix multiplication.

To do this, define a Cartesian topology for all processes as a two-

dimensional periodic K0 × K0 grid, where K0·K0 is equal to the number of

processes (ranks of processes should not be reordered), and perform a cyclic

shift of the blocks AR given in all processes of each grid row I0 by I0 positions

left (that is, in descending order of ranks of processes), I0 = 0, …, K0 − 1, and

perform a cyclic shift of the blocks BR given in all processes of each grid col-

umn J0 by J0 positions up (that is, in descending order of ranks of processes),

J0 = 0, …, K0 − 1.

To create the MPI_COMM_GRID communicator associated with the Cartesian

topology, use the Matr3CreateCommGrid function implemented in the

MPI9Matr22 task. Use the MPI_Cart_coords, MPI_Cart_shift, MPI_Sendrecv_replace

functions to perform the cyclic shifts (compare with MPI9Matr22).

Include all the above mentioned actions in a Matr3Init function (without pa-

rameters). Output the received blocks AR and BR in each process; perform data

input and output in the Solve function.

The template for this task is as follows:

#include "mpi.h"

154 M. E. Abramyan. Parallel Programming Based on MPI 2.0

#include "pt4.h"
#include <cmath>

int k; // number of processes
int r; // rank of the current process

int m, p, q; // sizes of the given matrices
int m0, p0, q0; // sizes of the matrix blocks
int k0; // order of the Cartesian grid (equal to sqrt(k))

int *a_, *b_, *c_;
 // arrays to store matrices in the master process
int *a, *b, *c;
 // arrays to store matrix blocks in each process

MPI_Datatype MPI_BLOCK_A;
 // datatype for the block of the matrix A
MPI_Datatype MPI_BLOCK_B;
 // datatype for the block of the matrix B
MPI_Datatype MPI_BLOCK_C;
 // datatype for the block of the matrix C

MPI_Comm MPI_COMM_GRID = MPI_COMM_NULL;
// communicator associated with a two-dimensional Cartesian grid

void Solve()
{
 Task("MPI9Matr24");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 k = size;
 r = rank;
 k0 = (int)floor(sqrt((double)k) + 0.1);

}

The global variables already described in the template include not only the

arrays a, b, c for storing the matrix blocks in each process and the variables m0,

p0, q0 that determine the sizes of these blocks, but also objects associated with

the new datatypes and communicators used in Cannon's algorithm. Note that in

the tasks for implementing block algorithms, the number of processes K is a per-

fect square: K = K0·K0; in this case, a special variable k0 is provided for storing

Part 1. MPI: description and examples of use 155

the value of K0 (the order of the Cartesian grid of processes), which already con-

tains the required value (see the last statement in the Solve function).

When you launch the created template, a taskbook window similar to the

one shown in Figs. 42–43 will appear on the screen (the first figure contains the

initial part of the section with the input data, and the second one contains a sec-

tion with an example of correct results). The data are distributed among

9 processes, K0 (the order of the Cartesian grid) is 3.

Fig. 42. Acquaintance running of the MPI9Matr24 task (input data section)

156 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 43. Acquaintance running of the MPI9Matr24 task (example of the correct solution)

The actions required to input the given data are no different from those

previously discussed in MPI9Matr1 and MPI9Matr2, but now they must be per-

formed for each of the processes in the parallel application (the following frag-

ment must be added to the end of the Solve function):

pt >> m0 >> p0 >> q0;
a = new int[m0*p0];
b = new int[p0*q0];
c = new int[m0*q0];
for (int i = 0; i < m0*p0; i++)
 pt >> a[i];
for (int i = 0; i < p0*q0; i++)
 pt >> b[i];
for (int i = 0; i < m0*q0; i++)
 pt >> c[i];

It should be noted that the contents of the blocks of matrix C are not used

in this task, but they must be input, since all tasks associated with the matrix

Part 1. MPI: description and examples of use 157

product computation stage offer the same set of given data. This set coincides

with the results obtained at the stage of scattering the initial data to all applica-

tion processes (see the solution of the MPI9Matr2 task given in Section 1.4.3).

When you launch a new version of the program, a message will be dis-

played stating that all given data are input.

Let us turn to the implementation of the initial redistribution of blocks.

First of all, it is necessary to implement the auxiliary function

Matr3CreateCommGrid, which creates a communicator with the topology of a two-

dimensional square cyclic grid of order k0. This function is associated with a

special task MPI9Matr22, which is, in fact, a simpler version of the task

MPI9Matr24. Since we did not solve the MPI9Matr22 task, the function

Matr3CreateCommGrid has to be implemented during the solving our task, using the

recommendations given in the MPI9Matr22 task:

void Matr3CreateCommGrid(MPI_Comm &comm)
{
 int dims[] = {k0, k0},
 periods[] = {1, 1};
 MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm);
}

In the declaration of the Matr3CreateCommGrid function, we used a global va-

riable k0, which contains the order of the Cartesian grid.

Now we describe the main function Matr3Init. First, it is necessary to create a

communicator with the required Cartesian topology (note that the variable

MPI_COMM_GRID associated with this communicator has already been declared in

the template program). Then it is necessary to determine the coordinates of the

current process in this communicator using the MPI_Cart_coords function. The

coordinates will be stored in the auxiliary array coord with two elements: coord[0],

coord[1]. Using these coordinates, it is necessary to transfer the blocks of matrix A

to coord[0] positions to the left, i. e. in the direction of decreasing the second

coordinate of the grid (corresponding to the column numbers), taking into ac-

count its cyclicity along this coordinate, and the blocks of matrix B to coord[1]

positions up, i. e. in the direction of decreasing the first coordinate of the grid

(corresponding to the row numbers), also taking into account its cyclicity. To

satisfy the conditions of the task, the ranks of the sending and receiving

processes should be determined using the MPI_Cart_shift function, and the transfer

itself should be carried out using the MPI_Sendrecv_replace function (by this func-

tion, the received block will be copied to the location of the block sent to anoth-

er process):

void Matr3Init()
{
 Matr3CreateCommGrid(MPI_COMM_GRID);
 int coord[2];
 MPI_Cart_coords(MPI_COMM_GRID, r, 2, coord);

158 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 int src, dst;
 MPI_Cart_shift(MPI_COMM_GRID, 1, -coord[0], &src, &dst);
 MPI_Sendrecv_replace(a, m0*p0, MPI_INT, dst, 0, src, 0,
 MPI_COMM_GRID, MPI_STATUS_IGNORE);
 MPI_Cart_shift(MPI_COMM_GRID, 0, -coord[1], &src, &dst);
 MPI_Sendrecv_replace(b, p0*q0, MPI_INT, dst, 0, src, 0,
 MPI_COMM_GRID, MPI_STATUS_IGNORE);
}

In the Matr3Init function, we used, along with the local variables coord, src

and dst, the global variables MPI_COMM_GRID, r (the rank of the current process),

a, b (arrays with blocks of matrices A and B), and m0, p0, q0 (the sizes of the

block data).

It remains to call this function in the Solve function and output the new con-

tents of the matrix blocks A and B in each process. Here is the final content of

the Solve function (the added statements are highlighted in bold):

void Solve()
{
 Task("MPI9Matr24");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 k = size;
 r = rank;
 k0 = (int)floor(sqrt((double)k) + 0.1);
 pt >> m0 >> p0 >> q0;
 a = new int[m0*p0];
 b = new int[p0*q0];
 c = new int[m0*q0];
 for (int i = 0; i < m0*p0; i++)
 pt >> a[i];
 for (int i = 0; i < p0*q0; i++)
 pt >> b[i];
 for (int i = 0; i < m0*q0; i++)
 pt >> c[i];
 Matr3Init();
 for (int i = 0; i < m0*p0; i++)
 pt << a[i];
 for (int i = 0; i < p0*q0; i++)
 pt << b[i];
}

After launching this version of the program, a message will be displayed in

the taskbook window stating that the task has been solved.

Part 1. MPI: description and examples of use 159

Note 1. The meaning of the initializing transfer of blocks of matrices A and

B is that, as a result of this transfer, each process will receive a pair of

blocks, the multiplication of which will determine the summand for the

elements of the corresponding block of the matrix product C.

Note 2. The Matr3Init function implemented in this task will be used further

in tasks MPI9Matr28 and MPI9Matr31, which are devoted to the implemen-

tation of Cannon's algorithm in full.

1.4.5. Result gathering stage: an example of file-based output
implementation

At the final stage of any matrix algorithm, it is necessary to combine the

fragments of the final matrix product C obtained in different processes. The re-

sult of such a combination may be, for example, an array obtained in the master

process and containing all the elements of the matrix C (which can be displayed

on the screen or saved in a file). When implementing this stage using the MPI-2

library, you can immediately write fragments of the matrix C to a binary file, us-

ing the parallel file input-output tools that appeared in this standard (see Sec-

tions 1.3.2–1.3.3). This avoids additional actions associated with sending the re-

sulting data to the master process.

As an example, let us consider the MPI9Matr19 task, which requires saving

in the resulting file the matrix product obtained using the second version of the

band algorithm.

MPI9Matr19. Integers NA, NB and one-dimensional arrays filled with the

(NA·K) × NB bands CR are given in each process (the given bands CR are ob-

tained as a result of K steps of the band algorithm of matrix multiplication—

see the MPI9Matr15 task). In addition, an integer M (the number of rows of

the matrix product) and the name of file (to store this product) are given in the

master process. The number of columns Q of the matrix product is a multiple

of the number of processes K (and, therefore, is equal to NB·K).

Send the number M and the file name to all processes using the MPI_Bcast

function. Write all the parts of the matrix product contained in the bands CR to

the resulting file, which will eventually contain a matrix C of the size M × Q.

To write the bands to the file, set the appropriate file view using the

MPI_File_set_view function and the MPI_BAND_C filetype defined with the

Matr2CreateTypeBand function (see the MPI9Matr11 task), and then use the

MPI_File_write_all function.

Include all these actions (namely, the input of file name, sending number

M and the file name, and writing all bands to the file) in a Matr2GatherFile func-

tion. Perform the input of all initial data, except the file name, in the Solve

function.

Note. When writing data to the resulting file, it is necessary to take into

account that the bands CR may contain final zero-valued rows that are not re-

160 M. E. Abramyan. Parallel Programming Based on MPI 2.0

lated to the resulting matrix product (the number M should be sent to all

processes in order to control this situation).

The template for this task contains the same global variables as the tem-

plate for the MPI9Matr2 task given in Section 1.4.3, in particular, k (the number

of processes), r (the rank of the current process), m, p, q, na, nb (the sizes of the

matrices A, B, C and their bands), a, b, c (arrays for storing the bands of the ma-

trices A, B, C in each process). In addition, the template includes the variables

MPI_BAND_B and MPI_BAND_C intended for storing new datatypes associated with

the vertical bands of the matrices B and C.

Fig. 44 shows the taskbook window that will appear when you launch the

created template.

Fig. 44. Acquaintance running of the MPI9Matr19 task

Part 1. MPI: description and examples of use 161

This task does not require outputting the results using the pt output stream;

it only requires writing the elements of the resulting matrix C to a binary integer

file (note that the indicators section of the taskbook window does not specify the

number of data elements to be output). The taskbook displays the contents of the

created file and checks if it is correct. Note that the master process specifies ad-

ditional input data that are absent in the slave processes, namely, the number of

rows M of the resulting matrix C and the name of the file for storing this matrix.

It should also be noted that the bands of the matrix C given in each process con-

tain not only its elements, but also "extra" zero rows that should not be saved in

the resulting file (the presence of these rows is explained by the fact that the

product NA K, where K is the number of processes, in this case exceeds the

number of rows M of the matrix C).

At the first stage of the solution, as usual, it is necessary to organize the in-

put of the given data. The task condition states that all the given data, except for

the file name (which is given in the master process), must be input in the Solve

function. It should also be taken into account that the number of rows M of the

resulting matrix C is also given only in the master process. The file name should

be input at the beginning of the Matr2GatherFile function. The requirement to input

all the data, except for the file name, in the Solve function is related to the fact

that when implementing the matrix multiplication algorithm in full, all this data

will already have been input (or calculated) in the corresponding processes be-

fore calling the Matr2GatherFile function, so their repeated input in the

Matr2GatherFile function would lead to incorrect execution of the program.

So, let us implement the Matr2GatherFile function, in which we input the file

name in the master process, and add to the Solve function a fragment containing

the input of other data and the call to the Matr2GatherFile function (the

Matr2GatherFile function and the statements added to the Solve function are hig-

hlighted in bold):

void Matr2GatherFile()
{
 char cname[12];
 if (r == 0)
 pt >> cname;
}

void Solve()
{
 Task("MPI9Matr19");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);

162 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 k = size;
 r = rank;
 pt >> na >> nb;
 c = new int[na*k*nb];
 for (int i = 0; i < na*k*nb; i++)
 pt >> c[i];
 if (r == 0)
 pt >> m;
 Matr2GatherFile();
}

When declaring the file name cname, we took into account that this name

consists of no more than 11 characters (see the preamble to the MPI9Matr task

group, Section 2.9).

After running this version of the program, we will receive a message that

all the initial data are input, but the resulting file has not been created.

The remaining actions will be implemented in the Matr2GatherFile function.

First of all, it is necessary to transfer the number M and the file name to all

processes:

MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(cname, 12, MPI_CHAR, 0, MPI_COMM_WORLD);

Then you need to declare the file variable f and open the file with the given

name using the MPI_File_open function. It is advisable to immediately add a func-

tion for closing this file at the end of the Matr2GatherFile function:

MPI_File f;
MPI_File_open(MPI_COMM_WORLD, cname,
 MPI_MODE_WRONLY | MPI_MODE_CREATE, MPI_INFO_NULL, &f);

MPI_File_close(&f);

All actions with the file must be performed between calls to the

MPI_File_open and MPI_File_close functions.

Running this version of the program will result in a new message which, in

addition to informing you that all the input data are input, will also note that the

resulting file is empty. This indicates that the transfer of the file name to all

processes and the actions to create and close it in each process have been suc-

cessfully completed.

It remains to ensure that the bands of the resulting matrix are correctly writ-

ten to the created file. To do this, it is necessary to define a special file datatype,

since each process must write to the file not a set of sequentially located ele-

ments (as would be the case if the process contained matrix rows), but several

fragments with empty spaces (each fragment corresponds to the elements of a

separate row, and the spaces provide a transition to the corresponding elements

of the next row). Each band CR has the size (NA·K) × NB; thus, it contains NB ad-

Part 1. MPI: description and examples of use 163

jacent columns. This means that the fragment for each row must contain NB ad-

jacent elements. What is the number of such fragments? It would seem that it

should be equal to the number of rows in the band CR, i. e. the value NA·K, but

we should not forget that the number of rows in the band can be greater than the

number of rows M in the resulting matrix (the "extra" rows are zero and should

not be written to the resulting file). Thus, the number of fragments written to the

file should be equal to M.

So, each process must write M fragments into the file with NB consecutive

integers in each fragment, and the distance between the initial positions of adja-

cent fragments must be equal to Q, i. e. the number of columns of the resulting

matrix (this will lead to the fact that the fragments written into the file by each

process will form columns of the resulting matrix).

Such compound data types (associated with a set of adjacent matrix col-

umns) are also required in the implementation of other stages of the band algo-

rithm using vertical bands. In particular, such a data type simplifies scattering

the bands of the given matrix B (which are also sets of columns) and gathering

the bands of the resulting matrix C in the master process (if the algorithm does

not use file input-output). Therefore, it would be useful to describe an auxiliary

function Matr2CreateTypeBand for the creation of types associated with vertical

bands.

The implementation of the Matr2CreateTypeBand function is the subject of a

special task MPI9Matr11, which is the first in a series of tasks related to the

second variant of the band algorithm (see Section 2.9.3). Since we did not solve

the MPI9Matr11 task, the Matr2CreateTypeBand function has to be implemented

when solving our task, using the recommendations given in the MPI9Matr11

task (recall that we encountered a similar situation earlier in Section 1.4.4 when

solving the MPI9Matr24 task, in which we had to implement the auxiliary

Matr3CreateCommGrid function, which defines a new communicator with a Carte-

sian topology).

As stated in MPI9Matr11, to implement a derived datatype associated with

matrix columns, the MPI_Type_vector function should be used. Let us recall the

meaning of the first three parameters of this function (all of them are of integer

type):

count – the number of blocks containing consecutive elements;

blocklen – the size of each block (in elements);

stride – the distance between the starting positions of adjacent blocks (also

in elements).

The next parameter oldtype defines the base type of the elements (in our

case, it is MPI_INT), and the last parameter newtype is an output parameter: it is a

pointer to the created datatype.

When implementing the auxiliary function Matr2CreateTypeBand, it is more

convenient to use parameters related to the characteristics of vertical bands. In

164 M. E. Abramyan. Parallel Programming Based on MPI 2.0

the MPI9Matr11 task, it is proposed to use the parameters p, n, q, where p and n

determine the number of rows and columns of the band, and q is the number of

columns of the matrix from which this band is extracted. It is easy to see that

these parameters exactly correspond to the first three parameters of the

MPI_Type_vector function. Therefore, we obtain the following implementation of

the Matr2CreateTypeBand function:

void Matr2CreateTypeBand(int p, int n, int q, MPI_Datatype &t)
{
 MPI_Type_vector(p, n, q, MPI_INT, &t);
 MPI_Type_commit(&t);
}

The MPI_Type_commit function call included in this function is required if the

new datatype must be used in data transfer. When solving the MPI9Matr19 task,

the call to MPI_Type_commit is not required, but we have provided this implemen-

tation of the Matr2CreateTypeBand function because it can be used in all tasks as-

sociated with the second variant of the band algorithm.

Having implemented the Matr2CreateTypeBand function, let us define the file

view. The MPI_File_set_view function, which was previously discussed in detail in

Section 1.3.3, is intended for this definition. To define the file view, we must

specify the initial offset disp (in bytes), the elementary type etype (in our case,

MPI_INT), and the file datatype filetype, which can be obtained using the

Matr2CreateTypeBand function. As for the initial offset, it should be equal to int_sz *

nb * r, where r is the process rank, int_sz is the size of the base type MPI_INT in

bytes, and nb is the number of columns in each band. The easiest way to deter-

mine the value of int_sz is to use the MPI_Type_size function. Thus, the fragment

of the Matr2GatherFile function associated with defining the file view will look as

follows:

Matr2CreateTypeBand(m, nb, nb*k, MPI_BAND_C);
int int_sz;
MPI_Type_size(MPI_INT, &int_sz);
MPI_File_set_view(f, int_sz*nb*r, MPI_INT, MPI_BAND_C,
 "native", MPI_INFO_NULL);

Recall that the variable MPI_BAND_C does not need to be declared, since it is

already declared in our program as a global variable. When defining the type

MPI_BAND_C, we took into account that the vertical band with elements of the

matrix C (without terminating zero rows) has a size of M × NB in each process,

and the number of columns Q of the matrix C is equal to the product NB·K,

where K is the number of processes.

Once the file view has been defined, we can implement writing all elements

of each band to the file with a single call to the collective function

MPI_File_write_all:

MPI_File_write_all(f, c, m*nb, MPI_INT, MPI_STATUS_IGNORE);

Part 1. MPI: description and examples of use 165

In this call, we specify the array containing the band and the number of its

elements that need to be written to the file (recall that the array can also contain

terminating zero elements that do not need to be written to the file).

Let us present the final version of the Matr2GatherFile function. In this ver-

sion, we highlight in bold the operators associated with defining the file view

and writing data to the file:

void Matr2GatherFile()
{
 char cname[12];
 if (r == 0)
 pt >> cname;
 MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);
 MPI_Bcast(cname, 12, MPI_CHAR, 0, MPI_COMM_WORLD);
 MPI_File f;
 MPI_File_open(MPI_COMM_WORLD, cname,
 MPI_MODE_WRONLY | MPI_MODE_CREATE, MPI_INFO_NULL, &f);
 Matr2CreateTypeBand(m, nb, nb*k, MPI_BAND_C);
 int int_sz;
 MPI_Type_size(MPI_INT, &int_sz);
 MPI_File_set_view(f, int_sz*nb*r, MPI_INT, MPI_BAND_C,
 "native", MPI_INFO_NULL);
 MPI_File_write_all(f, c, m*nb, MPI_INT, MPI_STATUS_IGNORE);
 MPI_File_close(&f);
}

After launching this version of the program, a message will be displayed in

the taskbook window stating that the task has been solved.

1.5. Additional techniques for developing parallel programs

1.5.1. Debugging parallel programs using taskbook tools

The examples of solving parallel programming tasks discussed above show

that using the taskbook ensures a significant acceleration of parallel program

development. This is achieved primarily due to a special mechanism that ensures

a quick launch of a parallel program directly from the integrated environment. In

addition, debugging a parallel program is simplified by using the Show function,

which ensures displaying any required data from various processes in the task-

book window and subsequently viewing the resulting debug information for

both a separate process and all processes of the parallel program.

The noted features of the taskbook may be useful not only in solving tasks

on parallel MPI programming, but also in developing general-purpose parallel

programs. Therefore, along with the "usual" groups of tasks that allow you to

study the capabilities of the MPI library, the Programming Taskbook for MPI-2

includes a special group MPIDebug, intended not for solving specific tasks, but

for debugging any parallel program. This group consists of 36 "tasks", and task

166 M. E. Abramyan. Parallel Programming Based on MPI 2.0

number N ensures the launch of a parallel program with N processes. Thus, if

you create a template program for one of the tasks of the MPIDebug group, then

when you launch this program from the integrated environment, it will automat-

ically be executed in parallel mode with the required number of processes.

Let us use MPIDebug group to develop a program that implements one of

the parallel algorithms for multiplying a matrix A by a vector b, the so-called

self-scheduling algorithm (see [10, Chapter 7]), in which the master process

coordinates the work of slave processes, sending them the initial data sets and

receiving results.

The initial data are input in the master process. Then the master process

sends the vector b and one row of the matrix A to each slave process. After this,

a loop is started in which the master process receives the results of multiplying a

row of the matrix by a vector from the slave processes and sends them the re-

maining rows of the matrix A. The loop ends when the master process sends all

the rows of the matrix A to the slave processes and receives all the elements of

the resulting vector Ab from them.

It should be noted that when implementing this algorithm, it is impossible

to determine in advance which matrix rows will be processed by a particular

slave process. If, for example, the program uses 5 processes, then matrix row

number 5 will be sent to the process (of slave processes with ranks from 1 to 4)

that first completes the multiplication of the row sent to it earlier and returns the

result to the master process.

To test the algorithm, we will process a matrix A of order N = 20, each line

of which contains identical elements equal to the ordinal numbers of their rows:

aij = i for i, j = 1, …, N. Vector b of the same size N will contain identical ele-

ments equal to 0.01. Thus, the elements of vector c = Ab will have the form

ci = 0.2i, i = 1, …, N:

с = (0.2, 0.4, 0.6, …, 3.8, 4.0)

For the algorithm to work correctly, it is necessary that the number of slave

processes does not exceed the order of the matrix N, since at the initial stage of

the algorithm, each slave process is sent one of the rows of this matrix. For cer-

tainty, we choose the number of processes of our program equal to 10; in order

to ensure automatic launch of a parallel program with this number of processes,

we should use the MPIDebug10 task.

When you run the template program for the MPIDebug10 task, the task-

book window will look like the one shown in Fig. 45. Instead of the initial and

resulting data, this window displays a description of those taskbook tools that

are intended for outputting debug information.

Part 1. MPI: description and examples of use 167

Fig. 45. Acquaintance running of the MPIDebug10 task

Let us supplement the created template with a fragment that describes all

the necessary variables (including those that will be required at the next stages

of the algorithm implementation). Then the creation of the initial matrix A and

vector b is performed in the master process, and vector b is sent to all slave

processes (added operators are highlighted in bold):

void Solve()
{
 Task("MPIDebug10");
 int flag;
 MPI_Initialized(&flag);
 if (flag == 0)
 return;
 int rank, size;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 const int n = 20;
 double a[n][n], b[n], c[n], d;
 int cur_row;
 MPI_Status s;
 // Creation of initial data in the master process:
 if (rank == 0)
 for (int i = 0; i < n; i++)
 {
 b[i] = 0.01;
 for (int j = 0; j < n; j++)

168 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 a[i][j] = i + 1;
 }
 // Sending vector b to all processes:
 MPI_Bcast(b, n, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 ShowLine("Vector b:..., ", b[n-1]);
}

A two-dimensional static array (array of arrays) is used to store the matrix,

since the order of the matrix (N = 20) is known in advance.

When you launch a new version of the program, a debug section will ap-

pear in the taskbook window (Fig. 46).

Fig. 46. Debug data output

Since the new version of the program uses calls to the ShowLine function,

the taskbook window displays a debug section with information that was output

using this function. In our case, each of the processes (including the master

process) output information about successful creation of the vector b. For brevi-

Part 1. MPI: description and examples of use 169

ty, only the value of the last element of the b array (with index n – 1) is output. To

emphasize that the only last element is displayed, an ellipsis is placed before it.

Since the main sections of the taskbook window in our case contain only

reference information, it is convenient to hide all sections of the window except

the debug section. If the taskbook window is already displayed on the screen,

then to do this, it is enough to press the key combination [Ctrl]+[Space]. How-

ever, it is even more convenient to automatically hide unnecessary sections

when displaying the taskbook window on the screen. To do this, it is enough to

call the auxiliary function HideTask anywhere in the program. If we add a call to

this function to the end of our program and re-run it, then the taskbook window

will contain only the debug section (Fig. 47).

Fig. 47. Hiding the main sections of the taskbook window when displaying debug data

Let us return to the implementation of the matrix-vector multiplication al-

gorithm and present its final part:

if (rank == 0)
{
 // Sending the initial rows of matrix A to slave processes:
 for (int i = 1; i < size; i++)
 {
 MPI_Send(a[i-1], n, MPI_DOUBLE, i, i-1, MPI_COMM_WORLD);
 Show("Sending initial data: dest=", i);
 Show("tag=", i - 1);
 ShowLine("->..., ", a[i - 1][0]);
 }
 cur_row = size - 2;
 // Receiving the elements of the product
 // and sending the remaining rows:
 for (int i = 0; i < n; i++)
 {
 MPI_Recv(&d, 1, MPI_DOUBLE, MPI_ANY_SOURCE,
 MPI_ANY_TAG, MPI_COMM_WORLD, &s);
 Show("Receiving result: source=", s.MPI_SOURCE);
 Show("tag=", s.MPI_TAG, 2);
 Show("<- ", d);
 c[s.MPI_TAG] = d;

170 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 cur_row++;
 if (cur_row < n)
 MPI_Send(a[cur_row], n, MPI_DOUBLE, s.MPI_SOURCE,
 cur_row, MPI_COMM_WORLD);
 else
 MPI_Send(&d, 1, MPI_DOUBLE, s.MPI_SOURCE,
 cur_row, MPI_COMM_WORLD);
 Show("| Sending data: dest=", s.MPI_SOURCE);
 ShowLine(" tag = ", cur_row, 2);
 }
 // Output of the obtained vector Ab:
 SetPrecision(1);
 ShowLine("Resulting vector Ab:");
 for (int i = 0; i < n; i++)
 Show(c[i], 3);
}
else
 // Data processing in slave processes:
 while (true)
 {
 MPI_Recv(c, n, MPI_DOUBLE, 0, MPI_ANY_TAG,
 MPI_COMM_WORLD, &s);
 Show("Receiving data: tag=", s.MPI_TAG, 2);
 if (s.MPI_TAG >= n)
 break;
 d = 0;
 for (int i = 0; i < n; i++)
 d += c[i] * b[i];
 MPI_Send(&d, 1, MPI_DOUBLE, 0, s.MPI_TAG,
 MPI_COMM_WORLD);
 Show("| Sending result: tag=", s.MPI_TAG, 2);
 ShowLine ("->", d);
 }

This part consists of two large fragments, the first of which must be ex-

ecuted in the master process and the second must be executed in each of the

slave processes.

The master process first sends one row of the given matrix to each slave

process and initializes the variable cur_row, which contains the index of the last

processed (i. e., sent to the slave process) matrix row; rows are indexed from ze-

ro. After this, the main loop is started, in which the master process receives the

resulting elements of the product from the slave processes and sends them the

next rows of the matrix.

Since the order of receiving data from slave processes is not determined,

the source parameter of the MPI_Recv function is set to MPI_ANY_SOURCE, which

ensures receiving data from any process that sent them. In the message tag, the

slave process passes additional information to the master process: the index of

Part 1. MPI: description and examples of use 171

the calculated product element. In order for the master process to be able to re-

ceive messages with any tags, the msgtag parameter of the MPI_Recv function is

set to MPI_ANY_TAG. The master process receives information about the rank of

the process that sent the message and about the message tag using MPI_SOURCE

and MPI_TAG fields of the structure s of type MPI_Status.

After receiving a message from a slave process, the master process sends it

a new message, which either contains the next unprocessed row of the matrix (if

such rows still remain) or a special termination indicator. If the next row is sent,

then the tag of the message being sent is assumed to be equal to the row index

cur_row; if the termination indicator is sent, then the tag contains a number that is

greater than the maximum matrix row index.

After the for loop completes, all elements of the calculated product are out-

put in the master process.

In the slave process, a loop is started, in which the next row of the matrix is

received from the master process (its index can be obtained from the message

tag), then the received matrix row is multiplied by the previously received vec-

tor, and finally, the result of the multiplication is sent to the master process. If,

when receiving the next message from the master process, a tag is received that

exceeds the number of the maximum index of the matrix row, then an immediate

exit from the loop occurs, and the slave process completes its work.

All stages of the algorithm described above are accompanied by debug out-

put. For this, the Show function and its ShowLine version are used (the ShowLine

function provides a transition to a new line in the debug section after data out-

put). Before outputting the next numeric element, as a rule, a string comment

preceding it is output; the amount of screen positions that should be used for da-

ta output is additionally indicated (this ensures vertical alignment of the output

data).

Before the output of the elements of the resulting product in the master

process, the SetPrecision(1) function is called, ensuring that all subsequent data of

the real type is output with one digit after the decimal separator. Note that by de-

fault the number of fractional digits is assumed to be equal to 2, but using this

value it would not be possible to output all the resulting elements in one line,

since the width of the output data area in the debug section is equal to 80 posi-

tions.

When formatting the output, it was taken into account that the data output

by the Show or ShowLine function is separated by one space from the previously

output data located on the same screen line.

Let us present the debug data that was obtained when the program was

launched (recall that before the first symbol "|" the rank of the process that out-

put the debug information is indicated, and before the symbol ">" the ordinal

number of the output line is indicated; in this case, the lines associated with dif-

ferent processes are numbered independently).

172 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 0| 1> Vector b: ..., 0.01
 0| 2> Sending initial data: dest=1 tag=0 -> ..., 1.00
 0| 3> Sending initial data: dest=2 tag=1 -> ..., 2.00
 0| 4> Sending initial data: dest=3 tag=2 -> ..., 3.00
 0| 5> Sending initial data: dest=4 tag=3 -> ..., 4.00
 0| 6> Sending initial data: dest=5 tag=4 -> ..., 5.00
 0| 7> Sending initial data: dest=6 tag=5 -> ..., 6.00
 0| 8> Sending initial data: dest=7 tag=6 -> ..., 7.00
 0| 9> Sending initial data: dest=8 tag=7 -> ..., 8.00
 0| 10> Sending initial data: dest=9 tag=8 -> ..., 9.00
 0| 11> Receiving result: source=1 tag= 0 <- 0.20 | Sending data: dest=1 tag= 9
 0| 12> Receiving result: source=2 tag= 1 <- 0.40 | Sending data: dest=2 tag=10
 0| 13> Receiving result: source=3 tag= 2 <- 0.60 | Sending data: dest=3 tag=11
 0| 14> Receiving result: source=1 tag= 9 <- 2.00 | Sending data: dest=1 tag=12
 0| 15> Receiving result: source=2 tag=10 <- 2.20 | Sending data: dest=2 tag=13
 0| 16> Receiving result: source=3 tag=11 <- 2.40 | Sending data: dest=3 tag=14
 0| 17> Receiving result: source=2 tag=13 <- 2.80 | Sending data: dest=2 tag=15
 0| 18> Receiving result: source=1 tag=12 <- 2.60 | Sending data: dest=1 tag=16
 0| 19> Receiving result: source=3 tag=14 <- 3.00 | Sending data: dest=3 tag=17
 0| 20> Receiving result: source=1 tag=16 <- 3.40 | Sending data: dest=1 tag=18
 0| 21> Receiving result: source=2 tag=15 <- 3.20 | Sending data: dest=2 tag=19
 0| 22> Receiving result: source=3 tag=17 <- 3.60 | Sending data: dest=3 tag=20
 0| 23> Receiving result: source=1 tag=18 <- 3.80 | Sending data: dest=1 tag=21
 0| 24> Receiving result: source=2 tag=19 <- 4.00 | Sending data: dest=2 tag=22
 0| 25> Receiving result: source=6 tag= 5 <- 1.20 | Sending data: dest=6 tag=23
 0| 26> Receiving result: source=7 tag= 6 <- 1.40 | Sending data: dest=7 tag=24
 0| 27> Receiving result: source=8 tag= 7 <- 1.60 | Sending data: dest=8 tag=25
 0| 28> Receiving result: source=9 tag= 8 <- 1.80 | Sending data: dest=9 tag=26
 0| 29> Receiving result: source=5 tag= 4 <- 1.00 | Sending data: dest=5 tag=27
 0| 30> Receiving result: source=4 tag= 3 <- 0.80 | Sending data: dest=4 tag=28
 0| 31> Resulting vector Ab:
 0| 32> 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
 1| 1> Vector b: ..., 0.01
 1| 2> Receiving data: tag= 0 | Sending result: tag= 0 -> 0.20
 1| 3> Receiving data: tag= 9 | Sending result: tag= 9 -> 2.00
 1| 4> Receiving data: tag=12 | Sending result: tag=12 -> 2.60
 1| 5> Receiving data: tag=16 | Sending result: tag=16 -> 3.40
 1| 6> Receiving data: tag=18 | Sending result: tag=18 -> 3.80
 1| 7> Receiving data: tag=21
 2| 1> Vector b: ..., 0.01
 2| 2> Receiving data: tag= 1 | Sending result: tag= 1 -> 0.40
 2| 3> Receiving data: tag=10 | Sending result: tag=10 -> 2.20
 2| 4> Receiving data: tag=13 | Sending result: tag=13 -> 2.80
 2| 5> Receiving data: tag=15 | Sending result: tag=15 -> 3.20
 2| 6> Receiving data: tag=19 | Sending result: tag=19 -> 4.00
 2| 7> Receiving data: tag=22
 3| 1> Vector b: ..., 0.01
 3| 2> Receiving data: tag= 2 | Sending result: tag= 2 -> 0.60
 3| 3> Receiving data: tag=11 | Sending result: tag=11 -> 2.40
 3| 4> Receiving data: tag=14 | Sending result: tag=14 -> 3.00
 3| 5> Receiving data: tag=17 | Sending result: tag=17 -> 3.60
 3| 6> Receiving data: tag=20
 4| 1> Vector b: ..., 0.01
 4| 2> Receiving data: tag= 3 | Sending result: tag= 3 -> 0.80
 4| 3> Receiving data: tag=28
 5| 1> Vector b: ..., 0.01
 5| 2> Receiving data: tag= 4 | Sending result: tag= 4 -> 1.00
 5| 3> Receiving data: tag=27
 6| 1> Vector b: ..., 0.01
 6| 2> Receiving data: tag= 5 | Sending result: tag= 5 -> 1.20
 6| 3> Receiving data: tag=23
 7| 1> Vector b: ..., 0.01
 7| 2> Receiving data: tag= 6 | Sending result: tag= 6 -> 1.40
 7| 3> Receiving data: tag=24

Part 1. MPI: description and examples of use 173

 8| 1> Vector b: ..., 0.01
 8| 2> Receiving data: tag= 7 | Sending result: tag= 7 -> 1.60
 8| 3> Receiving data: tag=25
 9| 1> Vector b: ..., 0.01
 9| 2> Receiving data: tag= 8 | Sending result: tag= 8 -> 1.80
 9| 3> Receiving data: tag=26

It is clear from the given text that during the execution of the algorithm,

processes of ranks 1 and 2 processed 5 rows of the given matrix, the process of

rank 3 processed 4 rows, and the remaining 6 slave processes processed 1 row

each. The last, 32nd row, associated with the master process, contains the ele-

ments of the found product.

Note that the text displayed in the debug section of the taskbook window

can be copied to the Windows clipboard; to do this, simply press the standard

key combination [Ctrl]+[C] or call the window's pop-up menu (by mouse right-

clicking) and execute its command Copy the debug data to clipboard.

By changing the task name in the Task function to "MPIDebug5", we can test

the developed algorithm in parallel mode using 5 processes. Here is the debug

information that was output when running the program in this way:

 0| 1> Vector b: ..., 0.01
 0| 2> Sending initial data: dest=1 tag=0 -> ..., 1.00
 0| 3> Sending initial data: dest=2 tag=1 -> ..., 2.00
 0| 4> Sending initial data: dest=3 tag=2 -> ..., 3.00
 0| 5> Sending initial data: dest=4 tag=3 -> ..., 4.00
 0| 6> Receiving result: source=4 tag= 3 <- 0.80 | Sending data: dest=4 tag= 4
 0| 7> Receiving result: source=2 tag= 1 <- 0.40 | Sending data: dest=2 tag= 5
 0| 8> Receiving result: source=3 tag= 2 <- 0.60 | Sending data: dest=3 tag= 6
 0| 9> Receiving result: source=4 tag= 4 <- 1.00 | Sending data: dest=4 tag= 7
 0| 10> Receiving result: source=1 tag= 0 <- 0.20 | Sending data: dest=1 tag= 8
 0| 11> Receiving result: source=2 tag= 5 <- 1.20 | Sending data: dest=2 tag= 9
 0| 12> Receiving result: source=3 tag= 6 <- 1.40 | Sending data: dest=3 tag=10
 0| 13> Receiving result: source=4 tag= 7 <- 1.60 | Sending data: dest=4 tag=11
 0| 14> Receiving result: source=1 tag= 8 <- 1.80 | Sending data: dest=1 tag=12
 0| 15> Receiving result: source=2 tag= 9 <- 2.00 | Sending data: dest=2 tag=13
 0| 16> Receiving result: source=3 tag=10 <- 2.20 | Sending data: dest=3 tag=14
 0| 17> Receiving result: source=4 tag=11 <- 2.40 | Sending data: dest=4 tag=15
 0| 18> Receiving result: source=2 tag=13 <- 2.80 | Sending data: dest=2 tag=16
 0| 19> Receiving result: source=4 tag=15 <- 3.20 | Sending data: dest=4 tag=17
 0| 20> Receiving result: source=2 tag=16 <- 3.40 | Sending data: dest=2 tag=18
 0| 21> Receiving result: source=3 tag=14 <- 3.00 | Sending data: dest=3 tag=19
 0| 22> Receiving result: source=1 tag=12 <- 2.60 | Sending data: dest=1 tag=20
 0| 23> Receiving result: source=4 tag=17 <- 3.60 | Sending data: dest=4 tag=21
 0| 24> Receiving result: source=2 tag=18 <- 3.80 | Sending data: dest=2 tag=22
 0| 25> Receiving result: source=3 tag=19 <- 4.00 | Sending data: dest=3 tag=23
 0| 26> Resulting vector Ab:
 0| 27> 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
 1| 1> Vector b: ..., 0.01
 1| 2> Receiving data: tag= 0 | Sending result: tag= 0 -> 0.20
 1| 3> Receiving data: tag= 8 | Sending result: tag= 8 -> 1.80
 1| 4> Receiving data: tag=12 | Sending result: tag=12 -> 2.60
 1| 5> Receiving data: tag=20
 2| 1> Vector b: ..., 0.01
 2| 2> Receiving data: tag= 1 | Sending result: tag= 1 -> 0.40
 2| 3> Receiving data: tag= 5 | Sending result: tag= 5 -> 1.20
 2| 4> Receiving data: tag= 9 | Sending result: tag= 9 -> 2.00
 2| 5> Receiving data: tag=13 | Sending result: tag=13 -> 2.80
 2| 6> Receiving data: tag=16 | Sending result: tag=16 -> 3.40
 2| 7> Receiving data: tag=18 | Sending result: tag=18 -> 3.80

174 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 2| 8> Receiving data: tag=22
 3| 1> Vector b: ..., 0.01
 3| 2> Receiving data: tag= 2 | Sending result: tag= 2 -> 0.60
 3| 3> Receiving data: tag= 6 | Sending result: tag= 6 -> 1.40
 3| 4> Receiving data: tag=10 | Sending result: tag=10 -> 2.20
 3| 5> Receiving data: tag=14 | Sending result: tag=14 -> 3.00
 3| 6> Receiving data: tag=19 | Sending result: tag=19 -> 4.00
 3| 7> Receiving data: tag=23
 4| 1> Vector b: ..., 0.01
 4| 2> Receiving data: tag= 3 | Sending result: tag= 3 -> 0.80
 4| 3> Receiving data: tag= 4 | Sending result: tag= 4 -> 1.00
 4| 4> Receiving data: tag= 7 | Sending result: tag= 7 -> 1.60
 4| 5> Receiving data: tag=11 | Sending result: tag=11 -> 2.40
 4| 6> Receiving data: tag=15 | Sending result: tag=15 -> 3.20
 4| 7> Receiving data: tag=17 | Sending result: tag=17 -> 3.60
 4| 8> Receiving data: tag=21

1.5.2. Developing and running parallel programs without the taskbook

The example given in the previous section shows that the use of the Pro-

gramming Taskbook for MPI-2 simplifies the development of parallel programs

not related to solving tasks.

However, our ultimate goal is to create parallel programs whose execution

does not depend on the presence of the taskbook on the computer. In this sec-

tion, we will describe in detail the process of creating such programs in the Mi-

crosoft Visual Studio environment. In a similar way, parallel programs can be

developed in other environments on a local computer (for example, in the

Code::Blocks or Dev-C++ environment). Of course, parallel programs are

usually intended to be run on a supercomputer or a computing cluster, but if you

have a parallel program created and tested on a local computer, then transferring

it to another computing platform is quite simple and requires only knowledge of

how to compile and run the program on this platform (see, for example, Chap-

ter 4 in the book [4], which describes the steps that allow you to compile a paral-

lel program on a Unix server using Intel and GCC compilers and run it on a set

of cluster nodes using the PBS job management system).

As before, we assume that the program is being developed in the Microsoft

Visual Studio 2022 environment. Create a new console application in this envi-

ronment by following the standard steps:

 start with the menu command File | New | Project…;

 in the right-hand part of the Create a new project window, select the

following values in the comboboxes: C++, Windows, Console, then se-

lect the Console App project option and click the Next button;

 configure the properties of the project being created: Name (we assume

that the name ParallelApplication1 is specified) and the top-level directory

Location (we assume that the working directory C:\PT4Work of the task-

book is selected); in addition, check the Place solution and project in

the same directory checkbox to avoid creating an extra level of directo-

ries, and finally click the Create button.

Part 1. MPI: description and examples of use 175

Other versions of Visual Studio may require slightly different steps. Let us

describe the steps required to create a console application in Visual Studio

2017:

 start with the menu command File | New | Project…;

 in the New Project window, select the Visual C++ section and set the

Win 32 Console Application project type in it;

 configure the properties of the project being created: Name (ParallelAppli-

cation1) and the top-level directory Location (C:\PT4Work); in addition,

uncheck the Create directory for solution checkbox to avoid creating

an extra level of directories;

 after setting up the project properties, click OK and set up additional

properties of the console application in the Win32 Application Wizard

window: immediately click the Next button in this window; in the Ap-

plication Settings section, leave the Console application option se-

lected and uncheck all the checkboxes in the Additional options group

(in particular, uncheck the Precompiled header checkbox), then click

Finish.

As a result, the ParallelApplication1 project will be created, and the main file

of this project, ParallelApplication1.cpp, will be loaded into the code editor with the

following contents (we do not specify additional comments that are included in

this file):

#include <iostream>

int main()
{
 std::cout << "Hello World!\n";
}

In other versions of Visual Studio, the contents of the main file may differ

from the above. For example, in Visual Studio 2017, the file contains the fol-

lowing statements:

#include "stdafx.h"

int main()
{
 return 0;
}

In the second drop-down list on the toolbar (the Solution Platforms tooltip

is displayed for this list), you must set the value to x86.

Correct the ParallelApplication1.cpp file as follows:

#include <iostream>

int main(int argc, char *argv[])
{

176 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 std::cout << "Hello World!\n";
 return 0;
}

The resulting program should compile successfully. When you run it (by

pressing the [F5] key), you will see a console window with the text "Hello

World!".

Now let us add the following components to the project, which allow us to

use the MPI library (the easiest way is to copy all these components from the

PT4Work directory to the project directory, i. e. to the directory that already con-

tains the ParallelApplication1.cpp file):

 mpich.lib (compiled library);

 all header files (h-files) whose name starts with the text "mpi", in par-

ticular mpi.h.

It is necessary to add a lib file to the project. The steps required for this

have already been described earlier, see Note 2 in Section 1.1.3: you need to

start with the menu command Project | <project name> Properties…, select

the Configuration Properties | Linker | Input section in the project properties

window that appears, and specify the name of the mpich.lib file to be added in the

Additional Dependencies textbox, separating it from subsequent names with a

semicolon. No special steps are required to include header files in the project.

Let us add directives for including the necessary headers to the main

project file and append statements that initialize the parallel mode, print the

process rank, and terminate the parallel mode (the added text is highlighted in

bold):

#include <iostream>
#include "mpi.h"

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 int rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 std::cout << rank << '\n';
 MPI_Finalize();
 return 0;
}

Note that here we used the MPI_Init and MPI_Finalize functions for the first

time (in all previous programs, these functions were called by the taskbook it-

self).

If all actions for connecting MPI components were performed correctly,

this program will be successfully compiled and launched. When it is launched

for the first time, the Windows security system window will appear, in which

you need to click the Allow access (Разрешить доступ) button (Fig. 48).

Part 1. MPI: description and examples of use 177

Fig. 48. Window with a request to block a running parallel program

Now we need to prepare a batch file that will launch the resulting program

in parallel mode. Let us name this file mpi_run.bat and save it in the same directo-

ry, where the executable file ParallelApplication1.exe is stored (this will allow us not

to specify the full path to this file). Recall that by default the executable file of

the application is created in the debug subdirectory (or bin\debug) of the applica-

tion directory (see the path to the launched application, indicated in Fig. 48).

The mpi_run.bat file must contain two commands, each command must be

located on one line (to emphasize this fact, here and further in similar situations

before the continuation of the previous line we will indicate a special sym-

bol):

"C:\Program Files\Microsoft MPI\bin\mpiexec.exe" -n 10
 "ParallelApplication1.exe"
pause

After running this file, a console window will appear on the screen with the

result of our program running in parallel mode (Fig. 49).

We see that each process has output its rank in the console window. How-

ever, the order of data output from different processes is non-deterministic:

when the program is launched again, we will receive a different sequence of

numbers in the range from 0 to 9.

So, we have developed a parallel program that can be compiled and run in-

dependently of the taskbook. Of course, this program is very simple.

178 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Fig. 49. Result of execution of the parallel program ParallelApplication1

Note. When developing parallel programs in the Microsoft Visual Studio

environment, you can avoid using the auxiliary bat-file if you specify the

program mpiexec.exe and its parameters in the project settings (see Note 1 in

Section 1.1.4). In this case, however, in some versions of Visual Studio,

you need to add a fragment to the program that ensures its suspension at the

end of execution (e. g., you can use the function call system("pause")).

1.5.3. Additional debug features. Output redirection

In Section 1.5.1, we developed a complex parallel program implementing a

self-scheduling algorithm for matrix-vector multiplication. The capabilities of

the taskbook helped us in developing and debugging it, but now we want to run

this program independently of the taskbook. It turns out that this is not difficult.

First of all, we will include the MPIDebug10.cpp file in our console applica-

tion, which contains the text of the previously developed program. To do this,

we will copy it from the PT4Work directory to the console application directory

(which already contains the ParallelApplication1.cpp file) and execute the menu

command Project | Add Existing Item…, selecting the MPIDebug10.cpp file in

the window that appears.

Load the MPIDebug10.cpp file into the code editor. Now it looks like this (we

omit the contents of the Solve function for brevity):

File MPIDebug10.cpp
#include "pt4.h"
#include "mpi.h"

void Solve()
{
 ...
}

Part 1. MPI: description and examples of use 179

The Solve function contains a large number of function calls related to the

taskbook and taken from the pt4.h header file. Of course, you can simply delete

the directive for including the pt4.h file, and also delete (or comment out) all

such calls. However, the taskbook provides a more convenient option: a stub for

the pt4.h header file. The simplest version of such a stub is designed as a pt4null.h

file and contains "empty" implementations of all functions related to the task-

book. Thus, without changing the contents of the Solve function, you can replace

the #include "pt4.h" directive with the following directive:

#include "pt4null.h"

It is also necessary to copy the stub file pt4null.h to the project directory.

This file is contained in the PTforMPI2\stubs directory of the Programming Task-

book system directory (by default, this is the PT4 directory located in the directo-

ry for 32-bit programs: c:\Program Files (x86)).

After completing the above steps, we will find that all the underlines re-

lated to the detected errors in the MPIDebug10.cpp file disappear. Of course, in

doing so we have lost all the capabilities of our program associated with display-

ing data on the screen.

We will not (yet) try to restore all the debug information that was output in

the Solve function, limiting ourselves to printing the elements of the final prod-

uct: the Ab vector. To do this, add the #include <iostream> directive to the begin-

ning of the MPIDebug10.cpp file, and after the comment "output of the resulting

Ab vector" in the Solve function, add a fragment that provides the output of the

array c. As a result, the contents of the MPIDebug10.cpp file will be as follows (all

statements added in this file are highlighted in bold):

File MPIDebug10.cpp
#include <iostream>
#include "pt4null.h"
#include "pt4.h"
#include "mpi.h"

void Solve ()
{
 ...
 // Output of the obtained vector Ab:
 for (int i = 0; i < n; i++)
 std::cout << c[i] << ' ';
 std::cout << '\n';
 ...
}

We only need to correct the contents of the main application file ParallelAp-

plication1.cpp so that instead of printing the process ranks, it calls the Solve func-

tion (changed or added fragments in this file are also highlighted in bold):

180 M. E. Abramyan. Parallel Programming Based on MPI 2.0

File ParallelApplication1.cpp
#include <iostream>
#include "mpi.h"

void Solve();

int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 Solve();
 MPI_Finalize ();
 return 0;
}

Now all that remains is to compile and build the resulting version of the

program by running the command Build | Build solution or by pressing the key

combination [Ctrl]+[Shift]+[B], after which, having made sure that the compila-

tion and build were successful, run the file mpi_run.bat (in which no changes need

to be made). The result of the work is shown in Fig. 50. We see that the found

elements of the vector Ab coincide with those obtained in the program from Sec-

tion 1.5.1.

Fig. 50. Result of executing the ParallelApplication1 program with the pt4null.h stub

The Programming Taskbook for MPI-2 provides another version of the

stub for the file pt4.h, which allows us to apply all the debug tools of the task-

book to an "ordinary" console parallel program. This version of the stub has the

name pt4console and consists of two files: pt4console.cpp and pt4console.h. Let us

demonstrate its use.

First of all, let us copy the pt4console.cpp and pt4console.h files from the task-

book directory to the console application directory (these files are located in the

taskbook directory in the same place as the pt4null.h file). Then let us connect the

Part 1. MPI: description and examples of use 181

pt4console.cpp file to the console application by executing the menu command

Project | Add Existing Item... for it.

After this, in the MPIDebug10.cpp file, replace the #include "pt4null.h" directive

with the #include "pt4console.h" directive and add a call to the ShowAll function

(without parameters) to the end of the Solve function:

File MPIDebug10.cpp
#include <iostream>
#include "pt4console.h"
#include "mpi.h"

void Solve ()
{
 ...
 ShowAll();
}

Note that the ShowAll function is collective function and must be called for

all processes in the parallel application.

The ParallelApplication1.cpp file does not need to be changed.

After compiling and building a new version of the program using the Build

| Build solution command and running the file mpi_run.bat, we will receive, in the

console window, the same information that was previously (see Section 1.5.1)

displayed in the debug section of the taskbook window (Fig. 51).

Fig. 51. Result of executing the ParallelApplication1 program with the pt4console.h stub

The only difference is that the output lines are not numbered, and the

process rank is indicated in a special line starting with the equal sign "=". Note

that this output option is deterministic: all data is grouped by the processes in

which they are output, and the processes are sorted in ascending order of their

ranks.

182 M. E. Abramyan. Parallel Programming Based on MPI 2.0

If you scroll the contents of the console window to the beginning, you can

see that the master process first output the obtained vector Ab, and then began

outputting the data collected from the Show functions (Fig. 52).

Fig. 52. The initial part of the console window for the ParallelApplication1 program

with the pt4console.h stub

The reader is advised to analyze the contents of the pt4console.cpp file (and

especially the ShowAll function) to find out how such data output was organized.

Only the master process performs console output in the ShowAll function, which

is why the output is completely deterministic. In this function, the master

process first receives all debug data (obtained using the Show and ShowLine func-

tions) from the slave processes, and then it outputs them to the console in the re-

quired order. In slave processes, the ShowAll function sends all debugging data to

the master process.

In conclusion of the review of examples related to the development of pa-

rallel programs without connecting a taskbook to them, we will note one more

useful feature.

It is often desirable to organize the output of data in such a way that it is

saved after the program has finished. Usually this is done by saving the results

in a file. For console applications, such saving can be done very easily using

output stream redirection. In the case of our program, we only need to slightly

supplement the first command from the mpi_run.bat file (the added fragment is

highlighted in bold and underlined):

"C:\Program Files\Microsoft MPI\bin\mpiexec.exe" -n 10
 "ParallelApplication1.exe" > results.txt

The ">" symbol means that the output stream will be redirected from the

console window to the file whose name is specified after this symbol (we chose

the name results.txt). If such a file does not exist, it will be created; if it already

exists, then its contents will be overwritten.

Part 1. MPI: description and examples of use 183

When you run the modified mpi_run.bat file, the console window will not

contain any output data (Fig. 53). In such a situation, it is advisable to remove

the pause command from the bat file, since you no longer need to view the con-

tents of the console window.

Fig. 53. Result of executing the ParallelApplication1 program

with output stream redirection

Now on the disk in the same directory, where the mpi_run.bat file is located,

the results.txt file will appear, containing all the data output by our program. Here

is a variant of the contents of this file (compare it with the variants given at the

end of Section 1.5.1):

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
=Process 0:
Vector b:..., 0.01
Sending initial data: dest=1 tag=0 ->..., 1.00
Sending initial data: dest=2 tag=1 ->..., 2.00
Sending initial data: dest=3 tag=2 ->..., 3.00
Sending initial data: dest=4 tag=3 ->..., 4.00
Sending initial data: dest=5 tag=4 ->..., 5.00
Sending initial data: dest=6 tag=5 ->..., 6.00
Sending initial data: dest=7 tag=6 ->..., 7.00
Sending initial data: dest=8 tag=7 ->..., 8.00
Sending initial data: dest=9 tag=8 ->..., 9.00
Receiving result: source=1 tag= 0 <- 0.20 | Sending data: dest=1 tag= 9
Receiving result: source=2 tag= 1 <- 0.40 | Sending data: dest=2 tag=10
Receiving result: source=4 tag= 3 <- 0.80 | Sending data: dest=4 tag=11
Receiving result: source=5 tag= 4 <- 1.00 | Sending data: dest=5 tag=12
Receiving result: source=6 tag= 5 <- 1.20 | Sending data: dest=6 tag=13
Receiving result: source=7 tag= 6 <- 1.40 | Sending data: dest=7 tag=14
Receiving result: source=7 tag=14 <- 3.00 | Sending data: dest=7 tag=15
Receiving result: source=7 tag=15 <- 3.20 | Sending data: dest=7 tag=16
Receiving result: source=7 tag=16 <- 3.40 | Sending data: dest=7 tag=17
Receiving result: source=7 tag=17 <- 3.60 | Sending data: dest=7 tag=18
Receiving result: source=7 tag=18 <- 3.80 | Sending data: dest=7 tag=19
Receiving result: source=7 tag=19 <- 4.00 | Sending data: dest=7 tag=20

184 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Receiving result: source=8 tag= 7 <- 1.60 | Sending data: dest=8 tag=21
Receiving result: source=9 tag= 8 <- 1.80 | Sending data: dest=9 tag=22
Receiving result: source=1 tag= 9 <- 2.00 | Sending data: dest=1 tag=23
Receiving result: source=2 tag=10 <- 2.20 | Sending data: dest=2 tag=24
Receiving result: source=3 tag= 2 <- 0.60 | Sending data: dest=3 tag=25
Receiving result: source=4 tag=11 <- 2.40 | Sending data: dest=4 tag=26
Receiving result: source=5 tag=12 <- 2.60 | Sending data: dest=5 tag=27
Receiving result: source=6 tag=13 <- 2.80 | Sending data: dest=6 tag=28
Resulting vector Ab:
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
4.0
=Process 1:
Vector b:..., 0.01
Receiving data: tag= 0 | Sending result: tag= 0 -> 0.20
Receiving data: tag= 9 | Sending result: tag= 9 -> 2.00
Receiving data: tag=23
=Process 2:
Vector b:..., 0.01
Receiving data: tag= 1 | Sending result: tag= 1 -> 0.40
Receiving data: tag=10 | Sending result: tag=10 -> 2.20
Receiving data: tag=24
=Process 3:
Vector b:..., 0.01
Receiving data: tag= 2 | Sending result: tag= 2 -> 0.60
Receiving data: tag=25
=Process 4:
Vector b:..., 0.01
Receiving data: tag= 3 | Sending result: tag= 3 -> 0.80
Receiving data: tag=11 | Sending result: tag=11 -> 2.40
Receiving data: tag=26
=Process 5:
Vector b:..., 0.01
Receiving data: tag= 4 | Sending result: tag= 4 -> 1.00
Receiving data: tag=12 | Sending result: tag=12 -> 2.60
Receiving data: tag=27
=Process 6:
Vector b:..., 0.01
Receiving data: tag= 5 | Sending result: tag= 5 -> 1.20
Receiving data: tag=13 | Sending result: tag=13 -> 2.80
Receiving data: tag=28
=Process 7:
Vector b:..., 0.01
Receiving data: tag= 6 | Sending result: tag= 6 -> 1.40
Receiving data: tag=14 | Sending result: tag=14 -> 3.00
Receiving data: tag=15 | Sending result: tag=15 -> 3.20
Receiving data: tag=16 | Sending result: tag=16 -> 3.40
Receiving data: tag=17 | Sending result: tag=17 -> 3.60
Receiving data: tag=18 | Sending result: tag=18 -> 3.80
Receiving data: tag=19 | Sending result: tag=19 -> 4.00
Receiving data: tag=20
=Process 8:
Vector b:..., 0.01
Receiving data: tag= 7 | Sending result: tag= 7 -> 1.60
Receiving data: tag=21
=Process 9:
Vector b:..., 0.01
Receiving data: tag= 8 | Sending result: tag= 8 -> 1.80
Receiving data: tag =22

Part 2. Learning tasks 185

2. Learning tasks
If the number of processes is not defined in a task, then this number is as-

sumed to be not greater than 16. A zero-rank process in the MPI_COMM_WORLD

communicator is called a master process throughout all task groups. All other

processes are called slave processes.

If a task does not specify the maximal size of an input sequence of number,

then this size should be considered as 20.

Tasks of increased difficulty level are marked with * and ** symbols.

Tasks whose solutions are given in Section 1 are marked with the symbol .

2.1. Processes and their ranks

Before solving the tasks in this section, you should study the MPI1Proc2

task solution given in Section 1.1.

MPI1Proc1. Input a real number X in each process of the MPI_COMM_WORLD

communicator and output its opposite value −X. Also output the total num-

ber of processes in the master process (that is, a rank-zero process). For da-

ta input and output use the input-output stream pt. Also output the value −X

in the debug section using the Show function, which is also defined in the

taskbook.

MPI1Proc2. Input an integer A in each process of the MPI_COMM_WORLD

communicator and output doubled value of A. Also output the total number

of processes in the master process (that is, a rank-zero process). For data

input and output use the input-output stream pt. In the master process, dup-

licate the data output in the debug section by displaying on separate lines

the doubled value of A and the total number of processes (use two calls of

the ShowLine function, which is defined in the taskbook along with the Show

function).

Remark. The solution of this task is given in Section 1.1.

MPI1Proc3. Input a real number X and output its opposite value in the master

process. Also output the rank of slave processes (which are processes

whose rank is greater than 0); the rank of each process should be output in

the process of this rank. In addition, duplicate the data output in the debug

section by displaying the value of −X with the "-X=" comment and the rank

values with the "rank=" comments (use the Show function calls with two pa-

rameters).

186 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI1Proc4. Input one integer in processes with even rank (inclusive of the

master process) and output the doubled value of input number. Do not per-

form any action in processes with odd rank.

MPI1Proc5. Input one integer in processes with even rank (inclusive of the

master process), input one real number in processes with odd rank. Output

doubled value of input number in each process.

MPI1Proc6. Input one integer in slave processes with even rank, input one real

number in processes with odd rank. Output doubled value of input number

in each slave process. Do not perform any action in the master process.

MPI1Proc7. An integer N (> 0) and a sequence of N real numbers are given in

each process with even rank (inclusive of the master process). Output the

sum of given numbers in each process. Do not perform any action in

processes with odd rank.

MPI1Proc8. An integer N (> 0) and a sequence of N real numbers are given in

each process. Output the sum of given numbers in each process with even

rank (inclusive of the master process), output the average of given numbers

in each process with odd rank.

MPI1Proc9. An integer N (> 0) and a sequence of N real numbers are given in

each process. Output the sum of given numbers in each slave process with

even rank, output the average of given numbers in each process with odd

rank, output the product of given numbers in the master process.

MPI1Proc10. An integer N (> 0) and a sequence of N numbers are given in

each process. The sequence contains real numbers in the slave processes

with odd rank (1, 3, …) and integers in the slave processes with even rank

(2, 4 …). The type of elements in the master process depends on the num-

ber of processes K: if K is an odd number, then the sequence contains in-

tegers, otherwise the sequence contains real numbers. Output the minimal

element of the given sequence in each even-rank process (inclusive of the

master process), output the maximal element of the given sequence in each

odd-rank process.

2.2. Point-to-point communication

Before solving the tasks in this section, you should study the MPI2Send11

task solution given in Section 1.2.2.

2.2.1. Blocking communications

MPI2Send1. An integer is given in each process. Send all given integers to the

master process using the MPI_Send and MPI_Recv functions (the blocking

functions for standard communication mode) and output received integers

in the master process in ascending order of ranks of sending processes.

Part 2. Learning tasks 187

MPI2Send2. A real number is given in each slave process. Send all given num-

bers to the master process using the MPI_Bsend (the blocking function for

buffered sending mode) and MPI_Recv functions and output received num-

bers in the master process in descending order of ranks of sending

processes. Use the MPI_Buffer_attach function for attaching a buffer to a

process.

MPI2Send3. Four integers are given in each slave process. Send all given in-

tegers to the master process using one call of the MPI_Send function for each

sending process. Output received integers in the master process in ascend-

ing order of ranks of sending processes.

MPI2Send4. An integer N (0 < N < 5) and a sequence of N integers are given in

each slave process. Send all given sequences to the master process using

one call of the MPI_Bsend function for each sending process. Output re-

ceived integers in the master process in ascending order of ranks of sending

processes. Use the MPI_Get_count to determine the size of received se-

quences.

MPI2Send5. A sequence of real numbers is given in the master process; the

size of sequence is equal to the number of slave processes. Send each ele-

ment of given sequence to corresponding slave process using the MPI_Send

function: the first number should be sent to the process 1, the second num-

ber should be sent to the process 2, and so on. Output received numbers in

the slave processes.

MPI2Send6. A sequence of real numbers is given in the master process; the

size of sequence is equal to the number of slave processes. Send each ele-

ment of given sequence to corresponding slave process (in inverse order)

using the MPI_Bsend function: the first number should be sent to the last

process, the second number should be sent to the last but one process, and

so on. Output received numbers in the slave processes.

MPI2Send7. An integer N and a sequence of N real numbers is given in the

master process; K − 1 ≤ N < 10, K is the number of processes. Send ele-

ments of given sequence with order number 1, 2, …, K − 2 to slave process

of rank 1, 2, …, K − 2 respectively, and send remaining elements of the se-

quence to the process K − 1. Output received numbers in the slave

processes. Use the MPI_Send function to send data, use the MPI_Get_count

function to determine the size of received sequences in the process K − 1.

MPI2Send8. An integer is given in each slave process; only one of given integ-

ers is nonzero-valued. Send nonzero integer to the master process. Output

the received number and the rank of sending process in the master process.

Use the MPI_Recv function with the MPI_ANY_SOURCE parameter to receive

data in the master process.

188 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI2Send9. An integer N is given in each slave process; one of given integers

is positive, others are zero-valued. Also a sequence of N real numbers is

given in the slave process with nonzero integer N. Send the given sequence

to the master process. Output the received numbers and the rank of sending

process in the master process. Use the MPI_Recv function with the

MPI_ANY_SOURCE parameter to receive data in the master process.

MPI2Send10. An integer N is given in each slave process, an integer K (> 0) is

given in the master process; the number K is equal to number of slave

processes whose given integers N are positive. Send all positive integers N

to the master process. Output sum of received numbers in the master

process. Use the MPI_Recv function with the MPI_ANY_SOURCE parameter to

receive data in the master process.

MPI2Send11. A real number is given in each process. Send the given number

from the master process to all slave processes and send the given numbers

from the slave processes to the master process. Output the received num-

bers in each process. The numbers received by the master process should

be output in ascending order of ranks of sending processes. Use the

MPI_Ssend function to send data.

Note. The MPI_Ssend function provides a synchronous data transfer mode,

in which the operation of sending a message will be completed only after

the receiving process starts to receive this message. In the case of data

transfer in synchronous mode, there is a danger of deadlocks because of the

incorrect order of the function calls for sending and receiving data.

Remark. The solution of this task is given in Section 1.2.2.

MPI2Send12. An integer is given in each process. Using the MPI_Ssend and

MPI_Recv functions, perform the right cyclic shift of given data by step 1

(that is, the given integer should be sent from the process 0 to the process 1,

from the process 1 to the process 2, …, from the last process to the

process 0). Output the received number in each process.

Note. See note to MPI2Send11.

MPI2Send13. An integer is given in each process. Using the MPI_Ssend and

MPI_Recv functions, perform the left cyclic shift of given data by step −1

(that is, the given integer should be sent from the process 1 to the process 0,

from the process 2 to the process 1, …, from the process 0 to the last

process). Output the received number in each process.

Note. See note to MPI2Send11.

MPI2Send14. Two integers are given in each process. Send the first integer to

the previous process and the second integer to the next process (use the

MPI_Ssend and MPI_Recv functions). The last process is assumed to be the

previous one for the master process, the master process is assumed to be

the next one for the last process. Output the received numbers in each

Part 2. Learning tasks 189

process in the following order: the number received from the previous

process, then the number received from the next process.

Note. See note to MPI2Send11.

MPI2Send15. A real number A and an integer N are given in each process; the

set of given integers N contains all values in the range 0 to K − 1, K is the

number of processes. Send the number A to the process N in each process

(use the MPI_Send and MPI_Recv functions and the MPI_ANY_SOURCE parame-

ter). Output the received number and the rank of sending process in each

process.

MPI2Send16. An integer N is given in each process; the value of N is equal

to 1 for one process and is equal to 0 for others. Also a sequence of K − 1

real numbers is given in the process with nonzero integer N; K is the num-

ber of processes. Send each number from the given sequence to one of oth-

er processes in ascending order of ranks of receiving processes. Output the

received number in each process.

MPI2Send17. A sequence of K − 1 integers is given in each process; K is the

number of processes. Send one of the integers from the given sequence in

each process to the corresponding process in ascending order of ranks of

receiving processes. Output the received numbers in each process in as-

cending order of ranks of sending processes.

MPI2Send18. The number of processes is an even number. An integer N

(0 < N < 5) and a sequence of N real numbers are given in each process.

Exchange given sequences of processes 0 and 1, 2 and 3, and so on, using

the MPI_Sendrecv function. Output the received sequence of real numbers in

each process.

MPI2Send19. A real number is given in each process. Change the order of giv-

en numbers to inverse one by sending the given numbers from the

process 0 to the last process, from the process 1 to the last but one process,

…, from the last process to the process 0. Use the MPI_Sendrecv_replace func-

tion. Output the received number in each process.

MPI2Send20. A real number A and its order number N (as an integer) are given

in each slave process; the set of integers N contains all values in the range 0

to K − 1, K is the number of processes. Send all numbers A to the master

process and output the received numbers in ascending order of their order

numbers N. Do not use arrays. Use the order number N as a msgtag para-

meter of the MPI_Send function.

MPI2Send21. An integer L (≥ 0) and a sequence of L pairs (A, N) are given in

each slave process; A is a real number and N is the order number of A. The

sum of all integers L is equal to 2K, where K is the number of processes;

the set of integers N contains all values in the range 1 to 2K. Send all num-

bers A to the master process and output the received numbers in ascending

190 M. E. Abramyan. Parallel Programming Based on MPI 2.0

order of their order numbers N. Do not use arrays. Use the order number N

as a msgtag parameter of the MPI_Send function.

MPI2Send22*. A sequence of pairs (T, A) is given in the master process; the

size of sequence is equal to the number of slave processes. An integer T is

equal to 0 or 1; if T = 0, then A is an integer, otherwise A is a real number.

Send one of the numbers A to the corresponding slave process (the first

number to the process 1, the second number to the process 2, and so on)

and output received numbers in the slave processes. Use the value of T as a

msgtag parameter of the MPI_Send function to send information about the

type of number A; use the MPI_Probe function with the parameter

MPI_ANY_TAG to receive this information.

Note. To avoid the code duplication, use the auxiliary template functions

template<typename T> void send(int t, int dest, MPI_Datatype d) to send data and

template<typename T> void recv(MPI_Datatype d) to receive data. Use a number

equal to 0 or 1 for the t parameter and the rank of receiving process for the

dest parameter.

MPI2Send23*. Two integers T, N and a sequence of N numbers are given in

each slave process. An integer T is equal to 0 or 1; if T = 0, then the given

sequence contains integers, otherwise it contains real numbers. Send all

given sequences to the master process and output received numbers in the

ascending order of ranks of sending processes. Use the value of T as a

msgtag parameter of the MPI_Send function to send information about the

sequence type; use the MPI_Probe function with the parameter MPI_ANY_TAG

to receive this information.

Note. To avoid the code duplication, use the auxiliary template functions

template<typename T> void send(int t, MPI_Datatype d) to send data and tem-

plate<typename T> void recv(MPI_Datatype d, MPI_Status s) to receive data. Use a

number equal to 0 or 1 for the t parameter and the result returned by the

MPI_Probe function for the s parameter.

MPI2Send24*. The number of processes K is an even number: K = 2N. A se-

quence of N real numbers is given in each even-rank process (0, 2, …,

K − 2), a sequence of N integers is given in each odd-rank process (1, 3, …,

K − 1). Using the MPI_Sendrecv_replace function, рerform the cyclic shift of

all real-valued sequences in the direction of increasing the ranks of

processes and the cyclic shift of all integer sequences in the direction of de-

creasing the ranks of processes (that is, the real-valued sequences should be

sent from the process 0 to the process 2, from the process 2 to the process

4, …, from the process K − 2 to the process 0 and the integer sequences

should be sent from the process K − 1 to the process K − 3, from the

process K − 3 to the process K − 5, …, from the process 1 to the process

K − 1). Output received data in each process. To determine the rank of the

Part 2. Learning tasks 191

receiving process, use the expression containing the % operator of taking

the remainder after integer division. Use the MPI_ANY_SOURCE parameter as

the rank of sending process.

Note. To avoid the code duplication, use the auxiliary template function

template<typename T> void sendrecv(int rank, int size, MPI_Datatype d, int step). The

step parameter specifies a shift value, which should be equal to 2 for real-

valued sequences and equal to −2 for integer ones.

MPI2Send25*. The number of processes K is an even number: K = 2N. A se-

quence of R + 1 real numbers is given in the first half of the processes,

where R is the process rank (R = 0, 1, …, N − 1). A sequence of 2N − R in-

tegers is given in the second half of the processes, where R is the process

rank (R = N, N + 1, …, 2N − 1). Using the MPI_Sendrecv function, send the

given seguences from each half of the processes to the corresponding

process of the other half (that is, the sequence from the process 0 should be

sent to the process N, from the process 1 — to the process N + 1, from the

process N — to the process 0, from the process 2N − 1 — to the process

N − 1, and so on). Output received data in each process.

Note. To avoid the code duplication, use the auxiliary template function
template<typename T1, typename T2> void sendrecv(MPI_Datatype d1, int cnt1, int

rank2, MPI_Datatype d2, int cnt2), where the d1 and cnt1 parameters define the

properties of the process that calls the function (the type and the number of

elements of sending sequence) and the parameters rank2, d2, cnt2 are the

rank and the similar properties of the process involved in data exchange.

2.2.2. Non-blocking communications

MPI2Send26*. An integer N is given in each process. The value of N is equal

to 0 in all processes, except for one, and it is equal to 1 in some selected

process. Also an integer sequence A of size K − 1 is given in the selected

process, where K is the number of processes. Do not save the sequence A in

array. Send one element of the sequence A at a time to other processes in

ascending order of their ranks and output the received number in each

process. Use the required number of the MPI_Issend and MPI_Wait function

calls (sending a message in synchronous non-blocking mode) in the se-

lected process and the MPI_Recv function call in the other processes. Addi-

tionally, display the duration of each MPI_Wait function call (in millise-

conds) in the debug section. To do this, call the MPI_Wtime function before

and after the MPI_Wait call and use the Show function to display the differ-

ence between returned values of the MPI_Wtime function multiplied by 1000.

Check how the debugging information changes if the MPI_Isend function

(sending a message in standard non-blocking mode) will be used instead of

the MPI_Issend function.

192 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI2Send27*. An integer N is given in each process. The value of N is equal

to −1 in some selected process of the rank R and it is equal to R in the other

processes. A real number A is also given in all processes, except for the se-

lected one. Send the numbers A to the selected process and output received

numbers in ascending order of ranks of sending processes. Use the required

number of the MPI_Recv function calls in the selected process and the

MPI_Issend and MPI_Test function call in the other processes. Repeat the

MPI_Test function call until it returns a nonzero flag, and display the re-

quired number of iterations of the loop in the debug section using the Show

function. Check how the debugging information changes if the MPI_Isend

function will be used instead of the MPI_Issend function.

MPI2Send28*. An integer N is given in each process. The value of N is equal

to −1 in some selected process of the rank R and it is equal to R in the other

processes. A real number A is also given in all processes, except for the se-

lected one. Send the numbers A to the selected process and output received

numbers in descending order of ranks of sending processes. Use the re-

quired number of the MPI_Irecv and MPI_Test function calls (receiving a mes-

sage in non-blocking mode) in the selected process and the MPI_Ssend func-

tion call in the other processes. Repeat the MPI_Test function call after each

MPI_Irecv function call until MPI_Test returns a nonzero flag, and display the

required number of iterations of the loop in the debug section using the

Show function. Check how the debugging information changes if the

MPI_Send function will be used instead of the MPI_Ssend function.

MPI2Send29*. An integer N is given in each process. The value of N is equal

to −1 in some selected process of the rank R and it is equal to R in the other

processes. A real number A is also given in all processes, except for the se-

lected one. Send the numbers A to the selected process and output the sum

S of received numbers. Use the required number of the MPI_Irecv and

MPI_Waitany function calls in the selected process and the MPI_Ssend function

call in the other processes. Declare an array Q of the MPI_Request type in the

selected process and call the MPI_Irecv functions in a loop with the a sepa-

rate element of Q for each function call. Then call the MPI_Waitany function

in a second loop to accumulate the sum S. Additionally, display the follow-

ing data in the debug section in each iteration of the second loop (using the

Show and ShowLine function call): the value of A added to the sum at this ite-

ration, and the rank of the process that sent this value.

MPI2Send30*. An integer N is given in each process. The value of N is equal

to 0 in all processes, except for two, and it is equal to 1 in the first selected

process (the sender) and it is equal to 2 in the second selected process (the

receiver). Also an integer R and a sequence of K integers are given in the

sender, where R is the rank of the receiver and K is the number of

Part 2. Learning tasks 193

processes. Do not save the sequence A in array. Send all elements of the

sequence A to the receiver and output the received numbers in the same or-

der. Use the single call of the MPI_Ssend_init function and the required num-

ber of the MPI_Start and MPI_Wait function calls in the sender, and the single

call of the MPI_Recv_init function and the required number of the MPI_Start

and MPI_Wait function calls in the receiver. Additionally, display the dura-

tion of each MPI_Wait function call (in milliseconds) in the debug section

(for both the sender and the receiver). To do this, call the MPI_Wtime func-

tion before and after the MPI_Wait call and use the Show function to display

the difference between returned values of the MPI_Wtime function multiplied

by 1000. Check how the debugging information changes if the MPI_Send_init

function will be used instead of the MPI_Ssend_init function.

MPI2Send31*. An integer N is given in each process. The value of N is equal

to 2 in the first selected process (the receiver), it is equal to 1 in some other

selected processes (the senders), it is equal to 0 in all other processes. Also

an integer R and a sequence A of K integers are given in each sender, where

R is the rank of the receiver and K is the number of processes, and the

number of senders C is given in the receiver. Send all sequences A to the

receiver and output the sums S of elements of all sequences A with the

same indices (in ascending order of indices). Use the single call of the

MPI_Ssend function in each sender. Declare an array Q of the MPI_Request

type in the receiver and call the MPI_Recv_init functions in a loop with a sep-

arate element of Q for each function call. Then call the MPI_Startall function

in the receiver and, after that, call the MPI_Waitany function in a second loop

to accumulate the sums S. Additionally, display the following data in the

debug section in each iteration of the second loop (using two Show function

and one ShowLine function calls): the duration of each MPI_Waitany function

call (in milliseconds), the returned value of the third parameter (named in-

dex) of the MPI_Waitany function, and the rank of current sender that corres-

ponds to the index parameter. To find the duration, call the MPI_Wtime func-

tion before and after the MPI_Waitany call and calculate the difference be-

tween returned values of the MPI_Wtime function multiplied by 1000. To

find the rank of the current sender, use the value of the last parameter (of

the MPI_Status type) returned by the MPI_Waitany function.

MPI2Send32*. An integer N is given in each process. The value of N is equal

to 1 in the first selected process (the sender), it is equal to 2 in some other

selected processes (the receivers), it is equal to 0 in all other processes. Al-

so a real number A, an integer C, and a sequence R of C integers are given

in the sender, where C is the number of receivers and R contains ranks of

all receivers. Send the number A to all receivers and output it in each re-

ceiver. Use the single call of the MPI_Recv function in each receiver. Dec-

lare an array Q of the MPI_Request type in the sender and call the

194 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Ssend_init functions in a loop with a separate element of Q for each

function call. Then call the MPI_Startall function in the sender and, after that,

call the MPI_Testany function in a second loop (the MPI_Testany function

should be called in a nested loop until it returns a nonzero flag). Addition-

ally, display the following data in the debug section in each iteration of the

second loop (using the Show and ShowLine function call): the returned value

of the third parameter (named index) of the MPI_Testany function (when it re-

turns a nonzero flag), and the number of MPI_Testany function calls (that is,

the number of iterations of the nested loop). Check how the debugging in-

formation changes if the MPI_Send_init function will be used instead of the

MPI_Ssend_init function.

2.3. Collective communications

Before solving the tasks in this section, you should study the MPI3Coll23

task solution given in Section 1.2.5.

2.3.1. Collective data transfer

MPI3Coll1. An integer is given in the master process. Send the given integer to

all slave processes using the MPI_Bcast function. Output the received integer

in all slave processes.

MPI3Coll2. A sequence of 5 real numbers is given in the master process. Send

the given sequence to all slave processes using the MPI_Bcast function. Out-

put received data in all slave processes.

MPI3Coll3. A real number is given in each process. Send the given numbers to

master process using the MPI_Gather function. Output received numbers in

the master process in ascending order of ranks of sending processes (start-

ing with the number that is given in the master process).

MPI3Coll4. A sequence of 5 integers is given in each process. Send the given

sequences to master process using the MPI_Gather function. Output received

data in the master process in ascending order of ranks of sending processes

(starting with the sequence that is given in the master process).

MPI3Coll5. A sequence of R + 2 integers is given in each process; the integer R

is equal to rank of the process (there are given 2 integers in the process 0,

3 integers in the process 1, and so on). Send the given sequences to master

process using the MPI_Gatherv function. Output received data in the master

process in ascending order of ranks of sending processes (starting with the

sequence that is given in the master process).

MPI3Coll6. A sequence of K real numbers is given in the master process; K is

the number of processes. Send one element of given sequence to each

process (inclusive of the master process) using the MPI_Scatter function.

Output the received number in each process.

Part 2. Learning tasks 195

MPI3Coll7. A sequence of 3K real numbers is given in the master process, K is

the number of processes. Send three elements of given sequence to each

process (inclusive of the master process) using the MPI_Scatter function.

Output received numbers in each process.

MPI3Coll8. A sequence of K real numbers is given in the master process; K is

the number of processes. Using the MPI_Scatterv function, send elements of

given sequence to all processes as follows: the first element should be sent

to the process K − 1, the second element should be sent to the

process K − 2, …, the last element should be sent to the process 0). Output

the received number in each process.

MPI3Coll9. A sequence of K(K + 3)/2 integers is given in the master process; K

is the number of processes. Using the MPI_Scatterv function, send R + 2 ele-

ments of given sequence to the process of rank R, where R = 0, …, K − 1:

the first two elements should be sent to the process 0, the next three ele-

ments should be sent to the process 1, and so on. Output received numbers

in each process.

MPI3Coll10. A sequence of K + 2 real numbers is given in the master process;

K is the number of processes. Using the MPI_Scatterv function, send three

elements of given sequence to each process as follows: elements with order

numbers in the range R + 1 to R + 3 should be sent to the process of rank R,

where R = 0, …, K − 1 (the initial three elements should be sent to the

process 0; the second, the third, and the fourth element should be sent to

the process 1, and so on). Output received numbers in each process.

MPI3Coll11. A real number is given in each process. Send given numbers to all

process using the MPI_Allgather function. Output received data in each

process in ascending order of ranks of sending processes (inclusive of the

number received from itself).

MPI3Coll12. Four integers are given in each process. Send given integers to all

processes using the MPI_Allgather function. Output received data in each

process in ascending order of ranks of sending processes (inclusive of the

numbers received from itself).

MPI3Coll13. A sequence of R + 2 integers is given in each process; R is the

rank of process (that is, two integers are given in the process 0, three integ-

ers are given in the process 1, and so on). Send given integers to all

processes using the MPI_Allgatherv function. Output received data in each

process in ascending order of ranks of sending processes (inclusive of the

numbers received from itself).

MPI3Coll14. A sequence of K real numbers is given in each process; K is the

number of processes. Using the MPI_Alltoall function, send one element of

each given sequence to each process as follows: first element of each se-

quence should be sent to the process 0, second element of each sequence

196 M. E. Abramyan. Parallel Programming Based on MPI 2.0

should be sent to the process 1, and so on. Output received numbers in each

process in ascending order of ranks of sending processes (inclusive of the

number received from itself).

MPI3Coll15. A sequence of 3K integers is given in each process; K is the num-

ber of processes. Using the MPI_Alltoall function, send three elements of each

given sequence to each process as follows: the initial three elements of

each sequence should be sent to the process 0, the next three elements of

each sequence should be sent to the process 1, and so on. Output received

numbers in each process in ascending order of ranks of sending processes

(inclusive of the numbers received from itself).

MPI3Coll16*. A sequence of K(K + 1)/2 integers is given in each process; K is

the number of processes. Using the MPI_Alltoallv function, send some ele-

ments of each given sequence to each process as follows: the first element

of each sequence should be sent to the process 0, the next two elements of

each sequence should be sent to the process 1, the next three elements of

each sequence should be sent to the process 2, and so on. Output received

numbers in each process in ascending order of ranks of sending processes

(inclusive of the numbers received from itself).

MPI3Coll17*. A sequence of K + 1 real numbers is given in each process; K is

the number of processes. Using the MPI_Alltoallv function, send two elements

of each given sequence to each process as follows: the initial two elements

of each sequence should be sent to the process 0, the second and the third

element of each sequence should be sent to the process 1, …, the last two

elements of each sequence should be sent to the last process. Output re-

ceived numbers in each process in ascending order of ranks of sending

processes (inclusive of the numbers received from itself).

MPI3Coll18*. A sequence of K + 1 real numbers is given in each process; K is

the number of processes. Using the MPI_Alltoallv function, send two elements

of each given sequence to each process as follows: the last two elements of

each sequence (with the order numbers K + 1 and K) should be sent to the

process 0, the elements of each sequence with the order numbers K − 1

and K should be sent to the process 1, …, the initial two elements of each

sequence should be sent to the last process. Output received numbers in

each process in ascending order of ranks of sending processes (inclusive of

the numbers received from itself).

2.3.2. Global reduction operations

MPI3Coll19. A sequence of K + 5 integers is given in each process; K is the

number of processes. Find sums of elements of all given sequences with the

same order number using the MPI_Reduce function with the MPI_SUM opera-

tion. Output received sums in the master process.

Part 2. Learning tasks 197

MPI3Coll20. A sequence of K + 5 real numbers is given in each process; K is

the number of processes. Find the minimal value among the elements of all

given sequences with the same order number using the MPI_Reduce function

with the MPI_MIN operation. Output received minimal values in the master

process.

MPI3Coll21. A sequence of K + 5 integers is given in each process; K is the

number of processes. Using the MPI_Reduce function with the MPI_MAXLOC

operation, find the maximal value among the elements of all given se-

quences with the same order number and also the rank of process that con-

tains this maximal value. Output received maximal values and ranks in the

master process (first, output all maximal values, then output all correspond-

ing ranks).

MPI3Coll22. A sequence of K + 5 real numbers is given in each process; K is

the number of processes. Find products of elements of all given sequences

with the same order number using the MPI_Allreduce function with the

MPI_PROD operation. Output received products in each process.

MPI3Coll23. A sequence of K + 5 real numbers is given in each process; K is

the number of processes. Using the MPI_Allreduce function with the

MPI_MINLOC operation, find the minimal value among the elements of all

given sequences with the same order number and also the rank of process

that contains this minimal value. Output received minimal values in the

master process and output corresponding ranks in each slave process.

Remark. The solution of this task is given in Section 1.2.5.

MPI3Coll24. A sequence of K integers is given in each process; K is the number

of processes. Using the MPI_Reduce_scatter function, find sums of elements

of all given sequences with the same order number and send one sum to

each process as follows: the first sum should be sent to the process 0, the

second sum should be sent to the process 1, and so on. Output the received

sum in each process.

MPI3Coll25. A sequence of 2K real numbers is given in each process; K is the

number of processes. Using the MPI_Reduce_scatter function, find maximal

values among elements of all given sequences with the same order number

and send two maximal values to each process as follows: the initial two

maximums should be sent to the process 0, the next two maximums should

be sent to the process 1, and so on. Output received data in each process.

MPI3Coll26. A sequence of K(K + 3)/2 integers is given in each process; K is

the number of processes. Using the MPI_Reduce_scatter function, find mi-

nimal values among elements of all given sequences with the same order

number and send some minimal values to each process as follows: the ini-

tial two minimums should be sent to the process 0, the next three mini-

198 M. E. Abramyan. Parallel Programming Based on MPI 2.0

mums should be sent to the process 1, …, the last K + 1 minimums should

be sent to the process K − 1. Output received data in each process.

MPI3Coll27. A sequence of K + 5 real numbers is given in each process; K is

the number of processes. Using the MPI_Scan function, find products of

elements of given sequences with the same order number as follows: the

products of elements of sequences given in the processes of rank 0, …, R

should be found in the process R (R = 0, 1, …, K − 1). Output received data

in each process; in particular, products of elements of all given sequences

should be output in the process K − 1.

MPI3Coll28. A sequence of K + 5 integers is given in each process; K is the

number of processes. Using the MPI_Scan function, find maximal values

among elements of given sequences with the same order number as fol-

lows: the maximal values of elements of sequences given in the processes

of rank 0, …, R should be found in the process R (R = 0, 1, …, K − 1). Out-

put received data in each process.

2.4. Derived datatypes and data packing

Before solving the tasks in this section, you should study the MPI4Type14

task solution given in Section 1.2.6.

2.4.1. The simplest derived datatypes

MPI4Type1. A sequence of K − 1 triples of integers is given in the master

process; K is the amount of processes. Send all given data to each slave

process using derived datatype with three integer elements and one collec-

tive operation with the derived datatype. Output received data in each slave

process in the same order.

MPI4Type2. A sequence of K − 1 triples of integers is given in the master

process; K is the amount of processes. Send one given triple at a time to

each slave process using derived datatype with three integer elements and

one collective operation with the derived datatype. Output received integers

in each slave process in the same order.

MPI4Type3. A triple of integers is given in each slave process. Send all given

triples to the master process using derived datatype with three integer ele-

ments and one collective operation with the derived datatype. Output re-

ceived data in the master process in ascending order of ranks of sending

processes.

MPI4Type4. A sequence of K − 1 triples of numbers is given in the master

process; K is the amount of processes. Two initial items of each triple are

integers, the last item is a real number. Send all given triples to each slave

process using derived datatype with three elements (two integers and a real

Part 2. Learning tasks 199

number) and one collective operation with the derived datatype. Output re-

ceived data in each slave process in the same order.

MPI4Type5. A sequence of K − 1 triples of numbers is given in the master

process; K is the amount of processes. The first item and the last item of

each triple are integers, the middle item is a real number. Send one given

triple at a time to each slave process using derived datatype with three ele-

ments (an integer, a real number, an integer) and one collective operation

with the derived datatype. Output received data in each slave process in the

same order.

Note. When solving this task, it may be necessary to solve an additional

problem related to the special way of field alignment in data structures for

C/C++ languages. In some situations, the alignment results in additional

empty spaces between the fields of the structure (and at its end), which

must be taken into account when defining the corresponding MPI derived

datatypes. To recognize such situations, it is enough to find the size of the

created structure (using the sizeof operator) and compare it with the total

size of its fields. If these sizes do not coincide, then it means that there are

empty spaces between the fields and/or at the end of the structure. Here is

an example of such a structure corresponding to the current task:

struct s1
{
 int a;
 double b;
 int c;
};

The total size of its fields is 4 + 8 + 4 = 16 bytes, but the sizeof(s1) call will

return the value 24. This is explained by the fact that data of double type in

structures are aligned on the boundary of 8 bytes (the so-called double-

word alignment), and this alignment must be preserved in arrays of struc-

tures, so an empty space can be added to the end of the structure as well. In

our case, in order to ensure the double-word alignment of field b, an empty

space equal to 4 bytes is added after field a, and in order to preserve such

alignment for consecutive structures of type s1, an empty space equal to

4 bytes is also added to its end. Thus, the distribution of fields in memory

for two instances of structure s1 will be as follows (here the symbols x, y, z

denote bytes occupied by fields a, b, c, and the symbol . (dot) denotes a byte

included in the empty space:

a b c a b c
0 8 16 24 32 40 48
| | | | | | |
xxxx....yyyyyyyyzzzz....xxxx....yyyyyyyyzzzz....|

200 M. E. Abramyan. Parallel Programming Based on MPI 2.0

It is easy to see that only the presence of empty spaces provides double-

word alignment for field b.

This must be taken into account when defining the appropriate MPI data-

types. In our case, it is necessary not only to specify the correct offset be-

tween the first and the second data block, but also to define the final empty

space. Here is an example of correct definition of datatype t1 for structure

s1, in which functions from MPI-2 standard are used:

MPI_Datatype t10, t1;
int blocklen[3] = {1, 1, 1};
MPI_Aint displ[3] = {0, 8, 16};
MPI_Datatype types[3] = {MPI_INT, MPI_DOUBLE, MPI_INT};
MPI_Type_create_struct(3, blocklen, displ, types, &t10);
MPI_Type_create_resized(t10, 0, 24, &t1);

Standard MPI datatypes also take into account the double-word alignment.

In particular, the extent of the MPI_DOUBLE_INT type is 16, while its size

is 12.

MPI4Type6. A triple of numbers is given in each slave process. The first item

of each triple is a real number, the other items are integers. Send all given

triples to the master process using derived datatype with three elements (a

real number and two integers) and one collective operation with the derived

datatype. Output received data in the master process in ascending order of

ranks of sending processes.

MPI4Type7. A triple of numbers is given in each process. The first item and the

last item of each triple are integers, the middle item is a real number. Send

the given triples from each process to all processes using derived datatype

with three elements (an integer, a real number, an integer) and one collec-

tive operation with the derived datatype. Output received data in each

process in ascending order of ranks of sending processes (inclusive of data

received from itself).

MPI4Type8. A sequence of R triples of numbers is given in each slave process;

R is the rank of process. Two initial items of each triple are integers, the

last item is a real number. Send all given triples to the master process using

derived datatype with three elements (two integers and a real number) and

one collective operation with the derived datatype. Output received data in

the master process in ascending order of ranks of sending processes.

2.4.2. Data packing

MPI4Type9. Two sequences of K numbers are given in the master process; K is

the amount of processes. The first given sequence contains integers, the

second given sequence contains real numbers. Send all data to each slave

process using the MPI_Pack and MPI_Unpack functions and one collective op-

eration. Output received data in each slave process in the same order.

Part 2. Learning tasks 201

MPI4Type10. A sequence of K − 1 triples of numbers is given in the master

process; K is the amount of processes. The first item and the last item of

each triple are integers, the middle item is a real number. Send one given

triple at a time to each slave process using the pack/unpack functions and

one collective operation. Output received numbers in each slave process in

the same order.

MPI4Type11. A sequence of K − 1 triples of numbers is given in the master

process; K is the amount of processes. Two initial items of each triple are

integers, the last item is a real number. Send all given triples to each slave

process using the pack/unpack functions and one collective operation. Out-

put received data in each slave process in the same order.

MPI4Type12. A triple of numbers is given in each slave process. Two initial

items of each triple are integers, the last item is a real number. Send the

given triples from each slave process to the master process using the

pack/unpack functions and one collective operation. Output received data

in the master process in ascending order of ranks of sending processes.

MPI4Type13. A real number and a sequence of R integers are given in each

slave process; R is the rank of process (one integer is given in the

process 1, two integers are given in the process 2, and so on). Send all giv-

en data from each slave process to the master process using the

pack/unpack functions and one collective operation. Output received data

in the master process in ascending order of ranks of sending processes.

2.4.3. Additional ways of derived datatypes creation

MPI4Type14*. Two sequences of integers are given in the master process: the

sequence A of the size 3K and the sequence B of the size K, where K is the

number of slave processes. The elements of sequences are numbered

from 1. Send NR elements of the sequence A to each slave process R (R = 1,

2, …, K) starting with the AR and increasing the ordinal number by 2 (R,

R + 2, R + 4, …). For example, if N2 is equal to 3, then the process 2 should

receive the elements A2, A4, A6. Output all received data in each slave

process. Use one call of the MPI_Send, MPI_Probe, and MPI_Recv functions for

sending numbers to each slave process; the MPI_Recv function should return

an array that contains only elements that should be output. To do this, de-

fine a new datatype that contains a single integer and an additional empty

space (a hole) of a size that is equal to the size of integer datatype. Use the

following data as parameters for the MPI_Send function: the given array A

with the appropriate displacement, the amount NR of sending elements, a

new datatype. Use an integer array of the size NR and the MPI_INT datatype

in the MPI_Recv function. To determine the number NR of received elements,

use the MPI_Get_count function in the slave processes.

202 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Note. Use the MPI_Type_create_resized function to define the hole size for a

new datatype (this function should be applied to the MPI_INT datatype). In

the MPI-1, the zero-size upper-bound marker MPI_UB should be used jointly

with the MPI_Type_struct for this purpose (in MPI-2, the MPI_UB pseudo-

datatype is deprecated).

Remark. The solution of this task is given in Section 1.2.6.

MPI4Type15*. An real-valued square matrix of order K is given in the master

process; K is the number of slave processes. Elements of the matrix should

be stored in a one-dimensional array A in a row-major order. The columns

of matrix are numbered from 1. Send R-th column of matrix to the process

of rank R (R = 1, 2, …, K) and output all received elements in each slave

process. Use one call of the MPI_Send and MPI_Recv functions for sending

elements to each slave process; the MPI_Recv function should return an array

that contains only elements that should be output. To do this, define a new

datatype that contains a single real number and an additional empty space

(a hole) of the appropriate size. Use the following data as parameters for

the MPI_Send function: the given array A with the appropriate displacement,

the amount K of sending elements (i. e., the size of column), a new data-

type. Use a real-valued array of the size K and the MPI_DOUBLE datatype in

the MPI_Recv function.

Note. See the note to MPI4Type14.

MPI4Type16*. R-th column of a real-valued square matrix of order K is given

in the slave process of rank R (R = 1, 2, …, K); K is the number of slave

processes, the columns of matrix are numbered from 1. Send all columns to

the master process and store them in a one-dimensional array A in a row-

major order. Output all elements of A in the master process. Use one call of

the MPI_Send and MPI_Recv functions for sending elements of each column;

the resulting array A with the appropriate displacement should be the first

parameter for the MPI_Recv function, and a number 1 should be its second

parameter. To do this, define a new datatype (in the master process) that

contains K real numbers and an empty space (a hole) of the appropriate size

after each number. Define a new datatype in two steps. In the first step, de-

fine auxiliary datatype that contains one real number and additional hole

(see the note to MPI4Type14). In the second step, define the final datatype

using the MPI_Type_contiguous function (this datatype should be the third pa-

rameter for the MPI_Recv function). The MPI_Type_commit function is suffi-

cient to call only for the final datatype. Use a real-valued array of size K

and the MPI_DOUBLE datatype in the MPI_Send function.

MPI4Type17*. The number of slave processes K is a multiple of 3 and does not

exceed 9. An integer N is given in each process, all the numbers N are the

same and are in the range from 3 to 5. Also an integer square matrix of or-

Part 2. Learning tasks 203

der N (a block) is given in each slave process; the block should be stored in

a one-dimensional array B in a row-major order. Send all arrays B to the

master process and compose a block matrix of the size (K/3) × 3 (the size is

indicated in blocks) using a row-major order for blocks (i. e., the first row

of blocks should include blocks being received from the processes 1, 2, 3,

the second row of blocks should include blocks from the processes 4, 5, 6,

and so on). Store the block matrix in the one-dimensional array A in a row-

major order. Output all elements of A in the master process. Use one call of

the MPI_Send and MPI_Recv functions for sending each block B; the resulting

array A with the appropriate displacement should be the first parameter for

the MPI_Recv function, and a number 1 should be its second parameter. To

do this, define a new datatype (in the master process) that contains N se-

quences, each sequence contains N integers, and an empty space (a hole) of

the appropriate size should be placed between the sequences. Define the

required datatype using the MPI_Type_vector function (this datatype should

be the third parameter for the MPI_Recv function). Use the array B of size

N·N and the MPI_INT datatype in the MPI_Send function.

MPI4Type18*. The number of slave processes K is a multiple of 3 and does not

exceed 9. An integer N in the range from 3 to 5 and an integer block matrix

of the size (K/3) × 3 (the size is indicated in blocks) are given in the master

process. Each block is a lower triangular matrix of order N, the block con-

tains all matrix elements, inclusive of zero-valued ones. The block matrix

should be stored in the one-dimensional array A in a row-major order. Send

a non-zero part of each block to the corresponding slave process in a row-

major order of blocks (i. e., the blocks of the first row should be sent to the

processes 1, 2, 3, the blocks of the second row should be sent to the

processes 4, 5, 6, and so on). Output all received elements in each slave

process (in a row-major order). Use one call of the MPI_Send, MPI_Probe, and

MPI_Recv functions for sending each block; the resulting array A with the

appropriate displacement should be the first parameter for the MPI_Send

function, and a number 1 should be its second parameter. To do this, define

a new datatype (in the master process) that contains N sequences, each se-

quence contains non-zero part of the next row of a lower triangular block

(the first sequence consists of 1 element, the second sequence consists of 2

elements, and so on), and an empty space (a hole) of the appropriate size

should be placed between the sequences. Define the required datatype us-

ing the MPI_Type_indexed function (this datatype should be the third parame-

ter for the MPI_Send function). Use an integer array B, which contains a

non-zero part of received block, and the MPI_INT datatype in the MPI_Recv

function. To determine the number of received elements, use the

MPI_Get_count function in the slave processes.

204 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI4Type19*. The number of slave processes K is a multiple of 3 and does not

exceed 9. An integer N is given in each process, all the numbers N are the

same and are in the range from 3 to 5. Also an integer P and a non-zero

part of an integer square matrix of order N (a Z-block) are given in each

slave process. The given elements of Z-block should be stored in a one-

dimensional array B in a row-major order. These elements are located in

the Z-block in the form of the symbol "Z", i. e. they occupy the first and

last row, and also the antidiagonal. Define a zero-valued integer matrix of

the size N·(K/3) × 3N in the master process (all elements of this matrix are

equal to 0 and should be stored in a one-dimensional array A in a row-

major order). Send a non-zero part of the given Z-block from each slave

process to the master process in ascending order of ranks of sending

processes and write each received Z-block in the array A starting from the

element of array A with index P (the positions of Z-blocks can overlap, in

this case the elements of blocks received from processes of higher rank will

replace some of the elements of previously written blocks). Output all ele-

ments of A in the master process. Use one call of the MPI_Send and MPI_Recv

functions for sending each Z-block; the array A with the appropriate dis-

placement should be the first parameter for the MPI_Recv function, and a

number 1 should be its second parameter. To do this, define a new datatype

(in the master process) that contains N sequences, the first and the last se-

quences contain N integers, the other sequences contain 1 integer, and an

empty space (a hole) of the appropriate size should be placed between the

sequences. Define the required datatype using the MPI_Type_indexed function

(this datatype should be the third parameter for the MPI_Recv function). Use

the array B, which contains a non-zero part of a Z-block, and the MPI_INT

datatype in the MPI_Send function.

Note. Use the msgtag parameter to send the Z-block insertion position P to

the master process. To do this, set the value of P as the msgtag parameter for

the MPI_Send function in slave processes, call the MPI_Probe function with

the MPI_ANY_TAG parameter in the master process (before calling the

MPI_Recv function), and analyze its returned parameter of the MPI_Status

type.

MPI4Type20*. The number of slave processes K is a multiple of 3 and does not

exceed 9. An integer N is given in each process, all the numbers N are the

same and are in the range from 3 to 5. Also an integer P and a non-zero

part of an integer square matrix of order N (an U-block) are given in each

slave process. The given elements of U-block should be stored in a one-

dimensional array B in a row-major order. These elements are located in

the U-block in the form of the symbol "U", i. e. they occupy the first and

last column, and also the last row. Define a zero-valued integer matrix of

the size N·(K/3) × 3N in the master process (all elements of this matrix are

Part 2. Learning tasks 205

equal to 0 and should be stored in a one-dimensional array A in a row-

major order). Send a non-zero part of the given U-block from each slave

process to the master process in ascending order of ranks of sending

processes and write each received U-block in the array A starting from the

element of array A with index P (the positions of U-blocks can overlap, in

this case the elements of blocks received from processes of higher rank will

replace some of the elements of previously written blocks). Output all ele-

ments of A in the master process. Use one call of the MPI_Send and MPI_Recv

functions for sending each U-block; the array A with the appropriate dis-

placement should be the first parameter for the MPI_Recv function, and a

number 1 should be its second parameter. To do this, define a new datatype

(in the master process) that contains appropriate number of sequences with

empty spaces (holes) between them. Define the required datatype using the

MPI_Type_indexed function (this datatype should be the third parameter for

the MPI_Recv function). Use the array B, which contains a non-zero part of

an U-block, and the MPI_INT datatype in the MPI_Send function.

Note. See the note to MPI4Type19.

2.4.4. The MPI_Alltoallw function (MPI-2)

MPI4Type21**. Solve the MPI4Type15 task by using one collective operation

instead of the MPI_Send and MPI_Recv functions to transfer data.

Note. You cannot use the functions of the Scatter group, since the dis-

placements for the data items (columns of the matrix) should be specified

in bytes rather than in elements. Therefore, you should use the function

MPI_Alltoallw introduced in MPI-2, which allows you to configure the

collective communications in the most flexible way. In this case, the

MPI_Alltoallw function should be used to implement a data transfer of the

Scatter type (and most of the array parameters used in this function need to

be defined differently in the master and slave processes).

MPI4Type22**. Solve the MPI4Type16 task by using one collective operation

instead of the MPI_Send and MPI_Recv functions to transfer data.

Note. See the note to MPI4Type21. In this case, the MPI_Alltoallw func-

tion should be used to implement a data transfer of the Gather type.

2.5. Process groups and communicators

Before solving the tasks in this section, you should study the MPI5Comm3,

MPI5Comm17, MPI5Comm29 task solutions given in Sections 1.2.7–1.2.9.

2.5.1. Creation of new communicators

MPI5Comm1. A sequence of K integers is given in the master process; K is the

number of processes whose rank is an even number (0, 2, …). Create a new

communicator that contains all even-rank processes using the

206 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Comm_group, MPI_Group_incl, and MPI_Comm_create functions. Send one

given integer to each even-rank process (including the master process) us-

ing one collective operation with the created communicator. Output re-

ceived integer in each even-rank process.

MPI5Comm2. Two real numbers are given in each process whose rank is an

odd number (1, 3, …). Create a new communicator that contains all odd-

rank processes using the MPI_Comm_group, MPI_Group_excl, and

MPI_Comm_create functions. Send all given numbers to each odd-rank

process using one collective operation with the created communicator.

Output received numbers in each odd-rank process in ascending order of

ranks of sending processes (including numbers received from itself).

MPI5Comm3. Three integers are given in each process whose rank is a mul-

tiple of 3 (including the master process). Using the MPI_Comm_split function,

create a new communicator that contains all processes with ranks that are a

multiple of 3. Send all given numbers to master process using one collec-

tive operation with the created communicator. Output received integers in

the master process in ascending order of ranks of sending processes (in-

cluding integers received from the master process).

Note. When calling the MPI_Comm_split function in processes that are not

required to include in the new communicator, one should specify the con-

stant MPI_UNDEFINED as the color parameter.

Remark. The solution of this task is given in Section 1.2.7.

MPI5Comm4. A sequence of 3 real numbers is given in each process whose

rank is an even number (including the master process). Find the minimal

value among the elements of the given sequences with the same order

number using a new communicator and one global reduction operation.

Output received minimums in the master process.

Note. See the note to MPI5Comm3.

MPI5Comm5. A real number is given in each process. Using the

MPI_Comm_split function and one global reduction operation, find the

maximal value among the numbers given in the even-rank processes (in-

cluding the master process) and the minimal value among the numbers giv-

en in the odd-rank processes. Output the maximal value in the process 0

and the minimal value in the process 1.

Note. The program should contain a single MPI_Comm_split call, which

creates the both required communicators (each for the corresponding group

of processes).

MPI5Comm6. An integer K and a sequence of K real numbers are given in the

master process, an integer N is given in each slave process. The value of N

is equal to 1 for some processes and is equal to 0 for others; the number of

processes with N = 1 is equal to K. Send one real number from the master

Part 2. Learning tasks 207

process to each slave process with N = 1 using the MPI_Comm_split function

and one collective operation. Output the received numbers in these slave

processes.

Note. See the note to MPI5Comm3.

MPI5Comm7. An integer N is given in each process; the value of N is equal

to 1 for at least one process and is equal to 0 for others. Also a real num-

ber A is given in each process with N = 1. Send all numbers A to the first

process with N = 1 using the MPI_Comm_split function and one collective op-

eration. Output received numbers in this process in ascending order of

ranks of sending processes (including the number received from this

process).

Note. See the note to MPI5Comm3.

MPI5Comm8. An integer N is given in each process; the value of N is equal

to 1 for at least one process and is equal to 0 for others. Also a real num-

ber A is given in each process with N = 1. Send all numbers A to the last

process with N = 1 using the MPI_Comm_split function and one collective op-

eration. Output received numbers in this process in ascending order of

ranks of sending processes (including the number received from this

process).

Note. See the note to MPI5Comm3.

MPI5Comm9. An integer N is given in each process; the value of N is equal

to 1 for at least one process and is equal to 0 for others. Also a real num-

ber A is given in each process with N = 1. Send all numbers A to each

process with N = 1 using the MPI_Comm_split function and one collective op-

eration. Output received numbers in these processes in ascending order of

ranks of sending processes (including the number received from itself).

Note. See the note to MPI5Comm3.

MPI5Comm10. An integer N is given in each process; the value of N is equal

to 1 for some processes and is equal to 2 for others, there are at least one

process with N = 1 and one process with N = 2. Also an integer A is given

in each process. Using the MPI_Comm_split function and one collective oper-

ation, send integers A from all processes with N = 1 to each process with

N = 1 and from all processes with N = 2 to each process with N = 2. Output

received integers in each process in ascending order of ranks of sending

processes (including the integer received from itself).

Note. See the note to MPI5Comm5.

MPI5Comm11. An integer N is given in each process; the value of N is equal

to 1 for at least one process and is equal to 0 for others. Also a real num-

ber A is given in each process with N = 1. Find the sum of all real num-

bers A using the MPI_Comm_split function and one global reduction opera-

tion. Output the received sum in each process with N = 1.

208 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Note. See the note to MPI5Comm3.

MPI5Comm12. An integer N is given in each process; the value of N is equal

to 1 for some processes and is equal to 2 for others, there are at least one

process with N = 1 and one process with N = 2. Also a real number A is

given in each process. Using the MPI_Comm_split function and one global re-

duction operation, find the minimal value among the numbers A given in

the processes with N = 1 and the maximal value among the numbers A giv-

en in the processes with N = 2. Output the minimal value in each process

with N = 1 and the maximal value in each process with N = 2.

Note. See the note to MPI5Comm5.

2.5.2. Virtual topologies

MPI5Comm13. An integer N (> 1) is given in the master process; the number

of processes K is assumed to be a multiple of N. Send the integer N to all

processes and define a Cartesian topology for all processes as a (N × K/N)

grid using the MPI_Cart_create function (ranks of processes should not be

reordered). Find the process coordinates in the created topology using the

MPI_Cart_coords function and output the process coordinates in each process.

MPI5Comm14. An integer N (> 1) is given in the master process; the number N

is not greater than the number of processes K. Send the integer N to all

processes and define a Cartesian topology for the initial part of processes as

a (N × K/N) grid using the MPI_Cart_create function (the symbol "/" denotes

the operator of integer division, ranks of processes should not be reor-

dered). Output the process coordinates in each process included in the Car-

tesian topology.

MPI5Comm15. The number of processes K is an even number: K = 2N, N > 1.

A real number A is given in the processes 0 and N. Define a Cartesian to-

pology for all processes as a (2 × N) grid. Using the MPI_Cart_sub function,

split this grid into two one-dimensional subgrids (namely, rows) such that

the processes 0 and N were the master processes in these rows. Send the

given number A from the master process of each row to each process of the

same row using one collective operation. Output the received number in

each process (including the processes 0 and N).

MPI5Comm16. The number of processes K is an even number: K = 2N, N > 1.

A real number A is given in the processes 0 and 1. Define a Cartesian to-

pology for all processes as a (N × 2) grid. Using the MPI_Cart_sub function,

split this grid into two one-dimensional subgrids (namely, columns) such

that the processes 0 and 1 were the master processes in these columns.

Send the given number A from the master process of each column to each

process of the same column using one collective operation. Output the re-

ceived number in each process (including the processes 0 and 1).

Part 2. Learning tasks 209

MPI5Comm17. The number of processes K is a multiple of 3: K = 3N, N > 1.

A sequence of N integers is given in the processes 0, N, and 2N. Define a

Cartesian topology for all processes as a (3 × N) grid. Using the

MPI_Cart_sub function, split this grid into three one-dimensional subgrids

(namely, rows) such that the processes 0, N, and 2N were the master

processes in these rows. Send one given integer from the master process of

each row to each process of the same row using one collective operation.

Output the received integer in each process (including the processes 0, N,

and 2N).

Remark. The solution of this task is given in Section 1.2.8.

MPI5Comm18. The number of processes K is a multiple of 3: K = 3N, N > 1. A

sequence of N integers is given in the processes 0, 1, and 2. Define a Carte-

sian topology for all processes as a (N × 3) grid. Using the MPI_Cart_sub

function, split this grid into three one-dimensional subgrids (namely, col-

umns) such that the processes 0, 1, and 2 were the master processes in these

columns. Send one given integer from the master process of each column to

each process of the same column using one collective operation. Output the

received integer in each process (including the processes 0, 1, and 2).

MPI5Comm19. The number of processes K is equal to 8 or 12. An integer is

given in each process. Define a Cartesian topology for all processes as a

three-dimensional (2 × 2 × K/4) grid (ranks of processes should not be

reordered), which should be considered as 2 two-dimensional (2 × K/4)

subgrids (namely, matrices) that contain processes with the identical first

coordinate in the Cartesian topology. Split each matrix into two one-

dimensional rows of processes. Send given integers from all processes of

each row to the master process of the same row using one collective opera-

tion. Output received integers in the master process of each row (including

integer received from itself).

MPI5Comm20. The number of processes K is equal to 8 or 12. An integer is

given in each process. Define a Cartesian topology for all processes as a

three-dimensional (2 × 2 × K/4) grid (ranks of processes should not be

reordered), which should be considered as K/4 two-dimensional (2 × 2)

subgrids (namely, matrices) that contain processes with the identical third

coordinate in the Cartesian topology. Split this grid into K/4 matrices of

processes. Send given integers from all processes of each matrix to the

master process of the same matrix using one collective operation. Output

received integers in the master process of each matrix (including integer re-

ceived from itself).

MPI5Comm21. The number of processes K is equal to 8 or 12. A real number

is given in each process. Define a Cartesian topology for all processes as a

three-dimensional (2 × 2 × K/4) grid (ranks of processes should not be

210 M. E. Abramyan. Parallel Programming Based on MPI 2.0

reordered), which should be considered as 2 two-dimensional (2 × K/4)

subgrids (namely, matrices) that contain processes with the identical first

coordinate in the Cartesian topology. Split each matrix into K/4 one-

dimensional columns of processes. Using one global reduction operation,

find the product of all numbers given in the processes of each column.

Output the product in the master process of the corresponding column.

MPI5Comm22. The number of processes K is equal to 8 or 12. A real number

is given in each process. Define a Cartesian topology for all processes as a

three-dimensional (2 × 2 × K/4) grid (ranks of processes should not be

reordered), which should be considered as K/4 two-dimensional (2 × 2)

subgrids (namely, matrices) that contain processes with the identical third

coordinate in the Cartesian topology. Split this grid into K/4 matrices of

processes. Using one global reduction operation, find the sum of all num-

bers given in the processes of each matrix. Output the sum in the master

process of the corresponding matrix.

MPI5Comm23. Positive integers M and N are given in the master process; the

product of the numbers M and N is less than or equal to the number of

processes. Also integers X and Y are given in each process whose rank is in

the range 0 to M·N − 1. Send the numbers M and N to all processes and de-

fine a Cartesian topology for initial M·N processes as a two-dimensional

(M × N) grid, which is periodic in the first dimension (ranks of processes

should not be reordered). Using the MPI_Cart_rank function, output the rank

of process with the coordinates X, Y (taking into account periodicity) in

each process included in the Cartesian topology. Output −1 in the case of

erroneous coordinates.

Note. If invalid coordinates are specified when calling the MPI_Cart_rank

function (for instance, in the case of negative coordinates for non-periodic

dimensions), then the function itself returns an error code (instead of the

successful return code MPI_SUCCESS) whereas the return value of the rank

parameter is undefined. So, in this task, the number −1 should be output

when the MPI_Cart_rank function returns a value that differs from

MPI_SUCCESS. To suppress the output of error messages in the debug sec-

tion of the Programming Taskbook window, it is enough to set the special

error handler named MPI_ERROR_RETURN before calling a function that may

be erroneous (use the MPI_Comm_set_errhandler function or, in MPI-1, the

MPI_Errhandler_set function). When an error occurs in some function, this er-

ror handler performs no action except setting an error return value for this

function. In MPICH version 1.2.5, the MPI_Cart_rank function returns the

rank parameter equal to −1 when the process coordinates are invalid. This

feature may sumplify the solution; however, in this case, one also should

suppress the output of error messages by means of special error handler set-

ting.

Part 2. Learning tasks 211

MPI5Comm24. Positive integers M and N are given in the master process; the

product of the numbers M and N is less than or equal to the number of

processes. Also integers X and Y are given in each process whose rank is in

the range 0 to M·N − 1. Send the numbers M and N to all processes and de-

fine a Cartesian topology for initial M·N processes as a two-dimensional

(M × N) grid, which is periodic in the second dimension (ranks of processes

should not be reordered). Using the MPI_Cart_rank function, output the rank

of process with the coordinates X, Y (taking into account periodicity) in

each process included in the Cartesian topology. Output −1 in the case of

erroneous coordinates.

Note. See the note to MPI5Comm23.

MPI5Comm25. A real number is given in each slave process. Define a Carte-

sian topology for all processes as a one-dimensional grid. Using the

MPI_Send and MPI_Recv functions, perform a shift of given data by step −1

(that is, the real number given in each process should be sent to the process

of the previous rank). Ranks of source and destination process should be

determined by means of the MPI_Cart_shift function. Output received data in

each destination process.

MPI5Comm26. The number of processes K is an even number: K = 2N, N > 1.

A real number A is given in each process. Define a Cartesian topology for

all processes as a two-dimensional (2 × N) grid (namely, matrix); ranks of

processes should not be reordered. Using the MPI_Sendrecv function, per-

form a cyclic shift of data given in all processes of each row of the matrix

by step 1 (that is, the number A should be sent from each process in the

row, except the last process, to the next process in the same row and from

the last process in the row to the first process in the same row). Ranks of

source and destination process should be determined by means of the

MPI_Cart_shift function. Output received data in each process.

MPI5Comm27. The number of processes K is equal to 8 or 12. A real num-

ber A is given in each process. Define a Cartesian topology for all

processes as a three-dimensional (2 × 2 × K/4) grid (ranks of processes

should not be reordered), which should be considered as K/4 two-

dimensional (2 × 2) subgrids (namely, matrices) that contain processes with

the identical third coordinate in the Cartesian topology and are ordered by

the value of this third coordinate. Using the MPI_Sendrecv_replace function,

perform a cyclic shift of data given in all processes of each matrix by step 1

(that is, the numbers A should be sent from all processes of each matrix,

except the last matrix, to the corresponding processes of the next matrix

and from all processes of the last matrix to the corresponding processes of

the first matrix). Ranks of source and destination process should be deter-

212 M. E. Abramyan. Parallel Programming Based on MPI 2.0

mined by means of the MPI_Cart_shift function. Output received data in each

process.

MPI5Comm28**. The number of processes K is an odd number: K = 2N + 1

(1 < N < 5). An integer A is given in each process. Using the

MPI_Graph_create function, define a graph topology for all processes as fol-

lows: the master process must be connected by edges to all odd-rank

processes (that is, to the processes 1, 3, …, 2N − 1); each process of the

rank R, where R is a positive even number (2, 4, …, 2N), must be con-

nected by edge to the process of the rank R − 1. Thus, the graph represents

N-beam star whose center is the master process, each star beam consists of

two slave processes of ranks R and R + 1, and each odd-rank process R is

adjacent to star center (namely, the master process), see Fig. 54.

Fig. 54. Example of graph topology from the MPI5Comm28 task

Using the MPI_Send and MPI_Recv functions, send the given integer A from

each process to all its adjacent processes (its neighbors). The amount and

ranks of neighbors should be determined by means of the

MPI_Graph_neighbors_count and MPI_Graph_neighbors functions respectively.

Output received data in each process in ascending order of ranks of sending

processes.

MPI5Comm29**. The number of processes K is an even number: K = 2N

(1 < N < 6). An integer A is given in each process. Using the

MPI_Graph_create function, define a graph topology for all processes as fol-

lows: all even-rank processes (including the master process) are linked in a

chain 0 — 2 — 4 — 6 — … — (2N − 2); each process with odd rank R (1,

3, …, 2N − 1) is connected by edge to the process with the rank R − 1.

Thus, each odd-rank process has a single neighbor, the first and the last

even-rank processes have two neighbors, and other even-rank processes

(the "inner" ones) have three neighbors (Fig. 55).

Part 2. Learning tasks 213

Fig. 55. Example of graph topology from the MPI5Comm29 task

Using the MPI_Sendrecv function, send the given integer A from each

process to all its neighbors. The amount and ranks of neighbors should be

determined by means of the MPI_Graph_neighbors_count and

MPI_Graph_neighbors functions respectively. Output received data in each

process in ascending order of ranks of sending processes.

Remark. The solution of this task is given in Section 1.2.9.

MPI5Comm30**. The number of processes K is equal to 3N + 1 (1 < N < 5).

An integer A is given in each process. Using the MPI_Graph_create function,

define a graph topology for all processes as follows: processes of ranks R,

R + 1, R + 2, where R = 1, 4, 7, …, are linked by edges and, moreover, each

process whose rank is positive and is a multiple of 3 (that is, the process 3,

6, …) is connected by edge to the master process. Thus, the graph

represents N-beam star whose center is the master process, each star beam

consists of three linked slave processes, and each slave process with rank

that is a multiple of 3 is adjacent to star center (namely, the master

process), see Fig. 56.

Fig. 56. Example of graph topology from the MPI5Comm30 task

Using the MPI_Sendrecv function, send the given integer A from each

process to all its neighbors. The amount and ranks of neighbors should be

determined by means of the MPI_Graph_neighbors_count and

MPI_Graph_neighbors functions respectively. Output received data in each

process in ascending order of ranks of sending processes.

214 M. E. Abramyan. Parallel Programming Based on MPI 2.0

2.5.3. The distributed graph topology (MPI-2)

MPI5Comm31**. The number of processes K is a multiple of 3; an integer A is

given in each process. Using the MPI_Dist_graph_create function, define a dis-

tributed graph topology for all processes as follows: all processes whose

rank is a multiple of 3 (0, 3, …, K − 3) are linked in a ring, each process in

this ring is the source for the next process of the ring (that is, the process 0

is the source for the process 3, the process 3 is the source for the process

6, …, the process K − 3 is the source for the process 0); besides, the process

3N (N = 0, 1, …, K/3 − 1) is the source for the processes 3N + 1 and

3N + 2, and the process 3N + 1 is the source for the process 3N + 2

(Fig. 57).

Fig. 57. Example of graph topology from the MPI5Comm31 task

The complete definition of the graph topology should be given in the mas-

ter process (whereas the second parameter of the MPI_Dist_graph_create func-

tion should be equal to 0 in all slave processes). The weights parameter

should be equal to MPI_UNWEIGHTED, the info parameter should be equal to

MPI_INFO_NULL, ranks of processes should not be reordered. Using the

MPI_Send and MPI_Recv functions, send the given numbers from the source

processes to the destination processes and output the sum of the given

number A and all received numbers in each process. The amount and ranks

of source and destination processes should be determined by means of the

MPI_Dist_graph_neighbors_count and MPI_Dist_graph_neighbors functions.

MPI5Comm32**. The number of processes is in the range 4 to 15; an integer A

is given in each process. Using the MPI_Dist_graph_create function, define a

distributed graph topology for all processes as follows: all processes form a

binary tree with the process 0 as a tree root, the processes 1 and 2 as a tree

nodes of level 1, the processes from 3 to 6 as a tree nodes of level 2 (the

processes 3 and 4 are the child nodes of the process 1 and the processes 5

and 6 are the child nodes of the process 2), and so on. Each process is the

Part 2. Learning tasks 215

source for all its child nodes, so each process has 0 to 2 destination

processes (Fig. 58).

Fig. 58. Example of graph topology from the MPI5Comm32 task

The complete definition of the graph topology should be given in the mas-

ter process (whereas the second parameter of the MPI_Dist_graph_create func-

tion should be equal to 0 in all slave processes). The weights parameter

should be equal to MPI_UNWEIGHTED, the info parameter should be equal to

MPI_INFO_NULL, ranks of processes should not be reordered. Using the

MPI_Send and MPI_Recv functions in each process, find and output the sum

of the given number A and all the numbers that are given in ancestors of all

levels — from the tree root (the master process) to the nearest ancestor (the

parent process). The amount and ranks of source and destination processes

should be determined by means of the MPI_Dist_graph_neighbors_count and

MPI_Dist_graph_neighbors functions.

2.5.4. Non-blocking collective functions (MPI-3)

MPI5Comm33*. A sequence of 5 real numbers is given in the process of rank

K/2, where K is the number of processes. Use the MPI_Ibcast function for an

appropriate communicator to send these numbers to processes with lower

ranks and output the numbers in processes with ranks from 0 to K/2. Use

the MPI_Wait function to check if the MPI_Ibcast non-blocking operation fi-

nishes. Additionally, display the duration of each call of MPI_Wait func-

tion in milliseconds for processes with ranks from 0 to K/2 in the debug

section; for this purpose, call MPI_Wtime before and after MPI_Wait and use

the Show function to display the difference of values returned by MPI_Wtime

multiplied by 1000.

MPI5Comm34*. A sequence of 5 integers is given in each process of odd rank.

Using the MPI_Igather function for an appropriate communicator, send these

numbers to a process of rank 1 and output them in descending order of

ranks of the processes that sent them (first output the sequence of numbers

given in the process with the highest odd rank, last — the sequence of

216 M. E. Abramyan. Parallel Programming Based on MPI 2.0

numbers given in the process of rank 1). Use the MPI_Test function to check

if the MPI_Igather non-blocking operation finishes; call the MPI_Test function

in a loop until it returns a non-zero flag. Additionally, display the number

of required loop iterations with MPI_Test calls in the debug section for all

odd-rank processes using the Show function.

MPI5Comm35*. A sequence of R + 2 integers is given in each process of even

rank, where the number R equals the rank of the process (process 0 has 2

numbers, process 2 has 4 numbers, and so on). Use the MPI_Igatherv function

for an appropriate communicator to send these numbers to master process.

Output these numbers in ascending order of the ranks of the processes that

sent them (first output the sequence of numbers given in the master

process). Use MPI_Wait function to check if MPI_Igatherv non-blocking opera-

tion finishes. Additionally, display the duration of each call to the MPI_Wait

function in milliseconds for even-rank processes in the debug section; for

this purpose, call MPI_Wtime before and after MPI_Wait and use the Show

function to display the difference of the values returned by MPI_Wtime mul-

tiplied by 1000.

MPI5Comm36*. The number of processes K is an even number. A sequence of

K/2 real numbers is given in the master process. Use the MPI_Iscatter func-

tion for an appropriate communicator to send a number to each process of

even rank (including the master process) and output the received number in

each process; the numbers must be sent to the processes in reverse order:

the first number must be sent to the last process of even rank, the last num-

ber — to the process of rank 0. Use the MPI_Test function to check if the

MPI_Iscatter non-blocking operation finishes; call the MPI_Test function in a

loop until it returns a non-zero flag. Additionally, display the number of re-

quired loop iterations with MPI_Test calls in the debug section for all even-

rank processes using the Show function.

MPI5Comm37*. The number of processes K is an even number. A sequence of

K/2 + 2 real numbers is given in the process of rank 1. Using the

MPI_Iscatterv function for an appropriate communicator, send three numbers

of given sequence to each process of odd rank, with the first three numbers

sent to the process of rank 1, the second, the third and the fourth numbers

sent to the process of rank 3, and so on. Output the received numbers in

each process. Use the MPI_Wait function to check if the MPI_Iscatterv non-

blocking operation finishes. Additionally, display the duration of each call

to the MPI_Wait function in milliseconds for odd-rank processes in the debug

section; for this purpose, call MPI_Wtime before and after MPI_Wait and use

the Show function to display the difference of values returned by MPI_Wtime

multiplied by 1000.

Part 2. Learning tasks 217

MPI5Comm38*. An integer N is given in each process; the number N can take

two values: 0 and 1 (there is at least one process with N = 1). Also a real

number A is given in each process with N = 1. Use the MPI_Iallgather func-

tion to send the number A to each process for which N = 1 and output the

numbers in each process in ascending order of the ranks of the processes

that sent the numbers (including the number received from the same

process). Use the MPI_Test function to check if the MPI_Iallgather non-

blocking operation finishes; call the MPI_Test function in a loop until it re-

turns a non-zero flag. Additionally, display the number of required loop ite-

rations with MPI_Test calls in the debug section for all processes with N = 1

using the Show function.

MPI5Comm39*. An integer N is given in each process; the number N can take

two values: 0 and 1 (there is at least one process with N = 1). Also, a se-

quence A of integers is given in each process with N = 1 and it is known

that the sequence A in the first process with N = 1 includes one number, the

sequence A in the second process with N = 1 includes two numbers, and so

on. Use the MPI_Iallgatherv function to send the sequences of numbers A to

all processes with N = 1 and output the numbers in each process in ascend-

ing order of the ranks of the processes that sent them (including the num-

bers received from the same process). Use the MPI_Wait function to check if

the MPI_Iallgatherv non-blocking operation finishes. Additionally, display the

duration of each call of MPI_Wait in milliseconds for all processes with

N = 1 in the debug section. For this purpose, call MPI_Wtime before and after

MPI_Wait and use the Show function to display the difference of values re-

turned by MPI_Wtime multiplied by 1000.

MPI5Comm40*. A sequence of 2K integers is given in each process of even

rank; K is the number of even-rank processes. Using the MPI_Ialltoall func-

tion, send two elements of each given sequence to each process of even

rank as follows: the initial two elements of each sequence should be sent to

the master process, the next two elements of each sequence should be sent

to the process of rank 2, and so on. Output received numbers in each even-

rank process in ascending order of ranks of sending processes (including

the numbers received from the same process). Use the MPI_Test function to

check if the MPI_Ialltoall non-blocking operation finishes; call the MPI_Test

function in a loop until it returns a non-zero flag. Additionally, display the

number of required loop iterations with MPI_Test calls in the debug section

for all even-rank processes using the Show function.

MPI5Comm41*. A sequence of K + 1 integers is given in each process of odd

rank; K is the number of odd-rank processes. Using the MPI_Ialltoallv func-

tion, send two elements of each given sequence to each odd-rank process as

follows: the initial two elements of each sequence should be sent to the

218 M. E. Abramyan. Parallel Programming Based on MPI 2.0

process 1, the second element and the third element of each sequence

should be sent to the process 3, …, the last two elements of each sequence

should be sent to the last odd-rank process. Output received numbers in

each odd-rank process in ascending order of ranks of sending processes

(including the numbers received from the same process). Use MPI_Wait

function to check if MPI_Ialltoallv non-blocking operation finishes. Addition-

ally, display the duration of each call to the MPI_Wait function in millise-

conds for all odd-rank processes in the debug section; for this purpose, call

MPI_Wtime before and after MPI_Wait and use the Show function to display the

difference of the values returned by MPI_Wtime multiplied by 1000.

MPI5Comm42*. A sequence of K + 5 real numbers is given in each process of

even rank; K is the number of even-rank processes. Find the maximal value

among the elements of all given sequences with the same order number us-

ing the MPI_Ireduce function with the MPI_MAX operation. Output received

maximal values in the master process. Use the MPI_Test function to check if

the MPI_Ireduce non-blocking operation finishes; call the MPI_Test function in

a loop until it returns a non-zero flag. Additionally, display the number of

required loop iterations with MPI_Test calls in the debug section for all even-

rank processes using the Show function.

MPI5Comm43*. An integer N is given in each process; the number N can take

two values: 0 and 1 (there is at least one process with N = 1). Also a se-

quence of K real numbers, where K is the number of processes with N = 1,

is given in each process with N = 1. Find products of elements of all given

sequences with the same order number using the MPI_Iallreduce function with

the MPI_PROD operation. Output received products in each process with

N = 1. Use the MPI_Wait function to check if the MPI_Iallreduce non-blocking

operation finishes. Additionally, display the duration of each call of

MPI_Wait in milliseconds for all processes with N = 1 in the debug section.

For this purpose, call MPI_Wtime before and after MPI_Wait and use the Show

function to display the difference of values returned by MPI_Wtime multip-

lied by 1000.

MPI5Comm44*. The number of processes is 2K, and it is known that the num-

ber K is odd. A sequence of N integers is given in each process with ranks

from 0 to K, where N = 3(1 + K)/2. Using the MPI_Ireduce_scatter function,

find sums of elements of all given sequences with the same order number

and send sums to processes with ranks from 0 to K as follows: the first two

sums should be sent to the process 0, the third sum should be sent to the

process 1, the fourth and the fifth sum should be sent to the process 2, the

sixth sum should be sent to the process 3, and so on (two sums are sent to

the even-rank processes and one sum is sent to the odd-rank processes).

Output the received sums in each process. Use the MPI_Test function to

Part 2. Learning tasks 219

check if the MPI_Ireduce_scatter non-blocking operation finishes; call the

MPI_Test function in a loop until it returns a non-zero flag. Additionally,

display the number of required loop iterations with MPI_Test calls in the de-

bug section for processes with ranks from 0 to K using the Show function.

MPI5Comm45*. A sequence of 3K integers is given in each process of even

rank; K is the number of even-rank processes. Using the

MPI_Ireduce_scatter_block function, find sums of elements of all given se-

quences with the same order number and send three sums to each even-

rank process as follows: the first three sums should be sent to the process 0,

the next three sums should be sent to the process 2, and so on. Output the

received sums in each process. Use the MPI_Wait function to check if the

MPI_Ireduce_scatter_block non-blocking operation finishes. Additionally, dis-

play the duration of each call of MPI_Wait in milliseconds for all even-rank

processes in the debug section. For this purpose, call MPI_Wtime before and

after MPI_Wait and use the Show function to display the difference of values

returned by MPI_Wtime multiplied by 1000.

Note. The corresponding blocking collective function

MPI_Reduce_scatter_block appeared in the MPI-2 standard. It simplifies the

distribution of reduction results to different processes (compared to the

MPI_Reduce_scatter function) if each process must receive a reduction dataset

of the same size.

MPI5Comm46*. A sequence of K + 5 integers is given in each even-rank

process; 2K is the number of processes. Using the MPI_Iscan function, find

maximal values among elements of given sequences with the same order

number as follows: the maximal values of elements of sequences given in

the processes of even ranks 0, 2, …, R should be found in the process R

(R = 0, 2, …, 2K − 2). Output received data in each process. Use the

MPI_Test function to check if the MPI_Iscan non-blocking operation finishes;

call the MPI_Test function in a loop until it returns a non-zero flag. Addi-

tionally, display the number of required loop iterations with MPI_Test calls

in the debug section for even-rank processes using the Show function.

MPI5Comm47*. A sequence of K + 5 integers is given in each odd-rank

process; 2K is the number of processes. Using the MPI_Iexscan function, find

minimal values among elements of given sequences with the same order

number as follows: the minimal values of elements of sequences given in

the processes of odd ranks 1, 3, …, R − 2 should be found in the process of

rank R, R = 3, 5, …, 2K − 1). Output received data in processes of rank R.

Use MPI_Wait function to check if MPI_Iexscan non-blocking operation fi-

nishes. Additionally, display the duration of each call to the MPI_Wait func-

tion in milliseconds for even-rank processes in the debug section; for this

purpose, call MPI_Wtime before and after MPI_Wait and use the Show function

220 M. E. Abramyan. Parallel Programming Based on MPI 2.0

to display the difference of the values returned by MPI_Wtime multiplied by

1000.

Note. The corresponding blocking collective function MPI_Exscan ("exclu-

sive scan") appeared in the MPI-2 standard. It is more general than the

MPI_Scan function, because it allows to model the MPI_Scan function ("in-

clusive scan") without performing additional collective operations.

2.6. Parallel file input-output (MPI-2)

Use the char[12] array to store the filename, use the MPI_Bcast function with

the MPI_CHAR datatype parameter to send the filename from the master process

to the slave processes.

You do not need to set the view of the data in the file by means the

MPI_File_set_view function in the initial two subgroups (MPI6File1–MPI6File16);

it is enough to use the default view, in which both the elementary datatype and

the filetype are of the MPI_BYTE type, the initial displacement is equal to 0 for all

processes, and the "native" data representation is used. The same data representa-

tion should be specified for the file view in the tasks of the third subgroup

(MPI6File17–MPI6File30).

Use the MPI_Type_size function to determine the size of the MPI_INT and

MPI_DOUBLE types.

Use the function MPI_Type_create_resized to specify the additional empty

space in tasks devoted to the file view setting. One can use also the zero-size up-

per-bound marker MPI_UB, but this pseudo-datatype is deprecated in the MPI-2

standard.

Before solving the tasks in this section, you should study the MPI6File26

task solution given in Section 1.3.3.

2.6.1. Local functions for file input-output

MPI6File1. The name of existing file of integers is given in the master process;

the amount of file items, which should be read, and their ordinal numbers

are given in each slave process (the file items are numbered from 1). File

items with some numbers may be missing in the source file. Using the re-

quired number of the MPI_File_read_at local function calls in each process,

read existing file items with the specified ordinal numbers from the source

file and output them in the same order. To check existence of file item with

the specified ordinal number, you can either use the MPI_File_get_size func-

tion, or analyze the MPI_Status parameter of the MPI_File_read_at function.

MPI6File2. The name of file is given in the master process; the amount of pairs

of integers and the pairs themselves are given in each slave process; the

first term of the pair is the ordinal number of the file item, the second term

of the pair is the value of this file item (the file items are numbered from 1,

Part 2. Learning tasks 221

all ordinal numbers are different and cover range from 1 to some integer).

Create a new file of integers with the given name and write the given data

to this file using the required number of the MPI_File_write_at local function

calls in each slave process.

MPI6File3. The name of existing file of real numbers is given in the master

process. The file contains elements of the K × N matrix, where K is the

number of slave processes. Using one call of the MPI_File_read_at local func-

tion in each slave process, read and output elements of Rth matrix row in

the process of rank R (rows are numbered from 1). Use the MPI_File_get_size

function to determine the file size.

MPI6File4. The name of file is given in the master process; a sequence of R real

numbers is given in each slave process, where R is the process rank. Create

a new file of real numbers with the given name and write the given data to

this file in ascending order of ranks of processes containing these data. Use

one call of the MPI_File_write_at local function in each slave process.

MPI6File5. The name of existing file of integers is given in the master process.

The file contains all integers in the range from 1 to K, where K is the max-

imal rank of process. Read and output two sequences of the file items in

each slave process. The first sequence contains the initial part of the file

items until the first item whose value is equal to the process rank (including

this item); the second sequence contains the final part of the file items and

has the same size as the first one. Elements of each sequence should be

output in the order they are stored in the file. Use the required number of

the MPI_File_read local function calls in each process (without using arrays)

and also the MPI_File_get_position function call to determine the size of the

first sequence and the MPI_File_seek function call with the MPI_SEEK_END pa-

rameter to move the file pointer to the beginning of the second sequence.

MPI6File6. The name of file is given in the master process; an integer is given

in each slave process. Create a new file of integers with the given name and

write K successive copies of each given integer to this file, where K is the

number of slave processes. The order of integers in the file should be the

inverse of the order of the slave processes (i. e., K copies of the integer

from the process 1 should be written at the end of file, K copies of the in-

teger from the process 2 should be written before them, and so on). Use one

call of the MPI_File_write local function in each slave process and also the

MPI_File_seek function with the MPI_SEEK_SET parameter.

MPI6File7. The name of existing file of integers is given in the master process.

The sum of all file item values is greater than K, where K is the number of

slave processes. Read initial file items in each slave process until the sum

of their values exceeds the rank of process and output this sum and the

amount N of read numbers. After that, in addition, read and output the val-

222 M. E. Abramyan. Parallel Programming Based on MPI 2.0

ues of the last N file items in the order they are stored in the file. Use the

required number of the MPI_File_read local function calls in each slave

process (without using arrays) and also the MPI_File_get_position function call

to determine the amount N and the MPI_File_seek function call with the

MPI_SEEK_END parameter to move the file pointer to beginning of the group

of the last N items.

MPI6File8. The name of file is given in the master process; a real number is

given in each slave process. Create a new file of real numbers with the giv-

en name and write R successive copies of each given real number to this

file, where R is equal to the rank of the process in which this number is

given. The order of numbers in the file should be the inverse of the order of

the slave processes (i. e., single copy of the real number from the process 1

should be written at the end of file, two copies of the real number from the

process 2 should be written before it, and so on). Use one call of the

MPI_File_write local function in each slave process and also the MPI_File_seek

function with the MPI_SEEK_SET parameter.

2.6.2. Collective functions for file input-output

MPI6File9. The name of existing file of integers is given in the master process.

Read and output the R + 1 file items in each process starting with the item

with the ordinal number R + 1, where R is the process rank (0, 1, …). File

items are numbered from 1; thus, you should read only the initial file item

in the process 0, the two following items in the process 1, the three items

starting with the third one in the process 2, and so on. If the file does not

contain enough items, then, in some processes, the number of output items

may be less than the required one. Use one call of the MPI_File_read_all col-

lective function call and also the MPI_File_get_size function to determine the

file size.

Note. In MPICH2 1.3, the function MPI_File_read_all does not allow to de-

termine the number of actually read file items based on the information

contained in the MPI_Status parameter: this parameter always contain the

number of items to be read, and if there are not enough items in the file,

then zero values are appended to the output array.

MPI6File10. The name of file is given in the master process; a sequence of R

integers is given in each slave process, where R is the process rank

(1, 2, …). Create a new file of integers with the given name and write the

given sequences to this file in ascending order of ranks of processes con-

taining these sequences. Use one call of the MPI_File_write_all collective func-

tion (for all processes including the process 0) and also the MPI_File_seek

function with the MPI_SEEK_SET parameter.

Part 2. Learning tasks 223

MPI6File11*. The name of existing file of real numbers is given in the master

process. In addition, an integer is given in each process. This integer is

equal to 0 or it is equal to the ordinal number of one of the existing items of

the file (the file items are numbered from 1). Using the MPI_Comm_split

function, create a new communicator containing only those processes in

which a non-zero integer is given. Using the MPI_File_read_at_all collective

function for all processes of this communicator, read and output a file item

located at a position with the given ordinal number.

MPI6File12*. The name of existing file of real numbers is given in the master

process. In addition, an integer is given in each process. This integer is

equal to 0 or it is equal to the ordinal number of one of the existing items of

the file (the file items are numbered from 1). Using the MPI_Comm_split

function, create a new communicator containing only those processes in

which a non-zero integer is given. Using the MPI_File_write_at_all collective

function for all processes of this communicator, replace the value of the file

item that has the given ordinal number, by the value of the process rank in

the new communicator (the rank should be converted to a real number).

MPI6File13. The name of existing file of integers is given in the master

process. In addition, an integer is given in each process. This integer is

equal to 0 or 1. Using the MPI_Comm_split function, create a new communi-

cator containing only those processes in which the number 1 is given. Us-

ing the MPI_File_read_ordered collective function for all processes of this

communicator, read and output the R + 1 file item, where R is the process

rank in the new communicator (items should be read in ascending order:

the first item in the process 0, two next items in the process 1, three next

items in the process 2, and so on). If the file does not contain enough items,

then, in some processes, the number N of output items may be less than re-

quired one or even may be equal to zero. In addition, output the number N

of actually read items and the new value P of the shared file pointer in each

process of the new communicator. Use the MPI_Status parameter of the

MPI_File_read_ordered function to determine the number N of actually read

items. Use the MPI_File_get_position_shared function to determine the current

value of P (this value should be the same in all processes).

MPI6File14. The name of file is given in the master process. In addition, an in-

teger N is given in each process. Create a new file of integers with the giv-

en name. Using the MPI_Comm_split function, create a new communicator

containing only those processes in which a non-zero integer is given. Using

the MPI_File_write_ordered collective function for all processes of the new

communicator, write K successive copies of each given integer N to this

file, where K is the number of processes in the new communicator. The in-

224 M. E. Abramyan. Parallel Programming Based on MPI 2.0

tegers N should be written to the file in the ascending order of ranks of

processes containing these integers.

MPI6File15*. The name of existing file of integers is given in the master

process. The file contains at least K items, where K is the number of

processes. Using the MPI_Comm_split function, create a new communicator

containing only processes with odd rank (1, 3, …). Using one call of the

MPI_File_seek_shared and MPI_File_read_ordered collective functions, read and

output two file items at a time in each process of the new communicator:

the second and the first item from the end (in this order) should be read and

output in the process of the rank 1 in the MPI_COMM_WORLD communicator,

the fourth and third item from the end should be read and output in the

process of the rank 3, and so on.

Note. To ensure the required order of data reading in the

MPI_File_read_ordered function, you should inverse the order of the processes

in the created communicator (in comparison with the processes in the

MPI_COMM_WORLD communicator).

MPI6File16*. The name of file is given in the master process. In addition, an

integer N (≥ 0) and N real numbers are given in each process. Create a new

file of real numbers with the given name. Using the MPI_Comm_split func-

tion, create a new communicator containing only those processes in which

a non-zero integer N is given. Using one call of the MPI_File_write_ordered

collective function for all processes of the new communicator, write the

given real numbers to the file in the inverse order: at first, all the real num-

bers from the process with the maximal rank in the communicator

MPI_COMM_WORLD should be written (in inverse order), after that, all the

numbers from the process with the previous rank, and so on.

Note. To ensure the required order of data writing in the

MPI_File_write_ordered function, you should inverse the order of the processes

in the created communicator (in comparison with the processes in the

MPI_COMM_WORLD communicator).

2.6.3. File view setting for file input-output

MPI6File17. The name of existing file of integers is given in the master

process. The file contains 2K items, where K is the number of processes.

Using one call of the MPI_File_read_all collective function (and without using

the MPI_File_seek function), read and output two file items at a time in each

process. The file items should be read and output in the order in which they

are stored in a file. To do this, use the MPI_File_set_view function to define a

new file view with the MPI_INT elementary datatype, the same filetype, and

the appropriate displacement (the displacement will be different for differ-

ent processes).

Part 2. Learning tasks 225

MPI6File18. The name of existing file of integers is given in the master

process. The file contains elements of the K × 5 matrix, where K is the

number of processes. In addition, an integer N (1 ≤ N ≤ 5) is given in each

process; this integer determines the ordinal number of a selected element in

some matrix row, namely, in the first row for the process 0, in the second

row for the process 1, and so on (the row elements are numbered from 1).

Using one call of the MPI_File_write_at_all collective function with the second

parameter equal to N − 1, replace the value of the selected element in each

matrix row by the rank of the corresponding process (the selected element

in the first row should be replaced by 0, the selected element in the second

row should be replaced by 1, and so on). To do this, use the

MPI_File_set_view function to define a new file view with the MPI_INT elemen-

tary datatype, the same filetype, and the appropriate displacement (the dis-

placement will be different for different processes).

MPI6File19. The name of existing file of real numbers is given in the master

process. The file contains elements of the K × 6 matrix, where K is the

number of processes. In addition, an integer N (1 ≤ N ≤ 6) is given in each

process; this integer determines the ordinal number of a selected element in

some matrix row, namely, in the last row for the process 0, in the last but

one row for the process 1, and so on (the row elements are numbered

from 1). Using one call of the MPI_File_read_at_all collective function with

the second parameter equal to N − 1, read and output the value of the se-

lected row element in the corresponding process (the selected element in

the first row should be output in the last process, the selected element in the

second row should be output in the last but one process, and so on). To do

this, use the MPI_File_set_view function to define a new file view with the

MPI_DOUBLE elementary datatype, the same filetype, and the appropriate

displacement (the displacement will be different for different processes).

MPI6File20. The name of file is given in the master process. In addition, a se-

quence of R + 1 real numbers is given in each process, where R is the

process rank (0, 1, …). Create a new file of real numbers with the given

name. Using one call of the MPI_File_write_all collective function (and with-

out using the MPI_File_seek function), write all given numbers to the file in

the order that is inverse to the order in which they are given in processes: at

first, the numbers from the last process (in the inverse order) should be

written, after that, the numbers from the last but one process (in the inverse

order), and so on. To do this, use the MPI_File_set_view function to define a

new file view with the MPI_DOUBLE elementary datatype, the same filetype,

and the appropriate displacement (the displacement will be different for

different processes).

226 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI6File21*. The name of existing file of integers is given in the master

process. The file contains 3K items, where K is the number of processes.

Read and output three file items, namely, A, B, C, in each process. These

items are located in the given file as follows: A0, A1, …, AK-1, B0, B1, …,

BK-1, C0, C1, …, CK-1 (an index indicates the process rank). To do this, use

one call of the MPI_File_read_all collective function and a new file view with

the MPI_INT elementary datatype, the appropriate displacement (the dis-

placement will be different for different processes), and a new filetype that

consists of an integer and a terminal empty space of a size equal to the ex-

tent of K − 1 integers.

MPI6File22*. The name of file is given in the master process. In addition, three

integers, namely, A, B, C, are given in each process. The number of

processes is equal to K. Create a new file of integers with the given name

and write the given integers to this file as follows: AK-1, AK-2, …, A0, BK-1,

BK-2, …, B0, CK-1, CK-2, …, C0 (an index indicates the process rank). To do

this, use one call of the MPI_File_write_all collective function and a new file

view with the MPI_INT elementary datatype, the appropriate displacement

(the displacement will be different for different processes), and a new file-

type that consists of an integer and a terminal empty space of a size equal

to the extent of K − 1 integers.

MPI6File23**. The name of existing file of real numbers is given in the master

process. The file contains 6K items, where K is the number of processes.

Read and output six file items, namely, A, B, C, D, E, F, in each process.

These items are located in the given file as follows: A0, B0, C0, A1, B1,

C1, …, AK-1, BK-1, CK-1, D0, E0, F0, D1, E1, F1, …, DK-1, EK-1, FK-1 (an index

indicates the process rank). To do this, use one call of the MPI_File_read_all

collective function and a new file view with the MPI_DOUBLE elementary

datatype, the appropriate displacement (the displacement will be different

for different processes), and a new filetype that consists of three real num-

bers and a terminal empty space of the appropriate size.

MPI6File24**. The name of file is given in the master process. In addition, four

real numbers, namely, A, B, C, D, are given in each process. The number of

processes is equal to K. Create a new file of real numbers with the given

name and write the given real numbers to this file as follows: AK-1, BK-1,

AK-2, BK-2, …, A0, B0, CK-1, DK-1, CK-2, DK-2, …, C0, D0 (an index indicates

the process rank). To do this, use one call of the MPI_File_write_all collective

function and a new file view with the MPI_DOUBLE elementary datatype, the

appropriate displacement (the displacement will be different for different

processes), and a new filetype that consists of two real numbers and a ter-

minal empty space of the appropriate size.

Part 2. Learning tasks 227

MPI6File25**. The name of file is given in the master process. In addition,

3·(R + 1) integers are given in the process of rank R (R = 0, 1, …, K − 1,

where K is the number of processes): 3 integers, namely, A, B, C, are given

in the process 0, 6 integers, namely, A, A', B, B', C, C', are given in the

process 1, 9 integers, namely, A, A', A", B, B', B", C, C', C", are given in the

process 2, and so on. Create a new file of real numbers with the given name

and write the given integers to this file as follows: A0, A1, A'1, A2, A'2,

A"2, …, B0, B1, B'1, B2, B'2, B"2, … (an index indicates the process rank). To

do this, use one call of the MPI_File_write_all collective function and a new

file view with the MPI_INT elementary datatype, the appropriate displace-

ment (the displacement will be different for different processes), and a new

filetype that consists of R + 1 integers and a terminal empty space of the

appropriate size.

MPI6File26**. The name of file is given in the master process. In addition,

four real numbers, namely, A, B, C, D, are given in each process. The num-

ber of processes is equal to K. Create a new file of real numbers with the

given name and write the given real numbers to this file as follows: A0,

A1, …, AK-1, BK-1, …, B1, B0, C0, C1, …, CK-1, DK-1, …, D0 (an index indi-

cates the process rank). To do this, use one call of the MPI_File_write_all col-

lective function and a new file view with the MPI_DOUBLE elementary data-

type, the appropriate displacement (the displacement will be different for

different processes), and a new filetype that consists of two real numbers

(with an additional empty space between these numbers) and a terminal

empty space of the appropriate size.

Remark. The solution of this task is given in Section 1.3.3.

MPI6File27*. The name of existing file of real numbers is given in the master

process. The file contains elements of the (K/2) × K matrix, where K is the

number of processes (K is an even number). Read and output elements of

(R + 1)th matrix column in the process of rank R (R = 0, …, K − 1, columns

are numbered from 1). To do this, use one call of the MPI_File_read_all col-

lective function and a new file view with the MPI_DOUBLE elementary data-

type, the appropriate displacement (the displacement will be different for

different processes), and a new filetype that consists of one real number

and a terminal empty space of the appropriate size.

MPI6File28*. The name of file is given in the master process. In addition, an

integer N and a sequence of K/2 real numbers are given in each process,

where K is the number of processes (K is an even number). The numbers N

are different for all processes and are in the range from 1 to K. Create a

new file of real numbers with the given name. Write a (K/2) × K matrix to

this file; each process should write its sequence of real numbers into a col-

umn of the matrix with the ordinal number N (the columns are numbered

228 M. E. Abramyan. Parallel Programming Based on MPI 2.0

from 1). To do this, use one call of the MPI_File_write_all collective function

and a new file view with the MPI_DOUBLE elementary datatype, the appro-

priate displacement (the displacement will be different for different

processes), and a new filetype that consists of one real number and a ter-

minal empty space of the appropriate size.

MPI6File29**. The name of existing file of integers is given in the master

process. The file contains elements of a block matrix of the size (K/3) × 3

(the size is indicated in blocks), where K is the number of processes (K is a

multiple of 3). Each block is a square matrix of order N (all the numbers N

are the same and are in the range from 2 to 5). Read and output one block

of the given matrix in each process in a row-major order of blocks. To do

this, use one call of the MPI_File_read_all collective function and a new file

view with the MPI_INT elementary datatype, the appropriate displacement

(the displacement will be different for different processes), and a new file-

type that consists of N integers and a terminal empty space of the appropri-

ate size. Use the MPI_File_get_size function to determine the number N.

MPI6File30**. The name of file and an integer N are given in the master

process (N is in the range 2 to 5). In addition, two integers I and J are given

in each process. The integers I and J determine a position (that is, row and

column numbers) of some square block of a block matrix of the size

(K/3) × 3 (the size is indicated in blocks), where K is the number of

processes (K is a multiple of 3). The integers I are in the range of 1 to K/3,

the integers J are in the range 1 to 3; all processes contain different posi-

tions of blocks. Each block is a square matrix of order N. Create a new file

of integers with the given name. Write a (K/3) × 3 block matrix to this file;

each process should write a matrix block to the block position (I, J). All the

elements of the block written by the process of rank R (R = 0, 1, …, K − 1)

should be equal to the number R. To do this, use one call of the

MPI_File_write_all collective function and a new file view with the MPI_INT

elementary datatype, the appropriate displacement (the displacement will

be different for different processes), and a new filetype that consists of N

integers and a terminal empty space of the appropriate size. Use the

MPI_Bcast collective function to send the value of N to all processes.

2.7. One-sided communications (MPI-2)

When defining an access window object using the MPI_Win_create function,

it is recommended to specify the disp_unit displacement (the third parameter)

equal to the size of the data item of the corresponding type (it is always either

MPI_INT or MPI_DOUBLE in all tasks, so the size can be obtained using the

MPI_Type_size function). In this case, one can indicate the target_disp displacement

(the fifth parameter of the MPI_Get, MPI_Put, MPI_Accumulate functions) equal to

Part 2. Learning tasks 229

the initial index of the used part of the array (rather than the number of bytes

from the beginning of the array to the required part, as in the case of the

disp_unit parameter equal to 1).

It is suffice to specify the MPI_INFO_NULL constant as the info parameter (the

fourth parameter of the MPI_Win_create function).

If you do not need to create a window in some processes, then the value 0

should be specified as the size parameter (the second parameter of the

MPI_Win_create function) in these processes.

It is suffice to specify a constant 0 as the assert parameter in all synchroniz-

ing functions (MPI_Win_fence, MPI_Win_start, MPI_Win_post, MPI_Win_lock); this pa-

rameter is the last but one parameter in all these functions.

In the first subgroup (MPI7Win1–MPI7Win17), you should use the

MPI_Win_fence collective function as a synchronizing function that should be

called both before the actions related to the one-sided data transfer and after

these actions, but before the actions related to access to the transferred data.

The tasks of the second subgroup (MPI7Win18–MPI7Win30) require the

use of local synchronization: the MPI_Win_start, MPI_Win_complete, MPI_Win_post,

MPI_Win_wait functions or a pair of the MPI_Win_lock, MPI_Win_unlock functions. In

the tasks of this subgroup, there is always specified which kind of the local syn-

chronization you should use.

Before solving the tasks in this section, you should study the MPI7Win13

and MPI7Win23 task solutions given in Sections 1.3.5–1.3.6.

2.7.1. One-sized communications with the simplest synchronization

MPI7Win1. An integer is given in each slave process. Create an access window

of the size K of integers in the master process (K is the number of slave

processes). Using the MPI_Put function call in the slave processes, send all

the given integers to the master process and output received integers in the

ascending order of ranks of sending processes.

MPI7Win2. A sequence of R real numbers is given in each slave process, where

R is the process rank (1, 2, …). Create an access window of the appropriate

size in the master process. Using the MPI_Put function call in the slave

processes, send all the given real numbers to the master process and output

received numbers in the ascending order of ranks of sending processes.

MPI7Win3. An array A of K integers is given in the master process, where K is

the number of slave processes. Create an access window containing the ar-

ray A in the master process. Using the MPI_Get function call in the slave

processes, receive and output one element of the array A in each slave

process. Elements of the array A should be received in the slave processes

in descending order of their indices (that is, the element A0 should be re-

230 M. E. Abramyan. Parallel Programming Based on MPI 2.0

ceived in the last process, the element A1 should be received in the last but

one process, and so on).

MPI7Win4. An array A of K + 4 real numbers is given in the master process,

where K is the number of slave processes. Create an access window con-

taining the array A in the master process. Using the MPI_Get function call in

the slave processes, receive and output five elements of the array A in each

slave process starting with the element of index R − 1, where R is the slave

process rank (R = 1, 2, …, K − 1).

MPI7Win5. An array A of K integers is given in the master process, where K is

the number of slave processes. In addition, an index N (an integer in the

range 0 to K − 1) and an integer B are given in each slave process. Create

an access window containing the array A in the master process. Using the

MPI_Accumulate function call in the slave processes, multiply the element AN

by the number B and then output the modified array A in the master

process.

Note. Some slave processes can contain the same value of N; in this case

the element AN will be multiplied several times. This circumstance does not

require additional synchronization due to the features of the MPI_Accumulate

function implementation.

MPI7Win6. An array A of 2K − 1 real numbers is given in the master process

(K is the number of slave processes), and array B of R real numbers is giv-

en in each slave process (R is the process rank, R = 1, 2, …, K − 1). Create

an access window containing the array A in the master process. Using the

MPI_Accumulate function call in the slave processes, add the values of all the

elements of array B from the process of rank R to the elements of array A

starting with the index R − 1 (the single element B0 from the process 1

should be added to the element A0, the elements B0 and B1 from the

process 2 should be added to the elements A1 and A2 respectively, the ele-

ments B0, B1, and B2 from the process 3 should be added to elements A2, A3,

and A4 respectively, and so on). Output the modified array A in the master

process.

Note. Elements of array A, starting from the index 2, will be modified sev-

eral times by adding values from the different slave processes. This cir-

cumstance does not require additional synchronization due to the features

of the MPI_Accumulate function implementation.

MPI7Win7*. An array A of 2K integers is given in the master process, where K

is the number of slave processes. Create an access window containing two

integers in each slave process. Using the MPI_Put function call in the master

process, send and output two elements of the array A in each slave process.

Elements of the array A should be sent to slave processes in ascending or-

der of their indices (that is, the elements A0 and A1 should be sent to the

Part 2. Learning tasks 231

process 1, the elements A2 and A3 should be sent to the process 2, and

so on).

MPI7Win8*. An integer R and a real number B are given in each process. All

the integers R are different and are in the range from 0 to K − 1, where K is

the number of processes. Create an access window containing one real

number in each process. Using the MPI_Put function call in each process,

send the number B from this process to the process R and output received

numbers in all processes.

MPI7Win9*. An array A of K integers is given in each process, where K is the

number of processes. Create an access window containing the array A in

each process. Using several calls of the MPI_Get function in each process R

(R = 0, …, K − 1), receive and output elements of all arrays A with the in-

dex R. Received elements should be output in descending order of ranks of

sending processes (that is, the element received from the process K − 1

should be output first, the element received from the process K − 2 should

be output second, and so on).

Note. The function MPI_Get, as well as other one-way communication func-

tions, can also be used to access the window created in the calling process.

MPI7Win10*. An array A of 5 real numbers and integers N1 and N2 are given in

each process. Each of the numbers N1 and N2 is in the range 0 to 4. Create

an access window containing the array A in each process. Using two calls

of the MPI_Get function in each process, receive and output the element of

index N1 from the array A of the previous process and then receive and out-

put the element of index N2 from the array A of the next process (the num-

bers N1 and N2 are taken from the calling process, processes are taken in a

cyclic order).

MPI7Win11*. The number of processes K is an even number. An array A of K/2

integers is given in each process. Create an access window containing the

array A in all the odd-rank processes (1, 3, …, K − 1). Using the required

number of calls of the MPI_Accumulate function in each even-rank process,

add the element A[I] of the process 2J to the element A[J] of the process

2I + 1 and output the changed arrays A in all the odd-rank processes.

Note. The required changing of the given arrays can be described in the

another way: if B denotes a matrix of order K/2 whose rows coincide with

the arrays A given in the even-rank processes and C denotes a matrix of the

same order whose rows coincide with the arrays A given in the odd-rank

processes, then the matrix C should be transformed as follows: elements of

the row I of the matrix B should be added to the corresponding elements of

the column I of the matrix C.

232 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI7Win12*. Solve the MPI7Win11 task by creating access windows in even-

rank processes and using the MPI_Get function calls instead of the

MPI_Accumulate function calls in odd-rank processes.

Note. Since the numbers received from the even-rank processes must be

added to the elements of array A after the second MPI_Win_fence synchroni-

zation function call, it is convenient to use an auxiliary array to store the

received numbers.

MPI7Win13*. Three integers N1, N2, N3 are given in each process; each given

integer is in the range 0 to K − 1, where K is the number of processes (the

values of some of these integers in each process may coincide). In addition,

an array A of R + 1 real numbers is given in each process, where R is the

process rank (0, …, K − 1). Create an access window containing the array A

in all the processes. Using three calls of the MPI_Accumulate function in each

process, add the integer R + 1 to all elements of the arrays A given in the

processes N1, N2, N3, where R is the rank of the process that calls the

MPI_Accumulate function (for instance, if the number N1 in the process 3 is

equal to 2, then a real number 4.0 should be added to all the elements of ar-

ray A in the process 2). If some of the integers N1, N2, N3 coincide in the

process R, then the number R + 1 should be added to the elements of the

corresponding arrays several times. Output the changed arrays A in each

process.

Remark. The solution of this task is given in Section 1.3.5.

MPI7Win14*. An array of K real numbers is given in each process, where K is

the number of processes. The given array contains a row of an upper trian-

gular matrix A, inclusive of its zero-valued part (the process of rank R con-

tains the Rth row of the matrix, the rows are numbered from 0). Create an

access window containing the given array in all the processes. Using the

required number of calls of the MPI_Get function in each process, write the

rows of the matrix transposed to the given matrix A (inclusive of its zero-

valued part) in the given arrays. Then output the changed arrays in each

process. Do not use auxiliary arrays.

Notes. (1) The rows of the transposed matrix coincide with the columns of

the original matrix, so the resulting matrix will be the lower triangular one.

(2) You should write zero values to the required array elements only after

the second call of the MPI_Win_fence function. (3) You do not need to create

an access window for the last process.

MPI7Win15*. Solve the MPI7Win14 task by using the MPI_Put function calls

instead of the MPI_Get function calls.

Note. In this case, you do not need to create an access window for the mas-

ter process.

Part 2. Learning tasks 233

MPI7Win16**. One row of the square real-valued matrix A of order K is given

in each process, where K is the number of processes (the process of rank R

contains the Rth row of the matrix, the rows are numbered from 0). In addi-

tion, a real number B is given in each process. Create an access window

containing the given row of the matrix A in all the processes. Using the re-

quired number of calls of the MPI_Accumulate function in each process R

(R = 0, …, K − 1), change the matrix row given in the next process as fol-

lows: all row elements that are less than the number B from the process R

should be replaced by this number B (processes are taken in a cyclic order).

Then, using K calls of the MPI_Get function in each process, receive and

output the Rth column of the transformed matrix A in the process R

(R = 0, …, K − 1, the columns are numbered from 0).

Note. You should call the MPI_Win_fence synchronization function three

times in each process.

MPI7Win17**. One row of the square real-valued matrix A of order K is given

in each process, where K is the number of processes (the process of rank R

contains the Rth row of the matrix, the rows are numbered from 0). In addi-

tion, a real number B is given in each process. Create an access window

containing the given row of the matrix A in all the processes. Using the re-

quired number of calls of the MPI_Accumulate function in each process R

(R = 0, …, K − 1), change the matrix row given in the previous process as

follows: all row elements that are greater than the number B from the

process R should be replaced by this number B (processes are taken in a

cyclic order). Then, using K calls of the MPI_Accumulate function in each

slave process, add the first element of the row from each slave process R

(1, …, K − 1) to all the elements of the Rth column of the transformed ma-

trix A (the columns are numbered from 0). Output the new contents of the

given row of the matrix A in each process after all transformations.

Note. You should call the MPI_Win_fence synchronization function three

times in each process.

2.7.2. Additional types of synchronization

MPI7Win18. The number of processes K is an even number. An integer A is

given in each even-rank process (0, 2, …, K − 2). Create an access window

containing one integer in all the odd-rank processes (1, 3, …, K − 1). Using

the MPI_Put function call in each even-rank process 2N, send the integer A

to the process 2N + 1 and output the received integers. Use the MPI_Win_start

and MPI_Win_complete synchronization functions in the even-rank processes

and the MPI_Win_post and MPI_Win_wait synchronization functions in the odd-

rank processes. Use the MPI_Group_incl function to create a group of

processes specified as the first parameter of the MPI_Win_start and

MPI_Win_post functions. The MPI_Group_incl function should be applied to the

234 M. E. Abramyan. Parallel Programming Based on MPI 2.0

group of the MPI_COMM_WORLD communicator (use the MPI_Comm_group

function to obtain the group of the MPI_COMM_WORLD communicator).

Note. Unlike the MPI_Win_fence collective synchronization function, used in

previous tasks, the synchronization functions used in this and the subse-

quent tasks are local ones and, in addition, allow to specify the groups of

origin and target processes for one-way communications.

MPI7Win19. An array A of K real numbers is given in the master process,

where K is the number of slave processes. Create an access window con-

taining the array A in the master process. Using the MPI_Get function call in

each slave process, receive and output one of elements of the array A. The

elements should be received in descending order of their indices (that is,

the element with the index K − 1 should be received in the process 1, the

element with the index K − 2 should be received in the process 2, and

so on). Use the MPI_Win_start and MPI_Win_complete synchronization func-

tions in the slave processes and the MPI_Win_post and MPI_Win_wait synchro-

nization functions in the master process. Use the MPI_Group_incl function to

create a group of processes specified as the first parameter of the

MPI_Win_start function, use the MPI_Group_excl function to create a group of

processes specified as the first parameter of the MPI_Win_post function. The

MPI_Group_incl and MPI_Group_excl functions should be applied to the group

of the MPI_COMM_WORLD communicator.

MPI7Win20. The number of processes K is a multiple of 3. An array A of 3 real

numbers is given in the processes of rank 3N (N = 0, …, K/3 − 1). Create

an access window containing the array A in all processes in which this ar-

ray is given. Using one call of the MPI_Get function in the processes of rank

3N + 1 and 3N + 2 (N = 0, …, K/3 − 1), receive and output one element A0

and two elements A1, A2 respectively from the process 3N (namely, the

process 1 should output the element A0 received from the process 0, the

process 2 should output the elements A1 and A2 received from the process 0,

the process 4 should output the element A0 received from the process 3, and

so on). Use the MPI_Win_post and MPI_Win_wait synchronization functions in

the processes of rank 3N and the MPI_Win_start and MPI_Win_complete syn-

chronization functions in the other processes.

MPI7Win21*. The number of processes K is an even number. An array A of K/2

real numbers and an array N of K/2 integers are given in the master process.

All the elements of the array N are distinct and are in the range 1 to K − 1.

Create an access window containing one real number in each slave process.

Using the required number of calls of the MPI_Put function in the master

process, send the real number AI to the slave process of rank NI (I = 0, …,

K/2 − 1). Output the received number (оr 0.0 if the process did not receive

data) in each slave process. Use the MPI_Win_post and MPI_Win_wait synchro-

Part 2. Learning tasks 235

nization functions in the slave processes and the MPI_Win_start and

MPI_Win_complete synchronization functions in the master process.

MPI7Win22*. An array A of K real numbers (where K is the number of slave

processes) and an array N of 8 integers are given in the master process. All

the elements of the array N are in the range 1 to K; some elements of this

array may have the same value. In addition, an array B of R real numbers is

given in the slave process of rank R (R = 1, …, K). Create an access win-

dow containing the array B in each slave process. Using the required num-

ber of calls of the MPI_Accumulate function in the master process, add all the

elements of the array A to the corresponding elements of the array B from

the process of rank NI, I = 0, …, 7 (that is, the element A0 should be added

to the element B0, the element A1 should be added to the element B1, and

so on). Elements of the array A can be added several times to some arrays

B. Output the array B (which may be changed or not) in each slave process.

Use the MPI_Win_post and MPI_Win_wait synchronization functions in the

slave processes and the MPI_Win_start and MPI_Win_complete synchronization

functions in the master process.

MPI7Win23*. An array A of 5 real numbers is given in each process. In addi-

tion, two arrays N and M of 5 integers are given in the master process. All

the elements of the array N are in the range 1 to K, where K is the number

of slave processes, all the elements of the array M are in the range 0 to 4.

Some elements of both the array N and the array M may have the same val-

ue. Create an access window containing the array A in each slave process.

Using the required number of calls of the MPI_Get function in the master

process, receive the element of A with the index MI from the process NI

(I = 0, …, 4) and add the received element to the element AI in the master

process. After changing the array A in the master process, change all the ar-

rays A in the slave processes as follows: if some element of the array A

from the slave process is greater than the element, with the same index, of

the array A from the master process, then replace this element in the slave

process by the corresponding element from the master process (to do this,

use the required number of calls of the MPI_Accumulate function in the mas-

ter process). Output the changed arrays A in each process. Use two calls of

the MPI_Win_post and MPI_Win_wait synchronization functions in the slave

processes and two calls of the MPI_Win_start and MPI_Win_complete synchroni-

zation functions in the master process.

Remark. The solution of this task is given in Section 1.3.6.

MPI7Win24. An integer N is given in each slave process, all the integers N are

distinct and are in the range 0 to K − 1, where K is the number of slave

processes. Create an access window containing an array A of K integers in

each slave process. Without performing any synchronization function calls

236 M. E. Abramyan. Parallel Programming Based on MPI 2.0

in the master process (except calling the MPI_Barrier function) and using a

sequence of calls of the MPI_Win_lock, MPI_Win_unlock, MPI_Barrier,

MPI_Win_lock, MPI_Win_unlock synchronization functions in the slave

processes, change element of the array A with index N by assigning the

rank of the slave process, which contains the integer N, to this element (to

do this, use the MPI_Put function) and then receive and output all the ele-

ments of the changed array A in each slave process (to do this, use the

MPI_Get function). Use the MPI_LOCK_SHARED constant as the first parame-

ter of the MPI_Win_lock function.

Note. The MPI_Win_lock and MPI_Win_unlock synchronization functions are

used mainly for one-way communications with passive targets. In such a

kind of one-way communications, the target process does not process the

data transferred to it but acts as their storage, which is accessible to other

processes.

MPI7Win25. The number of processes K is a multiple of 3. An array A of 5 real

numbers is given in the processes of rank 3N (N = 0, …, K/3 − 1), an integ-

er M and a real number B are given in the processes of rank 3N + 1. The

given integers M are in the range 0 to 4. Create an access window contain-

ing the array A in all processes in which this array is given. Using the

MPI_Accumulate function call in the processes of rank 3N + 1 (N = 0, …,

K/3 − 1), change the array A from the process 3N as follows: if the array

element with the index M is greater than the number B, then this element

should be replaced by the number B (the numbers M and B are taken from

the process 3N + 1). Then send the changed array A from the process 3N to

the process 3N + 2 and output the received array in the process 3N + 2; to

do this, use the MPI_Get function call in the process of rank 3N + 2. Use the

MPI_Win_lock, MPI_Win_unlock, MPI_Barrier synchronization functions in the

processes of rank 3N + 1, the MPI_Barrier, MPI_Win_lock, MPI_Win_unlock syn-

chronization functions in the processes of rank 3N + 2, and the MPI_Barrier

function in the processes of rank 3N. Use the MPI_LOCK_EXCLUSIVE constant

as the first parameter of the MPI_Win_lock function.

MPI7Win26. An array A of 5 positive real numbers is given in each slave

process. Create an access window containing an array B of 5 zero-valued

real numbers in the master process. Without performing any synchroniza-

tion function calls in the master process (except calling the MPI_Barrier func-

tion) and using a sequence of calls of the MPI_Win_lock, MPI_Win_unlock,

MPI_Barrier, MPI_Win_lock, MPI_Win_unlock synchronization functions in the

slave processes, change elements of the array B by assigning the maximal

value of the array A elements with the index I (I = 0, …, 4) to the array B

element with the same index (to do this, use the MPI_Accumulate function)

and then receive and output all the elements of the changed array B in each

slave process (to do this, use the MPI_Get function). Use the

Part 2. Learning tasks 237

MPI_LOCK_SHARED constant as the first parameter of the MPI_Win_lock func-

tion.

MPI7Win27*. Two real numbers X, Y (the coordinates of a some point on a

plane) are given in each slave process. Using the MPI_Get function in the

master process, receive real numbers X0, Y0 in this process that are equal to

the coordinates of the point that is the most remote from the origin among

all the points given in the slave processes. Then send the numbers X0, Y0

from the master process to all the slave processes and output these numbers

in the slave processes; to do this, use the MPI_Get function call in the slave

processes. Use the MPI_Win_lock, MPI_Win_unlock, MPI_Barrier synchronization

functions in the master process and the MPI_Barrier, MPI_Win_lock,

MPI_Win_unlock synchronization functions in the slave processes.

Note. This task cannot be solved by using one-way communications only

on the side of the slave processes by means of the lock/unlock synchroniza-

tions.

MPI7Win28*. Solve the MPI7Win27 task using the single access window con-

taining the numbers X0, Y0 in the master process. Use the MPI_Get and

MPI_Put functions in the slave processes to find the numbers X0, Y0 (for

some processes, the MPI_Put function is not required), use the MPI_Get func-

tion to send the numbers X0, Y0 to all the slave processes (as in the

MPI7Win27 task). To synchronize exchanges when find the numbers X0,

Y0, use two calls of each of the MPI_Win_start and MPI_Win_complete functions

in the slave processes and calls of the MPI_Win_post and MPI_Win_wait func-

tions in a loop in the master process (it is necessary to define a new group

of processes at each iteration of the loop; this group should be used in the

MPI_Win_post function call). To synchronize sending numbers X0, Y0 to slave

processes, use the MPI_Barrier function in the master process and the

MPI_Barrier, MPI_Win_Lock, MPI_Win_unlock functions in the slave processes (as

in the MPI7Win27 task).

Note. The solution method described in this task allows one-way commu-

nications to be used only on the side of the slave processes (in contrast to

the method described in the MPI7Win27 task) but it requires to apply a

synchronizations that different from the lock/unlock ones.

MPI7Win29*. One row of the square integer-valued matrix of order K is given

in each process, where K is the number of processes (the process of rank R

contains the Rth row of the matrix, the rows are numbered from 0). Using

the MPI_Get function calls in the master process, receive a matrix row with

the minimal sum S of elements in this process and also find the number N

of matrix rows with this minimal sum (if N > 1, then the last of such rows,

that is, the row with the maximal ordinal number, should be saved in the

master process). Then send this matrix row, the sum S, and the number N to

238 M. E. Abramyan. Parallel Programming Based on MPI 2.0

each slave process using the MPI_Get function in these processes. Output all

received data in each process. To do this, create an access window contain-

ing K + 2 integers in each process; the first K elements of the window

should contain the elements of the matrix row, the next element should

contain the sum S of its elements, and the last element should contain the

number N. Use the MPI_Win_lock, MPI_Win_unlock, MPI_Barrier synchronization

functions in the master process and the MPI_Barrier, MPI_Win_lock,

MPI_Win_unlock synchronization functions in the slave processes.

Note. This task cannot be solved by using one-way communications only

on the side of the slave processes by means of the lock/unlock synchroniza-

tions.

MPI7Win30*. Solve the MPI7Win29 task using the single access window con-

taining the matrix row and the numbers S and N in the master process. Use

the MPI_Get and MPI_Put functions in the slave processes to find the matrix

row with the minimal sum and the related numbers S and N (for some

processes, the MPI_Put function is not required), use the MPI_Get function to

send the row with the minimal sum and the numbers S and N to all the

slave processes (as in the MPI7Win29 task). To synchronize exchanges

when find the matrix row, use two calls of each of the MPI_Win_start and

MPI_Win_complete functions in the slave processes and calls of the

MPI_Win_post and MPI_Win_wait functions in a loop in the master process (it is

necessary to define a new group of processes at each iteration of the loop;

this group should be used in the MPI_Win_post function call). To synchronize

sending the row with the minimal sum and the numbers S and N to slave

processes, use the MPI_Barrier function in the master process and the

MPI_Barrier, MPI_Win_Lock, MPI_Win_unlock functions in the slave processes (as

in the MPI7Win29 task).

Note. The solution method described in this task allows one-way commu-

nications to be used only on the side of the slave processes (in contrast to

the method described in the MPI7Win29 task) but it requires to apply a

synchronizations that different from the lock/unlock ones.

2.8. Inter-communicators and process creation

The basic tools for creation of inter-communicators and their use for point-

to-point communication are defined in the MPI-1 standard. Therefore, 5 tasks of

this group (MPI8Inter1–MPI8Inter4 and MPI8Inter9) can be solved using the

MPICH 1.2.5 system. Other tasks are devoted to the new functions for inter-

communicator creation (MPI8Inter5–MPI8Inter8), to the collective communica-

tions via inter-communicators (MPI8Inter10–MPI8Inter14) and to use inter-

communicators for process creation (MPI8Inter15–MPI8Inter22). All these fea-

tures have appeared in the MPI-2 standard, so you should use the MPICH2 1.3

or MS-MPI 10 system to solve these tasks.

Part 2. Learning tasks 239

You should use a copy of the communicator MPI_COMM_WORLD as the peer

communicator (the third parameter of the MPI_Intercomm_create function). Use the

MPI_Comm_dup function to create this copy.

The parameters of the MPI_Comm_spawn function used for process creation

in the MPI8Inter15–MPI8Inter22 tasks should be as follows: the first parameter

should be the name of the executable file ptprj.exe, the second parameter argv is

enough to specify the NULL constant, the fourth parameter info should be the

MPI_NULL_INFO constant, the last parameter array_of_errcodes should be the

MPI_ERRCODES_IGNORE constant. If the task does not specify the source com-

municator for the process creation, then it is assumed that this communicator

should be the MPI_COMM_WORLD one.

Instead of the string "ptprj.exe", you can use the function char *GetExename()

that is implemented in the Programming Taskbook and returns the full name of

the executable file.

Before solving the tasks in this section, you should study the MPI8Inter9

and MPI8Inter15 task solutions given in Sections 1.3.7–1.3.8.

2.8.1. Inter-communicator creation

MPI8Inter1. The number of processes K is an even number. An integer X is

given in each process. Using the MPI_Comm_group, MPI_Group_range_incl, and

MPI_Comm_create functions, create two communicators: the first one con-

tains the even-rank processes in the same order (0, 2, …, K/2 − 2), the

second one contains the odd-rank processes in the same order (1, 3, …,

K/2 − 1). Output the ranks R of the processes included in these communica-

tors. Then combine these communicators into an inter-communicator using

the MPI_Intercomm_create function. Using the MPI_Send and MPI_Recv func-

tions for this inter-communicator, send the integer X from each process to

the process with the same rank from the other group of the inter-

communicator and output the received integers.

MPI8Inter2. The number of processes K is an even number. An integer C and a

real number X are given in each process. The numbers C are equal to 0 or

1, the amount of integers 1 is equal to the amount of integers 0. The integer

C is equal to 0 in the process of rank 0 and is equal to 1 in the process of

rank K − 1. Using one call of the MPI_Comm_split function, create two com-

municators: the first one contains processes with C = 0 (in the same order)

and the second one contains processes with C = 1 (in the inverse order).

Output the ranks R of the processes included in these communicators (note

that the first and the last processes of the MPI_COMM_WORLD communicator

will receive the value R = 0). Then combine these communicators into an

inter-communicator using the MPI_Intercomm_create function. Using the

MPI_Send and MPI_Recv functions for this inter-communicator, send the real

240 M. E. Abramyan. Parallel Programming Based on MPI 2.0

number X from each process to the process with the same rank from the

other group of the inter-communicator and output the received numbers.

MPI8Inter3*. The number of processes K is a multiple of 3. A real number X is

given in the processes of rank 3N (N = 0, …, 3K − 3), real numbers X and Y

are given in the processes of rank 3N + 1, a real number Y is given in the

processes of rank 3N + 2. Using the MPI_Comm_group, MPI_Group_range_incl,

and MPI_Comm_create functions, create three communicators: the first one

contains processes of rank 3N in the same order (0, 3, …, K − 3), the

second one contains processes of rank 3N + 1 in the inverse order (K − 2,

K − 5, …, 1), the third one contains processes of rank 3N + 2 in the same

order (2, 5, …, K − 1). Output the ranks R of the processes included in

these communicators. Then combine these communicators into two inter-

communicators using the MPI_Intercomm_create function. The first inter-

communicator contains the first and second group of processes, the second

one contains the second and third group of processes. Using the MPI_Send

and MPI_Recv functions for these inter-communicators, exchange the num-

bers X in the processes with the same rank in the first and second group and

the numbers Y in the processes with the same rank in the second and third

group. Output the received number in each process.

Note. The MPI_Intercomm_create function should be called once for processes

of the first and third groups, and twice for processes of the second group,

and this number of calls should be performed for the MPI_Send and MPI_Recv

functions.

MPI8Inter4*. The number of processes K is a multiple of 3. Three integers are

given in each process. The first integer (named C) is in the range 0 to 2, the

amount of each value 0, 1, 2 is equal to K/3, processes 0, 1, 2 contain C

with the value 0, 1, 2 respectively. Using one call of the MPI_Comm_split

function, create three communicators: the first one contains processes with

C = 0 (in the same order), the second one contains processes with C = 1 (in

the same order), the third one contains processes with C = 2 (in the same

order). Output the ranks R of the processes included in these communica-

tors (note that the processes 0, 1, 2 of the MPI_COMM_WORLD communicator

will receive the value R = 0). Then combine these communicators into three

inter-communicators using two calls of the MPI_Intercomm_create function in

each process. The first inter-communicator contains groups of processes

with C equal to 0 and 1, the second one contains groups of processes with

C equal to 1 and 2, the third one contains groups of processes with C equal

to 0 and 2 (thus, the created inter-communicators will form a ring connect-

ing all three previously created groups). Denoting two next given integers

in the first group as X and Y, in the second group as Y and Z, and in the

third group as Z and X (in this order) and using two calls of the MPI_Send

and MPI_Recv functions for these inter-communicators, exchange the num-

Part 2. Learning tasks 241

bers X in the processes with the same rank in the first and second group, the

numbers Y in the processes with the same rank in the second and third

group, and the numbers Z in the processes with the same rank in the first

and third group. Output the received numbers in each process.

MPI8Inter5*. The number of processes K is a multiple of 4. An integer X is giv-

en in each process. Using the MPI_Comm_group, MPI_Group_range_incl and

MPI_Comm_create function, create two communicators: the first one contains

the first half of the processes (of rank 0, 1, …, K/2 − 1 in this order), the

second one contains the second half of the processes (of rank K/2,

K/2 + 1, …, K − 1 in this order). Output the ranks R1 of the processes in-

cluded in these communicators. Then combine these communicators into

an inter-communicator using the MPI_Intercomm_create function. Using the

MPI_Comm_create function for this inter-communicator, create a new inter-

communicator whose the first group contains the even-rank processes of

the first group of the initial inter-communicator (in the same order) and the

second group contains the odd-rank processes of the second group of the

initial inter-communicator (in the inverse order). Thus, the first and second

groups of the new inter-communicator will include the processes of the

MPI_COMM_WORLD communicator with ranks 0, 2, …, K/2 − 2 and K − 1,

K − 3, …, K/2 + 1 respectively. Output the ranks R2 of the processes in-

cluded in the new inter-communicator. Using the MPI_Send and MPI_Recv

functions for the new inter-communicator, send the integer X from each

process to the process with the same rank from the other group of the inter-

communicator and output the received numbers.

MPI8Inter6*. The number of processes K is a multiple of 4. A real number X is

given in each process. Using the MPI_Comm_group, MPI_Group_range_incl and

MPI_Comm_create function, create two communicators: the first one contains

the first half of the processes (of rank 0, 1, …, K/2 − 1 in this order), the

second one contains the second half of the processes (of rank K/2,

K/2 + 1, …, K − 1 in this order). Output the ranks R1 of the processes in-

cluded in these communicators. Then combine these communicators into

an inter-communicator using the MPI_Intercomm_create function. Using one

call of the MPI_Comm_split function for this inter-communicator, create two

new inter-communicators: the first one contains the even-rank processes of

the initial inter-communicator, the second one contains the odd-rank

processes of the initial inter-communicator; the processes of the second

group of each new inter-communicator should be in the inverse order.

Thus, the first new communicator will include groups of the processes of

the MPI_COMM_WORLD communicator with ranks 0, 2, …, K/2 − 2 and

K − 2, K − 4, …, K/2, the first new communicator will include groups of

the processes of the MPI_COMM_WORLD communicator with ranks 1, 3, …,

K/2 − 1 and K − 1, K − 3, …, K/2 + 1. Output the ranks R2 of the processes

242 M. E. Abramyan. Parallel Programming Based on MPI 2.0

included in the new inter-communicators. Using the MPI_Send and MPI_Recv

functions for the new inter-communicators, send the integer X from each

process to the process with the same rank from the other group of this inter-

communicator and output the received numbers.

MPI8Inter7**. The number of processes K is an even number. An integer C is

given in each process. The numbers C are equal to 0 or 1. A single value of

C = 1 is given in the first half of the processes, the number of values of

C = 1 is greater than one in the second half of the processes and, in addi-

tion, there is at least one value C = 0 in the second half of the processes.

Using the MPI_Comm_split function, create two communicators: the first one

contains the first half of the processes (of rank 0, 1, …, K/2 − 1 in this or-

der), the second one contains the second half of the processes (of rank K/2,

K/2 + 1, …, K − 1 in this order). Output the ranks R1 of the processes in-

cluded in these communicators. Then combine these communicators into

an inter-communicator using the MPI_Intercomm_create function. Using the

MPI_Comm_split function for this inter-communicator, create a new inter-

communicator with groups which contain processes from the correspond-

ing groups of the initial inter-communicator with the values C = 1 (in the

inverse order). Thus, the first group of the new inter-communicator will in-

clude a single process, and the number of processes in the second group

will be in the range 2 to K/2 − 1. Output the ranks R2 of the processes that

are included in the second group of the new inter-communicator (this group

contains more than one process). Input an array Y of K2 integers in the sin-

gle process of the first group of the new inter-communicator, where K2 is

the number of the processes in the second group. Input an integer X in each

process of the second group of the new inter-communicator. Using the re-

quired number of calls of the MPI_Send and MPI_Recv functions for all the

processes of the new inter-communicator, send all the integers X to the sin-

gle process of the first group and send the element of the array Y with the

index R2 to the process R2 of the second group (R2 = 0, 1, …, K2 − 1). Out-

put all received numbers (the integers X should be output in ascending or-

der of ranks of sending processes).

Note. In the MPIСH 2 version 1.3, the MPI_Comm_split function call for

some inter-communicator is erroneous if some of the values of its color pa-

rameter are equal to MPI_UNDEFINED. Thus, you should use only non-

negative values of color in this situation. In addition, the program can be-

have incorrectly if the MPI_Comm_split function create empty groups for

some inter-communicators (this is possible if the same color values are

specified for all processes of one of the groups of the initial inter-

communicator and these color values are different from color values for

some processes of the other group).

Part 2. Learning tasks 243

MPI8Inter8**. An integer C is given in each process. The integer C is in the

range 0 to 2, all the values of C (0, 1, 2) are given for the even-rank

processes and for the odd-rank processes. Using one call of the

MPI_Comm_split function, create two communicators: the first one contains

the even-rank processes (in ascending order of ranks), the second one con-

tains the odd-rank processes (in ascending order of ranks). Output the ranks

R1 of the processes included in these communicators. Then combine these

communicators into an inter-communicator using the MPI_Intercomm_create

function. Using one call of the MPI_Comm_split function for this inter-

communicator, create three new inter-communicators with groups which

contain processes from the corresponding groups of the initial inter-

communicator with the same values of C (in the same order). Thus, for in-

stance, the first group of the first new inter-communicator will include the

even-rank processes with C = 0 and the second group of the third new in-

ter-communicator will include the odd-rank processes with C = 2. Output

the ranks R2 of the processes included in the new inter-communicators. In-

put an integer X in the processes of the first group of each new inter-

communicator, input an integer Y in the processes of the second group of

each new inter-communicator. Using the required number of calls of the

MPI_Send and MPI_Recv functions for all the processes of all the new inter-

communicators, send all the integers X to each process of the second group

of the same inter-communicator and send all the integers Y to each process

of the first group of the same inter-communicator. Output all received

numbers in ascending order of ranks of sending processes.

MPI8Inter9**. The number of processes K is an even number. An integer C is

given in each process. The integer C is in the range 0 to 2, the first value

C = 1 is given in the process 0, the first value C = 2 is given in the process

K/2. Using the MPI_Comm_split function, create two communicators: the first

one contains processes with C = 1 (in the same order), the second one con-

tains processes with C = 2 (in the same order). Output the ranks R of the

processes included in these communicators (output the integer −1 if the

process is not included into the created communicators). Then combine

these communicators into an inter-communicator using the

MPI_Intercomm_create function. A group containing processes with C = 1 is

considered to be the first group of the created inter-communicator and the

group of processes with C = 2 is considered to be its second group. Input an

integer X in the processes of the first group, input an integer Y in the

processes of the second group. Using the required number of calls of the

MPI_Send and MPI_Recv functions for all the processes of the inter-

communicator, send all the integers X to each process of the second group

and send all the integers Y to each process of the first group. Output all re-

ceived numbers in ascending order of ranks of sending processes.

244 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Remark. The solution of this task is given in Section 1.3.7.

2.8.2. Collective communications for inter-communicators

MPI8Inter10*. The number of processes K is an even number. An integer C is

given in each process. The integer C is in the range 0 to 2, the first value

C = 1 is given in the process 0, the first value C = 2 is given in the process

K/2. Using the MPI_Comm_split function, create two communicators: the first

one contains processes with C = 1 (in the same order), the second one con-

tains processes with C = 2 (in the same order). Output the ranks R of the

processes included in these communicators (output the integer −1 if the

process is not included into the created communicators). Then combine

these communicators into an inter-communicator using the

MPI_Intercomm_create function. A group containing processes with C = 1 is

considered to be the first group of the created inter-communicator and the

group of processes with C = 2 is considered to be its second group. Input

integers R1 and R2 in each process of the inter-communicator. The values of

the numbers R1 coincide in all processes and indicate the rank of the se-

lected process of the first group; the values of the numbers R2 also coincide

in all processes and indicate the rank of the selected process of the second

group. A sequence of three integers X is given in the selected process of the

first group, a sequence of three integers Y is given in the selected process of

the second group. Using two calls of the MPI_Bcast collective function in

each process of the inter-communicator, send the numbers X to all the

processes of the second group, send the numbers Y to all the processes of

the first group, and output the received numbers.

MPI8Inter11*. The number of processes K is an even number. An integer C is

given in each process. The integer C is in the range 0 to 2, the first value

C = 1 is given in the process 0, the first value C = 2 is given in the process

K/2. Using the MPI_Comm_split function, create two communicators: the first

one contains processes with C = 1 (in the same order), the second one con-

tains processes with C = 2 (in the same order). Output the ranks R of the

processes included in these communicators (output the integer −1 if the

process is not included into the created communicators). Then combine

these communicators into an inter-communicator using the

MPI_Intercomm_create function. A group containing processes with C = 1 is

considered to be the first group of the created inter-communicator and the

group of processes with C = 2 is considered to be its second group. Input an

integer R1 in each process of the inter-communicator. The values of the

number R1 coincide in all processes and indicate the rank of the selected

process of the first group. An array X of K2 integers is given in the selected

process of the first group, where K2 is the number of processes in the

second group. Using one call of the MPI_Scatter collective function in each

Part 2. Learning tasks 245

process of the inter-communicator, send the element X[R2] to the process R2

of the second group (R2 = 0, …, K2 − 1) and output the received numbers.

MPI8Inter12*. The number of processes K is an even number. An integer C is

given in each process. The integer C is in the range 0 to 2, the first value

C = 1 is given in the process 0, the first value C = 2 is given in the process

K/2. Using the MPI_Comm_split function, create two communicators: the first

one contains processes with C = 1 (in the same order), the second one con-

tains processes with C = 2 (in the same order). Output the ranks R of the

processes included in these communicators (output the integer −1 if the

process is not included into the created communicators). Then combine

these communicators into an inter-communicator using the

MPI_Intercomm_create function. A group containing processes with C = 1 is

considered to be the first group of the created inter-communicator and the

group of processes with C = 2 is considered to be its second group. Input an

integer R2 in each process of the inter-communicator. The values of the

number R2 coincide in all processes and indicate the rank of the selected

process of the second group. An integer X is given in all the processes of

the first group. Using one call of the MPI_Gather collective function in each

process of the inter-communicator, send all the integers X to the selected

process of the second group. Output the received numbers in this process in

ascending order of ranks of sending processes.

MPI8Inter13*. The number of processes K is an even number. An integer C is

given in each process. The integer C is in the range 0 to 2, the first value

C = 1 is given in the process 0, the first value C = 2 is given in the process

K/2. Using the MPI_Comm_split function, create two communicators: the first

one contains processes with C = 1 (in the same order), the second one con-

tains processes with C = 2 (in the same order). Output the ranks R of the

processes included in these communicators (output the integer −1 if the

process is not included into the created communicators). Then combine

these communicators into an inter-communicator using the

MPI_Intercomm_create function. A group containing processes with C = 1 is

considered to be the first group of the created inter-communicator and the

group of processes with C = 2 is considered to be its second group. An in-

teger X is given in each process of the first group, an integer Y is given in

each process of the second group. Using one call of the MPI_Allreduce collec-

tive function in each process of the inter-communicator, receive the number

Ymin in each process of the first group and the number Xmax in each process

of the second group, where the number Ymin is the minimal value of the giv-

en integers Y and the number Xmax is the maximal value of the given integ-

ers X. Output the received numbers.

246 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI8Inter14*. The number of processes K is an even number. An integer C is

given in each process. The integer C is in the range 0 to 2, the first value

C = 1 is given in the process 0, the first value C = 2 is given in the process

K − 1. Using the MPI_Comm_split function, create two communicators: the

first one contains processes with C = 1 (in the same order), the second one

contains processes with C = 2 (in the inverse order). Output the ranks R of

the processes included in these communicators (output the integer −1 if the

process is not included into the created communicators). Then combine

these communicators into an inter-communicator using the

MPI_Intercomm_create function. A group containing processes with C = 1 is

considered to be the first group of the created inter-communicator and the

group of processes with C = 2 is considered to be its second group. An ar-

ray X of K2 integers is given in each process of the first group, where K2 is

the number of processes in the second group; an array Y of K1 integers is

given in each process of the second group, where K1 is the number of

processes in the first group. Using one call of the MPI_Alltoall collective

function in each process of the inter-communicator, send the element Y[R1]

of each array Y to the process R1 of the first group (R1 = 0, …, K1 − 1) and

send the element X[R2] of each array X to the process R2 of the second

group (R2 = 0, …, K2 − 1). Output the received numbers in ascending order

of ranks of sending processes.

2.8.3. Process creation

MPI8Inter15. A real number is given in each process. Using the

MPI_Comm_spawn function with the first parameter "ptprj.exe", create one new

process. Using the MPI_Reduce collective function, send the sum of the giv-

en numbers to the new process. Output the received sum in the debug sec-

tion using the Show function in the new process. Then, using the MPI_Bcast

collective function, send this sum to the initial processes and output it in

each process.

Remark. The solution of this task is given in Section 1.3.8.

MPI8Inter16. An array A of K real numbers is given in each process, where K is

the number of processes. Using one call of the MPI_Comm_spawn function

with the first parameter "ptprj.exe", create K new processes. Using the

MPI_Reduce_scatter_block collective function, send the maximal value of the

elements A[R] of the given arrays to the new process of rank R (R = 0, …,

K − 1). Output the received maximal value in the debug section using the

Show function in each new process. Then, using the MPI_Send and MPI_Recv

functions, send the maximal value from the new process of rank R

(R = 0, …, K − 1) to the initial process of the same rank and output the re-

ceived numbers in the initial processes.

Part 2. Learning tasks 247

MPI8Inter17*. The number of processes K is an even number. Arrays of K/2

real numbers are given in the processes of rank 0 and 1. Using one call of

the MPI_Comm_spawn function with the first parameter "ptprj.exe", create two

new processes. Using one call of the MPI_Comm_split function for the inter-

communicator connected with the new processes, create two new inter-

communicators: the first one contains the group of even-rank initial

processes (0, …, K − 2) and the new process of rank 0 as the second group,

the second one contains the group of odd-rank initial processes (1, …,

K − 1) and the new process of rank 1 as the second group. Using the

MPI_Send function in the initial processes and the MPI_Recv function in the

new processes, send all the given numbers from the first process of the first

group of each inter-communicator to the single process of its second group.

Output the received numbers in the debug section using the Show function

in the new processes. Then, using the MPI_Scatter collective function for in-

ter-communicators, send one number from the new process to each process

of the first group of the corresponding inter-communicator (in ascending

order of ranks of receiving processes) and output the received numbers.

MPI8Inter18*. The number of processes K is an even number. Arrays A of K/2

real numbers are given in each process. Using one call of the

MPI_Comm_spawn function with the first parameter "ptprj.exe", create K new

processes. Using one call of the MPI_Comm_split function for the inter-

communicator connected with the new processes, create two new inter-

communicators: the first one contains the group of even-rank initial

processes (0, …, K − 2) and the even-rank new processes as the second

group, the second one contains the group of odd-rank initial processes

(1, …, K − 1) and the odd-rank new processes as the second group. Perform

the following actions for each created inter-communicator: (1) find the mi-

nimal value (for the first inter-communicator) or the maximal value (for the

second one) of the elements A[R] (R = 0, …, K/2 − 1) of all the arrays A

given in the first group of this inter-communicator; (2) send the found val-

ue to the new process of rank R in the second group of the corresponding

inter-communicator. For instance, the minimal of the first elements of the

arrays given in the even-rank initial processes should be sent to the first of

the new processes, the maximal of the first elements of the arrays given in

the odd-rank initial processes should be sent to the second of the new

processes (since this process has rank 0 in the corresponding inter-

communicator). To do this, use the MPI_Reduce_scatter_block collective func-

tion. Output the received values in the debug section using the Show func-

tion in each new process. Then, using the MPI_Reduce collective function,

find the minimum of the values received in the second group of the first in-

ter-communicator, send the found minimum to the first process of the first

group of this inter-communicator (that is, to the process 0 in the

248 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_COMM_WORLD communicator), and output the received minimum. Al-

so, find the maximum of the values received in the second group of the

second inter-communicator, send the found maximum to the first process of

the first group of this inter-communicator (that is, to the process 1 in the

MPI_COMM_WORLD communicator), and output the received maximum.

MPI8Inter19*. An array A of 2K integers is given in the master process, where

K is the number of processes. Using one call of the MPI_Comm_spawn func-

tion with the first parameter "ptprj.exe", create K new processes. Using the

MPI_Intercomm_merge function for the inter-communicator connected with

the new proсesses, create a new intra-communicator which include both the

initial and the new processes. The order of the processes in the new intra-

communicator should be as follows: the initial processes, then the new ones

(to specify this order, use the appropriate value of the parameter high of the

MPI_Intercomm_merge function). Using the MPI_Scatter collective function for

the new intra-communicator, send the element A[R] of the array A to the

process of rank R in this intra-communicator (R = 0, …, 2K − 1). Output

the numbers received in the initial processes in the section of results, output

the numbers received in the new processes in the debug section using the

Show function. Then, using the MPI_Reduce collective function in this intra-

communicator, find and output the sum of all numbers in the process of

rank 1 in this intra-communicator.

MPI8Inter20*. The number of processes K is not a multiple of 4. An integer A is

given in each process. Using one call of the MPI_Comm_spawn function with

the first parameter "ptprj.exe", create such a number of new processes (1, 2

or 3) that the total number of processes K0 in the application would be a

multiple of 4. Define an integer A equal to −R − 1 in each new process,

where R is the process rank. Using the MPI_Intercomm_merge function for the

inter-communicator connected with the new processes, create a new intra-

communicator which include both initial and new processes. The order of

the processes in the new intra-communicator should be as follows: the ini-

tial processes, then the new ones (to specify this order, use the appropriate

value of the parameter high of the MPI_Intercomm_merge function). Using the

MPI_Cart_create function for the new intra-communicator, define a Cartesian

topology for all processes as a two-dimensional (K0/4 × 4) grid, which is

periodic in the second dimension (ranks of processes should not be reor-

dered). Find the process coordinates in the created topology using the

MPI_Cart_coords function. Output the coordinates found in the initial

processes in the section of results, output the coordinates found in the new

processes in the debug section with the "X = " and "Y = " comments using the

Show function. Using the MPI_Comm_shift and MPI_Sendrecv_replace functions,

perform a cyclic shift of the integers A given in all processes of each col-

umn of the grid by step −1 (that is, the number A should be sent from each

Part 2. Learning tasks 249

process in the column, with the exception of the first process, to the pre-

vious process in the same column and from the first process in the column

to the last process in the same column). Output the integers A received in

the initial processes in the section of results, output the integers A received

in the new processes in the debug section with the "A = " comment using the

Show function.

MPI8Inter21**. A real number is given in each process; this number is denoted

by the letter A in the master process and by the letter B in the slave

processes. Using two calls of the MPI_Comm_spawn function with the first

parameter "ptprj.exe", create two groups of new processes as follows: the first

group (named the server group) should include one process, the second

group (named the client group) should include K − 1 processes, where K is

the number of initial processes. Send the number A from the master process

to the single new process of the server group, send the number B from each

slave process to the corresponding new process of the client group (in as-

cending order of the process ranks). Output the number received in each

new process in the debug section using the Show function. Using the

MPI_Open_port, MPI_Publish_name, and MPI_Comm_accept functions on the

server side and the MPI_Lookup_name and MPI_Comm_connect functions in the

client side, establish a connection between two new groups of processes by

means of a new inter-communicator. Using the MPI_Send and MPI_Recv

functions for this inter-communicator, receive the number A in each

process of the client group from the process of the server group. Found the

sum of the received number A and the number B, which is received earlier

from the initial slave process, and output the sum A + B in the debug sec-

tion using the Show function in each process of the client group. Send this

sum to the corresponding initial slave process and output the received sum

in this process (the sum found in the process of rank R of the client group

should be sent to the initial process of rank R + 1).

Note. The MPI_Lookup_name function call in the client processes should be

performed after the function MPI_Publish_name call in the server process.

You can, for example, use the MPI_Barrier function for the initial processes

and the server process: in the server process, the MPI_Barrier function should

be called after the call of the MPI_Publish_name function, whereas in the ini-

tial processes, the MPI_Barrier function should be called before the call of the

MPI_Comm_spawn function which create the client group.

MPI8Inter22**. An integer N is given in each process. The integer N can take

three values: 0, 1 and K (K > 1). There is exactly one process with the value

N = 1 and exactly K processes with the value N = K. In addition, an integer

A is given in the processes with the non-zero integer N. Using the

MPI_Comm_split finction, split the initial communicator MPI_COMM_WORLD

into two ones: the first new communicator should include the process with

250 M. E. Abramyan. Parallel Programming Based on MPI 2.0

N = 1, the second one should include the processes with N = K. Using one

call of the MPI_Comm_spawn function with the first parameter "ptprj.exe" for

each new communicator, create two groups of new processes. The number

of processes in each new group must coincide with the number of processes

in the corresponding communicator (that is, the first group, named the

server group, should include one process and the second one, named the

client group, should include K processes). Send the integer A from each ini-

tial process to the new process; the rank of the receiving process should

coincide with the rank of the sending process in the new communicator.

Output the received integers in the debug section using the Show function.

Using the MPI_Open_port, MPI_Publish_name, and MPI_Comm_accept functions

on the server side and the MPI_Lookup_name and MPI_Comm_connect functions

in the client side, establish a connection between two new groups of

processes by means of a new inter-communicator. Using the MPI_Gather col-

lective function for this inter-communicator, send all the integers A from

the processes of the client group to the single process of the server group

and output the received numbers in the debug section using several calls of

the Show function in the process of the server group. Then, using the

MPI_Send and MPI_Recv functions, send all these numbers from the process

of the server group to the initial process that has created the server group.

Output the received numbers in this initial process.

Note. The MPI_Lookup_name function call in the client processes should be

performed after the MPI_Publish_name function call in the server process.

You can, for example, send the number A to the process of the server group

using the MPI_Ssend function and call the MPI_Barrier function for the

MPI_COMM_WORLD communicator after the call of the MPI_Ssend function

(on the side of the receiving process, you should receive the number A only

after the call of the MPI_Publish_name function). In the other processes of the

MPI_COMM_WORLD communicator, you should call the MPI_Barrier function

and then send the numbers A to the processes of the client group. Thus, any

of the processes of the client group will receive the number A only when

the process of the server group has already called the MPI_Publish_name

function.

2.9. Parallel matrix algorithms

All numeric data in tasks are integers. Matrices should be input and output

by rows. Files with the matrix elements also contain them in a row-major order.

The number of processes in tasks related to the band algorithms

(MPI9Matr2–MPI9Matr20) does not exceed 5. The number of processes in tasks

related to the block algorithms (MPI9Matr21–MPI9Matr44) does not exceed 16.

Part 2. Learning tasks 251

Use the char[12] array to store the file name, use the MPI_Bcast function with

the MPI_CHAR datatype parameter to send the file name from the master process

to the slave processes.

The program templates for each task already contain descriptions of integer

variables for storing the numeric data mentioned in tasks (in particular, the ma-

trix sizes), pointers to arrays for storing the matrices themselves, as well as va-

riables of the MPI_Datatype and MPI_Comm type. These variables should be used in

all the functions that you need to implement when solving tasks. All names of

variables correspond to the notations used in the task formulations. For arrays

associated with bands or blocks of matrices, the names a, b, c, t are used; for ar-

rays associated with the initial matrices A, B, and their resulting product C, the

names with the underline are used (namely, a_, b_, c_).

Tasks with the file input-output (MPI9Matr8–MPI9Matr10, MPI9Matr18–

MPI9Matr20, MPI9Matr29–MPI9Matr31, MPI9Matr42–MPI9Matr44) require

the use of the MPI-2 library. To solve the other tasks in this group, you can use

any version of MPI.

Before solving the tasks in this section, you should study the MPI9Matr1,

MPI9Matr2, MPI9Matr24, MPI9Matr19 task solutions given in Sections 1.4.2–

1.4.5.

2.9.1. Non-parallel matrix multiplication algorithm

MPI9Matr1. Integers M, P, Q, a matrix A of the size M × P, and a matrix B of

the size P × Q are given in the master process. Find and output a M × Q

matrix C that is the product of the matrices A and B.

The formula for calculating the elements of the matrix C under the assump-

tion that the rows and columns of all matrices are numbered from 0 is as

follows: CI,J = AI,0·B0,J + AI,1·B1,J + … + AI,P-1·BP-1,J, where I = 0, …, M − 1,

J = 0, …, Q − 1.

To store the matrices A, B, C, use one-dimensional arrays of size M·P, P·Q,

and M·Q placing elements of matrices in a row-major order (that is, the

matrix element with indices I and J will be stored in the element of the cor-

responding array with the index I·N + J, where N is the number of columns

of the matrix). The slave processes are not used in this task.

Remark. The solution of this task is given in Section 1.4.2.

2.9.2. Band algorithm 1 (horizontal bands)

MPI9Matr2*. Integers M, P, Q, a matrix A of the size M × P, and a matrix B of

the size P × Q are given in the master process. In the first variant of the

band algorithm of matrix multiplication, each matrix multiplier is divided

into K horizontal bands, where K is the number of processes (hereinafter

bands are distributed by processes and used to calculate a part of the total

matrix product in each process).

252 M. E. Abramyan. Parallel Programming Based on MPI 2.0

The band of the matrix A contains NA rows, the band of the matrix B con-

tains NB rows. The numbers NA and NB are calculated as follows:

NA = ceil(M/K), NB = ceil(P/K), where the operation "/" means the division

of real numbers and the function ceil performs rounding up. If the matrix

contains insufficient number of rows to fill the last band, then the zero-

valued rows should be added to this band.

Add, if necessary, the zero-valued rows to the initial matrices, save them in

one-dimensional arrays in the master process, and then send the matrix

bands from these arrays to all processes as follows: a band with the index R

is sent to the process of rank R (R = 0, 1, …, K − 1), all the bands AR are of

the size NA × P, all the bands BR are of the size NB × Q. In addition, create a

band CR in each process to store the part of the matrix product C = AB

which will be calculated in this process. Each band CR is of the size NA × Q

and is filled with zero-valued elements.

The bands, like the initial matrices, should be stored in one-dimensional ar-

rays in a row-major order. To send the matrix sizes, use the MPI_Bcast col-

lective function, to send the bands of the matrices A and B, use the

MPI_Scatter collective function.

Include all the above mentioned actions in a Matr1ScatterData function (with-

out parameters). As a result of the call of this function, each process will

receive the values NA, P, NB, Q, as well as one-dimensional arrays filled

with the corresponding bands of the matrices A, B, C. Output all obtained

data (that is, the numbers NA, P, NB, Q and the bands of the matrices A,

B, C) in each process after calling the Matr1ScatterData function. Perform the

input of initial data in the Matr1ScatterData function, perform the output of

the results in the Solve function.

Note. To reduce the number of the MPI_Bcast function calls, all matrix sizes

may be sent as a single array.

Remark. The solution of this task is given in Section 1.4.3.

MPI9Matr3. Integers NA, P, NB, Q and one-dimensional arrays filled with the

corresponding bands of matrices A, B, C are given in each process (thus,

the given data coincide with the results obtained in the MPI9Matr2 task).

Implement the first step of the band algorithm of matrix multiplication as

follows: multiply elements in the bands AR and BR of each process and per-

form the cyclic sending each band BR to the process of the previous rank

(that is, from the process 1 to the process 0, from the process 2 to the

process 1, …, from the process 0 to the process K − 1, where K is the num-

ber of processes).

Use the MPI_Sendrecv_replace function to send the bands. To determine the

ranks of the sending and receiving processes, use the expression containing

the % operator that gives the remainder of a division.

Part 2. Learning tasks 253

Include all the above mentioned actions in a Matr1Calc function (without pa-

rameters). Output the new contents of the bands CR and BR in each process;

perform data input and output in the Solve function.

Note. As a result of multiplying the bands AR and BR, each element of the

band CR will contain a part of the terms included in the elements of the

product AB; all elements of the band BR and some of the elements of the

band AR will be used (in particular, the first NB elements of the band A0 will

be used in the process 0 in the first step and the last NB elements of the

band AK-1 will be used in the process K − 1 in the first step).

MPI9Matr4. Integers NA, P, NB, Q and one-dimensional arrays filled with the

corresponding bands of matrices A, B, C are given in each process (thus,

the given data coincide with the results obtained in the MPI9Matr2 task).

Modify the Matr1Calc function, which was implemented in the previous task;

the modified function should provide execution of any step of the band al-

gorithm of matrix multiplication.

To do this, add the parameter named step to the function (this parameter

specifies the step number and may be in the range 0 to K − 1, where K is

the number of processes) and use the value of this parameter in the part of

the algorithm that deals with the recalculation of the elements of the band

CR (the cyclic sending of the bands BR does not depend on the value of the

parameter step).

Using two calls of the modified Matr1Calc function with the parameters 0

and 1, execute two initial steps of the band algorithm and output the new

contents of the bands CR and BR in each process. Perform data input and

output in the Solve function.

Note. The parameter step determines which part of the band AR will be

used for the next recalculation of the elements of the band CR (note that

these parts should be selected cyclically).

MPI9Matr5*. Integers NA, P, NB, Q and one-dimensional arrays filled with the

corresponding bands of matrices A, B, C are given in each process (thus,

the given data coincide with the results obtained in the MPI9Matr2 task). In

addition, a number L with the same value is given in each process. The val-

ue of L is in the range 3 to K, where K is the number of processes, and de-

termines the number of steps of the band algorithm.

Using the function Matr1Calc(I) (see the previous task) in a loop with the pa-

rameter I (I = 0, …, L − 1), execute the initial L steps of the band algorithm

and output the new contents of the bands CR and BR in each process. Per-

form data input and output in the Solve function.

Remark. If the value of L is equal to K, then the bands CR will contain the

corresponding parts of the final matrix product AB.

254 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI9Matr6*. An integer M (the number of rows of the matrix product) is given

in the master process. In addition, integers NA, Q and one-dimensional ar-

rays filled with the NA × Q bands of matrix C are given in each process (the

given bands of C are obtained as a result of K steps of the band algo-

rithm — see the MPI9Matr5 task). Send all the bands CR to the master

process and output the received matrix C of the size M × Q in this process.

To store the resulting matrix C in the master process, use a one-

dimensional array sufficient to store the matrix of the size (NA·K) × Q. To

send data to this array, use the MPI_Gather collective function.

Include all the above mentioned actions in a Matr1GatherData function (with-

out parameters). Perform the input of initial data in the Solve function, per-

form the output of the resulting matrix in the Matr1GatherData function.

MPI9Matr7**. Integers M, P, Q, a matrix A of the size M × P, and a matrix B of

the size P × Q are given in the master process (thus, the given data coincide

with the given data in the MPI9Matr2 task).

Using successively the Matr1ScatterData, Matr1Calc (in a loop), and

Matr1GatherData functions, that are developed in the

MPI9Matr2−MPI9Matr6 tasks, find a matrix C, which is equal to the prod-

uct of the initial matrices A and B, and output this matrix in the master

process.

In addition, output the current contents of the band CR in each process after

each call of the Matr1Calc function. Modify the Matr1Calc function (see the

MPI9Matr4 task), before using in this task, as follows: the bands BR should

not be sent when the parameter step is equal to K − 1.

MPI9Matr8*. Integers M, P, Q and two file names are given in the master

process. The given files contain elements of a matrix A of the size M × P

and a matrix B of the size P × Q. Modify the initial stage of the band algo-

rithm of matrix multiplication (see the MPI9Matr2 task) as follows: each

process should read the corresponding bands of the matrices A and B di-

rectly from the given files using the MPI_File_seek and MPI_File_read_all col-

lective functions (a new file view is not required).

To send the sizes of matrices and file names, use the MPI_Bcast collective

function.

Include all these actions in a Matr1ScatterFile function (without parameters).

As a result of the call of this function, each process will receive the values

NA, P, NB, Q, as well as one-dimensional arrays filled with the correspond-

ing bands of the matrices A, B, C. Output all obtained data (that is, the

numbers NA, P, NB, Q and the bands of the matrices A, B, C) in each

process after calling the Matr1ScatterFile function. Perform the input of initial

data in the Matr1ScatterFile function, perform the output of the results in the

Solve function.

Part 2. Learning tasks 255

Remark. For some bands, some of their elements (namely, the last rows)

or even the entire bands should not be read from the source files and will

remain zero-valued ones. However, this situation does not require special

processing, since the MPI_File_read_all function automatically stops reading

the data (without generating any error message) when the end of the file is

reached.

MPI9Matr9*. Integers NA, Q and one-dimensional arrays filled with the NA × Q

bands CR are given in each process (the given bands CR are obtained as a

result of K steps of the band algorithm of matrix multiplication — see the

MPI9Matr5 task). In addition, an integer M (the number of rows of the ma-

trix product) and the name of file (to store this product) are given in the

master process.

Send the number M and the file name to all processes using the MPI_Bcast

function. Write all the parts of the matrix product contained in the bands CR

to the resulting file, which will eventually contain a matrix C of the size

M × Q. To write the bands to the file, use the MPI_File_seek and

MPI_File_write_all collective functions.

Include all these actions (namely, the input of file name, sending number M

and the file name, and writing all bands to the file) in a Matr1GatherFile func-

tion. Perform the input of all initial data, except the file name, in the Solve

function.

Note. When writing data to the resulting file, it is necessary to take into ac-

count that some of the bands CR may contain trailing zero-valued rows that

are not related to the resulting matrix product (the number M should be sent

to all processes in order to control this situation).

MPI9Matr10**. Integers M, P, Q and three file names are given in the master

process. The first two file names are related to the existing files containing

the elements of matrices A and B of the size M × P and P × Q, respectively,

the third file should be created to store the resulting matrix product C = AB.

Using successively the Matr1ScatterFile, Matr1Calc (in a loop), and

Matr1GatherFile functions (see the MPI9Matr8, MPI9Matr5, MPI9Matr9

tasks), find a matrix C and write its elements to the resulting file.

In addition, output the current value of the c[step] in each process after each

call of the Matr1Calc function, where c is a one-dimensional array containing

the band CR, and step is the algorithm step number (0, 1, …, K − 1). Thus,

the element c[0] should be output on the first step of the algorithm, the ele-

ment c[1] should be output on the second step of the algorithm, and so on.

2.9.3. Band algorithm 2 (horizontal and vertical bands)

MPI9Matr11. Integers P and Q are given in each process; in addition, a matrix

B of the size P × Q is given in the master process. The number Q is a mul-

tiple of the number of processes K. Input the matrix B into a one-

256 M. E. Abramyan. Parallel Programming Based on MPI 2.0

dimensional array of the size P·Q in the master process and define a new

datatype named MPI_BAND_B that contains a vertical band of the matrix B.

The width of the vertical band should be equal to NB = Q/K columns. When

defining the MPI_BAND_B datatype, use the MPI_Type_vector and

MPI_Type_commit functions.

Include this definition in a Matr2CreateTypeBand(p, n, q, t) function with the

input integer parameters p, n, q and the output parameter t of the

MPI_Datatype type; the parameters p and n determine the size of the vertical

band (the number of its rows and columns), and the parameter q determines

the number of columns of the matrix from which this band is extracted.

Using the MPI_BAND_B datatype, send to each process (inclusive of the mas-

ter process) the corresponding band of the matrix B in the ascending order

of ranks of receiving processes. Sending should be performed using the

MPI_Send and MPI_Recv functions; the bands should be stored in one-

dimensional arrays of the size P·NB. Output the received band in each

process.

Remark. In the MPICH2 version 1.3, the MPI_Send function call is errone-

ous if the sending and receiving processes are the same. You may use the

MPI_Sendrecv function to send a band to the master process. You may also

fill a band in the master process without using tools of the MPI library.

MPI9Matr12*. Integers M, P, Q, a matrix A of the size M × P, and a matrix B of

the size P × Q are given in the master process. In the second variant of the

band algorithm of matrix multiplication, the first multiplier (the matrix A)

is divided into K horizontal bands and the second multiplier (the matrix B)

is divided into K vertical bands, where K is the number of processes (herei-

nafter bands are distributed by processes and used to calculate a part of the

total matrix product in each process).

The band of the matrix A contains NA rows, the band of the matrix B con-

tains NB columns. The numbers NA and NB are calculated as follows:

NA = ceil(M/K), NB = ceil(Q/K), where the operation "/" means the division

of real numbers and the function ceil performs rounding up. If the matrix

contains insufficient number of rows (or columns) to fill the last band, then

the zero-valued rows (or columns) should be added to this band.

Add, if necessary, the zero-valued rows or columns to the initial matrices,

save them in one-dimensional arrays in the master process, and then send

the matrix bands from these arrays to all processes as follows: a band with

the index R is sent to the process of rank R (R = 0, 1, …, K − 1), all the

bands AR are of the size NA × P, all the bands BR are of the size P × NB. In

addition, create a band CR in each process to store the part of the matrix

product C = AB which will be calculated in this process. Each band CR is of

the size (NA·K) × NB and is filled with zero-valued elements.

Part 2. Learning tasks 257

The bands, like the initial matrices, should be stored in one-dimensional ar-

rays in a row-major order. To send the matrix sizes, use the MPI_Bcast col-

lective function, to send the bands of the matrix A, use the MPI_Scatter col-

lective function, to send the bands of the matrix B, use the MPI_Send and

MPI_Recv functions and also the MPI_BAND_B datatype created by the

Matr2CreateTypeBand function (see the previous task and a note to it).

Include all the above mentioned actions in a Matr2ScatterData function (with-

out parameters). As a result of the call of this function, each process will

receive the values NA, P, NB, as well as one-dimensional arrays filled with

the corresponding bands of the matrices A, B, C. Output all obtained data

(that is, the numbers NA, P, NB and the bands of the matrices A, B, C) in

each process after calling the Matr2ScatterData function. Perform the input of

initial data in the Matr2ScatterData function, perform the output of the results

in the Solve function.

Notes. (1) When input the matrix B into an array in the master process, it

should be taken into account that this array may contain elements corres-

ponding to additional zero-valued columns.

(2) To reduce the number of the MPI_Bcast function calls, all matrix sizes

may be sent as a single array.

MPI9Matr13. Integers NA, P, NB and one-dimensional arrays filled with the cor-

responding bands of matrices A, B, C are given in each process (thus, the

given data coincide with the results obtained in the MPI9Matr12 task). Im-

plement the first step of the band algorithm of matrix multiplication as fol-

lows: multiply elements in the bands AR and BR of each process and per-

form the cyclic sending each band AR to the process of the previous rank

(that is, from the process 1 to the process 0, from the process 2 to the

process 1, …, from the process 0 to the process K − 1, where K is the num-

ber of processes).

Use the MPI_Sendrecv_replace function to send the bands. To determine the

ranks of the sending and receiving processes, use the expression containing

the % operator that gives the remainder of a division.

Include all the above mentioned actions in a Matr2Calc function (without pa-

rameters). Output the new contents of the bands CR and AR in each process;

perform data input and output in the Solve function.

Note. In this variant of the band algorithm, the bands AR contain the full

rows of the matrix A and the bands BR contain the full columns of the ma-

trix B, so, as a result of their multiplication, the band CR will contain part of

the elements of the final matrix product already at the first step of the algo-

rithm (the other elements of the band CR will remain zero-valued). The lo-

cation of the found elements in the band CR depends on the rank of the

process (in particular, the first NA rows of the band C0 in the process 0 will

258 M. E. Abramyan. Parallel Programming Based on MPI 2.0

be filled in the first step and the last NA rows of the band CK-1 in the process

K − 1 will be filled in the first step).

MPI9Matr14. Integers NA, P, NB and one-dimensional arrays filled with the cor-

responding bands of matrices A, B, C are given in each process (thus, the

given data coincide with the results obtained in the MPI9Matr12 task).

Modify the Matr2Calc function, which was implemented in the previous task;

the modified function should provide execution of any step of the band al-

gorithm of matrix multiplication.

To do this, add the parameter named step to the function (this parameter

specifies the step number and may be in the range 0 to K − 1, where K is

the number of processes) and use the value of this parameter in the part of

the algorithm that deals with the recalculation of the elements of the band

CR (the cyclic sending of the bands AR does not depend on the value of the

parameter step).

Using two calls of the modified Matr2Calc function with the parameters 0

and 1, execute two initial steps of the band algorithm and output the new

contents of the bands CR and AR in each process. Perform data input and

output in the Solve function.

Note. The parameter step determines which rows of the band CR will be

calculated in this step of the algorithm (note that these rows are selected

cyclically).

MPI9Matr15*. Integers NA, P, NB and one-dimensional arrays filled with the

corresponding bands of matrices A, B, C are given in each process (thus,

the given data coincide with the results obtained in the MPI9Matr12 task).

In addition, a number L with the same value is given in each process. The

value of L is in the range 3 to K, where K is the number of processes, and

determines the number of steps of the band algorithm.

Using the function Matr2Calc(I) (see the previous task) in a loop with the pa-

rameter I (I = 0, …, L − 1), execute the initial L steps of the band algorithm

and output the new contents of the bands CR and AR in each process. Per-

form data input and output in the Solve function.

Remark. If the value of L is equal to K, then the bands CR will contain the

corresponding parts of the final matrix product AB.

MPI9Matr16*. Integers M and Q (the numbers of rows and columns of the ma-

trix product) are given in the master process. In addition, integers NA, NB

and one-dimensional arrays filled with the (NA·K) × NB bands of the matrix

C are given in each process (the given bands of C are obtained as a result of

K steps of the band algorithm — see the MPI9Matr15 task). Send all the

bands CR to the master process and output the received matrix C of the size

M × Q in this process.

Part 2. Learning tasks 259

To store the resulting matrix C in the master process, use a one-

dimensional array sufficient to store the matrix of the size (NA·K) × (NB·K).

To send data to this array, use the MPI_Send and MPI_Recv functions and the

MPI_BAND_C datatype created by the Matr2CreateTypeBand function (see the

MPI9Matr11 task and a note to it).

Include all the above mentioned actions in a Matr2GatherData function (with-

out parameters). Perform the input of initial data in the Solve function, per-

form the output of the resulting matrix in the Matr2GatherData function.

Note. When output the matrix C in the master process, it should be taken

into account that an array, which is intended for matrix storage, may con-

tain elements corresponding to additional zero-valued columns.

MPI9Matr17**. Integers M, P, Q, a matrix A of the size M × P, and a matrix B

of the size P × Q are given in the master process (thus, the given data coin-

cide with the given data in the MPI9Matr12 task).

Using successively the Matr2ScatterData, Matr2Calc (in a loop), and

Matr2GatherData functions, that are developed in the

MPI9Matr12−MPI9Matr16 tasks, find a matrix C, which is equal to the

product of the initial matrices A and B, and output this matrix in the master

process.

In addition, output the current contents of the band CR in each process after

each call of the Matr2Calc function.

Modify the Matr2Calc function (see the MPI9Matr14 task), before using in

this task, as follows: the bands AR should not be sent when the parameter

step is equal to K − 1.

MPI9Matr18*. Integers M, P, Q and two file names are given in the master

process. The given files contain elements of a matrix A of the size M × P

and a matrix B of the size P × Q. The number Q is a multiple of the number

of processes K. Modify the initial stage of the band algorithm of matrix

multiplication (see the MPI9Matr12 task) as follows: each process should

read the corresponding bands of the matrices A and B directly from the giv-

en files.

To send the sizes of matrices and file names, use the MPI_Bcast collective

function. Use the MPI_File_seek and MPI_File_read_all collective functions to

read the horizontal bands of the matrix A. To read the vertical bands of the

matrix B, set the appropriate file view using the MPI_File_set_view function

and the MPI_BAND_B filetype defined with the Matr2CreateTypeBand function

(see the MPI9Matr11 task), and then use the MPI_File_read_all function.

Include all these actions in a Matr2ScatterFile function (without parameters).

As a result of the call of this function, each process will receive the values

NA, P, NB, as well as one-dimensional arrays filled with the corresponding

bands of the matrices A, B, C. Output all obtained data (that is, the numbers

NA, P, NB and the bands of the matrices A, B, C) in each process after call-

260 M. E. Abramyan. Parallel Programming Based on MPI 2.0

ing the Matr2ScatterFile function. Perform the input of initial data in the

Matr2ScatterFile function, perform the output of the results in the Solve func-

tion.

Note. A condition that the number Q is a multiple of K allows us to per-

form reading of the bands BR using the same filetype in all processes.

If this condition is not fulfilled, then it would be necessary to use special

types that ensure the correct reading from the file and write to the array of

"truncated" bands of the matrix B in the last processes (in addition, in this

case it would be necessary to send to each process the value of Q which is

necessary for the correct type definition for "truncated" bands).

MPI9Matr19*. Integers NA, NB and one-dimensional arrays filled with the

(NA·K) × NB bands CR are given in each process (the given bands CR are ob-

tained as a result of K steps of the band algorithm of matrix multiplica-

tion — see the MPI9Matr15 task). In addition, an integer M (the number of

rows of the matrix product) and the name of file (to store this product) are

given in the master process. The number of columns Q of the matrix prod-

uct is a multiple of the number of processes K (and, therefore, is equal to

NB·K).

Send the number M and the file name to all processes using the MPI_Bcast

function. Write all the parts of the matrix product contained in the bands CR

to the resulting file, which will eventually contain a matrix C of the size

M × Q.

To write the bands to the file, set the appropriate file view using the

MPI_File_set_view function and the MPI_BAND_C filetype defined with the

Matr2CreateTypeBand function (see the MPI9Matr11 task), and then use the

MPI_File_write_all function.

Include all these actions (namely, the input of file name, sending number M

and the file name, and writing all bands to the file) in a Matr2GatherFile func-

tion. Perform the input of all initial data, except the file name, in the Solve

function.

Note. When writing data to the resulting file, it is necessary to take into ac-

count that the bands CR may contain trailing zero-valued rows that are not

related to the resulting matrix product (the number M should be sent to all

processes in order to control this situation).

Remark. The solution of this task is given in Section 1.4.5.

MPI9Matr20**. Integers M, P, Q and three file names are given in the master

process. The first two file names are related to the existing files containing

the elements of matrices A and B of the size M × P and P × Q, respectively,

the third file should be created to store the resulting matrix product C = AB.

The number Q is a multiple of the number of processes K. Using succes-

sively the Matr2ScatterFile, Matr2Calc (in a loop), and Matr2GatherFile functions

Part 2. Learning tasks 261

(see the MPI9Matr18, MPI9Matr15, MPI9Matr19 tasks), find a matrix C

and write its elements to the resulting file.

In addition, output the current value of the c[step] in each process after each

call of the Matr2Calc function, where c is a one-dimensional array containing

the band CR, and step is the algorithm step number (0, 1, …, K − 1). Thus,

the element c[0] should be output on the first step of the algorithm, the ele-

ment c[1] should be output on the second step of the algorithm, and so on.

2.9.4. Cannon's block algorithm

MPI9Matr21. Integers M and P are given in each process; in addition, a matrix

A of the size M × P is given in the master process. The number of processes

K is a perfect square: K = K0·K0, the numbers M and P are multiples of K0.

Input the matrix A into a one-dimensional array of the size M·P in the mas-

ter process and define a new datatype named MPI_BLOCK_A that contains a

M0 × P0 block of the matrix A, where M0 = M/K0, P0 = P/K0.

When defining the MPI_BLOCK_A type, use the MPI_Type_vector and

MPI_Type_commit functions. Include this definition in a

Matr3CreateTypeBlock(m0, p0, p, t) function with the input integer parameters

m0, p0, p and the output parameter t of the MPI_Datatype type; the parameters

m0 and p0 determine the size of the block, and the parameter p determines

the number of columns of the matrix from which this block is extracted.

Using the MPI_BLOCK_A datatype, send to each process (in ascending order

of ranks of processes, inclusive of the master process) the corresponding

block of the matrix A in a row-major order of blocks (that is, the first block

should be sent to the process 0, the next block in the same row of blocks

should be sent to the process 1, and so on). Sending should be performed

using the MPI_Send and MPI_Recv functions; the blocks should be stored in

one-dimensional arrays of the size M0·P0. Output the received block in each

process.

Remark. In the MPICH2 version 1.3, the MPI_Send function call is errone-

ous if the sending and receiving processes are the same. You may use the

MPI_Sendrecv function to send a block to the master process. You may also

fill a block in the master process without using tools of the MPI library.

MPI9Matr22. Integers M0, P0 and a matrix A of the size M0 × P0 are given in

each process. The number of processes K is a perfect square: K = K0·K0.

Input the matrix A into a one-dimensional array of the size M0·P0 in each

process and create a new communicator named MPI_COMM_GRID using the

MPI_Cart_create function. The MPI_COMM_GRID communicator defines a Car-

tesian topology for all processes as a two-dimensional periodic K0 × K0 grid

(ranks of processes should not be reordered).

Include the creation of the MPI_COMM_GRID communicator in a

Matr3CreateCommGrid(comm) function with the output parameter comm of the

262 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Comm type. Using the MPI_Cart_coords function for this communicator,

output the process coordinates (I0, J0) in each process.

Perform a cyclic shift of the matrices A given in all processes of each grid

row I0 by I0 positions left (that is, in descending order of ranks of

processes) using the MPI_Cart_shift and MPI_Sendrecv_replace functions. Out-

put the received matrix in each process.

MPI9Matr23*. Integers M, P, Q, a matrix A of the size M × P, and a matrix B of

the size P × Q are given in the master process. The number of processes K

is a perfect square: K = K0·K0. In the block algorithms of matrix multiplica-

tion, the initial matrices are divided into K blocks and are interpreted as

square block matrices of the order K0 (hereinafter blocks are distributed by

processes and used to calculate a part of the total matrix product in each

process).

The block of the matrix A is of the size M0 × P0, the block of the matrix B is

of the size P0 × Q0, the numbers M0, P0, Q0 are calculated as follows:

M0 = ceil(M/K0), P0 = ceil(P/K0), Q0 = ceil(Q/K0), where the operation "/"

means the division of real numbers and the function ceil performs rounding

up. If the matrix contains insufficient number of rows (or columns) to fill

the last blocks, then the zero-valued rows (or columns) should be added to

these blocks.

Add, if necessary, the zero-valued rows or columns to the initial matrices

(as a result, the matrices A and B will have the size (M0·K0) × (P0·K0) and

(P0·K0) × (Q0·K0) respectively), save them in one-dimensional arrays in the

master process, and then send the matrix blocks (in a row-major order)

from these arrays to all processes (in ascending order of its ranks): the

process R will receive the blocks AR and BR, R = 0, …, K − 1. In addition,

create a block CR in each process to store the part of the matrix product

C = AB which will be calculated in this process. Each block CR is of the

size M0 × Q0 and is filled with zero-valued elements.

The blocks, like the initial matrices, should be stored in one-dimensional

arrays in a row-major order. To send the matrix sizes, use the MPI_Bcast col-

lective function, to send the blocks of the matrices A and B, use the

MPI_Send and MPI_Recv functions and also the MPI_BLOCK_A and

MPI_BLOCK_B datatypes created by the Matr3CreateTypeBlock function (see the

MPI9Matr21 task and a note to it).

Include all the above mentioned actions in a Matr3ScatterData function (with-

out parameters). As a result of the call of this function, each process will

receive the values M0, P0, Q0, as well as one-dimensional arrays filled with

the corresponding blocks of the matrices A, B, C. Output all obtained data

(that is, the numbers M0, P0, Q0 and the blocks of the matrices A, B, C) in

each process after calling the Matr3ScatterData function. Perform the input of

Part 2. Learning tasks 263

initial data in the Matr3ScatterData function, perform the output of the results

in the Solve function.

Notes. (1) When input the matrices A and B into arrays in the master

process, it should be taken into account that these arrays may contain ele-

ments corresponding to additional zero-valued columns.

(2) To reduce the number of the MPI_Bcast function calls, all matrix sizes

may be sent as a single array.

MPI9Matr24. Integers M0, P0, Q0 and one-dimensional arrays filled with the

corresponding blocks of matrices A, B, C are given in each process (thus,

the given data coincide with the results obtained in the MPI9Matr23 task).

Implement the initial block redistribution used in the Cannon's algorithm

for block matrix multiplication.

To do this, define a Cartesian topology for all processes as a two-

dimensional periodic K0 × K0 grid, where K0·K0 is equal to the number of

processes (ranks of processes should not be reordered), and perform a cyc-

lic shift of the blocks AR given in all processes of each grid row I0 by I0 po-

sitions left (that is, in descending order of ranks of processes), I0 = 0, …,

K0 − 1, and perform a cyclic shift of the blocks BR given in all processes of

each grid column J0 by J0 positions up (that is, in descending order of ranks

of processes), J0 = 0, …, K0 − 1.

To create the MPI_COMM_GRID communicator associated with the Cartesian

topology, use the Matr3CreateCommGrid function implemented in the

MPI9Matr22 task. Use the MPI_Cart_coords, MPI_Cart_shift,

MPI_Sendrecv_replace functions to perform the cyclic shifts (compare with

MPI9Matr22).

Include all the above mentioned actions in a Matr3Init function (without pa-

rameters). Output the received blocks AR and BR in each process; perform

data input and output in the Solve function.

Remark. The solution of this task is given in Section 1.4.4.

MPI9Matr25. Integers M0, P0, Q0 and one-dimensional arrays filled with the

corresponding blocks of matrices A, B, C are given in each process. The

blocks CR are zero-valued, the initial redistribution for the blocks AR and BR

has already been performed in accordance with the Cannon's algorithm (see

the previous task). Implement one step of the Cannon's algorithm of matrix

multiplication as follows: multiply elements in the blocks AR and BR of

each process and perform a cyclic shift of the blocks A0 given in all

processes of each row of the Cartesian periodic grid by 1 position left (that

is, in descending order of ranks of processes) and perform a cyclic shift of

the blocks B0 given in all processes of each grid column by 1 position up

(that is, in descending order of ranks of processes).

264 M. E. Abramyan. Parallel Programming Based on MPI 2.0

To create the MPI_COMM_GRID communicator associated with the Cartesian

topology, use the Matr3CreateCommGrid function implemented in the

MPI9Matr22 task. Use the MPI_Cart_shift and MPI_Sendrecv_replace functions

to perform the cyclic shifts (compare with MPI9Matr22).

Include all the above mentioned actions in a Matr3Calc function (without pa-

rameters). Output the new contents of the blocks CR, AR, and BR in each

process; perform data input and output in the Solve function.

Remark. A special feature of the Cannon's algorithm is that the actions at

each step are not depend on the step number.

MPI9Matr26*. Integers M0, P0, Q0 and one-dimensional arrays filled with the

corresponding blocks of matrices A, B, C are given in each process. The

blocks CR are zero-valued, the initial redistribution for the blocks AR and BR

has already been performed in accordance with the Cannon's algorithm (see

the MPI9Matr24 task). In addition, a number L with the same value is giv-

en in each process. The value of L is in the range 2 to K0, where K0·K0 is

the number of processes, and determines the number of steps of the Can-

non's algorithm.

Using the function Matr3Calc (see the previous task) in a loop, execute the

initial L steps of the Cannon's algorithm and output the new contents of the

blocks CR, AR, and BR in each process. Perform data input and output in the

Solve function.

Note. If the value of L is equal to K0, then the blocks CR will contain the

corresponding parts of the final matrix product AB.

MPI9Matr27*. Integers M and Q (the numbers of rows and columns of the ma-

trix product) are given in the master process. In addition, integers M0, Q0

and one-dimensional arrays filled with the M0 × Q0 blocks of the matrix C

are given in each process (the given blocks of C are obtained as a result of

K0 steps of the Cannon's algorithm — see the MPI9Matr26 task). Send all

the blocks CR to the master process and output the received matrix C of the

size M × Q in this process.

To store the resulting matrix C in the master process, use a one-

dimensional array sufficient to store the matrix of the size

(M0·K0) × (Q0·K0). To send the blocks CR to this array, use the MPI_Send

and MPI_Recv functions and the MPI_BLOCK_C datatype created by the

Matr3CreateTypeBlock function (see the MPI9Matr21 task and a note to it).

Include all the above mentioned actions in a Matr3GatherData function (with-

out parameters). Perform the input of initial data in the Solve function, per-

form the output of the resulting matrix in the Matr3GatherData function.

Note. When output the matrix C in the master process, it should be taken

into account that an array, which is intended for matrix storage, may con-

tain elements corresponding to additional zero-valued columns.

Part 2. Learning tasks 265

MPI9Matr28**. Integers M, P, Q, a matrix A of the size M × P, and a matrix B

of the size P × Q are given in the master process (thus, the given data coin-

cide with the given data in the MPI9Matr23 task).

Using successively the Matr3ScatterData, Matr3Init, Matr3Calc (in a loop), and

Matr3GatherData functions, that are developed in the

MPI9Matr23−MPI9Matr27 tasks, find a matrix C, which is equal to the

product of the initial matrices A and B, and output this matrix in the master

process.

In addition, output the current contents of the block CR in each process after

each call of the Matr3Calc function.

The MPI_COMM_GRID communicator, which is used in the Matr3Init and

Matr3Calc functions, should not be created several times. To do this, modify

the Matr3CreateCommGrid function; the modified function should not perform

any actions when it is called with the parameter comm that is not equal to

MPI_COMM_NULL.

In addition, modify the Matr3Calc function (see the MPI9Matr25 task), be-

fore using in this task, as follows: add the parameter named step to this

function (step = 0, …, K0 − 1); the blocks AR and BR should not be sent

when the parameter step is equal to K0 − 1.

MPI9Matr29*. Integers M, P, Q and two file names are given in the master

process. The given files contain elements of a matrix A of the size M × P

and a matrix B of the size P × Q. Modify the stage of receiving blocks for

the Cannon's algorithm of matrix multiplication (see the MPI9Matr23 task)

as follows: each process should read the corresponding blocks of the ma-

trices A and B directly from the given files. In this case, all processes

should receive not only the sizes M0, P0, Q0 of the blocks, but also the sizes

M, P, Q of the initial matrices, which are needed to determine correctly the

positions of blocks in the source files.

To send the sizes of matrices and file names, use the MPI_Bcast collective

function. Use the MPI_File_read_at local function to read each row of the

block (a new file view is not required).

Include all these actions in a Matr3ScatterFile function (without parameters).

As a result of the call of this function, each process will receive the values

M, P, Q, M0, P0, Q0, as well as one-dimensional arrays filled with the cor-

responding blocks of the matrices A, B, C. Output all obtained data (that is,

the numbers M, P, Q, M0, P0, Q0 and the blocks of the matrices A, B, C) in

each process after calling the Matr3ScatterFile function. Perform the input of

initial data in the Matr3ScatterFile function, perform the output of the results

in the Solve function.

Note. For some blocks, some of their elements (namely, the last rows

and/or columns) should not be read from the source files and will remain

zero-valued ones. To determine the actual size of the block being read (the

266 M. E. Abramyan. Parallel Programming Based on MPI 2.0

number of rows and columns), it is required to use the sizes of the initial

matrices and the coordinates (I0, J0) of the block in a square Cartesian grid

of order K0 (note that I0 = R/K0, J0 = R%K0, where R is the process rank).

Remark. Whereas the values of P and Q are necessary to ensure the cor-

rect reading of the file blocks, the value of M is not required for this pur-

pose, since the attempt to read data beyond the end of file is ignored (with-

out generating any error message). However, the value of M is required at

the final stage of the algorithm (see the next task), so it must also be sent to

all processes.

MPI9Matr30*. Integers M, Q, M0, Q0 and one-dimensional arrays filled with the

M0 × Q0 blocks CR are given in each process (the given blocks CR are ob-

tained as a result of K0 steps of the Cannon's block algorithm of matrix

multiplication — see the MPI9Matr25 task). In addition, the name of file to

store the matrix product is given in the master process.

Send the file name to all processes using the MPI_Bcast function. Write all

the parts of the matrix product contained in the blocks CR to the resulting

file, which will eventually contain a matrix C of the size M × Q.

Use the MPI_File_write_at local function to write each row of the block to the

file (a new file view is not required).

Include all these actions (namely, the input of file name, sending the file

name, and writing all blocks to the file) in a Matr3GatherFile function. Per-

form the input of all initial data, except the file name, in the Solve function.

Note. When writing data to the resulting file, it is necessary to take into ac-

count that some of the blocks CR may contain trailing zero-valued rows

and/or columns that are not related to the resulting matrix product (see also

the note and the remark for the previous task).

MPI9Matr31**. Integers M, P, Q and three file names are given in the master

process. The first two file names are related to the existing files containing

the elements of matrices A and B of the size M × P and P × Q, respectively,

the third file should be created to store the resulting matrix product C = AB.

Using successively the Matr3ScatterFile, Matr3Init, Matr3Calc (in a loop), and

Matr3GatherFile functions (see the MPI9Matr29, MPI9Matr24, MPI9Matr25,

and MPI9Matr30 tasks), find a matrix C and write its elements to the re-

sulting file.

In addition, output the current value of the c[step] in each process after each

call of the Matr3Calc function, where c is a one-dimensional array containing

the block CR, and step is the algorithm step number (0, 1, …, K0 − 1). Thus,

the element c[0] should be output on the first step of the algorithm, the ele-

ment c[1] should be output on the second step of the algorithm, and so on.

Part 2. Learning tasks 267

2.9.5. Fox's block algorithm

MPI9Matr32. Integers M and P are given in each process; in addition, a matrix

A of the size M × P is given in the master process. The number of processes

K is a perfect square: K = K0·K0, the numbers M and P are multiples of K0.

Input the matrix A into a one-dimensional array of the size M·P in the mas-

ter process and define a new datatype named MPI_BLOCK_A that contains a

M0 × P0 block of the matrix A, where M0 = M/K0, P0 = P/K0.

When defining the MPI_BLOCK_A type, use the MPI_Type_vector and

MPI_Type_commit functions. Include this definition in a

Matr4CreateTypeBlock(m0, p0, p, t) function with the input integer parameters

m0, p0, p and the output parameter t of the MPI_Datatype type; the parameters

m0 and p0 determine the size of the block, and the parameter p determines

the number of columns of the matrix from which this block is extracted.

Using the MPI_BLOCK_A datatype, send to each process (in ascending order

of ranks of processes, inclusive of the master process) the corresponding

block of the matrix A in a row-major order of blocks (that is, the first block

should be sent to the process 0, the next block in the same row of blocks

should be sent to the process 1, and so on). Sending should be performed

using the MPI_Alltoallw function; the blocks should be stored in one-

dimensional arrays of the size M0·P0. Output the received block in each

process.

Notes. (1) Use the MPI_Send and MPI_Recv functions instead of the

MPI_Alltoallw function when solving this task using the MPI-1 library.

(2) The MPI_Alltoallw function introduced in MPI-2 is the only collective

function that allows you to specify the displacements for the sent data in

bytes (not in elements). This gives opportunity to use it in conjunction with

complex data types to implement any variants of collective communica-

tions (in our case, we need to implement a communication of the scatter

type).

It should be note that all array parameters of the MPI_Alltoallw function asso-

ciated with the sent data must be differently defined in the master and slave

processes. In particular, the array scounts (which determines the number of

sent elements) must contain the values 0 in all the slave processes and the

value 1 in the master process (the sent elements are of the MPI_BLOCK_A da-

tatype).

At the same time, arrays associated with the received data will be defined

in the same way in all processes; in particular, the zero-indexed element of

the array rcounts (which determines the number of received elements) must

be equal to M0·P0, and all other elements of this array must be equal to 0

(the received elements are of the MPI_INT datatype).

268 M. E. Abramyan. Parallel Programming Based on MPI 2.0

It is necessary to pay special attention to the correct definition of elements

in the array sdispls of displacements for the sent data in the master process

(in the slave processes, it is enough to use the zero-valued array sdispls).

MPI9Matr33. Integers M0, P0 and a matrix A of the size M0 × P0 are given in

each process. The number of processes K is a perfect square: K = K0·K0.

Input the matrix A into a one-dimensional array of the size M0·P0 in each

process and create a new communicator named MPI_COMM_GRID using the

MPI_Cart_create function. The MPI_COMM_GRID communicator defines a Car-

tesian topology for all processes as a two-dimensional periodic K0 × K0 grid

(ranks of processes should not be reordered).

Include the creation of the MPI_COMM_GRID communicator in a

Matr4CreateCommGrid(comm) function with the output parameter comm of the

MPI_Comm type. Using the MPI_Cart_coords function for this communicator,

output the process coordinates (I0, J0) in each process.

On the base of the MPI_COMM_GRID communicator, create a set of commu-

nicators named MPI_COMM_ROW, which are associated with the rows of the

initial two-dimensional grid. Use the MPI_Cart_sub function to create the

MPI_COMM_ROW communicators.

Include the creation of the MPI_COMM_ROW communicators in a

Matr4CreateCommRow(grid, row) function with the input parameter grid (the

communicator associated with the initial two-dimensional grid) and the

output parameter row (both parameters are of the MPI_Comm type). Output the

process rank R0 for the MPI_COMM_ROW communicator in each process (this

rank must be equal to J0).

In addition, send the matrix A from the grid element (I0, I0) to all processes

of the same grid row I0 (I0 = 0, …, K0 − 1) using the MPI_Bcast collective

function for the MPI_COMM_ROW communicator. Save the received matrix

in the auxiliary matrix T of the same size as the matrix A (it is necessary to

copy the matrix A to the matrix T in the sending process before the call of

the MPI_Bcast function). Output the received matrix T in each process.

MPI9Matr34. Integers P0, Q0 and a matrix B of the size P0 × Q0 are given in

each process. The number of processes K is a perfect square: K = K0·K0.

Input the matrix B into a one-dimensional array of the size P0·Q0 in each

process and create a new communicator named MPI_COMM_GRID, which de-

fines a Cartesian topology for all processes as a two-dimensional periodic

K0 × K0 grid.

Use the Matr4CreateCommGrid function (see the MPI9Matr33 task) to create

the MPI_COMM_GRID communicator. Using the MPI_Cart_coords function for

this communicator, output the process coordinates (I0, J0) in each process.

On the base of the MPI_COMM_GRID communicator, create a set of commu-

nicators named MPI_COMM_COL, which are associated with the columns of

Part 2. Learning tasks 269

the initial two-dimensional grid. Use the MPI_Cart_sub function to create the

MPI_COMM_COL communicators.

Include the creation of the MPI_COMM_COL communicators in a

Matr4CreateCommCol(grid, col) function with the input parameter grid (the

communicator associated with the initial two-dimensional grid) and the

output parameter col (both parameters are of the MPI_Comm type). Output the

process rank R0 for the MPI_COMM_COL communicator in each process (this

rank must be equal to I0).

In addition, perform a cyclic shift of the matrices B given in all processes

of each grid column J0 by 1 position up (that is, in descending order of

ranks of processes) using the MPI_Sendrecv_replace function for the

MPI_COMM_COL communicator (to determine the ranks of the sending and

receiving processes, use the expression containing the % operator that gives

the remainder of a division). Output the received matrix in each process.

MPI9Matr35*. Integers M, P, Q, a matrix A of the size M × P, and a matrix B of

the size P × Q are given in the master process. The number of processes K

is a perfect square: K = K0·K0. In the block algorithms of matrix multiplica-

tion, the initial matrices are divided into K blocks and are interpreted as

square block matrices of the order K0 (hereinafter blocks are distributed by

processes and used to calculate a part of the total matrix product in each

process).

The block of the matrix A is of the size M0 × P0, the block of the matrix B is

of the size P0 × Q0, the numbers M0, P0, Q0 are calculated as follows:

M0 = ceil(M/K0), P0 = ceil(P/K0), Q0 = ceil(Q/K0), where the operation "/"

means the division of real numbers and the function ceil performs rounding

up. If the matrix contains insufficient number of rows (or columns) to fill

the last blocks, then the zero-valued rows (or columns) should be added to

these blocks.

Add, if necessary, the zero-valued rows or columns to the initial matrices

(as a result, the matrices A and B will have the size (M0·K0) × (P0·K0) and

(P0·K0) × (Q0·K0) respectively), save them in one-dimensional arrays in the

master process, and then send the matrix blocks (in a row-major order)

from these arrays to all processes (in ascending order of its ranks): the

process R will receive the blocks AR and BR, R = 0, …, K − 1. In addition,

create two blocks CR and TR filled with zero-valued elements in each

process: the block CR is intended to store the part of the matrix product

C = AB, which will be calculated in this process, the block TR is an aux-

iliary one. Each block CR and TR is of the size M0 × Q0.

The blocks, like the initial matrices, should be stored in one-dimensional

arrays in a row-major order. To send the matrix sizes, use the MPI_Bcast col-

lective function, to send the blocks of the matrices A and B, use the

MPI_Alltoallw collective function and also the MPI_BLOCK_A and MPI_BLOCK_B

270 M. E. Abramyan. Parallel Programming Based on MPI 2.0

datatypes created by the Matr4CreateTypeBlock function (see the MPI9Matr32

task and notes to it).

Include all the above mentioned actions in a Matr4ScatterData function (with-

out parameters). As a result of the call of this function, each process will

receive the values M0, P0, Q0, as well as one-dimensional arrays filled with

the blocks AR, BR, CR, TR. Output all obtained data (that is, the numbers M0,

P0, Q0 and the blocks AR, BR, CR, TR) in each process after calling the

Matr4ScatterData function. Perform the input of initial data in the

Matr4ScatterData function, perform the output of the results in the Solve func-

tion.

Notes. (1) When input the matrices A and B into arrays in the master

process, it should be taken into account that these arrays may contain ele-

ments corresponding to additional zero-valued columns.

(2) To reduce the number of the MPI_Bcast function calls, all matrix sizes

may be sent as a single array.

MPI9Matr36. Integers M0, P0, Q0 and one-dimensional arrays filled with the

blocks AR, BR, CR, TR are given in each process (thus, the given data coin-

cide with the results obtained in the MPI9Matr35 task). A virtual Cartesian

topology in the form of a square grid of order K0 is used for all processes,

the value of K0·K0 is equal to the number of the processes. Each step of the

Fox's block algorithm of matrix multiplication consists of two stages.

In the first stage of the first step, the block AR is sent from the process with

the grid coordinates (I0, I0) to all processes of the same grid row I0

(I0 = 0, …, K0 − 1). The received block is saved in the block TR in the re-

ceiving processes. Then the block TR is multiplied by the block BR from the

same process and the result is added to the block CR.

Implement the first stage of the first step of the Fox's algorithm. To do this,

create the MPI_COMM_GRID and MPI_COMM_ROW communicators using the

Matr4CreateCommGrid and Matr4CreateCommRow functions implemented in the

MPI9Matr33 task. Use the MPI_Bcast function for the MPI_COMM_ROW

communicator to send the blocks AR (compare with MPI9Matr33).

Include all the above mentioned actions in a Matr4Calc1 function (without

parameters). Output the new contents of the blocks TR and CR in each

process; perform data input and output in the Solve function.

MPI9Matr37. Integers M0, P0, Q0 and one-dimensional arrays filled with the

blocks AR, BR, CR, TR are given in each process (thus, the given data coin-

cide with the results obtained in the MPI9Matr35 task).

Implement the second stage of the first step of the Fox's algorithm of ma-

trix multiplication as follows: perform a cyclic shift of the blocks BR given

in all processes of each column of the Cartesian periodic grid by 1 position

up (that is, in descending order of ranks of processes).

Part 2. Learning tasks 271

To do this, create the MPI_COMM_GRID and MPI_COMM_COL communicators

using the Matr4CreateCommGrid and Matr4CreateCommCol functions imple-

mented in the MPI9Matr34 task, then use the MPI_Bcast function for the

MPI_COMM_COL communicator to perform the cyclic shift of the blocks BR

(compare with MPI9Matr34).

Include all the above mentioned actions in a Matr4Calc2 function (without

parameters). Output the received blocks BR in each process; perform data

input and output in the Solve function.

MPI9Matr38. Integers M0, P0, Q0 and one-dimensional arrays filled with the

blocks AR, BR, CR, TR are given in each process (thus, the given data coin-

cide with the results obtained in the MPI9Matr35 task).

Modify the Matr4Calc1 function, which was implemented in the

MPI9Matr36 task; the modified function should provide execution of the

first stage of any step of the Fox's algorithm. To do this, add the parameter

named step to the function (this parameter specifies the step number and

may be in the range 0 to K0 − 1, where K0 is the order of the Cartesian grid

of processes) and use the value of this parameter in the part of the algo-

rithm that deals with the sending the blocks AR: the block AR should be sent

from the process with the grid coordinates (I0, (I0 + step)%K0) to all

processes of the same grid row I0, I0 = 0, …, K0 − 1 (the recalculation of the

elements of the block CR does not depend on the value of the parameter

step).

Using successively the calls of Matr4Calc1(0), Matr4Calc2(), Matr4Calc1(1) (the

Matr4Calc2 function provides the second stage of each step of the algo-

rithm — see the MPI9Matr37 task), execute two initial steps of the Fox's

algorithm and output the new contents of the blocks TR, BR, and CR in each

process. Perform data input and output in the Solve function.

MPI9Matr39*. Integers M0, P0, Q0 and one-dimensional arrays filled with the

blocks AR, BR, CR, TR are given in each process (thus, the given data coin-

cide with the results obtained in the MPI9Matr35 task). In addition, a num-

ber L with the same value is given in each process. The value of L is in the

range 3 to K0 and determines the number of steps of the Fox's algorithm.

Using successively the calls of Matr4Calc1(0), Matr4Calc2(), Matr4Calc1(1),

Matr4Calc2(), …, Matr4Calc1(L − 1) (see the MPI9Matr38 and MPI9Matr37

tasks), execute the initial L steps of the Fox's algorithm and output the new

contents of the blocks TR, BR, and CR in each process. Perform data input

and output in the Solve function.

Remark. If the value of L is equal to K0, then the blocks CR will contain

the corresponding parts of the final matrix product AB. Note that the second

stage (associated with the call of the Matr4Calc2 function) is not necessary

at the last step of the algorithm.

272 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI9Matr40*. Integers M and Q (the numbers of rows and columns of the ma-

trix product) are given in the master process. In addition, integers M0, Q0

and one-dimensional arrays filled with the M0 × Q0 blocks of the matrix C

are given in each process (the given blocks of C are obtained as a result of

K0 steps of the Fox's algorithm — see the MPI9Matr39 task).

Send all the blocks CR to the master process and output the received matrix

C of the size M × Q in this process. To store the resulting matrix C in the

master process, use a one-dimensional array sufficient to store the matrix of

the size (M0·K0) × (Q0·K0). To send the blocks CR to this array, use the

MPI_Alltoallw collective function and the MPI_BLOCK_C datatype created by

the Matr4CreateTypeBlock function (see the MPI9Matr32 task and notes to it).

Include all the above mentioned actions in a Matr4GatherData function (with-

out parameters). Perform the input of initial data in the Solve function, per-

form the output of the resulting matrix in the Matr4GatherData function.

Note. When output the matrix C in the master process, it should be taken

into account that an array, which is intended for matrix storage, may con-

tain elements corresponding to additional zero-valued columns.

MPI9Matr41**. Integers M, P, Q, a matrix A of the size M × P, and a matrix B

of the size P × Q are given in the master process (thus, the given data coin-

cide with the given data in the MPI9Matr35 task).

Using successively the Matr4ScatterData, Matr4Calc1, Matr4Calc2, and

Matr4GatherData functions, that are developed in the

MPI9Matr35−MPI9Matr40 tasks, find a matrix C, which is equal to the

product of the initial matrices A and B, and output this matrix in the master

process. The Matr4Calc1 and Matr4Calc2 functions should be called in a loop,

the number of Matr4Calc2 function calls must be one less than the number of

Matr4Calc1 function calls.

In addition, output the current contents of the block CR in each process after

each call of the Matr4Calc1 function.

The MPI_COMM_GRID, MPI_COMM_ROW, and MPI_COMM_COL communicators

that are used in the Matr4Calc1 and Matr4Calc2 functions, should not be

created several times. To do this, modify the Matr4CreateCommGrid,

Matr4CreateCommRow, and Matr4CreateCommCol functions (see the

MPI9Matr33 and MPI9Matr34 tasks); the modified functions should not

perform any actions when it is called with the parameter comm that is not

equal to MPI_COMM_NULL.

MPI9Matr42*. Integers M, P, Q and two file names are given in the master

process. The given files contain elements of a matrix A of the size M × P

and a matrix B of the size P × Q. The numbers M, P, and Q are multiples of

the order K0 of square grid of processes.

Modify the stage of receiving blocks for the Fox's algorithm of matrix mul-

tiplication (see the MPI9Matr35 task) as follows: each process should read

Part 2. Learning tasks 273

the corresponding blocks of the matrices A and B directly from the given

files.

To send the sizes of matrices and file names, use the MPI_Bcast collective

function. To read the blocks from the files, set the appropriate file views

using the MPI_File_set_view function and the MPI_BLOCK_A and MPI_BLOCK_B

filetypes defined with the Matr4CreateTypeBlock function (see the

MPI9Matr32 task), and then use the MPI_File_read_all function.

Include all these actions in a Matr4ScatterFile function (without parameters).

As a result of the call of this function, each process will receive the values

M0, P0, Q0, as well as one-dimensional arrays filled with the blocks AR, BR,

CR, TR (the blocks CR and TR should contain zero-valued elements). Output

all obtained data (that is, the numbers M0, P0, Q0 and the blocks AR, BR, CR,

TR) in each process after calling the Matr4ScatterFile function. Perform the in-

put of initial data in the Matr4ScatterFile function, perform the output of the

results in the Solve function.

Remark. A condition that the numbers M, P, Q are multiples of K0 means

that you do not need to add zero-valued rows and/or zero-valued columns

to the blocks obtained from the matrices A and B, and therefore you may

perform reading of the blocks AR and BR using the same filetypes (namely,

MPI_BLOCK_A and MPI_BLOCK_B) in all processes.

If this condition is not fulfilled, then it would be necessary to use special

types that ensure the correct reading from the file and write to the array of

"truncated" blocks of the matrices A and B in some processes (in addition,

in this case it would be necessary to send to each process the values of P

and Q that are necessary for the correct type definition for "truncated"

blocks).

MPI9Matr43*. Integers M0, Q0 and one-dimensional arrays filled with the

M0 × Q0 blocks CR are given in each process (the given blocks CR are ob-

tained as a result of K0 steps of the Fox's block algorithm of matrix multip-

lication — see the MPI9Matr39 task). In addition, the name of file to store

the matrix product is given in the master process. The numbers M and Q

(the numbers of rows and columns of the matrix product) are multiples of

the order K0 of square grid of processes (thus, M = M0·K0, Q = Q0·K0).

Send the file name to all processes using the MPI_Bcast function. Write all

the parts of the matrix product contained in the blocks CR to the resulting

file, which will eventually contain a matrix C of the size M × Q.

To write the blocks to the files, set the appropriate file view using the

MPI_File_set_view function and the MPI_BLOCK_C filetype defined with the

Matr4CreateTypeBlock function (see the MPI9Matr32 task), and then use the

MPI_File_write_all collective function.

274 M. E. Abramyan. Parallel Programming Based on MPI 2.0

Include all these actions (namely, the input of file name, sending the file

name, and writing all blocks to the file) in a Matr4GatherFile function. Per-

form the input of all initial data, except the file name, in the Solve function.

Remark. A condition that the numbers M and Q are multiples of K0 means

that the blocks CR do not contain "extra" zero-valued rows and/or columns,

and therefore you may perform writing of the blocks CR to the file using the

same filetype (namely, MPI_BLOCK_C) in all processes.

MPI9Matr44**. Integers M, P, Q and three file names are given in the master

process. The first two file names are related to the existing files containing

the elements of matrices A and B of the size M × P and P × Q, respectively,

the third file should be created to store the resulting matrix product C = AB.

The numbers M, P, and Q are multiples of the order K0 of square grid of

processes.

Using successively the Matr4ScatterFile, Matr4Calc1, Matr3Calc2, and

Matr4GatherFile functions (see the MPI9Matr42, MPI9Matr38, MPI9Matr37,

and MPI9Matr43 tasks), find a matrix C and write its elements to the re-

sulting file. The Matr4Calc1 and Matr4Calc2 functions should be called in a

loop, the number of Matr4Calc2 function calls must be one less than the

number of Matr4Calc1 function calls.

In addition, output the current value of the c[step] in each process after each

call of the Matr4Calc1 function, where c is a one-dimensional array contain-

ing the block CR, and step is the algorithm step number (0, 1, …, K0 − 1).

Thus, the element c[0] should be output on the first step of the algorithm,

the element c[1] should be output on the second step of the algorithm,

and so on.

Part 3. Additions 275

3. Additions

3.1. Programming Taskbook for MPI-2

3.1.1. General description

Electronic problem book on parallel programming Programming Task-

book for MPI-2 (PT for MPI-2) is an extension of the universal electronic prob-

lem book Programming Taskbook. PT for MPI-2 allows you to solve tasks on

developing parallel programs using MPI of the standard 1.1, 2.x, and partially

3.x.

To be able to use PT for MPI-2, it should be installed in the system directo-

ry of the basic version of the Programming Taskbook version not lower than

4.17 (usually the system directory of the taskbook is C:\Program Files (x86)\PT4).

The MPI support system for Windows, which ensures the launch of programs in

parallel mode, should also be installed on the computer. The taskbook can be

used together with the following MPI support systems:

 MPICH 1.2.5 (ftp://ftp.mcs.anl.gov/pub/mpi/nt/mpich.nt.1.2.5.exe), supports the

MPI 1.2 standard;

 MPICH2 1.3 (http://www.mpich.org/static/downloads/1.3/mpich2-1.3-win-ia32.msi),

supports the MPI 2.1 standard;

 MS-MPI 10.1.2 (https://www.microsoft.com/en-us/download/details.aspx?id=100593),

supports MPI-2.1 (and partially MPI-3), provides faster operation of pa-

rallel programs for Windows 10 (requires downloading the msmpisetup.exe

installation file).

For MPI system installation, see the note in Section 1.1.1. If several MPI

systems are installed on a computer, then you can use the PT4Setup and

PT4Load applications to select the required version for use with your programs.

The PT for MPI-2 taskbook is a freeware; it can be used both with the full

version of the Programming Taskbook (PT4Complete) and with the freely dis-

tributed mini-version (PT4Mini).

The tasks included in the PT for MPI-2 taskbook can be executed in C++ in

all programming environments for this language supported by the Programming

Taskbook. For the Programming Taskbook version 4.24 released in 2024, the

following IDEs are supported:

 Microsoft Visual Studio (version 2017, 2019, 2022),

 Code::Blocks 20.03,

 Dev-C++ 5.11 and 6.30,

276 M. E. Abramyan. Parallel Programming Based on MPI 2.0

 Visual Studio Code.

The dynamic library included in the MPI support system must be connected

to the learning programs. Access to the library is provided using a lib file and a

set of header files. The taskbook performs all actions to copy additional files to

the working directory and connect them to the student's project automatically.

The PT for MPI-2 taskbook provides the same capabilities as the basic

Programming Taskbook when solving tasks. In particular, it passes the initial

data to the student's program, checks the correctness of the results obtained by

the program by executing a series of test runs of the student's program, and

saves information about each test run in a special file. The PT for MPI-2 task-

book also provides additional capabilities related to the specifics of solving tasks

on parallel programming (these capabilities are described in more detail in Sec-

tion 1.1):

 task demo running that does not require the use of parallel mode;

 creation of a template project for the selected task with MPI library

modules connected to it;

 a special mechanism that ensures the execution of a student's program in

parallel mode when it is launched from the IDE: the launched program

launches the host application from the MPI support system, which, in

turn, launches the program in parallel mode (all processes are executed

on the local computer);

 passing to each process of a parallel program its own set of initial data;

 receiving the required results from each process and automatically send-

ing them to the master process for checking and displaying in the task-

book window;

 output of information about run-time errors (including errors that oc-

curred while executing MPI functions) and input-output errors, indicat-

ing the ranks of the processes in which these errors occurred;

 the ability to output debugging information for each process in a special

section of the taskbook window;

 automatic unloading from memory of all running processes even if a pa-

rallel program hangs.

The above features eliminate the need for the student to perform additional

actions associated with running his program in parallel mode and make it easier

to identify and correct common errors that occur in parallel programs.

The use of initial data prepared by the taskbook for each process of the pa-

rallel program, a visual output in one window of all the results obtained by each

process and their automatic checking, as well as additional debugging tools al-

low the student to focus on the implementation of the algorithm for solving the

task and ensure reliable testing of the developed algorithm.

Part 3. Additions 277

The PT for MPI-2 taskbook is an extended version of the Programming

Taskbook for MPI (PT for MPI), which uses the MPI-1 standard and was devel-

oped in 2009 [1]. In addition to 100 training tasks of the PT for MPI taskbook,

the PT for MPI-2 taskbook includes 165 new tasks. Some of the new tasks com-

plement previous topics, some are related to new features of the MPI-2 and

MPI-3 standard.

Along with the groups devoted to specific sections of the MPI library, the

taskbook includes a group of tasks on developing parallel algorithms (namely,

band and block matrix multiplication algorithms) that use various MPI tools stu-

died in the previous groups.

The formulations of all tasks included in the PT for MPI-2 taskbook, are

given in Section 2.

The tools for automatic launch and debugging of parallel applications im-

plemented in the PT for MPI-2 taskbook allow it to be used for developing and

testing parallel programs not related to specific learning tasks. With this purpose,

the PT for MPI-2 taskbook (as previously the PT for MPI taskbook) includes an

auxiliary MPIDebug group of 36 "tasks", each of which provides automatic

launch of a parallel program, and the number of processes is determined by the

ordinal number of the task (an example of using this group is given in Section

1.5.1). Thus, the "tasks" of the MPIDebug group allow launching any parallel

program with the required number of processes directly from IDE and provide

the debugging tools available in the taskbook.

The debug features provided in the taskbook can also be used when devel-

oping console parallel programs that do not require connecting the taskbook

core. For these purposes, it is sufficient to connect the pt4console.h and

pt4console.cpp files to the program, located in the PTforMPI2\stubs subdirectory of

the Programming Taskbook system directory. An example of using the

pt4console.h and pt4console.cpp files is given in Section 1.5.3.

The PT for MPI-2 taskbook includes a hypertext help system PTforMPI2.chm,

which contains the same information as the section of the ptaskbook.com website

related to the PT for MPI-2 taskbook.

The software "Electronic taskbook on parallel programming Pro-

gramming Taskbook for MPI-2" was registered in the Register of computer

programs on February 2, 2018 (certificate of state registration of computer pro-

gram No. 2018611548).

Detailed information about the capabilities of the PT for MPI-2 taskbook is

available on the website ptaskbook.com. From this website, you can download the

latest versions of the Programming Taskbook and its PT for MPI-2 extension.

278 M. E. Abramyan. Parallel Programming Based on MPI 2.0

3.1.2. Taskbook tools for initializing tasks and data input-output

All the tools of the taskbook described below are implemented in the files

pt4.h and pt4.cpp. When creating a template project using the PT4Load applica-

tion, these files are connected to the project automatically.

To initialize a task, the function void Task(const char *name) is used. The Task

function must be called at the beginning of the program solving the task (before

performing input-output operations). If the Task function is not specified in the

program that solves the task, the message "The Task procedure with a task name

is not called" will appear in the taskbook window when the program is started.

If the Task function is called several times in a program, all subsequent calls

to it are ignored, except when the Task function is used to generate html pages

with task text (see below).

The task name must include the task group name and the task number with-

in the group (e. g. "MPI1Proc2"). The group name is case-insensitive. If an invalid

group is specified, the program will display the message "Invalid task group". If

an invalid task number is specified, the program will display a message indicat-

ing the range of acceptable task numbers for the group. If the task name is fol-

lowed by the "?" symbol in the name parameter (e. g. "MPI1Proc 2?"), then the pro-

gram will be launched in the demo mode, which has the following features:

 even if the program contains a solution to the task, this solution

is not analyzed and the information is not saved in the results file;

 when you launch the program, you can view several versions of the ini-

tial and control data; to change the data set, you need to press the New

data button in the taskbook window or the space bar;

 when you launch the program, you can sequentially view all the tasks in

a given group; to move to a task with the next number, you need to

press the Next task button or the [Enter] key, and to move to a task with

the previous number, you need to press the Previous task button or the

[Backspace] key.

The demo run of the parallel programming task is performed in non-

parallel mode, without access to the MPI support system.

The Task function can also be used to generate and display an html page

with the text of a task or a group of tasks. To do this, you need to specify the

name of a particular task or group of tasks and the "#" symbol as the name para-

meter, for example, "MPI1Proc2#" or "MPI1Proc#". To include several tasks or

groups of tasks in an html page, it is enough to call the Task function for each

task or group with a parameter ending with the # symbol.

The main tool of data input-output when solving C++ tasks using the

Programming Taskbook is the pt input-output stream defined in the pt4.h header

file. It can be used to input and output data of all standard types, including int,

double, char* used in the PT for MPI-2 taskbook. The pt4.h header file also con-

tains functions intended for input and output of separate elements, but the use of

Part 3. Additions 279

the pt stream is a more convenient way for input-output. To input data from the

pt stream, the >> operator is provided (e.g. pt >> a >> b;); the << operator is used to

output the results to this stream (e.g. pt << 2 * a << 3 + b;).

Starting with the taskbook version 4.22, to output all elements of a vector

std::vector<T> and other STL containers, it is enough to pass the container name to

the pt stream. Examples of this feature are given in the program fragments at the

end of Sections 1.2.6 and 1.4.2.

Input and output of data must be performed after the Task function is called,

otherwise the error message "The Task procedure with a task name is not called

at beginning of the program" will be displayed.

The iterators ptin_iterator<T> and ptout_iterator<T> associated with the stream pt

are provided for input-output of sequences with elements of type T. These itera-

tors have the same properties as the standard stream iterators istream_iterator<T>

and ostream_iterator<T> (see [2]).

The ptin_iterator<T> iterator has two constructors. The constructor without

parameters creates an end-of-sequence iterator. The constructor with the count

parameter of the unsigned int type creates an input iterator that allows to read count

of elements of type T from the pt stream and then passes to the end-of-sequence

state (i. e., it becomes equal to the iterator ptin_iterator<T>()).

In case of the special value of the count parameter equal to 0, the size of the

sequence is read from the pt stream before reading the first element of the se-

quence. If, when reading the size, it turns out that the element read is not an in-

teger or this number is not positive, then the iterator immediately passes to the

end-of-sequence state.

These features of the input iterators ptin_iterator<T> makes it easy to imple-

ment reading of several sequences if their size is known in advance or if the size

is specified immediately before the beginning of the sequence.

The ptout_iterator<T> output iterator is created using the constructor without

parameters and allows writing an arbitrary amount of data of type T to the

stream pt.

3.1.3. Debug section

Programming Taskbook includes tools that allow you to output debug in-

formation directly to its window (in a special debug section). The need for such

additional tools arises, first of all, when debugging parallel programs, since such

standard debugging tools as breakpoints, step-by-step program execution, and

variable watch cannot be used for them. It should also be noted that the ability to

output information to the debug section allows you to use the PT for MPI-2

taskbook for developing and debugging parallel programs that are not related to

solving specific tasks (see Section 1.5.1).

280 M. E. Abramyan. Parallel Programming Based on MPI 2.0

The debugging tools of the taskbook can also be useful for non-parallel

programs. In this case, they can be used as a supplement to the tools of the built-

in debugger.

The debug section consists of one or more multi-line text output areas. It is

located under the main sections of the taskbook window and is displayed on the

screen only if it contains some text (Fig. 59).

Fig. 549. Taskbook window with the debug section

When running the program in the demo mode, all functions related to the

debug section are ignored, so the debug section is not displayed on the screen.

It is possible to hide all sections of the taskbook window except for the de-

bug section; to do this, simply press the key combination [Ctrl]+[space]. Press-

ing this shortcut again restores previously hidden sections in the taskbook win-

Part 3. Additions 281

dow. You can use the corresponding pop-up menu command to hide/show the

main sections of the taskbook window. You can also hide all sections of the

taskbook window except for the debug section programmatically by calling the

HideTask function (see Section 3.1.4).

For non-parallel tasks, the debug section contains a single output area. For

parallel tasks, the number of output areas is determined by the number of paral-

lel application processes that have output data to the debug section. At any time,

one of the areas is displayed in the debug section. If there is more than one out-

put area, a set of markers is displayed at the bottom of the debug section, allow-

ing you to switch to any of the available output areas.

Markers with numbers allow you to view the contents of the output area as-

sociated with the process of the corresponding rank (Fig. 60); a marker with the

"*" symbol allows you to view the output area containing the combined text of

all other areas (see Fig. 59).

Fig. 60. Debug information for a process of rank 3

Each screen line in the debug section begins with the process rank followed

by the "|" character. Then comes the line number, which ends with the ">" cha-

racter (lines for each process are numbered independently).

For processes from the original communicator MPI_COMM_WORLD, their

ranks in this communicator are specified. For dynamically created groups of

processes (see Section 1.3.8), their ranks in the MPI_COMM_WORLD communica-

tor associated with these groups are specified, with the letter prefixes "a", "b",

etc. specified before the rank value. All processes included in one group have

the same prefix. The presence of prefixes allows us to distinguish between orig-

inal and new processes, as well as new processes included in different groups.

An example of a debug section with information output in dynamically created

processes is given in Section 1.3.8 (see Figs. 37 and 38).

The number of debug lines for each process must not exceed 999; if a

process attempts to output data to a line number greater than 999, an error mes-

sage is output in the area associated with that process and further debug output

for that process is blocked. This limitation avoids problems that arise when a

slave process endlessly outputs debug information.

282 M. E. Abramyan. Parallel Programming Based on MPI 2.0

To switch to the required output area, you can simply click the mouse on

the corresponding marker. In addition, to sequentially cycle through the markers

from left to right or from right to left, you can use the arrow keys [] and [].

You can also immediately go to the required output area by pressing the corres-

ponding key: for the "*" area, press the [*] key; for areas "0"–"9", press the nu-

meric keys [0]–[9]; for areas "10"–"35", press the letter keys from [A] to [Z] (for

areas associated with dynamically created processes, the keys are not defined).

Debugging information received from slave processes is pre-saved in spe-

cial temporary files in the student’s directory, so it will be available for viewing

even if some slave processes hang at some stage of the parallel program execu-

tion. Debugging information received from the master process is output directly

to the debug section.

The contents of the output area displayed in the debug section can be co-

pied to the Windows clipboard; for this purpose, use the standard [Ctrl]+[C]

shortcut or the corresponding command in the pop-up menu of the taskbook

window.

3.1.4. Functions for outputting and configuring debug information

The Show function is used to output data to the debug section. Its simplest

version contains a single string parameter s of type std:: string or char*:

void Show(const char *s);
void Show(std::string s);

This function outputs the string s to the output area of the debug section.

If the current screen line already contains some text, then the string s is

supplied with an initial space and appended to this text, except for the case

when, with such appending, the size of the resulting text would exceed the width

of the output area (equal to 80 characters). In the latter case, the output of the

string s is performed from the beginning of the next screen line; if, in this situa-

tion, the string s exceeds the width of the output area, then the string s will be

output on several screen lines, and the text will be broken at the whitespace cha-

racters of the string s, and if there are no spaces, when the next fragment of the

string of length equal to 80 is reached.

The string s may contain explicit commands to move to a new screen line.

Such commands may be either the '\r' (carriage return) character, or the '\n' (new-

line) character, or a combination of both in that order "\r\n".

There is a modification of the Show function, the ShowLine function, which,

after displaying the line s, automatically goes to a new line of the debug section:

void ShowLine(const char *s);
void ShowLine(std::string s);

The ShowLine function can be called without a string parameter; in this case,

it only goes to a new line in the debug section:

void ShowLine();

Part 3. Additions 283

In addition to the Show function with a single string parameter, its over-

loaded versions are provided for outputting numeric debugging data. Using

these versions allows you to simplify actions related to the output of numeric da-

ta, because it eliminates the necessity to use standard C++ tools intended for

converting numbers into their string representations.

There are several overloaded versions of the Show function intended for

outputting numerical data. Below are the versions containing the largest number

of parameters (other versions are obtained from the given ones by removing pa-

rameter s, parameter w, or both):

void Show(const char *s, int a, int w);
void Show(const char *s, double a, int w);
void Show(std::string s, int a, int w);
void Show(std::string s, double a, int w);

The string parameter s specifies an optional comment that appears before

the number to be output; if s is omitted, the comment is assumed to be an empty

string.

The numeric parameter a specifies the number to be output.

The optional integer parameter w specifies the width of the output field

(i. e., the number of screen positions allocated for displaying the number). If the

specified output field width w is not enough, then the value of parameter w is ig-

nored; in this case (and also if parameter w is missing), the minimum output field

width required to display the given number is used. If the number does not oc-

cupy the entire output field, it is padded on the left with spaces (i. e., aligned

with the right border of the output field). A dot is used as a decimal separator for

numbers with a fractional part. Real numbers are output by default in a format

with a fixed point and two fractional digits. You can change the output format of

real numbers using the SetPrecision function described below.

Similar overloaded versions are provided for the ShowLine function. In these

versions, after the debug data is output, the transition to the new line of the de-

gug section is automatically performed.

Note. There are also overloaded template versions of the Show and ShowLine

functions with iterator parameters first and last intended for outputting ele-

ments of STL containers (see [2]). The iterators first and last, as usual, define

the initial element to be output and the position after the final element to be

output. These versions may contain an optional third parameter s of type

std:: string, which defines a comment that will be output before the output

sequence of elements. The template version of the Show function outputs

the elements of the sequence on one line, separating them with spaces; after

the end of the output, a transition to a new line is automatically performed.

The template version of the ShowLine function outputs each element of the

sequence on a new line; the string comment is output on the same line as

the first element.

284 M. E. Abramyan. Parallel Programming Based on MPI 2.0

There are also two helper functions associated with debugging output: Hide-

Task and SetPrecision.

Calling a void HideTask() function ensures that all sections of the taskbook

window are hidden except for the debug section. If the debug section is not dis-

played in the taskbook window (in particular, if the program is running in demo

mode), then the call to the HideTask function is ignored.

You can hide/restore the main sections of the taskbook window after it is

displayed on the screen using the combination [Ctrl]+[space] or the correspond-

ing command in the pop-up menu.

The void SetPrecision(int n) function is used to configure the format of real de-

bug data. If parameter n is positive, then it defines the number of fractional digits

to be output; the number is output in fixed-point format. If parameter n is zero or

negative, then real numbers are output in floating-point (exponential) format.

The number of fractional digits is assumed to be equal to the absolute value of

parameter n; if parameter n is zero, the number of fractional digits is set to 6.

The current numeric format setting defined by the SetPrecision function lasts

until the next call to this function. Before the first call of the SetPrecision func-

tion, real numbers are output in fixed-point format with two fractional digits.

3.2. Options for individual assignments

3.2.1. Series of similar tasks

Tasks included in the PT for MPI-2 taskbook and presented in Section 2

can be divided into series of several (2 to 4) similar tasks. Below is a list of such

series. It contains all the tasks from Section 2 except those solved in Section 1.

Additionally, the comparative complexity of each series is indicated. Complexity

is estimated in points (1 to 3) that are given after the name of the group of tasks

and separated from it by dash "-" (note that the tasks estimated at 2 and 3 points

are marked in Section 2 with the symbols * and ** respectively).

-Processes and their ranks
%(task 2 is solved in Section 1.1)
MPI1Proc-1 1 3
MPI1Proc-1 4 5 6 7
MPI1Proc-1 8 9 10

-Blocking data transfer
%(task 11 is solved in Section 1.2.2)
MPI2Send-1 1 2 3 4
MPI2Send-1 5 6 7
MPI2Send-1 8 9 10
MPI2Send-1 12 13 14
MPI2Send-1 15 16 17
MPI2Send-1 18 19
MPI2Send-1 20 21

Part 3. Additions 285

MPI2Send-2 22 23
MPI2Send-2 24 25

-Non-blocking data transfer
MPI2Send-2 26 27
MPI2Send-2 28 29
MPI2Send-2 30 31 32

-Collective data transfer
MPI3Coll-1 1 2 3
MPI3Coll-1 4 5 6 7
MPI3Coll-1 8 9 10
MPI3Coll-1 11 12 13
MPI3Coll-1 14 15
MPI3Coll-2 16 17 18

-Reduction operations
%(task 23 is solved in Section 1.2.5)
MPI3Coll-1 19 20 21 22
MPI3Coll-1 24 25 26
MPI3Coll-1 27 28

-Using the simplest derived datatypes
MPI4Type-1 1 2 3
MPI4Type-1 4 5 6
MPI4Type-1 7 8

-Packed data transfer
MPI4Type-1 9 10 11
MPI4Type-1 12 13

-More complex derived datatypes
%(task 14 is solved in Section 1.2.6)
MPI4Type-2 15 16
MPI4Type-2 17 18
MPI4Type-2 19 20

-Collective function MPI_Alltoallw (MPI-2)
MPI4Type-3 21 22

-Creating new communicators
%(task 3 is solved in Section 1.2.7)
MPI5Comm-1 1 2
MPI5Comm-1 4 5
MPI5Comm-1 6 7
MPI5Comm-1 8 9
MPI5Comm-1 10 11 12

286 M. E. Abramyan. Parallel Programming Based on MPI 2.0

-Virtual topologies
%(tasks 17, 29 are solved in Sections 1.2.8, 1.2.9)
MPI5Comm-1 13 14
MPI5Comm-1 15 16 18
MPI5Comm-1 19 20 21 22
MPI5Comm-1 23 24
MPI5Comm-1 25 26 27
MPI5Comm-3 28 30

-Distributed graph topology (MPI-2)
MPI5Comm-3 31 32

-Non-blocking collective functions (MPI-3)
MPI5Comm-2 33 35 37
MPI5Comm-2 34 36 38
MPI5Comm-2 39 40 41
MPI5Comm-2 42 43 44
MPI5Comm-2 45 46 47

-Local file input-output (MPI-2)
MPI6File-1 1 2 3 4
MPI6File-1 5 6 7 8

-Collective file input-output (MPI-2)
MPI6File-1 9 10
MPI6File-2 11 12
MPI6File-1 13 14
MPI6File-2 15 16

-Setting up the file view (MPI-2)
%(task 26 is solved in Section 1.3.3)
MPI6File-1 17 20
MPI6File-1 18 19
MPI6File-2 21 22
MPI6File-3 23 24 25
MPI6File-2 27 28
MPI6File-3 29 30

-One-side communications (MPI-2)
%(task 13 is solved in Section 1.3.5)
MPI7Win-1 1 2
MPI7Win-1 3 4
MPI7Win-1 5 6
MPI7Win-2 7 8 9 10
MPI7Win-2 11 12
MPI7Win-2 14 15
MPI7Win-3 16 17

Part 3. Additions 287

-Additional synchronization types (MPI-2)
%(task 23 is solved in Section 1.3.6)
MPI7Win-1 18 19 20
MPI7Win-2 21 22
MPI7Win-1 24 25 26
MPI7Win-2 27 29
MPI7Win-2 28 30

-Creation of inter-communicators (MPI-2)
%(task 9 is solved in Section 1.3.7)
MPI8Inter-1 1 2
MPI8Inter-2 3 4
MPI8Inter-2 5 6
MPI8Inter-3 7 8

-Collective operations for inter-communicators (MPI-2)
MPI8Inter-2 10 11 12
MPI8Inter-2 13 14

-Dynamic process creation (MPI-2)
%(task 15 is solved in Section 1.3.8)
MPI8Inter-1 16
MPI8Inter-2 17 18
MPI8Inter-2 19 20
MPI8Inter-3 21 22

%Parallel matrix algorithms (task 1 is solved in Section 1.4.2)

-Defining new datatypes and communicators
MPI9Matr-1 11 21 32
MPI9Matr-1 22 33 34

-Source data scattering stage
%(task 2 is solved in Section 1.4.3)
MPI9Matr-2 12 23 35

-Computation stage
%(task 24 is solved in Section 1.4.4)
MPI9Matr-1 3 13 36 37
MPI9Matr-1 4 14 25 38
MPI9Matr-2 5 15 26 39

-Result gathering stage
MPI9Matr-2 6 16 27 40

-Full implementation of the algorithm
MPI9Matr-3 7 17 28 41

288 M. E. Abramyan. Parallel Programming Based on MPI 2.0

-File input-output (MPI-2)
%(task 19 is solved in Section 1.4.5)
MPI9Matr-2 8 18 29 42
MPI9Matr-2 9 30 43
MPI9Matr-3 10 20 31 44

To form a set of tasks covering all the capabilities of MPI discussed in the

book, it is sufficient to select one task from each series of similar tasks. Sum-

mary information on the resulting sets of tasks is given in Table 4.

Table 4

Summary of task sets

Task group Number of tasks Total points

Part 1 24 30

MPI1Proc 3 3

MPI2Send 12 17

MPI3Coll 9 10

Part 2 21 30

MPI4Type 9 14

MPI5Comm 12 16

Part 3 39 70

MPI5Comm (MPI-3) 5 10

MPI6File 12 20

MPI7Win 12 20

MPI8Inter 10 20

Part 4 11 20

MPI9Matr 11 20

Total 95 150

Each set can be divided into 4 parts. The first part includes tasks from the

groups MPI1Proc, MPI2Send, and MPI3Coll, which are devoted to the basic ca-

pabilities of MPI related to sending data between processes. The second part in-

cludes tasks devoted to additional capabilities of MPI (mainly the standard 1.1):

defining new datatypes and new communicators, including those related to vir-

tual topologies. The third part contains tasks related to new capabilities of the

MPI-2 and MPI-3 standard, and the fourth part is devoted to matrix algorithms.

Depending on the number of hours allocated for laboratory classes and the

MPI topics covered, individual assignment sets may include only some of the

specified parts.

3.2.2. Set of 24 variants of tasks

Table 5 contains a set of 24 variants of tasks generated from a groups of

similar tasks (see Section 3.2.1). The PTVarMaker program from the Teacher

Pack system was used to create the variants. The Teacher Pack system is one

Part 3. Additions 289

of the extensions of the Programming Taskbook and includes utilities designed

to manage and control group laboratory classes. The description of the Teacher

Pack system and, in particular, of the PTVarMaker program is presented on the

ptaskbook.com website (the Teacher Pack section), as well as in [3].

If more than one point is given for a task, the number of points is indicated

after the task number in square brackets. If the number of points is not indicated

after the task number, then it is considered to be equal to 1.

 Table 5

24 variants of tasks

VARIANT 1

MPI1Proc Processes and their ranks: 1, 4, 9

MPI2Send(1) Blocking data transfer: 3, 6, 8, 12, 17, 18, 20, 22[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 28[2], 30[2]

MPI3Coll(1) Collective data transfer: 2, 7, 9, 11, 14, 17[2]

MPI3Coll(2) Reduction operations: 20, 24, 27

MPI4Type(1) Using the simplest derived datatypes: 2, 5, 7

MPI4Type(2) Packed data transfer: 9, 12

MPI4Type(3) More complex derived datatypes: 16[2], 18[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 1, 4, 7, 9, 11

MPI5Comm(2) Virtual topologies: 13, 15, 20, 23, 27, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 37[2], 34[2], 40[2], 44[2], 46[2]

MPI6File(1) Local file input-output (MPI-2): 3, 6

MPI6File(2) Collective file input-output (MPI-2): 9, 12[2], 13, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 18, 22[2], 24[3], 27[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 1, 4, 5, 7[2], 11[2], 15[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 20, 21[2], 25, 29[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 4[2], 6[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 12[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 19[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 32, 22

MPI9Matr(2) Source data scattering stage: 12[2]

MPI9Matr(3) Computation stage: 13, 14, 15[2]

MPI9Matr(4) Result gathering stage: 27[2]

MPI9Matr(5) Full implementation of the algorithm: 41[3]

MPI9Matr(6) File input-output (MPI-2): 8[2], 9[2], 10[3]

VARIANT 2

MPI1Proc Processes and their ranks: 1, 7, 8

MPI2Send(1) Blocking data transfer: 3, 5, 9, 14, 15, 19, 20, 22[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 28[2], 32[2]

MPI3Coll(1) Collective data transfer: 3, 4, 8, 12, 15, 18[2]

MPI3Coll(2) Reduction operations: 20, 24, 27

MPI4Type(1) Using the simplest derived datatypes: 1, 6, 7

MPI4Type(2) Packed data transfer: 10, 12

MPI4Type(3) More complex derived datatypes: 15[2], 18[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

290 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI5Comm(1) Creating new communicators: 2, 4, 7, 9, 11

MPI5Comm(2) Virtual topologies: 13, 16, 19, 24, 26, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 37[2], 34[2], 39[2], 44[2], 47[2]

MPI6File(1) Local file input-output (MPI-2): 4, 7

MPI6File(2) Collective file input-output (MPI-2): 10, 11[2], 13, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 18, 22[2], 23[3], 28[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 2, 3, 6, 9[2], 12[2], 14[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 20, 22[2], 26, 27[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 4[2], 6[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 12[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 19[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 32, 34

MPI9Matr(2) Source data scattering stage: 35[2]

MPI9Matr(3) Computation stage: 37, 25, 26[2]

MPI9Matr(4) Result gathering stage: 16[2]

MPI9Matr(5) Full implementation of the algorithm: 28[3]

MPI9Matr(6) File input-output (MPI-2): 29[2], 43[2], 20[3]

VARIANT 3

MPI1Proc Processes and their ranks: 1, 5, 10

MPI2Send(1) Blocking data transfer: 2, 6, 8, 14, 15, 18, 20, 22[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 29[2], 32[2]

MPI3Coll(1) Collective data transfer: 1, 6, 9, 13, 15, 17[2]

MPI3Coll(2) Reduction operations: 19, 26, 27

MPI4Type(1) Using the simplest derived datatypes: 3, 5, 8

MPI4Type(2) Packed data transfer: 11, 13

MPI4Type(3) More complex derived datatypes: 16[2], 18[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 2, 4, 6, 9, 10

MPI5Comm(2) Virtual topologies: 13, 18, 22, 23, 25, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 33[2], 38[2], 39[2], 43[2], 47[2]

MPI6File(1) Local file input-output (MPI-2): 1, 5

MPI6File(2) Collective file input-output (MPI-2): 10, 11[2], 13, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 19, 21[2], 24[3], 27[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 2, 4, 5, 9[2], 12[2], 15[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 19, 21[2], 25, 27[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 3[2], 5[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 11[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 19[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 21, 22

MPI9Matr(2) Source data scattering stage: 35[2]

MPI9Matr(3) Computation stage: 3, 25, 39[2]

MPI9Matr(4) Result gathering stage: 6[2]

MPI9Matr(5) Full implementation of the algorithm: 28[3]

MPI9Matr(6) File input-output (MPI-2): 8[2], 9[2], 44[3]

VARIANT 4

MPI1Proc Processes and their ranks: 1, 5, 9

Part 3. Additions 291

MPI2Send(1) Blocking data transfer: 1, 5, 8, 12, 16, 19, 20, 22[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 29[2], 30[2]

MPI3Coll(1) Collective data transfer: 2, 6, 8, 12, 15, 16[2]

MPI3Coll(2) Reduction operations: 22, 25, 28

MPI4Type(1) Using the simplest derived datatypes: 2, 6, 8

MPI4Type(2) Packed data transfer: 9, 12

MPI4Type(3) More complex derived datatypes: 15[2], 17[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 2, 5, 7, 8, 11

MPI5Comm(2) Virtual topologies: 13, 15, 21, 24, 25, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 33[2], 38[2], 41[2], 43[2], 46[2]

MPI6File(1) Local file input-output (MPI-2): 3, 6

MPI6File(2) Collective file input-output (MPI-2): 9, 11[2], 14, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 19, 22[2], 25[3], 27[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 2, 3, 6, 10[2], 11[2], 15[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 18, 22[2], 24, 29[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 3[2], 5[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 11[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 20[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 21, 33

MPI9Matr(2) Source data scattering stage: 23[2]

MPI9Matr(3) Computation stage: 36, 4, 15[2]

MPI9Matr(4) Result gathering stage: 16[2]

MPI9Matr(5) Full implementation of the algorithm: 7[3]

MPI9Matr(6) File input-output (MPI-2): 8[2], 43[2], 44[3]

VARIANT 5

MPI1Proc Processes and their ranks: 1, 4, 8

MPI2Send(1) Blocking data transfer: 4, 7, 10, 13, 17, 19, 21, 22[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 29[2], 32[2]

MPI3Coll(1) Collective data transfer: 1, 5, 8, 12, 15, 17[2]

MPI3Coll(2) Reduction operations: 19, 24, 27

MPI4Type(1) Using the simplest derived datatypes: 1, 4, 7

MPI4Type(2) Packed data transfer: 10, 12

MPI4Type(3) More complex derived datatypes: 15[2], 18[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 1, 4, 7, 9, 12

MPI5Comm(2) Virtual topologies: 14, 16, 22, 24, 26, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 33[2], 36[2], 40[2], 42[2], 45[2]

MPI6File(1) Local file input-output (MPI-2): 2, 8

MPI6File(2) Collective file input-output (MPI-2): 9, 11[2], 14, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 19, 21[2], 24[3], 27[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 1, 3, 5, 7[2], 12[2], 14[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 18, 21[2], 26, 27[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 3[2], 6[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 12[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 20[2], 21[3]

292 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI9Matr(1) Defining new datatypes and communicators: 32, 34

MPI9Matr(2) Source data scattering stage: 12[2]

MPI9Matr(3) Computation stage: 36, 4, 39[2]

MPI9Matr(4) Result gathering stage: 6[2]

MPI9Matr(5) Full implementation of the algorithm: 17[3]

MPI9Matr(6) File input-output (MPI-2): 42[2], 30[2], 44[3]

VARIANT 6

MPI1Proc Processes and their ranks: 3, 7, 8

MPI2Send(1) Blocking data transfer: 4, 7, 10, 13, 17, 18, 21, 23[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 28[2], 31[2]

MPI3Coll(1) Collective data transfer: 1, 7, 9, 11, 14, 17[2]

MPI3Coll(2) Reduction operations: 22, 26, 28

MPI4Type(1) Using the simplest derived datatypes: 2, 4, 8

MPI4Type(2) Packed data transfer: 10, 13

MPI4Type(3) More complex derived datatypes: 15[2], 18[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 2, 5, 6, 9, 10

MPI5Comm(2) Virtual topologies: 14, 15, 22, 24, 27, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 35[2], 36[2], 41[2], 43[2], 46[2]

MPI6File(1) Local file input-output (MPI-2): 4, 6

MPI6File(2) Collective file input-output (MPI-2): 10, 12[2], 13, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 18, 21[2], 23[3], 28[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 1, 4, 5, 10[2], 11[2], 14[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 19, 21[2], 25, 29[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 3[2], 5[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 10[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 20[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 21, 33

MPI9Matr(2) Source data scattering stage: 35[2]

MPI9Matr(3) Computation stage: 36, 14, 15[2]

MPI9Matr(4) Result gathering stage: 40[2]

MPI9Matr(5) Full implementation of the algorithm: 28[3]

MPI9Matr(6) File input-output (MPI-2): 18[2], 30[2], 20[3]

VARIANT 7

MPI1Proc Processes and their ranks: 3, 6, 9

MPI2Send(1) Blocking data transfer: 3, 6, 9, 13, 15, 19, 21, 23[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 28[2], 31[2]

MPI3Coll(1) Collective data transfer: 1, 4, 10, 11, 15, 16[2]

MPI3Coll(2) Reduction operations: 19, 25, 28

MPI4Type(1) Using the simplest derived datatypes: 1, 4, 7

MPI4Type(2) Packed data transfer: 11, 13

MPI4Type(3) More complex derived datatypes: 15[2], 18[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 2, 4, 7, 8, 12

MPI5Comm(2) Virtual topologies: 13, 16, 21, 23, 27, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 35[2], 34[2], 40[2], 42[2], 45[2]

Part 3. Additions 293

MPI6File(1) Local file input-output (MPI-2): 3, 8

MPI6File(2) Collective file input-output (MPI-2): 9, 11[2], 14, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 18, 21[2], 25[3], 28[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 1, 4, 5, 9[2], 11[2], 14[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 19, 22[2], 24, 29[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 3[2], 5[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 10[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 19[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 11, 34

MPI9Matr(2) Source data scattering stage: 23[2]

MPI9Matr(3) Computation stage: 37, 25, 26[2]

MPI9Matr(4) Result gathering stage: 16[2]

MPI9Matr(5) Full implementation of the algorithm: 7[3]

MPI9Matr(6) File input-output (MPI-2): 29[2], 43[2], 10[3]

VARIANT 8

MPI1Proc Processes and their ranks: 1, 6, 10

MPI2Send(1) Blocking data transfer: 1, 6, 10, 12, 15, 18, 20, 23[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 29[2], 31[2]

MPI3Coll(1) Collective data transfer: 2, 4, 10, 13, 14, 18[2]

MPI3Coll(2) Reduction operations: 21, 25, 27

MPI4Type(1) Using the simplest derived datatypes: 1, 4, 8

MPI4Type(2) Packed data transfer: 11, 12

MPI4Type(3) More complex derived datatypes: 16[2], 17[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 2, 5, 6, 8, 12

MPI5Comm(2) Virtual topologies: 14, 15, 21, 24, 26, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 35[2], 38[2], 40[2], 42[2], 45[2]

MPI6File(1) Local file input-output (MPI-2): 1, 5

MPI6File(2) Collective file input-output (MPI-2): 9, 12[2], 13, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 18, 21[2], 23[3], 28[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 2, 3, 5, 8[2], 12[2], 14[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 18, 22[2], 25, 29[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 3[2], 5[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 11[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 19[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 11, 33

MPI9Matr(2) Source data scattering stage: 12[2]

MPI9Matr(3) Computation stage: 13, 38, 5[2]

MPI9Matr(4) Result gathering stage: 40[2]

MPI9Matr(5) Full implementation of the algorithm: 41[3]

MPI9Matr(6) File input-output (MPI-2): 18[2], 9[2], 20[3]

VARIANT 9

MPI1Proc Processes and their ranks: 3, 6, 10

MPI2Send(1) Blocking data transfer: 2, 5, 10, 14, 16, 18, 21, 22[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 29[2], 31[2]

MPI3Coll(1) Collective data transfer: 2, 5, 9, 13, 14, 16[2]

MPI3Coll(2) Reduction operations: 20, 25, 27

294 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI4Type(1) Using the simplest derived datatypes: 3, 6, 7

MPI4Type(2) Packed data transfer: 10, 12

MPI4Type(3) More complex derived datatypes: 16[2], 17[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 1, 5, 7, 8, 11

MPI5Comm(2) Virtual topologies: 14, 18, 20, 24, 25, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 35[2], 36[2], 39[2], 43[2], 45[2]

MPI6File(1) Local file input-output (MPI-2): 2, 7

MPI6File(2) Collective file input-output (MPI-2): 10, 12[2], 13, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 19, 22[2], 23[3], 28[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 2, 3, 6, 8[2], 11[2], 15[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 18, 21[2], 24, 29[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 4[2], 6[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 10[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 20[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 11, 34

MPI9Matr(2) Source data scattering stage: 23[2]

MPI9Matr(3) Computation stage: 13, 4, 5[2]

MPI9Matr(4) Result gathering stage: 27[2]

MPI9Matr(5) Full implementation of the algorithm: 41[3]

MPI9Matr(6) File input-output (MPI-2): 29[2], 9[2], 10[3]

VARIANT 10

MPI1Proc Processes and their ranks: 3, 7, 8

MPI2Send(1) Blocking data transfer: 4, 7, 8, 12, 16, 19, 21, 23[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 28[2], 32[2]

MPI3Coll(1) Collective data transfer: 3, 7, 8, 13, 15, 18[2]

MPI3Coll(2) Reduction operations: 21, 26, 28

MPI4Type(1) Using the simplest derived datatypes: 3, 5, 8

MPI4Type(2) Packed data transfer: 9, 13

MPI4Type(3) More complex derived datatypes: 16[2], 17[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 1, 5, 6, 8, 10

MPI5Comm(2) Virtual topologies: 14, 18, 20, 23, 27, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 37[2], 34[2], 41[2], 42[2], 46[2]

MPI6File(1) Local file input-output (MPI-2): 4, 5

MPI6File(2) Collective file input-output (MPI-2): 9, 12[2], 14, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 19, 22[2], 25[3], 28[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 1, 3, 6, 8[2], 12[2], 15[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 20, 22[2], 24, 27[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 4[2], 5[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 12[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 20[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 21, 33

MPI9Matr(2) Source data scattering stage: 23[2]

MPI9Matr(3) Computation stage: 37, 38, 5[2]

MPI9Matr(4) Result gathering stage: 6[2]

Part 3. Additions 295

MPI9Matr(5) Full implementation of the algorithm: 17[3]

MPI9Matr(6) File input-output (MPI-2): 42[2], 30[2], 31[3]

VARIANT 11

MPI1Proc Processes and their ranks: 3, 4, 9

MPI2Send(1) Blocking data transfer: 1, 7, 9, 13, 16, 18, 21, 23[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 29[2], 30[2]

MPI3Coll(1) Collective data transfer: 3, 5, 10, 11, 14, 16[2]

MPI3Coll(2) Reduction operations: 22, 26, 28

MPI4Type(1) Using the simplest derived datatypes: 2, 5, 7

MPI4Type(2) Packed data transfer: 9, 13

MPI4Type(3) More complex derived datatypes: 16[2], 17[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 1, 4, 6, 8, 12

MPI5Comm(2) Virtual topologies: 14, 18, 19, 23, 25, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 37[2], 38[2], 41[2], 44[2], 47[2]

MPI6File(1) Local file input-output (MPI-2): 2, 8

MPI6File(2) Collective file input-output (MPI-2): 10, 12[2], 14, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 19, 21[2], 24[3], 27[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 2, 4, 6, 7[2], 12[2], 14[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 19, 22[2], 26, 27[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 4[2], 6[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 10[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 19[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 32, 22

MPI9Matr(2) Source data scattering stage: 35[2]

MPI9Matr(3) Computation stage: 3, 38, 39[2]

MPI9Matr(4) Result gathering stage: 40[2]

MPI9Matr(5) Full implementation of the algorithm: 17[3]

MPI9Matr(6) File input-output (MPI-2): 42[2], 43[2], 31[3]

VARIANT 12

MPI1Proc Processes and their ranks: 3, 5, 10

MPI2Send(1) Blocking data transfer: 2, 5, 9, 14, 17, 19, 20, 23[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 28[2], 30[2]

MPI3Coll(1) Collective data transfer: 3, 6, 10, 12, 14, 18[2]

MPI3Coll(2) Reduction operations: 21, 24, 28

MPI4Type(1) Using the simplest derived datatypes: 3, 6, 8

MPI4Type(2) Packed data transfer: 11, 13

MPI4Type(3) More complex derived datatypes: 15[2], 17[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 1, 5, 6, 9, 10

MPI5Comm(2) Virtual topologies: 13, 16, 19, 23, 26, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 33[2], 36[2], 39[2], 44[2], 47[2]

MPI6File(1) Local file input-output (MPI-2): 1, 7

MPI6File(2) Collective file input-output (MPI-2): 10, 11[2], 14, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 18, 22[2], 25[3], 27[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 1, 4, 6, 10[2], 11[2], 15[2], 16[3]

296 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI7Win(2) Additional synchronization types (MPI-2): 20, 21[2], 26, 27[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 4[2], 6[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 11[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 20[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 11, 22

MPI9Matr(2) Source data scattering stage: 12[2]

MPI9Matr(3) Computation stage: 3, 14, 26[2]

MPI9Matr(4) Result gathering stage: 27[2]

MPI9Matr(5) Full implementation of the algorithm: 7[3]

MPI9Matr(6) File input-output (MPI-2): 18[2], 30[2], 31[3]

VARIANT 13

MPI1Proc Processes and their ranks: 3, 6, 10

MPI2Send(1) Blocking data transfer: 1, 5, 8, 12, 15, 18, 20, 22[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 28[2], 31[2]

MPI3Coll(1) Collective data transfer: 3, 7, 8, 13, 15, 16[2]

MPI3Coll(2) Reduction operations: 21, 25, 27

MPI4Type(1) Using the simplest derived datatypes: 2, 5, 8

MPI4Type(2) Packed data transfer: 10, 12

MPI4Type(3) More complex derived datatypes: 15[2], 17[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 1, 4, 7, 8, 12

MPI5Comm(2) Virtual topologies: 13, 16, 22, 24, 27, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 33[2], 34[2], 40[2], 42[2], 45[2]

MPI6File(1) Local file input-output (MPI-2): 3, 5

MPI6File(2) Collective file input-output (MPI-2): 9, 11[2], 13, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 18, 22[2], 24[3], 27[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 1, 4, 5, 9[2], 11[2], 15[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 18, 21[2], 26, 27[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 3[2], 6[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 11[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 20[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 11, 33

MPI9Matr(2) Source data scattering stage: 12[2]

MPI9Matr(3) Computation stage: 37, 14, 5[2]

MPI9Matr(4) Result gathering stage: 40[2]

MPI9Matr(5) Full implementation of the algorithm: 7[3]

MPI9Matr(6) File input-output (MPI-2): 42[2], 30[2], 20[3]

VARIANT 14

MPI1Proc Processes and their ranks: 3, 5, 8

MPI2Send(1) Blocking data transfer: 4, 7, 10, 14, 17, 19, 20, 23[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 29[2], 32[2]

MPI3Coll(1) Collective data transfer: 1, 7, 10, 11, 15, 18[2]

MPI3Coll(2) Reduction operations: 22, 26, 28

MPI4Type(1) Using the simplest derived datatypes: 1, 4, 7

MPI4Type(2) Packed data transfer: 11, 12

MPI4Type(3) More complex derived datatypes: 16[2], 18[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

Part 3. Additions 297

MPI5Comm(1) Creating new communicators: 2, 4, 6, 9, 12

MPI5Comm(2) Virtual topologies: 14, 16, 21, 24, 27, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 37[2], 36[2], 41[2], 43[2], 47[2]

MPI6File(1) Local file input-output (MPI-2): 4, 8

MPI6File(2) Collective file input-output (MPI-2): 9, 11[2], 13, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 18, 21[2], 24[3], 27[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 1, 4, 6, 8[2], 12[2], 14[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 20, 21[2], 25, 27[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 3[2], 5[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 10[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 19[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 32, 34

MPI9Matr(2) Source data scattering stage: 35[2]

MPI9Matr(3) Computation stage: 36, 14, 15[2]

MPI9Matr(4) Result gathering stage: 27[2]

MPI9Matr(5) Full implementation of the algorithm: 28[3]

MPI9Matr(6) File input-output (MPI-2): 8[2], 30[2], 44[3]

VARIANT 15

MPI1Proc Processes and their ranks: 1, 7, 9

MPI2Send(1) Blocking data transfer: 4, 7, 9, 12, 16, 18, 21, 23[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 29[2], 32[2]

MPI3Coll(1) Collective data transfer: 2, 4, 9, 13, 15, 17[2]

MPI3Coll(2) Reduction operations: 19, 24, 27

MPI4Type(1) Using the simplest derived datatypes: 1, 6, 8

MPI4Type(2) Packed data transfer: 11, 12

MPI4Type(3) More complex derived datatypes: 16[2], 18[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 1, 4, 6, 8, 11

MPI5Comm(2) Virtual topologies: 14, 16, 20, 23, 26, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 35[2], 38[2], 39[2], 42[2], 47[2]

MPI6File(1) Local file input-output (MPI-2): 1, 6

MPI6File(2) Collective file input-output (MPI-2): 9, 11[2], 14, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 18, 21[2], 25[3], 28[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 1, 3, 5, 9[2], 11[2], 14[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 18, 21[2], 26, 27[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 3[2], 5[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 11[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 19[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 21, 34

MPI9Matr(2) Source data scattering stage: 12[2]

MPI9Matr(3) Computation stage: 3, 25, 39[2]

MPI9Matr(4) Result gathering stage: 27[2]

MPI9Matr(5) Full implementation of the algorithm: 7[3]

MPI9Matr(6) File input-output (MPI-2): 42[2], 9[2], 10[3]

VARIANT 16

MPI1Proc Processes and their ranks: 3, 4, 10

298 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI2Send(1) Blocking data transfer: 1, 7, 10, 14, 16, 19, 21, 22[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 28[2], 30[2]

MPI3Coll(1) Collective data transfer: 2, 5, 9, 13, 14, 18[2]

MPI3Coll(2) Reduction operations: 20, 24, 28

MPI4Type(1) Using the simplest derived datatypes: 2, 5, 8

MPI4Type(2) Packed data transfer: 10, 12

MPI4Type(3) More complex derived datatypes: 15[2], 17[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 2, 4, 7, 8, 12

MPI5Comm(2) Virtual topologies: 14, 18, 22, 24, 27, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 33[2], 38[2], 40[2], 42[2], 45[2]

MPI6File(1) Local file input-output (MPI-2): 4, 5

MPI6File(2) Collective file input-output (MPI-2): 9, 11[2], 14, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 18, 21[2], 23[3], 27[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 2, 3, 6, 8[2], 12[2], 14[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 19, 22[2], 24, 29[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 4[2], 6[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 12[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 19[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 32, 22

MPI9Matr(2) Source data scattering stage: 35[2]

MPI9Matr(3) Computation stage: 3, 25, 39[2]

MPI9Matr(4) Result gathering stage: 40[2]

MPI9Matr(5) Full implementation of the algorithm: 17[3]

MPI9Matr(6) File input-output (MPI-2): 8[2], 43[2], 10[3]

VARIANT 17

MPI1Proc Processes and their ranks: 1, 4, 10

MPI2Send(1) Blocking data transfer: 2, 5, 8, 13, 17, 19, 20, 22[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 28[2], 32[2]

MPI3Coll(1) Collective data transfer: 1, 7, 8, 12, 15, 16[2]

MPI3Coll(2) Reduction operations: 21, 25, 28

MPI4Type(1) Using the simplest derived datatypes: 2, 6, 7

MPI4Type(2) Packed data transfer: 9, 12

MPI4Type(3) More complex derived datatypes: 15[2], 17[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 1, 5, 7, 9, 11

MPI5Comm(2) Virtual topologies: 13, 18, 19, 24, 26, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 35[2], 38[2], 40[2], 44[2], 46[2]

MPI6File(1) Local file input-output (MPI-2): 2, 6

MPI6File(2) Collective file input-output (MPI-2): 10, 12[2], 13, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 19, 22[2], 23[3], 28[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 2, 3, 6, 10[2], 11[2], 15[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 20, 21[2], 26, 27[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 3[2], 5[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 10[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 19[2], 22[3]

Part 3. Additions 299

MPI9Matr(1) Defining new datatypes and communicators: 11, 34

MPI9Matr(2) Source data scattering stage: 23[2]

MPI9Matr(3) Computation stage: 36, 4, 26[2]

MPI9Matr(4) Result gathering stage: 6[2]

MPI9Matr(5) Full implementation of the algorithm: 17[3]

MPI9Matr(6) File input-output (MPI-2): 29[2], 30[2], 31[3]

VARIANT 18

MPI1Proc Processes and their ranks: 1, 7, 8

MPI2Send(1) Blocking data transfer: 3, 5, 10, 12, 16, 18, 21, 22[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 28[2], 30[2]

MPI3Coll(1) Collective data transfer: 3, 6, 8, 13, 15, 16[2]

MPI3Coll(2) Reduction operations: 19, 24, 27

MPI4Type(1) Using the simplest derived datatypes: 1, 6, 8

MPI4Type(2) Packed data transfer: 11, 13

MPI4Type(3) More complex derived datatypes: 16[2], 18[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 1, 5, 7, 9, 10

MPI5Comm(2) Virtual topologies: 14, 18, 19, 23, 27, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 33[2], 34[2], 39[2], 43[2], 45[2]

MPI6File(1) Local file input-output (MPI-2): 2, 7

MPI6File(2) Collective file input-output (MPI-2): 10, 12[2], 13, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 19, 21[2], 25[3], 27[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 2, 4, 6, 7[2], 11[2], 14[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 19, 21[2], 24, 29[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 4[2], 5[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 12[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 20[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 32, 22

MPI9Matr(2) Source data scattering stage: 12[2]

MPI9Matr(3) Computation stage: 13, 4, 5[2]

MPI9Matr(4) Result gathering stage: 16[2]

MPI9Matr(5) Full implementation of the algorithm: 28[3]

MPI9Matr(6) File input-output (MPI-2): 18[2], 43[2], 20[3]

VARIANT 19

MPI1Proc Processes and their ranks: 1, 6, 10

MPI2Send(1) Blocking data transfer: 2, 6, 9, 12, 17, 18, 21, 23[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 28[2], 31[2]

MPI3Coll(1) Collective data transfer: 1, 6, 9, 11, 14, 17[2]

MPI3Coll(2) Reduction operations: 19, 25, 28

MPI4Type(1) Using the simplest derived datatypes: 3, 6, 8

MPI4Type(2) Packed data transfer: 10, 13

MPI4Type(3) More complex derived datatypes: 16[2], 18[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 2, 4, 6, 8, 11

MPI5Comm(2) Virtual topologies: 14, 15, 20, 24, 25, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 35[2], 34[2], 41[2], 44[2], 47[2]

300 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI6File(1) Local file input-output (MPI-2): 2, 7

MPI6File(2) Collective file input-output (MPI-2): 10, 11[2], 13, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 19, 22[2], 24[3], 27[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 2, 4, 6, 10[2], 12[2], 15[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 19, 22[2], 24, 29[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 3[2], 6[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 10[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 20[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 32, 22

MPI9Matr(2) Source data scattering stage: 23[2]

MPI9Matr(3) Computation stage: 13, 14, 5[2]

MPI9Matr(4) Result gathering stage: 6[2]

MPI9Matr(5) Full implementation of the algorithm: 41[3]

MPI9Matr(6) File input-output (MPI-2): 29[2], 30[2], 44[3]

VARIANT 20

MPI1Proc Processes and their ranks: 1, 7, 9

MPI2Send(1) Blocking data transfer: 4, 6, 9, 13, 16, 18, 20, 23[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 28[2], 31[2]

MPI3Coll(1) Collective data transfer: 3, 5, 8, 11, 14, 16[2]

MPI3Coll(2) Reduction operations: 21, 26, 27

MPI4Type(1) Using the simplest derived datatypes: 3, 5, 8

MPI4Type(2) Packed data transfer: 9, 13

MPI4Type(3) More complex derived datatypes: 15[2], 18[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 2, 4, 7, 9, 10

MPI5Comm(2) Virtual topologies: 13, 15, 21, 23, 25, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 37[2], 38[2], 39[2], 42[2], 47[2]

MPI6File(1) Local file input-output (MPI-2): 1, 8

MPI6File(2) Collective file input-output (MPI-2): 9, 12[2], 14, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 18, 22[2], 25[3], 28[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 1, 4, 5, 8[2], 12[2], 14[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 19, 21[2], 25, 29[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 4[2], 5[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 11[2], 14[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 20[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 21, 33

MPI9Matr(2) Source data scattering stage: 23[2]

MPI9Matr(3) Computation stage: 3, 38, 39[2]

MPI9Matr(4) Result gathering stage: 40[2]

MPI9Matr(5) Full implementation of the algorithm: 41[3]

MPI9Matr(6) File input-output (MPI-2): 8[2], 9[2], 31[3]

VARIANT 21

MPI1Proc Processes and their ranks: 3, 4, 8

MPI2Send(1) Blocking data transfer: 2, 6, 9, 13, 15, 18, 21, 22[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 29[2], 31[2]

MPI3Coll(1) Collective data transfer: 2, 5, 10, 12, 14, 17[2]

MPI3Coll(2) Reduction operations: 22, 24, 27

Part 3. Additions 301

MPI4Type(1) Using the simplest derived datatypes: 3, 4, 7

MPI4Type(2) Packed data transfer: 10, 12

MPI4Type(3) More complex derived datatypes: 15[2], 17[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 1, 5, 6, 8, 11

MPI5Comm(2) Virtual topologies: 13, 15, 21, 23, 26, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 33[2], 34[2], 40[2], 43[2], 46[2]

MPI6File(1) Local file input-output (MPI-2): 3, 5

MPI6File(2) Collective file input-output (MPI-2): 9, 12[2], 13, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 18, 21[2], 24[3], 27[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 2, 3, 5, 7[2], 11[2], 15[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 18, 22[2], 24, 27[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 3[2], 5[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 12[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 19[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 11, 33

MPI9Matr(2) Source data scattering stage: 23[2]

MPI9Matr(3) Computation stage: 13, 25, 26[2]

MPI9Matr(4) Result gathering stage: 16[2]

MPI9Matr(5) Full implementation of the algorithm: 28[3]

MPI9Matr(6) File input-output (MPI-2): 29[2], 43[2], 31[3]

VARIANT 22

MPI1Proc Processes and their ranks: 3, 5, 9

MPI2Send(1) Blocking data transfer: 3, 7, 10, 14, 15, 19, 21, 23[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 29[2], 32[2]

MPI3Coll(1) Collective data transfer: 2, 6, 10, 12, 14, 18[2]

MPI3Coll(2) Reduction operations: 22, 25, 28

MPI4Type(1) Using the simplest derived datatypes: 3, 4, 7

MPI4Type(2) Packed data transfer: 11, 13

MPI4Type(3) More complex derived datatypes: 15[2], 18[2], 19[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 2, 5, 6, 8, 12

MPI5Comm(2) Virtual topologies: 13, 16, 22, 24, 26, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 35[2], 36[2], 41[2], 43[2], 46[2]

MPI6File(1) Local file input-output (MPI-2): 4, 6

MPI6File(2) Collective file input-output (MPI-2): 10, 12[2], 14, 16[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 19, 21[2], 25[3], 28[2], 30[3]

MPI7Win(1) One-side communications (MPI-2): 2, 3, 5, 7[2], 12[2], 15[2], 17[3]

MPI7Win(2) Additional synchronization types (MPI-2): 20, 22[2], 25, 29[2], 30[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 1, 4[2], 6[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 12[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 18[2], 20[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 11, 33

MPI9Matr(2) Source data scattering stage: 35[2]

MPI9Matr(3) Computation stage: 36, 38, 26[2]

MPI9Matr(4) Result gathering stage: 16[2]

302 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI9Matr(5) Full implementation of the algorithm: 41[3]

MPI9Matr(6) File input-output (MPI-2): 42[2], 43[2], 44[3]

VARIANT 23

MPI1Proc Processes and their ranks: 1, 5, 8

MPI2Send(1) Blocking data transfer: 1, 5, 8, 13, 15, 19, 20, 22[2], 24[2]

MPI2Send(2) Non-blocking data transfer: 26[2], 29[2], 30[2]

MPI3Coll(1) Collective data transfer: 1, 4, 9, 11, 14, 17[2]

MPI3Coll(2) Reduction operations: 20, 26, 27

MPI4Type(1) Using the simplest derived datatypes: 1, 4, 7

MPI4Type(2) Packed data transfer: 9, 13

MPI4Type(3) More complex derived datatypes: 16[2], 17[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 21[3]

MPI5Comm(1) Creating new communicators: 1, 5, 6, 9, 10

MPI5Comm(2) Virtual topologies: 13, 15, 19, 23, 25, 28[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 31[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 37[2], 36[2], 39[2], 44[2], 45[2]

MPI6File(1) Local file input-output (MPI-2): 1, 7

MPI6File(2) Collective file input-output (MPI-2): 10, 11[2], 14, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 17, 19, 22[2], 23[3], 28[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 1, 3, 5, 9[2], 11[2], 14[2], 16[3]

MPI7Win(2) Additional synchronization types (MPI-2): 18, 22[2], 25, 27[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 4[2], 6[2], 7[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 10[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 19[2], 21[3]

MPI9Matr(1) Defining new datatypes and communicators: 21, 22

MPI9Matr(2) Source data scattering stage: 12[2]

MPI9Matr(3) Computation stage: 37, 4, 15[2]

MPI9Matr(4) Result gathering stage: 6[2]

MPI9Matr(5) Full implementation of the algorithm: 7[3]

MPI9Matr(6) File input-output (MPI-2): 18[2], 9[2], 10[3]

VARIANT 24

MPI1Proc Processes and their ranks: 3, 6, 9

MPI2Send(1) Blocking data transfer: 3, 6, 8, 14, 17, 19, 20, 23[2], 25[2]

MPI2Send(2) Non-blocking data transfer: 27[2], 29[2], 30[2]

MPI3Coll(1) Collective data transfer: 3, 4, 10, 12, 15, 18[2]

MPI3Coll(2) Reduction operations: 20, 26, 28

MPI4Type(1) Using the simplest derived datatypes: 2, 5, 7

MPI4Type(2) Packed data transfer: 9, 13

MPI4Type(3) More complex derived datatypes: 16[2], 17[2], 20[2]

MPI4Type(4) Collective function MPI_Alltoallw (MPI-2): 22[3]

MPI5Comm(1) Creating new communicators: 2, 5, 7, 9, 10

MPI5Comm(2) Virtual topologies: 14, 18, 20, 23, 25, 30[3]

MPI5Comm(3) Distributed graph topology (MPI-2): 32[3]

MPI5Comm(4) Non-blocking collective functions (MPI-3): 37[2], 36[2], 41[2], 44[2], 46[2]

MPI6File(1) Local file input-output (MPI-2): 3, 8

MPI6File(2) Collective file input-output (MPI-2): 10, 12[2], 14, 15[2]

MPI6File(3) Setting up the file view (MPI-2): 20, 19, 22[2], 23[3], 28[2], 29[3]

MPI7Win(1) One-side communications (MPI-2): 1, 4, 6, 10[2], 12[2], 15[2], 16[3]

Part 3. Additions 303

MPI7Win(2) Additional synchronization types (MPI-2): 20, 22[2], 26, 29[2], 28[2]

MPI8Inter(1) Creation of inter-communicators (MPI-2): 2, 4[2], 6[2], 8[3]

MPI8Inter(2) Collective operations for inter-communicators (MPI-2): 11[2], 13[2]

MPI8Inter(3) Dynamic process creation (MPI-2): 16, 17[2], 20[2], 22[3]

MPI9Matr(1) Defining new datatypes and communicators: 21, 34

MPI9Matr(2) Source data scattering stage: 35[2]

MPI9Matr(3) Computation stage: 37, 38, 15[2]

MPI9Matr(4) Result gathering stage: 27[2]

MPI9Matr(5) Full implementation of the algorithm: 17[3]

MPI9Matr(6) File input-output (MPI-2): 18[2], 9[2], 20[3]

304 M. E. Abramyan. Parallel Programming Based on MPI 2.0

References

1. Abramyan M. E. Workshop on parallel programming using the Pro-

gramming Taskbook for MPI. Rostov-on-Don: SFedU Publishing

House, 2010. 172 p. (In Russian.)

2. Abramyan M. E. Introduction to the C++ Standard Template Library.

Description, examples of use, training tasks. Rostov-On-Don; Taganrog:

SFedU Publishing House, 2017. 178 p. (In Russian.)

3. Abramyan M. E. Tools and methods for developing electronic educa-

tional resources in computer science. Rostov-on-Don; Taganrog:

SFedU Publishing House, 2018. 259 p. (In Russian.)

4. Abramyan M. E., Steinberg B. Ya., Steinberg O. B. Technologies of pro-

gram parallelization. MPI and OpenMP, loop vectorization, memory

usage optimization. Rostov-on-Don: SFedU Publishing House,

2014. 148 p. (In Russian.)

5. Antonov A. S. Parallel programming technologies MPI and OpenMP.

Moscow: MSU Publishing House, 2012. 344 p. (In Russian.)

6. Borzunov S. V., Kurgalin S. D., Flegel A. V. Practical training in parallel

programming. St. Petersburg: BHV, 2017. 236 p. (In Russian.)

7. Bukatov A. A., Datsyuk V. N., Zhegulo A. N. Programming for multipro-

cessor computing systems. Rostov-on-Don: CVVR Publishing, 2003.

208 p. (In Russian.)

8. Korneev V. D. Parallel programming in MPI. Novosibirsk: Publishing

house of the Institute of Computational Mathematics and Mathematical

Geophysics SB RAS, 2002. 215 p. (In Russian.)

9. Nemnyugin S. A., Stesik O. L. Parallel programming for multiprocessor

computing systems. St. Petersburg: BHV-Petersburg, 2002. 396 p. (In

Russian.)

10. Shpakovsky G. I., Serikova N. V. Programming for multiprocessor sys-

tems in the MPI standard. Minsk: BSU, 2002. 323 p. (In Russian.)

11. MPI: A Message-Passing Interface Standard. Version 1.1: June, 1995.

Message Passing Interface Forum, 2003. 238 p. [Electronic resource]

URL: http://mpi-forum.org/docs/mpi-1.1/mpi1-report.pdf (date accessed:

24.10.2024).

12. MPI: A Message-Passing Interface Standard. Version 2.2. Message

Passing Interface Forum, 2009. 647 p. [Electronic resource] URL:

http://mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf (date accessed: 24.10.2024).

13. MPI: A Message-Passing Interface Standard. Version 3.2. Message

Passing Interface Forum, 2015. 636 p. [Electronic resource] URL:

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf (date accessed: 24.10.2024).

Index 305

Index

The index contains all the functions, types, and constants of the MPI library

described in this textbook, as well as the tools of the Programming Taskbook

and Standard Template Library used in it. The "Task solutions" group lists all

the tasks from the Programming Taskbook for MPI-2 that were solved in Sec-

tion 1.

mpi.h, 14, 15, 176

mpi.lib and mpich.lib, 15, 176

MPI_2INT, 32

MPI_Accumulate, 106, 113, 119

MPI_Aint, 57

MPI_Allgather, 47

MPI_Allgatherv, 47

MPI_Allreduce, 51

MPI_Alltoall, 48

MPI_Alltoallv, 48

MPI_Alltoallw, 48

MPI_ANY_SOURCE, 33

MPI_ANY_TAG, 33, 171

MPI_BAND, 50

MPI_Barrier, 45

MPI_Bcast, 45, 129, 136

MPI_BOR, 50

MPI_Bsend, 31

MPI_Bsend_init, 44

MPI_BSEND_OVERHEAD, 34

MPI_Buffer_attach, 33

MPI_Buffer_detach, 34

MPI_BXOR, 50

MPI_BYTE, 32, 103

MPI_CART, 76

MPI_Cart_coords, 79

MPI_Cart_create, 77

MPI_Cart_get, 84

MPI_Cart_rank, 79, 210

MPI_Cart_shift, 85

MPI_Cart_sub, 81, 82

MPI_Cartdim_get, 84

MPI_CHAR, 32

MPI_Close_port, 139

MPI_Comm, 12

MPI_Comm_accept, 138

MPI_Comm_compare, 69

MPI_Comm_connect, 138

MPI_Comm_create, 70, 128

MPI_Comm_disconnect, 139

MPI_Comm_dup, 69, 125

MPI_Comm_free, 72, 139

MPI_Comm_get_parent, 131

MPI_Comm_group, 70, 122

MPI_COMM_NULL, 11, 70, 72, 128, 131

MPI_Comm_rank, 16, 122

MPI_Comm_remote_group, 122

MPI_Comm_remote_size, 122, 126

MPI_COMM_SELF, 11

MPI_Comm_set_errhandler, 210

MPI_Comm_size, 16, 122

MPI_Comm_spawn, 130

MPI_Comm_spawn_multiple, 130, 131

MPI_Comm_split, 73, 123, 128

MPI_Comm_test_inter, 122

MPI_COMM_WORLD, 11, 132

MPI_CONGRUENT, 69

MPI_Datatype, 32

MPI_DATATYPE_NULL, 58

MPI_Dims_create, 84

MPI_DIST_GRAPH, 77

MPI_Dist_graph_create, 92

MPI_Dist_graph_create_adjacent, 92

MPI_Dist_graph_neighbors, 94

MPI_Dist_graph_neighbors_count, 94

MPI_DOUBLE, 32

MPI_DOUBLE_INT, 32, 200

MPI_ERRCODES_IGNORE, 131

MPI_Errhandler_set, 210

MPI_ERROR, 33, 97

MPI_ERROR_RETURN, 210

MPI_Exscan, 52, 220

MPI_File, 96, 101

MPI_File_close, 102

306 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_File_get_byte_offset, 98

MPI_File_get_position, 97

MPI_File_get_position_shared, 97

MPI_File_get_size, 98

MPI_File_iread, 96

MPI_File_iread_at, 96

MPI_File_iread_shared, 96

MPI_File_iwrite, 96

MPI_File_iwrite_at, 96

MPI_File_iwrite_shared, 96

MPI_FILE_NULL, 102

MPI_File_open, 101

MPI_File_read, 96, 97

MPI_File_read_all, 96, 97

MPI_File_read_all_begin, 96

MPI_File_read_all_end, 96

MPI_File_read_at, 96

MPI_File_read_at_all, 96

MPI_File_read_at_all_begin, 96

MPI_File_read_at_all_end, 96

MPI_File_read_ordered, 96, 97, 98

MPI_File_read_ordered_begin, 96

MPI_File_read_ordered_end, 96

MPI_File_read_shared, 96, 97

MPI_File_seek, 97

MPI_File_seek_shared, 97

MPI_File_set_size, 98

MPI_File_set_view, 102

MPI_File_write, 96, 97

MPI_File_write_all, 96, 97, 104

MPI_File_write_all_begin, 96

MPI_File_write_all_end, 96

MPI_File_write_at, 96

MPI_File_write_at_all, 96

MPI_File_write_at_all_begin, 96

MPI_File_write_at_all_end, 96

MPI_File_write_ordered, 96, 97, 98

MPI_File_write_ordered_begin, 96

MPI_File_write_ordered_end, 96

MPI_File_write_shared, 96, 97

MPI_Finalize, 17, 176

MPI_Finalized, 17

MPI_FLOAT, 32

MPI_Gather, 46, 74, 129

MPI_Gatherv, 46

MPI_Get, 106, 118

MPI_Get_count, 33, 97

MPI_GRAPH, 76

MPI_Graph_create, 87

MPI_Graph_get, 90

MPI_Graph_neighbors, 91

MPI_Graph_neighbors_count, 91

MPI_Graphdims_get, 90

MPI_Group, 70

MPI_Group_compare, 70

MPI_Group_difference, 72

MPI_GROUP_EMPTY, 70, 72

MPI_Group_excl, 71

MPI_Group_free, 72

MPI_Group_incl, 71

MPI_Group_intersection, 72

MPI_GROUP_NULL, 70, 72

MPI_Group_range_excl, 71

MPI_Group_range_incl, 71

MPI_Group_rank, 70

MPI_Group_size, 70

MPI_Group_translate_ranks, 70

MPI_Group_union, 72

MPI_Iallgather, 49, 217

MPI_Iallgatherv, 217

MPI_Iallreduce, 52, 218

MPI_Ialltoall, 49, 217

MPI_Ialltoallv, 217

MPI_Ialltoallw, 49

MPI_Ibarrier, 49

MPI_Ibcast, 49, 215

MPI_Ibsend, 42

MPI_IDENT, 69, 71

MPI_Iexscan, 52, 219

MPI_Igather, 49, 215

MPI_Igatherv, 216

MPI_Info, 102

MPI_INFO_NULL, 93, 102, 106, 138

MPI_Init, 16, 131, 176

MPI_Initialized, 16

MPI_INT, 32

MPI_Intercomm_create, 125

MPI_Intercomm_merge, 137

MPI_Iprobe, 44

MPI_Irecv, 42

MPI_Ireduce, 52, 218

MPI_Ireduce_scatter, 52, 218

MPI_Ireduce_scatter_block, 52, 219

MPI_Irsend, 42

MPI_Iscan, 52, 219

MPI_Iscatter, 49, 216

MPI_Iscatterv, 216

MPI_Isend, 42

Index 307

MPI_Issend, 42

MPI_LAND, 50

MPI_LB, 59

MPI_LOCK_EXCLUSIVE, 110

MPI_LOCK_SHARED, 110

MPI_LONG, 32

MPI_Lookup_name, 138

MPI_LOR, 50

MPI_LXOR, 50

MPI_MAX, 49

MPI_MAXLOC, 50, 53

MPI_MIN, 49, 119

MPI_MINLOC, 50, 53

MPI_MODE_APPEND, 102

MPI_MODE_CREATE, 102

MPI_MODE_DELETE_ON_CLOSE, 102

MPI_MODE_NOPUT, 108

MPI_MODE_NOSUCCEED, 109

MPI_MODE_RDONLY, 102

MPI_MODE_RDWR, 102

MPI_MODE_WRONLY, 102

MPI_Offset, 97

MPI_Op, 49, 107

MPI_Op_create, 50

MPI_Open_port, 138

MPI_Pack, 60

MPI_Pack_size, 61

MPI_PACKED, 60

MPI_Probe, 33

MPI_PROC_NULL, 85, 129, 135

MPI_PROD, 49

MPI_Publish_name, 138

MPI_Put, 106

MPI_Recv, 32, 127

MPI_Recv_init, 44

MPI_Reduce, 50, 135

MPI_Reduce_local, 52

MPI_Reduce_scatter, 51

MPI_Reduce_scatter_block, 51

MPI_Request, 42, 49, 52

MPI_Request_free, 44

MPI_REQUEST_NULL, 42

MPI_ROOT, 129, 135, 136

MPI_Rsend, 31

MPI_Rsend_init, 44

MPI_Scan, 51

MPI_Scatter, 47, 81, 129

MPI_Scatterv, 47

MPI_SEEK_CUR, 97

MPI_SEEK_END, 97

MPI_SEEK_SET, 97

MPI_Send, 31, 127

MPI_Send_init, 44

MPI_Sendrecv, 34, 91

MPI_Sendrecv_replace, 34

MPI_SIMILAR, 69, 71

MPI_SOURCE, 33

MPI_Ssend, 31

MPI_Ssend_init, 44

MPI_Start, 44

MPI_Startall, 44

MPI_Status, 33, 97, 171

MPI_STATUS_IGNORE, 33

MPI_SUCCESS, 17

MPI_SUM, 49, 114

MPI_TAG, 33

MPI_TAG_UB, 31

MPI_Test, 43

MPI_Testall, 43

MPI_Testany, 43

MPI_Testsome, 43

MPI_Topo_test, 76

MPI_Type_commit, 58

MPI_Type_contiguous, 56

MPI_Type_create_hindexed, 57

MPI_Type_create_hvector, 57

MPI_Type_create_indexed_block, 57

MPI_Type_create_resized, 59, 200

MPI_Type_create_struct, 57, 200

MPI_Type_extent, 58

MPI_Type_free, 58

MPI_Type_get_extent, 60

MPI_Type_hindexed, 57

MPI_Type_hvector, 57

MPI_Type_indexed, 57

MPI_Type_size, 58

MPI_Type_struct, 57

MPI_Type_vector, 56

MPI_UB, 59

MPI_UNDEFINED, 70, 77, 124

MPI_UNEQUAL, 69, 71

MPI_Unpack, 60

MPI_Unpublish_name, 139

MPI_UNWEIGHTED, 93

MPI_User_function, 50

MPI_Wait, 42

MPI_Waitall, 43

MPI_Waitany, 43

308 M. E. Abramyan. Parallel Programming Based on MPI 2.0

MPI_Waitsome, 43

MPI_Win, 106

MPI_Win_complete, 109, 118

MPI_Win_create, 106, 113, 117

MPI_Win_fence, 108, 113

MPI_Win_free, 106, 120

MPI_Win_lock, 110

MPI_Win_post, 109, 117

MPI_Win_start, 109, 117

MPI_Win_test, 109

MPI_Win_unlock, 110

MPI_Win_wait, 109, 118

MPI_Wtick, 45

MPI_Wtime, 44

PT for MPI-2 taskbook

GetExename, 239

HideTask, 169, 284

pt, 23, 278

pt4.h, 14, 15, 179, 278

pt4console.h, 180, 277

pt4null.h, 179

ptin_iterator<T>, 67, 279

ptout_iterator<T>, 68, 279

SetPrecision, 284

Show, 29, 282

ShowAll, 181

ShowLine, 29, 282

Task, 15, 278

STL library

<algorithm>, 67

<vector>, 67

assign, 147

begin, 68, 148

copy, 68, 75, 148

end, 68, 75, 148

vector<T>, 66, 75, 147

Task solutions

MPI1Proc2, 11

MPI2Send11, 35

MPI3Coll23, 52

MPI4Type14, 61

MPI5Comm3, 72

MPI5Comm17, 77

MPI5Comm29, 86

MPI6File26, 99

MPI7Win13, 111

MPI7Win23, 115

MPI8Inter9, 122

MPI8Inter15, 132

MPI9Matr1, 143

MPI9Matr2, 148

MPI9Matr19, 159

MPI9Matr24, 153

	Preface
	MPI: description and examples of use
	Introduction to MPI
	MPI and its study with the help of the electronic problem book PT for MPI-2
	Basic concepts of MPI programming
	Creating a template for a parallel program
	Running a program in parallel mode
	Executing MPI1Proc2 task
	Using additional information in the debug section

	Basic capabilities of the MPI interface (MPI-1 standard)
	Blocking point-to-point communication: basic features
	Blocking point-to-point communication: examples. Mutual process deadlocks
	Non-blocking point-to-point communications. Persistent requests for interaction. Timing functions
	Collective communications
	Reduction operations and using compound datatypes
	Defining derived datatypes and packing data using dynamic arrays and vector containers
	Creation of new communicators
	Cartesian topology
	Graph topology

	Additional features of the MPI interface (MPI-2 standard)
	Distributed graph topology
	Parallel input-output. File access functions
	Parallel input-output: an example. Setting up the file view
	One-sided communications: general description
	One-sided communications: an example using the simplest synchronization option
	One-sided communications: an example of a more complex version of synchronization
	Inter-communicators
	Dynamic process creation

	Parallel matrix algorithms
	Band and block algorithms for parallel matrix multiplication: general description
	Implementation of a non-parallel matrix multiplication algorithm
	Scattering source data: an example of implementation
	Redistribution of blocks at the initial stage of Cannon's algorithm
	Result gathering stage: an example of file-based output implementation

	Additional techniques for developing parallel programs
	Debugging parallel programs using taskbook tools
	Developing and running parallel programs without the taskbook
	Additional debug features. Output redirection

	Learning tasks
	Processes and their ranks
	Point-to-point communication
	Blocking communications
	Non-blocking communications

	Collective communications
	Collective data transfer
	Global reduction operations

	Derived datatypes and data packing
	The simplest derived datatypes
	Data packing
	Additional ways of derived datatypes creation
	The MPI_Alltoallw function (MPI-2)

	Process groups and communicators
	Creation of new communicators
	Virtual topologies
	The distributed graph topology (MPI-2)
	Non-blocking collective functions (MPI-3)

	Parallel file input-output (MPI-2)
	Local functions for file input-output
	Collective functions for file input-output
	File view setting for file input-output

	One-sided communications (MPI-2)
	One-sized communications with the simplest synchronization
	Additional types of synchronization

	Inter-communicators and process creation
	Inter-communicator creation
	Collective communications for inter-communicators
	Process creation

	Parallel matrix algorithms
	Non-parallel matrix multiplication algorithm
	Band algorithm 1 (horizontal bands)
	Band algorithm 2 (horizontal and vertical bands)
	Cannon's block algorithm
	Fox's block algorithm

	Additions
	Programming Taskbook for MPI-2
	General description
	Taskbook tools for initializing tasks and data input-output
	Debug section
	Functions for outputting and configuring debug information

	Options for individual assignments
	Series of similar tasks
	Set of 24 variants of tasks

	References
	Index

