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1 Parallel methods for solving the n-body gravitational problem 

1.1 Statement of the problem and its mathematical model 

The problem. The initial position of N bodies is given. Each body is also characterized by mass m (scalar 

quantity) and initial velocity v (vector). It is assumed that bodies are not affected by any forces other than gravita-

tional ones. Under the influence of gravity, bodies change their position and velocity. You must model the evolu-

tion of a given set of interacting bodies. 

The mathematical model of the problem uses the following formulas. 

1. The gravitational law 

F = Gm1 m2 / r
2
, where m1 and m2 are the masses of interacting bodies, r is the distance between them, G is 

the gravitational constant equal to 6.67 10 
–11 

Nm
2
/kg

2
, F is the absolute value the force with which each of the 

bodies acts on the other (the force acting on body i from body j is directed from body i to body j). 

2. Rule of addition of forces 

If several forces act on a body, then they can be replaced by one force equal to the vector sum of all the 

original forces. 

3. Newton's second law 

F = ma, where F is the force acting on the body, m is the mass of the body, a is the acceleration that the 

body acquires under the influence of a given force (F and a are vector quantities; their directions coincide). 

The interaction of bodies is modeled step by step using discrete time intervals of fixed duration dt. At each 

step, the force acting on each body at the initial moment of time is calculated (using formulas 1 and 2), and the 

acceleration a is determined from the found force (formula 3). The law of body motion S = S(t) is determined 

from the second order differential equation 

d
2
S / dt

2 
= a(t), 

which is equivalent to a system of two first-order differential equations: 

dS / dt = V(t), 

dV / dt = a(t), 

where V(t) is the velocity of the body at moment t. 

Denoting Si = S(ti) and Vi = V(ti), where ti = t0 + idt, and using the simplest numerical method for solving a 

system of differential equations, in which the function a(x) is replaced by a constant value ai = a(ti) on each seg-

ment [ti , ti +1], we obtain the following formulas for recalculating the position and velocity of the body: 

Vi +1 = Vi + ai dt, 

Si +1 = S i + Vi dt + ai dt
2 
/ 2. 

For simplicity, it is assumed that all bodies are located in the same plane. In this case, all vector quantities 

associated with these bodies also lie in this plane. The position of each body is determined by two coordinates (x, 

y); each vector quantity is also defined by two coordinates: F = (Fx , Fy), a = (ax , ay), V = (Vx , Vy). 

In the case when the interacting bodies are located close to each other, the described simplest calculation 

method turns out to be unstable due to an increase in calculation errors. In this situation, one can use more accu-

rate methods for integrating systems of differential equations, as well as a variable time step (we will not consider 

such modifications). 

To ensure that the simplest version of the algorithm described above does not lead to unstable behavior of a 

system of closely located bodies, a threshold can be imposed on the maximum value of the force acting on the 

body from another (closely located) body. Of course, such a limitation cannot be considered justified from a phys-

ical point of view, however, when modeling a real system of astronomical bodies, the distance between them is so 

large that the forces never reach the specified threshold value. This limitation is intended only to ensure stable 

behavior of the model system of bodies used when testing the resulting program versions. 

When modeling a system (taking into account the imposed restriction on the maximum value of the force), 

one can quite arbitrarily choose such characteristics as the masses of bodies, their velocities, the distances be-

tween them and the value of the gravitational constant. 

1.2 Non-parallel version of the program 

First, we present a less efficient version of the program, in which for each body all the forces acting on it are 

explicitly calculated. 
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#include <iostream>  
#include <iomanip>  
#include <cstdlib>  
#include <ctime> 
#include <cmath> 
#include <omp.h> 
 
using namespace std; 
 
#define gravity 10 // gravitational constant 
#define dt 0.1     // time step 
#define N 800      // number of bodies 
#define fmax 1     // maximum force value 
#define Niter 100  // number of iterations 
 
struct Particle 
{ 
    double x, y, vx, vy; 
}; 
 
struct Force 
{ 
    double x, y; 
}; 
 
Particle p[N]; 
Force f[N]; 
double m[N]; 
 
void Init() 
{ 
    for (int i = 0; i < N; i++) 
    { 
        p[i].x = 20 * (i / 20 - 20) + 10; 
        p[i].y = 20 * (i % 20 - 10) + 10; 
 
        p[i].vx = p[i].y / 15; 
        p[i].vy = -p[i].x / 50; 
 
        m[i] = 100 + i % 100; 
 
        f[i].x = 0; 
        f[i].y = 0; 
    } 
} 
 
void CalcForces1() 
{ 
    for (int i = 0; i < N; i++) 
        for (int j = 0; j < N; j++) 
        { 
            if (i == j) continue; 
            double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
               r_2 = 1 / (dx * dx + dy * dy), 
               r_1 = sqrt(r_2), 
               fabs = gravity * m[i] * m[j] * r_2; 
            if (fabs > fmax) fabs = fmax;  
            f[i].x = f[i].x + fabs * dx * r_1; 
            f[i].y = f[i].y + fabs * dy * r_1; 
        } 
} 
 
void MoveParticlesAndFreeForces() 
{ 
    for (int i = 0; i < N; i++) 
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    { 
        double dvx = f[i].x * dt / m[i], 
            dvy = f[i].y * dt / m[i]; 
        p[i].x += (p[i].vx + dvx / 2) * dt; 
        p[i].y += (p[i].vy + dvy / 2) * dt; 
        p[i].vx += dvx; 
        p[i].vy += dvy; 
        f[i].x = 0; 
        f[i].y = 0; 
    } 
} 
 
void info(const char* s, double time) 
{ 
    cout << setw(30) << left << s << "Time: " << fixed << setprecision(0) << setw(6) << 1000*time  
         << setprecision(12) << "p0: " << setw(12) << p[0].x << ", " << setw(12) << p[0].y << endl; 
} 
 
int main() 
{ 
 double tt = 0; 
 int Titer = 50; 
 for (int kk = 1; kk <= Titer; kk++) 
 { 
 
  Init(); 
  double t = omp_get_wtime(); 
  for (int i = 0; i < Niter; i++) 
  { 
   CalcForces1(); 
   MoveParticlesAndFreeForces(); 
  } 
  t = omp_get_wtime() - t; 
  tt += t; 
 } 
 info("Non-parallel (N*N)", tt/Titer); 
 std::system("pause"); 
 return 0; 
} 
 
 

A set of 800 point bodies (particles) located at the nodes of a rectangular grid and rotating around the center 

of this grid is used as a model system. 

 
Particle masses vary in the range from 100 to 199. In the figures, more massive particles are presented in the 

form of circles with a large radius. Below are figures of the particle system after 20, 40, 60, 80 and 100 iterations. 
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The values of the coordinates of the initial particle after 100 iterations are output as test values, which will 

be used in the future to check the correctness of various modifications of the original program. In addition, the 

calculation time in milliseconds is displayed; the omp_get_wtime() function is used for this. For a more accurate 

estimate of time, the program performs 50 calculations and displays the average time required for one calculation. 

Calculations were carried out in the Visual Studio 2017 environment. 

When you run the above program, the following text will be output: 

Non-parallel (N*N)            Time: 1665  p0: -285.496803732846, 7.014089107234 

The main part of the calculations is performed in the CalcForces1 function, which determines the interaction 

forces between the bodies. The double loop used in it, in which both parameters are moved from 0 to N–1, leads 

to the fact that the same force arising from the interaction of two bodies is calculated twice. At the same time, 

when finding the force, the special techniques were used to speed up the calculations: in the auxiliary variable r_2 

the inverse square of the distance is stored, which allows us to subsequently avoid the use of the division opera-

tion (which takes longer than the multiplication operation); in another variable r_1 the inverse value of the dis-

tance is stored; thus, the square root function is called only once. 

An obvious way to speed up the calculation of forces is to arrange for the simultaneous determination of the 

forces acting between a pair of bodies. To do this, it is enough to change the loops so that the parameter of the 

inner loop j is always greater than the parameter of the outer loop i: 

 
void CalcForces2() 
{ 
    for (int i = 0; i < N - 1; i++) 
        for (int j = i + 1; j < N; j++) 
        { 
            double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
               r_2 = 1 / (dx * dx + dy * dy), 
               r_1 = sqrt(r_2), 
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               fabs = gravity * m[i] * m[j] * r_2; 
            if (fabs > fmax) fabs = fmax;  
            f[i].x += dx = fabs * dx * r_1; 
            f[i].y += dy = fabs * dy * r_1; 
            f[j].x -= dx; 
            f[j].y -= dy; 
        } 
} 
 

To avoid recalculating the force components, these components are stored in the dx and dy variables. 

When calculating using the CalcForces2 function, the result will be as follows: 

Non-parallel (N*(N-1)/2)      Time: 1087  p0: -285.496803732846, 7.014089107234 

1.3 Parallel versions of the program using shared memory 

1.3.1 Parallelizing an inefficient algorithm 

Let's add a directive to the beginning of the program that determines the number of threads for the parallel 

version of the program: 

 
#define Nthr 2 // number of threads 

 

First we transform the function CalcForces1; to do this, just add the omp parallel for directive to its begin-

ning: 

 
void CalcForces1Par() 
{ 
#pragma omp parallel for num_threads(Nthr) 
    for (int i = 0; i < N; i++) 
        for (int j = 0; j < N; j++) 
        { 
            if (i == j) continue; 
            double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
               r_2 = 1 / (dx * dx + dy * dy), 
               r_1 = sqrt(r_2), 
               fabs = gravity * m[i] * m[j] * r_2; 
            if (fabs > fmax) fabs = fmax;  
            f[i].x += fabs * dx * r_1; 
            f[i].y += fabs * dy * r_1; 
        } 
} 

A similar directive can be added to the beginning of the MoveParticlesAndFreeForces function, although 

the effect of parallelizing this stage of the algorithm will be significantly less: 

 
void MoveParticlesAndFreeForcesPar() 
{ 
#pragma omp parallel for num_threads(Nthr) 
    for (int i = 0; i < N; i++) 
    { 
        double dvx = f[i].x * dt / m[i], 
            dvy = f[i].y * dt / m[i]; 
        p[i].x += (p[i].vx + dvx / 2) * dt; 
        p[i].y += (p[i].vy + dvy / 2) * dt; 
        p[i].vx += dvx; 
        p[i].vy += dvy; 
        f[i].x = 0; 
        f[i].y = 0; 
    } 
} 

Both threads will have the same load, so it is natural to expect that the program's running time will be ap-

proximately halved. In fact, the result is somewhat worse: 

Parallel (N*N)                Time: 969   p0: -285.496803732846, 7.014089107234 
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1.3.2 Options for parallelizing an efficient algorithm  
without load balancing 

If you transform the CalcForces2 function in a similar way (by adding the directive #pragma omp parallel 

for num_threads(Nthr) to its beginning), the result will be as follows: 

Parallel (N*(N-1)/2)          Time: 847   p0: -285.496720726482, 7.013726526215 

In this case, the speed up compared to the original non-parallel algorithm turned out to be significantly less 

than two, since the threads are not load balanced. Even more important is the fact that the result of the calcula-

tions differs from what was previously obtained. This is explained by thread competition for access to the ele-

ments of array f, since each element is now modified by different iterations of the outer loop (which may be ex-

ecuted in parallel on different threads). In this case, a situation is possible when the value of some element of the 

array f will be simultaneously read and incremented by different threads; as a result, of course, one of the added 

forces will be lost. 

To correct this problem, it is enough to protect the operators for changing the elements of the array f using a 

critical section: 

 
void CalcForces2ParA() 
{ 
#pragma omp parallel for num_threads(Nthr) 
    for (int i = 0; i < N - 1; i++) 
        for (int j = i + 1; j < N; j++) 
        { 
            double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
               r_2 = 1 / (dx * dx + dy * dy), 
               r_1 = sqrt(r_2), 
               fabs = gravity * m[i] * m[j] * r_2; 
            if (fabs > fmax) fabs = fmax;  
#pragma omp critical 
            { 
            f[i].x += dx = fabs * dx * r_1; 
            f[i].y += dy = fabs * dy * r_1; 
            f[j].x -= dx; 
            f[j].y -= dy; 
            } 
        } 
} 

Unfortunately, the resulting program will be extremely inefficient, since one of the threads will regularly 

suspend its work waiting for the critical section to be freed: 

Parallel (--, critical)       Time: 5627  p0: -285.496803732846, 7.014089107234 

However, the modification achieves its goal: now the result of the calculations does not depend on the order 

in which threads access the elements of the array f . 

In order to speed up calculations and at the same time prevent thread competition, it is enough to use aux-

iliary arrays of ―additional forces‖ tf, connecting each thread with its own array of additives. As a result, there 

will be no competition when calculating additives. In this case, you will additionally have to provide a loop in 

which the elements of the tf arrays will be added to the corresponding elements of the f array: 

 
Force tf[N][Nthr]; 
 
void Init() 
{ 
    for (int i = 0; i < N; i++) 
    { 
        p[i].x = 20 * (i / 20 - 20) + 10; 
        p[i].y = 20 * (i % 20 - 10) + 10; 
 
        p[i].vx = p[i].y / 15; 
        p[i].vy = -p[i].x / 50; 
 
        m[i] = 100 + i % 100; 
 
        f[i].x = 0; 
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        f[i].y = 0; 
    } 
    for (int i = 0; i < N; i++) 
        for (int j = 0; j < Nthr; j++) 
        { 
            tf[i][j].x = 0; 
            tf[i][j].y = 0; 
        } 
} 
 
void CalcForces2ParB() 
{ 
#pragma omp parallel for num_threads(Nthr) 
    for (int i = 0; i < N - 1; i++) 
    { 
        int k = omp_get_thread_num(); 
        for (int j = i + 1; j < N; j++) 
        { 
            double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
               r_2 = 1 / (dx * dx + dy * dy), 
               r_1 = sqrt(r_2), 
               fabs = gravity * m[i] * m[j] * r_2; 
            if (fabs > fmax) fabs = fmax;  
            tf[i][k].x += dx = fabs * dx * r_1; 
            tf[i][k].y += dy = fabs * dy * r_1; 
            tf[j][k].x -= dx; 
            tf[j][k].y -= dy; 
        } 
    } 
#pragma omp parallel for num_threads(Nthr) 
    for (int i = 0; i < N; i++) 
        for (int j = 0; j < Nthr; j++) 
        { 
            f[i].x += tf[i][j].x; 
            f[i].y += tf[i][j].y; 
            tf[i][j].x = 0; 
            tf[i][j].y = 0; 
        } 
} 

This version of the program runs slower than the previous parallel versions (except for the program with a 

critical section), but it gives the correct result: 

Parallel (--, add array)      Time: 1002  p0: -285.496803732846, 7.014089107234 

1.3.3 Options for parallelizing an efficient algorithm  
with load balancing 

It is natural to expect that if the latest version of the parallel program ensures that the load is balanced for 

the threads, the speed of the program will increase even more. 

The simplest way to ensure a more balanced load on threads is to use the dynamic option : 

 
#pragma omp parallel for num_threads(Nthr) schedule(dynamic, block)  

 

Below are the calculation results for different values of the block parameter (the size of the ―portion‖ of ite-

rations that is assigned to each thread): 

Parallel (--, --, dynamic 1)  Time: 962   p0: -285.496803732846, 7.014089107234 

Parallel (--, --, dynamic 25) Time: 725   p0: -285.496803732846, 7.014089107234 

The speed of the program increases if each thread is assigned a sufficiently large portion of iterations. 

Another way to ensure load balancing is to distribute iterations into ―bands‖: thread number k is assigned 

iteration numbers k, k + Nthr, k + 2* Ntrh, …, where Nthr denotes the total number of threads (threads, like itera-

tions, are numbered from zero). In this case, the loop iterations are distributed among the threads as follows: 

0, 1, 2, …, Nthr–1, 0, 1, 2, …, Nthr–1, 0, 1, 2, …, Nthr–1, … . 

Here is a variant of the CaclForces function, which uses band distribution: 
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void CalcForces2ParD1() 
{ 
#pragma omp parallel num_threads(Nthr) 
    { 
    int k = omp_get_thread_num(); 
    for (int i = k; i < N - 1; i+=Nthr) 
    { 
        for (int j = i + 1; j < N; j++) 
        { 
            double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
               r_2 = 1 / (dx * dx + dy * dy), 
               r_1 = sqrt(r_2), 
               fabs = gravity * m[i] * m[j] * r_2; 
            if (fabs > fmax) fabs = fmax;  
            tf[i][k].x += dx = fabs * dx * r_1; 
            tf[i][k].y += dy = fabs * dy * r_1; 
            tf[j][k].x -= dx; 
            tf[j][k].y -= dy; 
        } 
    } 
    } 
#pragma omp parallel for num_threads(Nthr) 
    for (int i = 0; i < N; i++) 
        for (int j = 0; j < Nthr; j++) 
        { 
            f[i].x += tf[i][j].x; 
            f[i].y += tf[i][j].y; 
            tf[i][j].x = 0; 
            tf[i][j].y = 0; 
        } 
} 

This version runs faster than the original version without load balancing, but it will lose to the version with 

dynamic thread distribution: 

Parallel (--, --, bands)      Time: 799   p0: -285.496803732846, 7.014089107234 

The most optimal load balancing is achieved by distributing flows across ―backward bands‖. In this case, 

iterations are distributed across threads in a ―mirror‖ order: 

0, 1, 2, …, Nthr–1, Nthr–1, …, 2, 1, 0, 0, 1, 2, …, Nthr–1, Nthr–1, …, 2, 1, 0, … . 

Here is a variant of the CaclForces function, which uses backward band distribution: 

 
void CalcForces2ParD2() 
{ 
#pragma omp parallel num_threads(Nthr) 
    { 
    int k = omp_get_thread_num(); 
    for (int i0 = 0; i0 < N / Nthr; i0++) 
    { 
        int i = (i0 % 2 == 0) ? i0 * Nthr + k : (i0 + 1) * Nthr - k - 1; 
        for (int j = i + 1; j < N; j++) 
        { 
            double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
               r_2 = 1 / (dx * dx + dy * dy), 
               r_1 = sqrt(r_2), 
               fabs = gravity * m[i] * m[j] * r_2; 
            if (fabs > fmax) fabs = fmax;  
            tf[i][k].x += dx = fabs * dx * r_1; 
            tf[i][k].y += dy = fabs * dy * r_1; 
            tf[j][k].x -= dx; 
            tf[j][k].y -= dy; 
        } 
    } 
    } 
#pragma omp parallel for num_threads(Nthr) 
    for (int i = 0; i < N; i++) 



Parallel methods for solving the n-body gravitational problem  9 

 

 

        for (int j = 0; j < Nthr; j++) 
        { 
            f[i].x += tf[i][j].x; 
            f[i].y += tf[i][j].y; 
            tf[i][j].x = 0; 
            tf[i][j].y = 0; 
        } 
} 

This version is not much faster than the "regular" band partitioning version, but is still slightly slower than 

the dynamic thread allocation option: 

Parallel (--, --, b-bands)    Time: 789   p0: -285.496803732846, 7.014089107234 

You can try to speed up the backward band option by getting rid of the ternary operator and organizing the 

calculations in the form of two loops: 
void CalcForces2ParD3() 
{ 
#pragma omp parallel num_threads(Nthr) 
 { 
  int k = omp_get_thread_num(); 
  for (int i = k; i < N - 1; i += 2 * Nthr) 
  { 
   for (int j = i + 1; j < N; j++) 
   { 
    double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
     r_2 = 1 / (dx * dx + dy * dy), 
     r_1 = sqrt(r_2), 
     fabs = gravity * m[i] * m[j] * r_2; 
    if (fabs > fmax) fabs = fmax; 
    tf[i][k].x += dx = fabs * dx * r_1; 
    tf[i][k].y += dy = fabs * dy * r_1; 
    tf[j][k].x -= dx; 
    tf[j][k].y -= dy; 
   } 
  } 
  for (int i = 2 * Nthr - k - 1; i < N - 1; i += 2 * Nthr) 
  { 
   for (int j = i + 1; j < N; j++) 
   { 
    double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 
     r_2 = 1 / (dx * dx + dy * dy), 
     r_1 = sqrt(r_2), 
     fabs = gravity * m[i] * m[j] * r_2; 
    if (fabs > fmax) fabs = fmax; 
    tf[i][k].x += dx = fabs * dx * r_1; 
    tf[i][k].y += dy = fabs * dy * r_1; 
    tf[j][k].x -= dx; 
    tf[j][k].y -= dy; 
   } 
  } 
 } 
#pragma omp parallel for num_threads(Nthr) 
 for (int i = 0; i < N; i++) 
  for (int j = 0; j < Nthr; j++) 
  { 
   f[i].x += tf[i][j].x; 
   f[i].y += tf[i][j].y; 
   tf[i][j].x = 0; 
   tf[i][j].y = 0; 
  } 
} 

This version is comparable in speed to the option with dynamic thread distribution: 

Parallel (--, --, b-bands2)    Time: 726   p0: -285.496803732846, 7.014089107234 

For a more visual comparison of the speed of execution of various variants of the algorithm, we present 

them in a common list: 

N = 800,  Niter = 100,  Nthr = 2 
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Non-parallel (N*N)            Time: 1665  p0: -285.496803732846, 7.014089107234 

Non-parallel (N*(N-1)/2)      Time: 1087  p0: -285.496803732846, 7.014089107234 

Parallel (N*N)                Time: 969   p0: -285.496803732846, 7.014089107234 

Parallel (N*(N-1)/2)          Time: 847   p0: -285.496720726482, 7.013726526215 

Parallel (--, critical)       Time: 5627  p0: -285.496803732846, 7.014089107234 

Parallel (--, add array)      Time: 1002  p0: -285.496803732846, 7.014089107234 

Parallel (--, --, dynamic 1)  Time: 962   p0: -285.496803732846, 7.014089107234 

Parallel (--, --, dynamic 25) Time: 725   p0: -285.496803732846, 7.014089107234 

Parallel (--, --, bands)      Time: 799   p0: -285.496803732846, 7.014089107234 

Parallel (--, --, b-bands)    Time: 789   p0: -285.496803732846, 7.014089107234 

Parallel (--, --, b-bands2)   Time: 726   p0: -285.496803732846, 7.014089107234 

1.4 Parallel algorithms for solving the n-body problem  
using message passing 

When implementing a parallel algorithm for solving the n-body problem based on message passing, you can 

use any of the three main models of process interaction used in distributed programming: 

 the manager-workers model associated with the task portfolio paradigm; 

 a pulsing model, in which groups of interacting processes alternate in the roles of sender and receiver; 

 a conveyor model, in which messages circulate through a chain of processes, with each process always 

receiving data from the preceding process and passing data to the next. 

In what follows we assume that the number of bodies N is proportional to the number of worker processes 

Wproc; in this case, a block of N / Wproc bodies will be associated with each process. In the pulsing and con-

veyor models, the total number of processes is equal to the number of worker processes; in the manager-workers 

model, the total number of processes is Wproc + 1 (Wproc of worker processes + manager process). 

Information about bodies includes two sets of data: a constant set of masses of bodies and a changing set of 

positions and velocities of bodies. While positions and velocities have to be sent between different processes in 

any implementation of a parallel algorithm, it is advisable to store the masses of bodies in each process in full. 

Therefore, in all the algorithms described below, it is assumed that an array m of size N is used to store the mass 

of bodies, and arrays of corresponding structures are used to store other characteristics of bodies (position, veloci-

ty, force acting on the body), similar to the Particle and Force structures described above. In this case, the sizes of 

these arrays of structures will, as a rule, be less than N.  

1.4.1 Manager-workers model 

The main problem that arises when parallelizing the algorithm for solving the n-body problem is due to the 

fact that in an effective non-parallel implementation of this algorithm, the outer loop associated with finding 

forces performs a different number of calculations at different iterations. Thus, if you simply divide the original 

set of bodies into blocks of equal size and process each block in a separate process, then the load on the processes 

will be different. 

In the ―manager-workers‖ model, the manager process first forms a portfolio of tasks, each of which is de-

termined by a pair of block numbers (i , j). Task (i , j) consists of calculating, for all bodies included in blocks i 

and j, the forces of interaction between them. It is clear that it is sufficient to consider blocks for which i  j. By 

numbering the blocks from 0 to Wproc –1, we get the following pairs: 

(0, 0), (0, 1), …, (0, Wproc –1), (1, 1), (1, 2), …, (1, Wproc –1), …, ( Wproc –1 , Wproc –1). 

So the total number of tasks is Wproc  (Wproc + 1)/2. 

Using a portfolio of tasks provides a good balance for work processes, but does not allow you to determine 

in advance which specific blocks of bodies will be processed by each process. Therefore, in this model, it makes 

sense to store information about the current state of all bodies in each process. 

So, each worker process stores information about the mass of all bodies (double m[N]), about the current 

state of all bodies (Particle p[N]) and about the forces acting on bodies (Force fTotal[N]). In addition, each 

process must store another array of type Force (Force f[N]), which will store the part of the total force acting on 

each body, which is calculated in this process. 
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In this case, the manager process may not store data about interacting bodies at all, exchanging with worker 

processes only pairs of block numbers. 

When the manager and worker processes interact, each worker process, which finishes its task, sends the 

manager a request message about a new pair of blocks for processing, and the manager sends this worker process 

either the next pair of blocks from the task portfolio, or, if the portfolio is empty, a special notification that the 

tasks have ended (as such a notification, you can, for example, send a pair (–1, –1)). 

In order not to use a large number of checks when working with a portfolio of tasks, it is advisable to imme-

diately add to it not only ―real‖ pairs of blocks (in the amount of Wproc  (Wproc + 1)/2), but also notifications 

about the exhaustion of tasks (in the amount of Wproc). This set of blocks is formatted as an array and is filled 

once — at the beginning of the manager process. All subsequent actions are repeated Niter times. In this loop, an 

inner loop is launched on tasks from the portfolio, in which the manager process waits for notification from any 

of the worker processes that it is ready to accept the next task, and then sends to this process a task with the next 

number (in this case, it can be guaranteed that in the end each worker process will receive ―empty‖ problem  

(–1, –1)). For such messaging, it is enough to use point-to-point communication functions. 

Now let us describe the actions of the worker processes. First, in each process the characteristics of all bo-

dies are initialized. All subsequent actions are repeated Niter times. 

Until the process receives an ―empty‖ task in response to a request for the next task, actions are performed 

to calculate the interaction forces between the bodies included in the blocks i and j of the next received task (i , j) 

(the calculated forces are placed in the array f). In this case, two versions of the force calculation function should 

be provided: one for processing blocks of the form (i, i), and the other for blocks (i , j) with i  j . After receiving 

an ―empty‖ task, the process exits the task processing loop. After all work processes exit the task processing loop, 

it is necessary to combine, for each body, all the forces, which are calculated in each of the work processes. To do 

this, the easiest way is to use the collective reduction operation MPI_Allreduce, which will ensure that the result-

ing total values are sent to all working processes. After this, each work process must recalculate the states (i.e., 

positions and velocities) of those bodies that are included in the corresponding block (it is natural to associate a 

block of bodies of number i with a work process of rank i). In this case, you should also reset the values of the 

elements of the array f (the elements of the fTotal array do not need to be reset). Finally, after recalculating the 

states of the bodies, each process must send the new states of ―its‖ bodies to all processes. To do this, it is conve-

nient to use the collective operation MPI_Bcast (it is necessary to ensure that each worker process sends only that 

part of the state array p that was recalculated by this process). 

Note. To enable collective operations to be performed only on worker processes, you must define a new 

communicator at the beginning of the program that includes only worker processes, and use this communicator in 

collective operations. 

Let us present two versions of the results output by the program when processing the set of initial data de-

scribed earlier. The program was implemented as an MPIDebug 9 task; the process of rank 8 was used as the 

manager. The output was done using the Show and ShowLine functions. In addition to the total calculation time 

for each process, information was displayed on the number of pairs of bodies for which the gravitational interac-

tion forces were calculated. Also, in order to check the correctness of the algorithm, the final positions for the first 

and last body from the original set were output. Calculations show a not very good balance of processes in terms 

of the number of calculated forces, but at the same time a high speed, which is comparable to the best speed 

achieved in a parallel program with shared memory. Due to the features of the algorithm, the number of forces 

found in each process differs in different runs. 

 0|  1>  Time = 1561.64 PairsCount = 4850550 
 0|  2>  -285.496803732846 7.014089107234 
 1|  1>  Time = 1572.00 PairsCount = 4136000 
 2|  1>  Time = 1571.87 PairsCount = 3740750 
 3|  1>  Time = 1571.74 PairsCount = 4050950 
 4|  1>  Time = 1571.60 PairsCount = 3490350 
 5|  1>  Time = 1572.09 PairsCount = 3440750 
 6|  1>  Time = 1571.69 PairsCount = 3040250 
 7|  1>  Time = 1571.69 PairsCount = 5210400 
 7|  2>  368.910141051039 41.575105017689 
 8|  1>  Manager Time = 1549.99 
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 0|  1>  Time = 1579.54 PairsCount = 4870650 
 0|  2>  -285.496803732846 7.014089107234 
 1|  1>  Time = 1589.97 PairsCount = 4320250 
 2|  1>  Time = 1589.61 PairsCount = 3955500 
 3|  1>  Time = 1589.77 PairsCount = 4000750 
 4|  1>  Time = 1589.45 PairsCount = 3465200 
 5|  1>  Time = 1590.03 PairsCount = 3196100 
 6|  1>  Time = 1589.41 PairsCount = 2896200 
 7|  1>  Time = 1589.64 PairsCount = 5255350 
 7|  2>  368.910141051039 41.575105017689 
 8|  1>  Manager Time = 1539.45 

1.4.2 Pulsing model 

In the pulsing model, all processes are equal, that is, they are worker processes. In this model, each process 

is ―responsible‖ for calculating the forces associated with the bodies of its block. In this case, of course, the 

process must receive the states of all bodies that interact with ―its‖ bodies. 

Let us recall that in an efficient version of the non-parallel algorithm, for each body, the forces of its interac-

tion with bodies having higher order numbers were calculated; in this case, the found forces were immediately 

added to the total force for each of the two interacting bodies. 

Taking this feature into account, it is enough, for any process in the pulsing algorithm, to receive the states 

of bodies only from those processes whose rank exceeds the rank of the given process. However, each process 

must ―return‖ to those processes that transferred states to it the corresponding values of the calculated forces. 

Thus, one part of the total force acting on each body from a block associated with a certain process is calculated 

in the process itself, and the other part is sent to this process from processes of lower rank. 

                                             
Fig. 1. Blocks of the same size                                                   Fig. 2. Blocks of different sizes 

 

It is clear that with a uniform distribution of bodies across blocks, the work of the processes will not be ba-

lanced: a process of rank 0 must receive the states of bodies from all other processes and calculate all the forces 

acting on these bodies (and also it must send the corresponding forces to all processes of a higher rank), and the 

process of rank Wproc – 1 must calculate only the forces of interaction between its bodies, send the states of its 

bodies to all processes of lower rank and receive from them the values of the forces calculated in these processes. 

Using the diagram shown in Fig. 1, we can say that each process must process its own column of data, sending the 

calculated forces ―up‖ its column, with the ―area‖ of the column corresponding to the amount of calculations that 

a given process must perform. 

For more uniform load balancing, it is enough to use blocks of different sizes, allocating the smallest number 

of bodies for a process of rank 0, and the largest number for a process of rank Wproc – 1 (see Fig. 2). 

Thus, in this method, you will need to first generate blockSize and blockStart arrays, the size of which is 

equal to the number of processes. For a process of rank i, the blockSize[i] value determines the number of bodies 

included in this block, and the blockStart[i] value is the index of the initial body included in this block. 
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To form these arrays, you can use the following algorithm: first, calculate the average number avrSize of in-

teracting pairs of bodies for each block, equal to N (N – 1)/2 Wproc , then, starting from the top right pair (N –1, 

N –1), pairs of bodies located in columns are summed up until the number of pairs exceeds avrSize, after which 

all bodies corresponding to the processed columns, are associated with the next block, and the process is repeated. 

These calculations should be carried out for each work process. During these calculations, you also need to de-

termine the size of the maximum block, maxBlockSize, since this is the size that needs to be provided for the ar-

rays used to transfer data between processes. 

In addition to forming the blockSize and blockStart arrays, at the beginning of each process, it is necessary 

to initialize the states of those bodies that belong to the block associated with this process. Recall that to reduce 

the number of data transfers, it is advisable to store the masses of all bodies m[N] in each process. Memory for 

other arrays should be allocated dynamically: for a process of rank i, arrays p and f (of type Particle and Force, 

respectively) should have size blockSize [i], and arrays tp and tf, intended for receiving data (states and forces) 

from other processes, must have size maxBlockSize. 

We now briefly describe the subsequent actions performed by each worker process. All these actions are re-

peated Niter times. 

First, each process sends data from its array p to all processes of lower rank. For this transfer, you can use 

the non-blocking MPI_Isend command, which allows you to continue program execution without waiting for the 

end of the message transfer actions. The process then calculates the forces acting between the bodies of its block. 

After this, for all processes whose rank exceeds the rank of this process, the following three actions are per-

formed: the process receives the states of bodies from a process of higher rank, calculates the forces acting be-

tween its bodies and the bodies obtained from this process (in this case, the forces for their bodies are accumu-

lated in the f array, and the forces for bodies of another process are accumulated in the tf array, which must be 

reset to zero at the beginning of the force calculation procedure), and sends back the force array tf. 

Finally, the process receives, from all processes of lower rank, the arrays of forces calculated in them and 

adds these forces (located in the array tf) to the array f. 

The last action is to recalculate the state of the bodies using forces f and reset the array f. 

Let us present a version of the results produced by the program when processing the set of initial data de-

scribed earlier. The program was implemented as an MPIDebug8 task; all processes were working processes. The 

output was performed using the Show and ShowLine functions. In addition to the total calculation time for each 

process, information was displayed on the number of pairs of bodies for which the gravitational interaction forces 

were calculated. Also, in order to check the correctness of the algorithm, the final positions for the first and last 

body from the original set were output. Calculations show a good balance of processes in terms of the number of 

calculated forces. At the same time, in terms of execution speed, this algorithm is inferior to the ―manager-

workers‖ algorithm. 

 0|  1>  Time = 1757.50 PairsCount = 3797500 
 0|  2>  -285.496803732846 7.014089107234 
 1|  1>  Time = 1783.95 PairsCount = 4046000 
 2|  1>  Time = 1781.43 PairsCount = 4050400 
 3|  1>  Time = 1785.88 PairsCount = 4020000 
 4|  1>  Time = 1780.60 PairsCount = 4016600 
 5|  1>  Time = 1790.49 PairsCount = 4009500 
 6|  1>  Time = 1786.08 PairsCount = 4001400 
 7|  1>  Time = 1790.46 PairsCount = 4018600 
 7|  2>  368.910141051039 41.575105017689 

1.4.3 Conveyor model 

In the conveyor model, as in the pulsing model, all processes are equal, that is, are the worker processes. A 

common property of these models is that each process is ―responsible‖ for calculating the forces associated with 

the bodies of its block. However, in the conveyor model, a process receives data about the state of bodies asso-

ciated with other processes not directly from them, but along a chain, always receiving data from its ―left‖ neigh-

bor and sending data to its ―right‖ neighbor. To correctly determine the ranks of the left and right neighbors for a 

process of rank i, one should use the formulas (i + Wproc – 1) % Wproc and (i + 1) % Wproc respectively. 
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In the simplest version of the conveyor model, at each of the Niter iterations of the algorithm, each process 

first sends bodies from its block to the right process, then calculates the interaction forces between the bodies of 

its block, after which, in a loop repeating Wproc – 1 time, receives the next block of bodies from its left neighbor 

and calculates the forces between its bodies and the bodies from the received block. After calculating all the 

forces acting on bodies from its block, the process recalculates the states of its bodies. 

Unfortunately, in the simplest version described, the forces between bodies from different blocks are calcu-

lated twice : in each of the processes associated with these blocks. In this respect, this version is similar to the first 

of the previously considered non-parallel algorithms. 

In order not to duplicate the calculation of forces, you can modify the algorithm as follows: each process 

sends to its right neighbor not only a set of states of the next block of bodies, but also a set of forces acting on 

these bodies (initially this set contains zero values). Having received this data from the left neighbor, the process 

calculates the interaction forces only for those of its bodies whose ―true‖ numbers (that is, the numbers of bodies 

in the original set before dividing it into blocks) are less than the true numbers of the bodies interacting with 

them, obtained from another process . In addition, the process adds the calculated ―paired‖ forces to the resulting 

set of forces, and then sends the data further. After the sent data block has made a ―full loop‖, it will return to the 

process that sent it, and at the same time it will contain the part of the forces acting on the bodies of this process 

that were calculated in other processes. All that remains is to add this part to the forces calculated in the process 

itself and recalculate the states of their bodies. In addition to recalculating the state, at the final stage of each itera-

tion it is necessary to reset the force values. 

This modification of the original inefficient algorithm leads to an imbalance of processes: processes with 

lower ranks will calculate a larger number of forces. In this model, instead of introducing blocks of different sizes 

into consideration (as in the pulsing model discussed earlier), another technique can be used: distributing bodies 

into bands while maintaining the same blockSize for all blocks (blockSize = N / Wproc). Distribution by bands in 

this case means that each block will include one body from each band, into which the entire set of bodies is di-

vided. For example, in the case of partitioning into simple bands, the i-th block will include bodies with numbers i 

, i + Wproc , i + 2 Wproc , … . 

Such an approach will require modification of the procedure for initializing the states of bodies associated 

with the i-th process, but will ensure a good balance of processes. When determining which forces need to be cal-

culated in a given process and which forces are left to be calculated by the ―paired‖ process, it is enough, as in the 

previous modification of the algorithm, to compare the ―true‖ numbers of the processed bodies and calculate the 

forces only in the case when the body number, related to the current process, is less than the number of the body 

received from another process (the type of inequality does not matter: you can also use a variant of the algorithm 

in which forces are calculated if the number of the body from the current process is greater than the number of 

the body received from another process). 

The perfect balance, in which each process calculates the same number of forces, can be achieved by divid-

ing the bodies into backward bands (this partition is described in the section devoted to parallel algorithms with 

shared memory). 

With such a modification of the original algorithm, it is advisable to define a new ParticleForce data struc-

ture, including both data on the state of a certain body (position x, y and velocity vx, vy ), and data on the forces 

acting on it (fx, fy). In each process, it is necessary to declare arrays p and tp of type ParticleForce, each of which 

has a size of blockSize . The p array stores information about the ―own‖ bodies of the process (including the val-

ues of forces calculated in this process), and the tp array is used to receive and subsequently send data about the 

state of bodies from other processes, and, after completion of conveyor calculations, the tp array is used to receive 

data on additional forces for the ―own‖ bodies of the process, calculated in other processes. 

Let us present variants of the results output by the program when processing the set of initial data described 

earlier. The program was implemented as an MPIDebug8 task; all processes were worker processes. The output 

was done using the Show and ShowLine functions . In addition to the total calculation time for each process, in-

formation was displayed on the number of pairs of bodies for which the gravitational interaction forces were cal-

culated. Also, in order to check the correctness of the algorithm, the final positions for the first and last body from 

the original set were output. 

The first version corresponds to an algorithm without process balancing (in each process, the forces were 

calculated when processing a pair of bodies in which the number of ―its‖ body was less than the number of the 
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body obtained from another process). Despite the obvious imbalance in the number of forces found, the operating 

time of the processes is comparable to the time obtained for the pulsing model. 

 0|  1>  Time = 1736.41 PairsCount = 7495000 
 0|  2>  -285.496803732846 7.014089107234 
 1|  1>  Time = 1748.09 PairsCount = 6495000 
 2|  1>  Time = 1750.67 PairsCount = 5495000 
 3|  1>  Time = 1752.22 PairsCount = 4495000 
 4|  1>  Time = 1750.43 PairsCount = 3495000 
 5|  1>  Time = 1750.01 PairsCount = 2495000 
 6|  1>  Time = 1752.19 PairsCount = 1495000 
 7|  1>  Time = 1752.83 PairsCount = 495000 
 7|  2>  368.910141051039 41.575105017689 
The second version corresponds to an algorithm with balancing based on partitioning into bands. The algo-

rithm turned out to be almost balanced in terms of the number of calculated forces, but the operating time of each 

process increased (due to additional calculations associated with determining the ―true‖ numbers of interacting 

bodies). 

 0|  1>  Time = 2212.17 PairsCount = 4030000 
 0|  2>  -285.496803732846 7.014089107234 
 1|  1>  Time = 2226.92 PairsCount = 4020000 
 2|  1>  Time = 2228.65 PairsCount = 4010000 
 3|  1>  Time = 2229.17 PairsCount = 4000000 
 4|  1>  Time = 2227.52 PairsCount = 3990000 
 5|  1>  Time = 2228.85 PairsCount = 3980000 
 6|  1>  Time = 2226.93 PairsCount = 3970000 
 7|  1>  Time = 2227.18 PairsCount = 3960000 
 7|  2>  368.910141051039 41.575105017689 
The third option corresponds to an algorithm with balancing based on partitioning into backward bands. The 

algorithm is completely balanced in terms of the number of calculated forces and gives a slightly shorter time 

compared to the previous balancing option, but the resulting time is still inferior to the version without any ba-

lancing. It should be noted that, due to the partitioning into backward bands, both the first and last bodies from the 

original set are processed in the process of rank 0. 

 0|  1>  Time = 2210.63 PairsCount = 3995000 
 0|  2>  -285.496803732846 7.014089107234 
 0|  3>  368.910141051039 41.575105017689 
 1|  1>  Time = 2225.66 PairsCount = 3995000 
 2|  1>  Time = 2225.72 PairsCount = 3995000 
 3|  1>  Time = 2222.78 PairsCount = 3995000 
 4|  1>  Time = 2219.32 PairsCount = 3995000 
 5|  1>  Time = 2222.57 PairsCount = 3995000 
 6|  1>  Time = 2219.82 PairsCount = 3995000 
 7|  1>  Time = 2224.73 PairsCount = 3995000 

2 Learning tasks (the MPIGravit group) 

2.1 Tasks formulations  

MPIGravit1. Implement the manager-workers method and test it on an 800-point input data set of 800 points 

(described in the program template). The number of processes is always 9, the manage process has a rank 8. 

In addition to the results required in the task, output (in the debug section) additional information about the 

running time of each process and the number of processed pairs of points during the force calculation. Out-

put the number of processed pairs only in work processes. When debugging the program, use the non-

parallel version of the algorithm already available in the template. 
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MPIGravit2. Implement the pulsing method and test it on an 800-point input data set (described in the program 

template). The number of processes is always 8. In addition to the results required in the task, output (in the 

debug section) additional information about the running time of each process and the number of processed 

pairs of points during the force calculation. When debugging the program, use the non-parallel version of 

the algorithm already available in the template. 

MPIGravit3. Implement the band partitioned conveyor method and test it on an 800-point input dataset (de-

scribed in the program template). The number of processes is always 8. In addition to the results required in 

the task, output (in the debug section) additional information about the running time of each process and the 

number of processed pairs of points during the force calculation. When debugging the program, use the 

non-parallel version of the algorithm already available in the template. 

MPIGravit4. Implement the backward band partitioned conveyor method and test it on an 800-point input data 

set (described in the program template). The number of processes is always 8. In addition to the results re-

quired in the task, output (in the debug section) additional information about the running time of each 

process and the number of processed pairs of points during the force calculation. When debugging the pro-

gram, use the non-parallel version of the algorithm already available in the template. 

2.2 Screenshots and program templates 

View of the taskbook window during a demo run of the MPIGravit1 task:  
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Contents of the template program for MPIGravit1 task: 
#include "pt4.h" 

#include "mpi.h" 

#include <cmath> 

 

#define gravity 10 // gravitational constant 

#define dt 0.1     // time step 

#define N 800      // number of particles 

#define fmax 1     // max force value 

 

int k;             // number of processes 

int r;             // rank of the current process 

int Niter;         // number of iterations 

 

struct Particle 

{ 

    double x, y, vx, vy; 

}; 

 

struct Force 

{ 

    double x, y; 

}; 

 

Particle p[N]; 

Force f[N]; 

double m[N]; 

 

void Init() 

{ 

    for (int i = 0; i < N; i++) 

    { 

        p[i].x = 20 * (i / 20 - 20) + 10; 

        p[i].y = 20 * (i % 20 - 10) + 10; 

        p[i].vx = p[i].y / 15; 

        p[i].vy = -p[i].x / 50; 

 

        m[i] = 100 + i % 100; 

 

        f[i].x = 0; 

        f[i].y = 0; 

    } 

} 

 

// Implementation of a non-parallel algorithm 

 

void CalcForces2() 

{ 

    for (int i = 0; i < N - 1; i++) 

    for (int j = i + 1; j < N; j++) 

    { 

        double dx = p[j].x - p[i].x, dy = p[j].y - p[i].y, 

        r_2 = 1 / (dx * dx + dy * dy), 

        r_1 = sqrt(r_2), 

        fabs = gravity * m[i] * m[j] * r_2; 

        if (fabs > fmax) fabs = fmax; 

        f[i].x += dx = fabs * dx * r_1; 

        f[i].y += dy = fabs * dy * r_1; 

        f[j].x -= dx; 

        f[j].y -= dy; 

    } 

} 
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void MoveParticlesAndFreeForces() 

{ 

    for (int i = 0; i < N; i++) 

    { 

        double dvx = f[i].x * dt / m[i], 

            dvy = f[i].y * dt / m[i]; 

        p[i].x += (p[i].vx + dvx / 2) * dt; 

        p[i].y += (p[i].vy + dvy / 2) * dt; 

        p[i].vx += dvx; 

        p[i].vy += dvy; 

        f[i].x = 0; 

        f[i].y = 0; 

    } 

} 

 

void NonParallelCalc(int n) 

{ 

    Init(); 

    for (int i = 0; i < n; i++) 

    { 

        CalcForces2(); 

        MoveParticlesAndFreeForces(); 

    } 

} 

 

// End of the non-parallel algorithm implementation 

 

// Implementation of the parallel algorithm 

// based on the "manager-worker" method 

 

// End of parallel algorithm implementation 

 

void Solve() 

{ 

    Task("MPIGravit1_en"); 

    int flag; 

    MPI_Initialized(&flag); 

    if (flag == 0) 

        return; 

    int rank, size; 

    MPI_Comm_size(MPI_COMM_WORLD, &size); 

    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 

    k = size; 

    r = rank; 

    if (r == 0) 

    { 

        pt >> Niter; 

    // Testing the non-parallel algorithm: 

 

        ShowLine("NON-PARALLEL ALGORITHM"); 

        NonParallelCalc(1); 

 

        ShowLine("After one iteration"); 

        SetPrecision(12); 

        Show("    Coordinates of point 0:   ", p[0].x, 17); 

        ShowLine(p[0].y, 17); 

        Show("    Coordinates of point 799: ", p[799].x, 17); 

        ShowLine(p[799].y, 17); 

 

        double t = MPI_Wtime(); 

        NonParallelCalc(Niter); 
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        t = MPI_Wtime() - t; 

 

        ShowLine("After the required number of iterations"); 

        Show("    Coordinates of point 0:   ", p[0].x, 17); 

        ShowLine(p[0].y, 17); 

        Show("    Coordinates of point 799: ", p[799].x, 17); 

        ShowLine(p[799].y, 17); 

 

        SetPrecision(2); 

        ShowLine("Non-parallel algorithm running time: ", t * 1000); 

    } 

    MPI_Bcast(&Niter, 1, MPI_INT, 0, MPI_COMM_WORLD); 

 

    // Testing the parallel algorithm: 

 

} 

View of the taskbook window during the trial run of the MPIGravit1 task: 
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