Completing tasks step by step

MatLab File *HistEDFConstruct2025.mlx* example and guide for you Data for this task you can find in file *Aoxoolncome.pdf*

Point 1

In accordance with Data2, you need build histogram for data presented as a table with specified intervals and absolute frequencies n_i (file μ oxo θ Income.pdf), using various values of the Normalization property. Add explanatory information for the histogram.

You can use the *HistEDFConstruct2025.mlx* file and according to this code prepare your decision of Point1 in the form of a MatLab program file named *Point1YourName.mlx* containing your first and last name.

All the mentioned files are located in the Moodle, section *Empirical Characteristics...*, folder *Methodological Materials*, and this file *Task2Point1 2025.pdf* too.

Point 2

In accordance with a tabular *Data2* (other way):

You should to build a sample X, generating on each subinterval given number of outcomes that fall into the current interval, in accordance with the data in the table and combine them. For Data generation –use randi (uniform generator for integer data with known interval and vector column size).

- a) For the resulting sample X, build a histograms with the same options as before.
- b) Calculate range of data [Xmin, Xmax]. Use vector of points in one of the ways: x = Xmim:step:Xmax or linspace(Xmin, Xmax, Npoints) and for these values of x, find the values of y for the $normal\ probability\ density\ function$ using the function MatLab y = normpdf(X, mu, sigma), (mu mean(x); sigma std(x)) is a standard deviation). Add the resulting graph (x,y) into the window, where histogram has option pdf.

c) Calculate the *median* for the sorted values of *X*, compare with *mean* value (You can use MatLab or definition). Draw conclusion on symmetry of empirical probability density function, explain.

Present your result in the form of Task2Point2YourName.mlx