Lecture 4

Total probability theorem, Bayes' rule, Bernoulli experiments, the local Moivre-Laplace theorem, integral Laplace theorem

Total probability theorem

Theorem. Probability of event B, which can occur only together with one of the events A_1, \ldots, A_n , forming a complete group:

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Example. You enter a chess tournament where your probability of winning a game is 0.3 against half the players (call them type 1). 0.4 against a quarter of the players (call them type 2), and 0.5 against the remaining quarter of the players (call them type 3). You play a game against a randomly chosen opponent. What is the probability of winning?

Let
$$A_i = \{playing \ with \ the \ opponent \ of \ type \ i\}$$
, we have:
$$P(A_1) = 0.5; P(A_2) = 0.25; P(A_3) = 0.25$$

Let
$$B = \{winning\}$$
, we have $P(B|A_1) = 0.3$; $P(B|A_2) = 0.4$; $P(B|A_3) = 0.5$;

Thus, by the total probability theorem, the probability of winning is:

$$P(B) = P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3) = 0.375$$

Bayes' rule

Let event B occur as a result of the implementation of one of the events $A_1, ..., A_n$. We determine the probability that one or another hypothesis took place.

The probability of event B is determined by the total probability theorem:

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

Suppose that a test was performed, as a result of which an event appeared B. Define the conditional probability $P(A_1|B)$. By the multiplication theorem, we get :

$$P(BA_1) = P(B)P(A_1|B) = P(A_1)P(B|A_1)$$

So $P(A_1|B) = \frac{P(A_1)P(B|A_1)}{P(B)}$, write P(B) according to the total probability formula:

$$P(A_1|B) = \frac{P(A_1)P(B|A_1)}{\sum_{i=1}^{n} P(B|A_1)P(A_1)}$$

Bayes' rule

Let event B occur as a result of the implementation of one of the hypotheses $A_1, ..., A_n$. We determine the probability that one or another hypothesis took place:

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)}$$

Example. Let's consider the first example. Let the player win. What is the probability that he played a game with a player of type 1?

$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B)} = \frac{0.3 \cdot 0.5}{0.375} = 0.4$$

Bernoulli experiments

A **Bernoulli trial** (or **binomial trial**) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted.

- 1. The experiment is repeated a fixed number of times (n times).
- 2. Each trial has only two possible outcomes, "success" and "failure". The possible outcomes are exactly the same for each trial.
- 3. The probability of success remains the same for each trial. We use p for the probability of success (on each trial) and q = 1 p for the probability of failure.
- 4. The trials are independent (the outcome of previous trials has no influence on the outcome of the next trial).

Bernoulli experiments

Let n independent trials be performed, in each of which event A can either appear with probability p or not appear with probability q=1-p. Let us determine the probability that in a series of n independent trials the event A will repeat exactly k times.

 p^kq^{n-k} — the probability that in n trials event A occurs k times and does not occur n-k times; such events can be C_n^k

According to the theorem of addition of probabilities of incompatible events

$$P_n(k) = C_n^k p^k q^{n-k}$$

Bernoulli experiments

Example. Flip a coin 12 times, count the number of heads.

Here n = 12. Each flip is a trial. It is reasonable to assume the trials are independent.

Each trial has two outcomes heads (success) and tails (failure).

The probability of success on each trial is p = 1/2 and the probability of failure is q = 1 - 1/2 = 1/2.

This is an example of a Bernoulli Experiment with 12 trials.

Example. A shooter makes 6 shots at a target. The probability of hitting with one shot is 0.3. Find the probability that he hit 4 times.

The local Moivre-Laplace theorem

Let n be big enough.

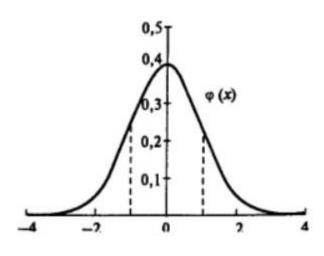
Theorem. If the probability p of the occurrence of the event A in each trial is constant and different from zero and one, then the probability $P_n(k)$ that the event A in n trials will occur k times is approximately equal to the value of the function $y = \frac{1}{\sqrt{npq}} \varphi(x)$ where $x = \frac{k-np}{\sqrt{npq}}$, and $\varphi(x)$ — Gaussian function.

$$\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Properties: 1. $\varphi(x) > 0$ 2. $\varphi(-x) = \varphi(x)$

That is, the probability $P_n(k)$ that the event A in n trials will occur k times is approximately equal to $P_n(k) pprox rac{1}{\sqrt{npq}} \varphi(x)$

where
$$x = \frac{k - np}{\sqrt{npq}}$$



The local Moivre-Laplace theorem

Example. A die is tossed 500 times. What is the probability that the number 1 will appear 50 times?

- 1. Let 3 boxes X, Y, Z be given. Box X contains 10 bulbs, 4 of which are defective. Box Y contains 6 bulbs, 1 of which is defective. Box Z contains 8 bulbs, 3 of which are defective. Find the probability that a light bulb chosen at random is good. If a good bulb is chosen, what is the probability that it is from box Z?
- 2. The factory uses 3 machines X, Y, Z. X produces 50% of the parts, with 3% of them defective. Y produces 30% of the details, and 4% of them are defective. Z produces 20% of the details, and 5% of them are defective. What is the probability that a randomly selected detail has a defect?
- 3. Consider the factory from Problem 8. Let a defective detail be produced. Find the probability that it was released by machine X.

4. The number of trucks driving along a highway on which there is a gas station is related to the number of cars driving along the same highway as 3:2. The probability that a truck will refuel is 0.1; for a car this probability is 0.2. A car drove up to a gas station to refuel. Find the probability that it is a truck.

- 5. Two equal chess players play chess. Which is more likely: to win two games out of four or three games out of six (draws are not taken into account)?
- 6. The coin is tossed five times. Find the probability that the "head" will fall: a) less than two times; b) at least twice.
- 7. There are five children in the family. Find the probability that among these children: a) two boys; b) no more than two boys; c) more than two boys; d) not less than two and not more than three boys. The probability of having a boy is assumed to be 0.51.
- 8. The test consists of six problems, and the test is considered passed if the student has solved at least four of them. The student can solve each problem with a probability of 0.6. What is the probability that he will pass the test?

Homework

- 1. The box contains 12 details made in factory 1, 20 details in factory 2 and 18 details in factory 3. The probability that a detail manufactured at factory 1, has an excellent quality, equal to 0.9; for details manufactured at factories 2 and 3, these probabilities are respectively 0.6 and 0.9. Find the probability that a randomly selected detail will be excellent quality.
- 2. The car insurance company divides drivers into three classes: class A (low risk), class B (medium risk), class C (high risk). The company assumes that of all drivers insured by it, 30% are class A, 50% are class B, 20% are class C. The probability that a class A driver will have at least one car accident during the year is 0, 01; for a class B driver this probability is 0.03, and for a class C driver it is 0.1. Mr. Jones insures his car with this company and gets into a car accident within a year. What is the probability that it belongs to class A?

Homework

- 3. Research by psychologists has established that men and women react differently to some life circumstances. The results of the research showed that 70% of women react positively to these situations, while 40% of men react negatively to them. 15 women and 5 men filled out a questionnaire in which they reflected their attitude to the proposed situations.
- a) determine the probability that a randomly selected questionnaire contains a positive reaction.
- b) a randomly extracted questionnaire contains a negative reaction. What is the probability that it was filled out by a man?

Homework

- 4. Two equal chess players play chess. Which is more likely: to win 4 games out of 8 or 3 games out of 6 (draws are not taken into account)?
- 5. The coin is tossed 4 times. Find the probability that the "head" will fall:
- a) less than 3 times;
- b) at least twice.
- 6. There are five children in the family. Find the probability that among these children:
- a) two boys;
- b) no more than two boys;
- c) more than two boys;
- d) not less than two and not more than three boys.
- The probability of having a boy is assumed to be 0.51.