Laboratory work 3. Plotting graphs.

The options correspond to a given table of option distributions The first option:

InstructionTo format the labels explaining the axes and graphs, the default properties of the command window—the root object with a null handle—are inherited. These can be changed within the current session by entering the following commands in the Command Window's command line or in a script:

```
set(0, 'DefaultAxesFontSize',12, 'DefaultAxesFontName', 'Arial');
set(0, 'DefaultTextFontSize',12, 'DefaultTextFontName', 'Arial');
```

Then they are inherited by the axes and persist throughout the session! Object properties can be changed as needed during programming, as well as interactively.

- 1. Plot the graph of the function $y = with a green dashed line. Add a title and legend. <math>e^{-x} \sin(10x)$
 - a) Create your own descriptor (identifier) for the legend
 - b) Explore all the possibilities for placing the legend according to the descriptor you created:

```
set(UsersDescriptorOfLegend, 'location')
```

see the result in the command window

- 2. Plot the graphs of the functions in the same axes $y_1 = e^{-x} \sin(10x)$ and $y_2 = \sin(10x)$
 - a) Add a legend for both graphs, providing it with a descriptor.
 - b) Move the legend by dragging it with the mouse to another place in the windowfigure.
 - c) Set the location of the legend outside the graph, at your discretion, for example, in the upper right corner of the graphics window.
- 3. Plot the graphs of the functions in the same axes: $y_1 = \sin(x)$ and $y_2 = \cos(x)$ on the segment $[-\pi,\pi]$
 - a) Provide the graphs with a legend; subscripts in the legend are written with underscores: for example, $y_1 = \sin(x)...$
 - b) Add a grid.
- 4. Plot the graphs of the functions $y_1 = e^{-x} \sin(x)$ and $y_2 = e^x \cos(x)$ on the segment $[-\pi,\pi]$ in the same figure, but different graphic axes (*subplot* function). Choose the step for x so that the last value of the functions is calculated at the point $x=\pi$
 - a) Add a general (sgtitle) title: Graphs $y_1 = e^{-x} \sin(x)$ and $y_2 = e^x \cos(x)$.
 - b) Add a title for each axis.
 - b) Study help *sgtitle*; get acquainted (*acquaint[ə 'kweint] ознакомьтесь*) with the fields of the corresponding structures.
- 5. Plot the graphs of the functions $y_1 = \cos(x)$, $y_2 = \sin(x)$, $y_3 = \sqrt{x}$, $y_4 = x^2$, defined on the interval (0, π), each in its own axes with two windows in a row and two in a column, placed in one figure.

 a) Add a legend for each graph.

Comment: An exponent, which is an algebraic expression with more than one operand, must be enclosed in curly braces, as required by LaTex syntax. For example, legend (' $y=x^{1/\sin(x)}$ '), whereas for simple expressions legend (' $y=x^2$ ') – without brackets.

b) Use different line styles.

- 6. Plot the graph of the function $y = \sin(x)$, $x \in [0.2\pi]$, $y \in [-2,2]$.
 - a) Use the plotting command syntax that allows for specifying the domain and modifying the function.
 - b) Specify the name of the axes.
 - c) Add the caption ' \leftarrow max($\sin(x)$)' at the extreme point.
- 7. For the function y(n)=n!, plot a graph on a logarithmic scale along the y-axis.

<u>Comment:</u> It is recommended to use vector operations to implement the task; it is not recommended to use the system function factorial(n)

- 8. Plot the graphs of the functions f = log(0.5x), g = sin(log(x)), $x \in [0.200\pi]$. In two axes of one figure,
 - a) on a logarithmic scale along the x-axis;
 - b) without scaling;
 - c) the schedules should be designed properly.
- 9. Plot the graph of the function $y = \exp(x)$, $x \in [-2 \pi, 2\pi]$ in two axes:
 - a) Use scaling that neutralizes function growth.
 - b) Without scaling.
 - c) Design the graphs so that they are informative.
- 10. Plot the graph of the curve $r=\cos(2\varphi), \varphi \in [0,2\pi]$ in polar coordinate system.
- 11. Plot the graph of the function $y = x \sin(1/x)$, $x \in [-2\pi, 2\pi]$. Use fplot and handle function.
 - a) In the title, indicate the graphical functionality that is used
 - b) Add a legend and grid.

The second option:

InstructionTo format the labels explaining the axes and graphs, the default properties of the command window—the root object with a null handle—are inherited. These can be changed within the current session by entering the following commands in the Command Window's command line or in a script:

```
set(0,'DefaultAxesFontSize',12,'DefaultAxesFontName','Arial');
set(0,'DefaultTextFontSize',12,'DefaultTextFontName','Arial');
```

Then they are inherited by the axes and persist throughout the session! Object properties can be changed as needed during programming, as well as interactively.

- 1. Plot the graph of the function $y = e^{-\sin(10x)}$ using a blue dashed line. Add a title and legend.
 - a) Create your own descriptor (identifier) for the legend
 - b) Explore all the possibilities for placing the legend according to the descriptor you created and place it in a non-standard way:

```
set (UsersDescriptorOfLegend, 'location')
```

see the result in the command window

- 2. Plot the graphs of the functions in the same axes $y_1 = \cos(\sin(x))$ u $y_2 = \cos(x)$ on the segment a) Add a legend for both graphs, providing it with a descriptor.
 - b) Move the legend by dragging it with the mouse to another place in the windowfigure.
- 3. Plot the graphs of the functions in the same axes: $y_1 = \cos(\sin(x))$ μ $y_2 = \cos(x)$ on the segment $[-\pi, \pi]$
 - a) Provide the graphs with a legend; subscripts in the legend are written as underscores: for example, y_1.
 - b) Add a grid.
- 4. Plot the graphs of the functions $y_1 = e^{\cos \mathbb{R} x} \sin(x)$ in $y_2 = e^{\sin \mathbb{R} x} \cos(x)$ ton he segment $[-\pi, \pi]$ in the same figure, but different graphic axes (*subplot* function). Choose the step for x so that the last value of the functions is calculated at the point $x=\pi$
 - a) Add a general (sgtitle) title that contains the graph functions
 - b) Add a title for each axis.
 - b) Study help sgtitle; get acquainted with the fields of the corresponding structures.
- 5. Plot the graphs of the functions $y_1=1/(.1+x)$, $y_2=\cos(x)$, $y_3=\sqrt{x}$, $y_4=x2$, defined on the segment $[0, \pi]$, each in its own axes, the axes are located in one column and placed in one figure.
 - a) Add a legend for each graph.

- b) Use different line styles.
- 6. Plot the graph of the function $y = x \sin(x)$, $x \in [0.2\pi]$, $y \in [-2\pi, 2\pi]$.
 - a) Use the plotting command syntax that allows for specifying the domain and modifying the function.
 - b) Specify the name of the axes.
 - c) Add the caption '←max(function expression)' at the extreme point.

- 7. For the function y(n)=n!, plot a graph on a logarithmic scale along the y-axis.
 - <u>Comment:</u> It is recommended to use vector operations to implement the task; it is not recommended to use the system function factorial(n)
- 8. Plot the graphs of the functions f = log(0.1x), g = cos(log(x)), $x \in [0.200\pi]$ in two axes of one figure,
 - a) on a logarithmic scale along the x-axis;
 - b) without scaling;
 - c) the schedules should be designed properly.
- 9. Plot the graph of the function $y = \exp(x)$, $x \in [-2 \pi, 2\pi]$ in two axes:
 - a) Use scaling that neutralizes function growth.
 - b) Without scaling.
 - c) Design the graphs so that they are informative.
- 10. Plot the graph of the curve $r=\sin(2\varphi), \varphi \in [-2\pi, 2\pi]$ in polar coordinate system.
- 11. Plot the graph of the function $y = (x)^{-1} \sin(x)$, $x \in [-2\pi, 2\pi]$. Use fplot and function handle.
 - a) In the title, indicate the graphical functionality that is used
 - b) Add a legend and grid.

The third option:

Instruction To format the labels explaining the axes and graphs, the default properties of the command window—the root object with a null handle—are inherited. These can be changed within the current session by entering the following commands in the Command Window's command line or in a script:

```
set(0, 'DefaultAxesFontSize', 12, 'DefaultAxesFontName', 'Arial');
set(0, 'DefaultTextFontSize', 12, 'DefaultTextFontName', 'Arial');
```

Then they are inherited by the axes and persist throughout the session! Object properties can be changed as needed during programming, as well as interactively.

- 1. Plot the graph of the function $y = e^{-x} \sin(1/x)$, $x \in [-1,1]$ with a green dotted line. Add a title and legend.
 - a) Create your own descriptor (identifier) for the legend
 - b) Explore all the possibilities for placing the legend according to the descriptor you created:

```
set (UsersDescriptorOfLegend, 'location')
```

see the result in the command window

- 2. Plot the graphs of the functions in the same axes $y_1 = e^{-x} \sin(10x)$ u $y_2 = \sin(x)$
 - a) Add a legend for both graphs, providing it with a descriptor.
 - b) Move the legend by dragging it with the mouse to another place in the windowfigure.
 - c) Set the location of the legend outside the graph, at your discretion, for example, in the upper right corner of the graphics window.
- 3. Plot the graphs of the functions in the same axes: $y_1 = (\sin(x))^2$ u $y_2 = \cos(x)$ on the segment $[-\pi,\pi]$
 - a) Provide the graphs with a legend; subscripts in the legend are written as underscores: for example, y 1.
 - b) Add a grid.
- 4. Plot the graphs of the functions $y_1 = e^{1/x} \sin(x)$ u $y_2 = e^x \cos(x)$ on the interval [eps, π] in the same figure, but different graphic axes (subplot function). Choose the step for x so that the last value of the functions is calculated at the point $x=\pi$
 - a) Add a general (sgtitle) title that contains the graph functions
 - b) Add titles for each axis.

Study help sgtitle; get acquainted with the fields of the corresponding structures.

- 5. Plot the graphs of the functions $y_1 = \cos^2(x)$, $y_2 = 1 \sin(x)$, $y_3 = \sqrt{x}$, $y_4 = x^2$, defined on the interval $[0, \pi]$, each in its own axes, which are located in one row of windows.
 - a) Add a legend for each graph.

- b) Use different line styles.
- 6. Plot the graph of the function $y = \sin(x)/x$, $x \in [0.2\pi]$, $ay \in [-1.5, 1.5]$.
 - a) Use the plotting command syntax that allows for specifying the domain and modifying the function.
 - b) Specify the name of the axes.

- c) Add the caption '←max(graph function)' at the extreme point.
- 7. For the function y(n)=n!, plot a graph on a logarithmic scale along the y-axis.

<u>Comment:</u> It is recommended to use vector operations to implement the task; it is not recommended to use the system function factorial(n)

- 8. Plot the graphs of the functions f = log(0.1x), g = sin(log(x)), $x \in [0,200\pi]$. In two axes of one figure,
 - a) on a logarithmic scale along the x-axis;
 - b) without scaling;
 - c) the schedules should be designed properly.
- 9. Plot the graph of the function $y = \exp(tg(x)), x \in [-\pi, \pi]$ in two axes:
 - a) Use scaling that neutralizes function growth.
 - b) Without scaling.
 - c) Design the graphs so that they are informative.
- 10. Plot the graph of the curve $r=\cos(2\varphi), \varphi \in [0,2\pi]$ in polar coordinate system.
- 11. Plot the graph of the function $y = 1/x \sin(x)$, $x \in [-2\pi, 2\pi]$. Use fplot and function_handle.
 - a) In the title, indicate the graphical functionality that is used
 - b) Add a legend and grid.

<u>The fourth option:</u> **Instruction** To format the labels explaining the axes and graphs, the default properties of the command window—the root object with a null handle—are inherited. These can be changed within the current session by entering the following commands in the Command Window's command line or in a script:

```
set(0,'DefaultAxesFontSize',12,'DefaultAxesFontName','Arial');
set(0,'DefaultTextFontSize',12,'DefaultTextFontName','Arial');
```

Then they are inherited by the axes and persist throughout the session! Object properties can be changed as needed during programming, as well as interactively.

- 1. Plot the graph of the function $y = e^{-x} \sin(10x)$ with a green dashed line. Add a title and legend.
 - a) Create your own descriptor (identifier) for the legend
 - b) Explore all the possibilities for placing the legend according to the descriptor you created:

```
set(UsersDescriptorOfLegend,'location')
```

see the result in the command window

- 2. Plot the graphs of the functions in the same axes $y_1 = e^{-x} \sin(10x)$ u $y_2 = \sin(10x)$
 - a) Add a legend for both graphs, providing it with a descriptor.
 - b) Move the legend by dragging it with the mouse to another place in the windowfigure.
 - c) Set the location of the legend outside the graph, at your discretion, for example, in the upper right corner of the graphics window.
- 3. Plot the graphs of the functions in the same axes: $y_1 = \sin(x)$ u $y_2 = \cos(x)$ on the segment $[-\pi,\pi]$
 - a) Provide the graphs with a legend; subscripts in the legend are written with underscores: for example, $y_1 = ...$)sin(x)
 - b) Add a grid.
- 4. Plot the graphs of the functions $y_1 = e^{-x}\sin(x)$ in $y_2 = e^x\cos(x)$ on the segment $[-\pi,\pi]$ in the same figure, but different graphic axes (subplot function). Choose the step for x so that the last value of the functions is calculated at the point $x=\pi$
 - a) Add a general (sgtitle) title that contains the graph functions
 - b) Add a title for each axis.

Study help sgtitle; get acquainted with the fields of the corresponding structures.

- 5. Plot the graphs of the functions $y_1=\cos(x)$, $y_2=\sin(x)$, $y_3=\sqrt{x}$, $y_4=x^2$, defined on the interval $[0, \pi]$, each in its own axes with two windows in a row and two in a column, placed in one figure.
 - a) Add a legend for each graph.

- b) Use different line styles.
- 6. Plot the graph of the function $y = \sin(x)$, $x \in [0.2\pi]$, $ay \in [-2,2]$.
 - a) Use the plotting command syntax that allows for specifying the domain and modifying the function.
 - b) Specify the name of the axes.

- c) Add the caption '←max(function expression)' at the extreme point.
- 7. For the function y(n)=n!, plot a graph on a logarithmic scale along the y-axis.

<u>Comment:</u>It is recommended to use vector operations to implement the task; it is not recommended to use the system function factorial(n)

- 8. Plot the graphs of the functions f = log(x), g = sin(log(x)), $x \in [0.200\pi]$. In two axes of one figure,
 - a) on a logarithmic scale along the x-axis;
 - b) without scaling;
 - c) the schedules should be designed properly.
- 9. Plot the graph of the function y = exp(x), $x \in [-\pi,\pi]$ in two axes:
 - a) Use scaling that neutralizes function growth.
 - b) Without scaling.
 - c) Design the graphs so that they are informative.
- 10. Plot the graph of the curve $r=cos(4\varphi), \varphi \in [0,2\pi]$ in polar coordinate system.
- 11. Plot the graph of the function $y = (x \sin(1/x))^2$, $x \in [-3\pi, 3\pi]$. Use fplot and function_handle.
 - a) In the title, indicate the graphical functionality that is used
 - b) Add a legend and grid.

The fifth option:

InstructionTo format the labels explaining the axes and graphs, the default properties of the command window—the root object with a null handle—are inherited. These can be changed within the current session by entering the following commands in the Command Window's command line or in a script:

```
set(0, 'DefaultAxesFontSize', 12, 'DefaultAxesFontName', 'Arial');
set(0, 'DefaultTextFontSize', 12, 'DefaultTextFontName', 'Arial');
```

Then they are inherited by the axes and persist throughout the session! Object properties can be changed as needed during programming, as well as interactively.

- 1. Plot the graph of the function $y = e^{-x} \sin(10x)$ with a green dashed line. Add a title and legend. $e^{-x} \sin(10x)$
 - a) Create your own descriptor (identifier) for the legend
 - b) Explore all the possibilities for placing the legend according to the descriptor you created:

```
set(UsersDescriptorOfLegend, 'location')
```

see the result in the command window

- 2. Plot the graphs of the functions in the same axes $y_1 = e^{-x} \sin(x)$ u $y_2 = \sin(x)$
 - a) Add a legend for both graphs, providing it with a descriptor.
 - b) Move the legend by dragging it with the mouse to another place in the windowfigure.
 - c) Set the location of the legend outside the graph, at your discretion, for example, in the upper right corner of the graphics window.
- 3. Plot the graphs of the functions in the same axes: $y1 = \text{and } y2 = \text{on the segment } [-\sin^2(x)\cos(x)\pi,\pi]$
 - a) Provide the graphs with a legend; subscripts in the legend are written as underscores: for example, y 1.
 - b) Add a grid.
- 4. Plot the graphs of the functions $y_1 = e^{-x} \sin(x)$ in $y_2 = e^{\sin(x)} \cos(x)$ on the segment $[-\pi, \pi]$ in the same figure, but different graphic axes (subplot function). Choose the step for x so that the last value of the functions is calculated at the point $x=\pi$
 - a) Add a general (sgtitle) title that contains the graph functions
 - b) Add a title for each axis.

Study help sgtitle; get acquainted with the fields of the corresponding structures.

- 5. Plot the graphs of the functions $y_1=\cos(x)$, $y_2=\sin(x)$, $y_3=\sqrt{x}$, $y_4=x^2$, defined on the interval $[0, \pi]$, each in its own axes with two windows in a row and two in a column, placed in one *figure*.
 - a) Add a legend for each graph.

- b) Use different line styles.
- 6. Plot the graph of the function $y = \sin(x)$, $x \in [0.2\pi]$, $ay \in [-2,2]$.
 - a) Use the plotting command syntax that allows for specifying the domain and modifying the function.

- b) Specify the name of the axes.
- c) Add the caption '←max(function expression)' at the extreme point.
- 7. For the function y(n)=n!, plot a graph on a logarithmic scale along the y-axis.

<u>Comment:</u> To implement the task, it is recommended to use vector operations; it is not advisable to use the system function factorial(n).

- 8. Plot the graphs of the functions f = log(0.1x), g = sin(log(x)), $x \in [0,200\pi]$. In two axes of one figure,
 - a) on a logarithmic scale along the x-axis;
 - b) without scaling;
 - c) the schedules should be designed properly.
- 9. Plot the graph of the function y = sin(x) exp(x), $x \in [-2 \pi, 2\pi]$ in two axes:
 - a) Use scaling that neutralizes function growth.
 - b) Without scaling.
 - c) Design the graphs so that they are informative.
- 10. Plot the graph of the curve $r=\cos(2\varphi), \varphi \in [-2\pi, 2\pi]$ in polar coordinate system.
- 11. Plot the graph of the function $y = x \sin(1/x)$, $x \in [-2\pi, 2\pi]$. Use fplot and function handle
 - a) In the title, indicate the graphical functionality that is used
 - b) Add a legend and grid.